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Kelvin showed the maximum efficiency with which heat can be converted into work; but there is a
dual theorem about the maximum efficiency with which heat at one temperature can be converted
into heat at another temperature. It has some surprising implications, in particular that the efficiency
with which we heat our buildings could in principle be improved by a large factor. This long known,
but still little known, fact is of current pedagogical interest and practical importance. ©2003

American Association of Physics Teachers.
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I. INTRODUCTION

For over 200 years the University of Glasgow has play
a uniquely important role in the development of thermod
namics. There the distinction between temperature as a m
sure of intensity of something, and heat as aquantity of
something, was first seen clearly by Joseph Black in ab
1760. This knowledge contributed to the work of his co
league, James Watt, in the first practical means of conver
heat into work. Then Carnot and others tried to find t
maximum theoretical efficiency of this conversion, but t
one who finally succeeded was Wm. Thomson~later Lord
Kelvin! at the University of Glasgow.

Recently an addition to this was made, which is not o
of theoretical interest as representing in a sense the com
tion of the logical structure of classical thermodynamics
has immediate practical implications. Yet the principle
hardly new; it is such a simple and immediate conseque
of Thomson’s work that it must have been known to Tho
son in 1870.1 Today it cannot be really unknown to anyon
familiar with the theory of heat pumps. But to the best of o
knowledge it has not yet appeared in any physics textbo
stated in a form where it is seen as logically independen
Carnot engines, and forming the natural dual theorem to
one on the efficiency of Carnot engines.2 It seems appropri-
ate that this way of looking at the result was finally point
out by Robert S. Silver,3 the James Watt Professor~now
emeritus! of the University of Glasgow.

In Sec. II we give the almost trivial derivation, and in Se
III we point out its practical implications by numerical ex
amples. Because a large part of the world’s energy resou
are actually used for heating rather than production of wo
these implications are not trivial. Section IV points out a
other surprising application.

II. THEORETICAL DERIVATION

We have a source of heatQ2 which is available at Kelvin
temperatureT2 . By this we mean, as was stressed long a
by Gibbs,4 that the source is capable of delivering that h
to a heat reservoir which is at temperatureT2 ; T2 is the
highest temperature to which it can deliver that heat. If th
is available a cold reservoir at temperatureT1,T2 , then
according to classical thermodynamics we may exploit t
180 Am. J. Phys.71 ~2!, February 2003 http://ojps.aip.org
d
-
a-

ut

g
e

y
le-
t

ce
-

r
k,
f
e

.

es
,

-

o
t

e

s

temperature difference to obtain workW. By applying the
first and second laws, we obtainW5Q22Q1 , Q1 /T1

>Q2 /T2 ; if we solve these forW andQ1 , we have

W<Q2S 12
T1

T2
D , Q1>Q2

T1

T2
, ~1!

with an equality if and only if the engine is reversible. In th
latter case the ‘‘wasted energy’’

Q1~Carnot!5Q2

T1

T2
~2!

is delivered as heat to the reservoir at temperatureT1 . This is
the standard result.

But now suppose that our objective is not to produ
work, but to deliver the maximum possible heat to that low
temperature reservoir. This is the conversion problem fa
in every home, where one has heat from a gas, oil, wood
coal flame but wants heat at room temperature. At pres
we simply allow the primary heatQ2 to degrade itself di-
rectly to the lower temperatureT1 by passing through ducts
radiators, etc. In this way we obtain, at best~neglecting heat
loss through chimneys! the amount of heatQ1(direct)
5Q2 . But this process is irreversible because there is a
entropy increaseDS5Q2 /T12Q2 /T2.0, indicating that
something has been wasted, and we can do better. The
and second laws imply that, not only in the conversion
heat to work, but also in the conversion of heat to heat,
maximum efficiency will be attained if we can carry out th
process reversibly.

Suppose we have an ambient heat reservoir~the outside
world! at temperatureT0,T1 , and we use a perfect Carno
engine to obtain the heatQ1(Carnot). Then we still have the
work W available, which we can use to drive a heat pum
betweenT0 andT1 , yielding the additional heat

Q1~pump!5
T1 W

T12T0
. ~3!

If we combine Eqs.~2! and ~3!, we have now obtained the
total heat
180/ajp/ © 2003 American Association of Physics Teachers
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Q15Q1~Carnot!1Q1~pump!5Q2

T1

T2

T22T0

T12T0
, ~4!

and there is always a net gain, becauseQ1 is always greater
than Q2 wheneverT0,T1,T2 . But while we know that a
reversible Carnot engine delivers the maximum attaina
work, this argument does not make it obvious whether
~4! is the maximum attainable heat.

Now from a theoretical standpoint it is more general a
more elegant to apply the first and second laws directly
this process, as we did in Eq.~1!. Because some heatQ0 is
removed from the outside reservoir, we must have

Q15Q01Q2 ,
Q1

T1
>

Q0

T0
1

Q2

T2
. ~5!

By solving these equations forQ1 andQ0 , we have

Q1<Q2

T1

T2

T22T0

T12T0
, Q0<Q2

T0

T2

T22T1

T12T0
, ~6!

where the equality holds if and only if the process is reve
ible. Thus we obtain automatically the same result Eq.~4!,
plus the statement that it is themaximum attainableheating,
without invoking Carnot engines at all. It is in this simp
argument that the main theoretical and pedagogical inte
of this discussion lies.

III. PRACTICAL IMPLICATIONS

Consider heating from a primary temperatureT2

51000 K to room temperature,T1525 °C5298 K, with an
outside temperatureT050 °C5273 K. Comparing our idea
Q1 with the present maximumQ2 , we have from Eq.~6!, the
gain factor

G[
Q1

Q2
5

120.273

120.916
58.66. ~7!

This seems at first glance quite startling; if we take in
account that we are at present far from getting evenQ2 be-
cause of heat loss up chimneys, the conclusion is that it i
principle possible to heat our homes with an order of m
nitude less fuel than we are now consuming.

A better idea of the numerical improvement allowed
the second law is given in Fig. 1, where we give contours
constant gainG[Q1 /Q2 in the (T0 ,T2) plane for T1

525 °C, room temperature. Even in cold climates, aver
gains of the order of 5 are indicated. The reason for this h
efficiency is thatT0 and T1 are not very different on the
Kelvin scale. With the values of inside and outside tempe
ture assumed in Eq.~7!, one Joule of work will pump

T0 /~T12T0!510.9 ~8!

Joules of heat from the outside world, and deliver 11.9 Jou
to the inside. Unfortunately, presently available heat pum
are far from realizing this theoretical efficiency. Silver3 notes
that if present engines realize only half of the theoreti
efficiency, then the heat pump component ofQ1 will be only
a quarter of our calculated value.

Evidently, the development of heat pumps that appro
the theoretical efficiency for small temperature differenc
would be of very great economic importance, and no phy
cal law stands in the way of realizing them. It is only
matter of the ingenuity of inventors, and the one who s
181 Am. J. Phys., Vol. 71, No. 2, February 2003
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ceeds will be one of the world’s great benefactors. We s
pect that the successful technology will avoid the crude m
chanical pumps of our present realizations, perh
depending on thermoelectric or electrochemical means
avoid all mechanical moving parts, although perhaps w
circulating fluids.

IV. FREE OVENS FOR ESKIMOS

Note that the derivation of Eq.~6! is general in that it
holds for any exchange of heat between three reserv
whatever the relative temperatures and the signs of theQi ,
although the arrangement of Carnot engines envisaged in
derivation of Eq.~4! would no longer apply. But this seem
to contradict a common statement of the second law att
uted to Kelvin that ‘‘It is impossible for heat to flow of itsel
from a cold reservoir to a hotter one.’’ The statement actua
made by Kelvin is that it is impossible to do thiswithout
leaving changes in external bodies. Equation ~6! demon-
strates the need for this qualification for it is quite possi
for heat to flow spontaneously from room temperatureT1 to
a higher temperatureT2 , if there is at the same time a com
pensating flow to a lower temperatureT0 .

Suppose then that we want to heat an oven at the stan
cooking temperature ofT25400 °F5204 °C5477 K, using
heat extracted from the air of a kitchen at room temperat
T1525 °C5298 K. Our equations use the sign conventi
thatQ1 is the heatdelivered tothe reservoir atT1 , while Q0

andQ2 represent heatextracted fromthose atT0 ,T2 . There-
fore Q0 , Q1 , andQ2 are now all negative, so (2Q1) is the
heat extracted from the room and (2Q2) is the resulting heat
delivered to the oven; but Eq.~6! still holds. If we write the
first as

~2Q2!<~2Q1!
12T0 /T1

12T0 /T2
, ~9!

we see that the maximum heat that can be delivered to
oven is less than that extracted from the room, but if
outside temperatureT0 is low enough, the efficiency can b
quite high; unlike room heating, oven heating becomes m
efficient as the outside temperature is lowered.

Indeed, we have only to run a Carnot engine betweenT1

andT0 extracting the workW5(2Q1)(12T0 /T1), then use

Fig. 1. Contours of constant gain in the (T0 ,T2) plane, forT1525 °C.
181Notes and Discussions
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that to run a heat pump betweenT0 andT2 , which delivers
the heat (2Q2)5W/(12T0 /T2), in agreement with Eq.~9!.
If the outside temperatureT0 is 240 °F5240 °C5233 K
then according to Eq.~9!, 1000 calories of heat remove
from the room can deliver 426 calories to the oven. If th
leaks back eventually to reheat the room, it might appear
the ‘‘cost’’ of running the oven was not the 1000 calori
removed from the room, but only the 574 calories lost to
outside.

But this leaking back is again an irreversible process
which something is wasted, and we can do better. If the o
is well insulated, then when we are done with it the h
(2Q2) is still in it, so we have only to run those Carn
engines backward, obtaining the workW5426(12T0 /T2)
from which the heat pump can return the heatW/(1
2T0 /T1)51000 calories to the room, completely restori
thestatus quo. The second law allows us to operate an ov
at whatever temperature we please, at zero cost, the ou
reservoirT0 serving only as a temporary repository for th
entropy that must be disposed of in heating the oven.5

Unfortunately, the second law will not allow us to supp
our cooling needs as easily; it offers free~that is, zero oper-
Comment on ‘‘The hidden symmetry for a
with an infinitely deep square-well potenti
and Zhong-Qi Ma †Am. J. Phys. 70 „5…,

Asim Gangopadhyayaa) and Jeffry V. Mallowb)

Department of Physics, Loyola University Chicago, Chic
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ating cost! ovens to eskimos, but not free air-conditioning
hottentots because they have no lower temperature rese
to take up that entropy.

a!Professor Edwin Jaynes died on 28 April 1998 and this paper was fo
among his unpublished works; its message remains timely. Corres
dence concerning this paper can be addressed to W. T. Grandy,
wtg@uwyo.edu.

1WTG—Actually, Kelvin had realized it much earlier: W. Thomso
~Lord Kelvin!, ‘‘On the economy of the heating or cooling of buildings b
means of currents of air,’’ Proc. R. Philos. Soc.~Glasgow! 3, 269–272
~1852!.

2WTG—There is, however, at least one textbook that presents the princ
in terms of Carnot engines: F. H. Crawford,Heat, Thermodynamics, and
Statistical Physics~Harcourt, Brace & World, New York, 1963!, pp. 217–
219.

3R. S. Silver, ‘‘Reflexions sur la puissance chaleurique du feu,’’ J. H
Recovery Syst.1, 205–207~1981!.

4J. W. Gibbs, ‘‘Electrochemical thermodynamics,’’ Report Brit. Assoc. Ad
Sci. 388 ~1886!; reprinted inThe Scientific Papers of J. Willard Gibb
~Longmans, Green & Co., New York, 1906 and Dover Publications, In
New York, 1961!, pp. 406–412.

5WTG—There is still some loss in the form of the energy required
change the state of whatever was cooked, but theoperating costis zero.
quantum system
al,’’ by Shi-Hai Dong
520–521 „2002…‡
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Dong and Ma have used the ladder-operator techniqu
solve the infinitely deep square well problem and have
amined the group theoretical properties of their solutio
concluding that the eigenstates belong to representations
spectrum generating SU~1,1! algebra.1 We demonstrate her
that their technique is an example of the method of sup
symmetric quantum mechanics~SUSY-QM!.2 SUSY-QM
provides an elegant and useful prescription for obtain
closed analytical expressions for both the energy eigenva
and the eigenfunctions of a large class of one-dimensio
problems. SUSY-QM extends Dirac’s raising and loweri
operatorsa† anda, first developed for obtaining the energ
eigenvalues of the one-dimensional harmonic oscillator,
similar pairA andA† which connectdifferentpotentials that
share thesameenergy eigenvalues~except for the ground
state!. It also naturally imposes an algebraic structure on
analytically solvable problems of nonrelativistic quantu
mechanics. In fact the infinite square well is a special cas
the Eckart potential, one of the class of shape invariant
tentials described earlier in this journal,3 whose group theo-
retical properties have been extensively studied.4 In particu-
lar, we have reviewed the characteristics of the SO(2
;SU(1,1) potential algebra.5

In SUSY-QM, each superpotentialW(x,a) produces two
‘‘partner potentials’’
to
-
,
f a

r-

g
es
al

a

ll

of
o-

)

V65W2~x,a!6
dW~x,a!

dx
, ~1!

and ladder operators

A~x,a!5
d

dx
1W~x,a!, A†~x,a!52

d

dx
1W~x,a!. ~2!

A subset of all possible superpotentialsW(x,a) has the prop-
erty known as shape invariance.6 Examples of two such
shape invariant partner potentials are the infinite well and
cosec2 x potential~something one would hardly guess fro
the name ‘‘shape invariant’’!. The entire spectrum of thes
potentials can be determined by algebraic means,2,3 analo-
gous to the way that the one-dimensional harmonic oscilla
is solved by Dirac’s method.

In addition and independently, it was discovered that e
of these exactly solvable systems possesses a SO(
algebra,7,8 as Dong and Ma have deduced for the infin
well. The connection between the SUSY-QM method of s
lution and the group theoretical potential algebra method w
then established.4,9

In the following we will use units such that\ and 2m
51. In SUSY-QM, the partner potentialV2 is adjusted to
make the ground state energyE050. Each of the excited
state energies is thus shifted from the traditional Schro¨dinger
182/ajp/ © 2003 American Association of Physics Teachers
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value by 2E0 . The superpotentialW produces a ground
state eigenfunction c0

(2)(x,a);exp(2*x0

x W(x,a)dx). For

W(x,a)52a cotx, we find c0
(2)(x,a);sina x. We have

considered the infinite well, for whicha51 for the ground
statec0

(2)(x,1);sinx.9 If we operate successively withA†,
we produce the excited states sinnx. The primary difference
between the SUSY-QM method3 and that of Dong and Ma is
that A1 operates on a ground state with a shifted param
a: c(x,a11);sina11 x, while theirP1 operates on the cus
tomary ground state sinx. The techniques are equivalent. Th
corresponding eigenvaluesEn

6 are obtained from the shap
invariance condition, which represents them as a simple
of algebraic remainders from the difference of the values
the two partner potentials.4 They are the shifted eigenvalue
En

25n2p2/L22E0 ; En
15En11

2 . ~As an added bonus,En
1

are the energy levels of the cosec2x potential.!
The connection between shape invariant potentials

SO(2,1) or its extension algebra has been obtained.4 We have
shown that they are special cases of the generalized Na
zon potential.10 We have also shown that the set of alrea
known potentials constitutes the full set.4,9 Our approach
therefore links the group theoretic~potential algebra! ap-
proach and the supersymmetric quantum mechanics
proach for treating shape invariant potentials.

a!Electronic mail: agangop@luc.edu, asim@uic.edu
b!Electronic mail: jmallow@luc.edu
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