NOTES AND DISCUSSIONS

Note on thermal heating efficiency
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Kelvin showed the maximum efficiency with which heat can be converted into work; but there is a
dual theorem about the maximum efficiency with which heat at one temperature can be converted
into heat at another temperature. It has some surprising implications, in particular that the efficiency
with which we heat our buildings could in principle be improved by a large factor. This long known,
but still little known, fact is of current pedagogical interest and practical importanceoo®
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[. INTRODUCTION temperature difference to obtain wow. By applying the

For over 200 years the University of Glasgow has playecgrSt and second laws, we obtalV=Q,~Qi, Q:/T;

a uniquely important role in the development of thermody-/Q2/T2’ it we solve these fol/ andQ,, we have

namics. There the distinction between temperature as a mea-

sure of intensity of something, and heat as quantity of < ( _ E

; : 4 W=Q,| 1

something, was first seen clearly by Joseph Black in about T,

1760. This knowledge contributed to the work of his col-

league, James Watt, in the first practical means of convertingith an equality if and only if the engine is reversible. In the

heat into work. Then Carnot and others tried to find thelatter case the “wasted energy”

maximum theoretical efficiency of this conversion, but the

one who finally succeeded was Wm. Thomgtater Lord T,

Kelvin) at the University of Glasgow. Qi(Carnoy = QZT_Z @)
Recently an addition to this was made, which is not only

of theoretical interest as representing in a sense the complgs gelivered as heat to the reservoir at temperafyreThis is
tion of the logical structure of classical thermodynamics; itine standard result.

has immediate practical implications. Yet the principle is gt now suppose that our objective is not to produce

hardly new; it is such a simple and immediate consequencg,qry pyt to deliver the maximum possible heat to that lower

of Thomson's work that it must have been known to Thom-emnerature reservoir. This is the conversion problem faced
son in 1870 Today it cannot be really unknown to anyone j, every home, where one has heat from a gas, oil, wood, or
familiar with the theory of heat pumps. But to the best of our.5| flame but wants heat at room temperature. At present,

knowledge it has not yet appeared in any physics textboo . ; - -
stated in a form where it is seen as logically independent é‘(\/e simply allow the primary head, to degrade itself di

Carnot engines, and forming the natural dual theorem to th‘%GCtIy to the lower temperaturE, by passing through ducts,

one on the efficiency of Carnot engirfelt. seems appropri- radiators, etc. In 'Fhis way we obtain, at bé&;ﬂaglecting heat
ate that this way of looking at the result was finally pointed'©SS through chimneysthe amount of heatQ, (direct)
out by Robert S. Silvet,the James Watt Professénow =Q,. But this process is irreversible because there is a net
emeritug of the University of Glasgow. entropy increaseAS=Q,/T;—Q,/T,>0, indicating that
In Sec. Il we give the almost trivial derivation, and in Sec.something has been wasted, and we can do better. The first

Il we point out its practical implications by numerical ex- and second laws imply that, not only in the conversion of
amples. Because a large part of the world’s energy resourcégat to work, but also in the conversion of heat to heat, the
are actually used for heating rather than production of workmaximum efficiency will be attained if we can carry out the

these implications are not trivial. Section IV points out an-process reversibly. _ _ _
other surprising application. Suppose we have an ambient heat resertbe outside

world) at temperaturd ,<T,, and we use a perfect Carnot

engine to obtain the he§;(Carnot). Then we still have the

work W available, which we can use to drive a heat pump
We have a source of he@, which is available at Kelvin betweenT, andT,, yielding the additional heat

temperaturel,. By this we mean, as was stressed long ago

by Gibbs? that the source is capable of delivering that heat T, W

to a heat reservoir which is at temperature; T, is the Qi(pump = T,-To 3

highest temperature to which it can deliver that heat. If there

is available a cold reservoir at temperatufe<T,, then If we combine Egs(2) and(3), we have now obtained the

according to classical thermodynamics we may exploit thigotal heat

T
, Q1>Q2T_21a 1

[I. THEORETICAL DERIVATION

180 Am. J. Phys.71 (2), February 2003 http://ojps.aip.org/ajp/ © 2003 American Association of Physics Teachers 180



TlTZ_TO T27 DC‘
Q1:Q1(Cam09+Q1(pump):Qz—-l- o7 (4) 2000
211 0

and there is always a net gain, beca@seis always greater
than Q, wheneverT,<T;<T,. But while we know that a 1500 1\4 6 8 {10{l2 GAIN
reversible Carnot engine delivers the maximum attainable .
work, this argument does not make it obvious whether Eg. ]
(4) is the maximum attainable heat. 1000

Now from a theoretical standpoint it is more general and |
more elegant to apply the first and second laws directly to ]

this process, as we did in E¢l). Because some he@}, is 500 3
removed from the outside reservoir, we must have ]
12
Qi_ Qo Q ]
— Jf_ , J— 2 JE— Jf_ —_ 5 0 T{TITTTI T I T[T AP TR TR T T AR T A [T T AR T AT T[T T A I T T[T I A T AT T[T T ]
Q= Qo* Qe T, To Tp © -40 -30 -20 -10 0 10 20
By solving these equations f@, andQ,, we have Ty = Outside Temperature, °C. —
0,=0 T, T,— T Qu=0 ToTo—Ty ©) Fig. 1. Contours of constant gain in th&,T,) plane, forT,=25°C.
T TmTo 0 T, Ty T

where the equality holds if and only if the process is reversceeds will be one of the world’s great benefactors. We sus-
ible. Thus we obtain automatically the same result @3,  pect that the successful technology will avoid the crude me-
p|US the statement that it is tmeaximum attainabldaeating, chanical pumps of our present realizations, perhaps
without invoking Carnot engines at all. It is in this simple depending on thermoelectric or electrochemical means that

argument that the main theoretical and pedagogical interegfyoid all mechanical moving parts, although perhaps with
of this discussion lies. circulating fluids.

lll. PRACTICAL IMPLICATIONS IV. FREE OVENS FOR ESKIMOS

Note that the derivation of E(6) is general in that it
holds for any exchange of heat between three reservoirs
whatever the relative temperatures and the signs ofthe
although the arrangement of Carnot engines envisaged in our
derivation of Eq.(4) would no longer apply. But this seems

Consider heating from a primary temperaturg,
=1000 K to room temperaturd,; =25 °C=298 K, with an
outside temperaturgé,=0 °C=273 K. Comparing our ideal
Q1 with the present maximur®,, we have from Eq(6), the

gain factor to contradict a common statement of the second law attrib-
Q, 1-0.273 uted to Kelvin that “It is impossible for heat to flow of itself
=0, 1-0916 .66. (7)  from a cold reservoir to a hotter one.” The statement actually
2 .

made by Kelvin is that it is impossible to do thigithout
This seems at first glance quite startling; if we take intoleaving changes in external bodieEquation(6) demon-
account that we are at present far from getting e@erbe-  strates the need for this qualification for it is quite possible
cause of heat loss up chimneys, the conclusion is that it is ifor heat to flow spontaneously from room temperaftiyeo
principle possible to heat our homes with an order of maga higher temperaturg,, if there is at the same time a com-
nitude less fuel than we are now consuming. pensating flow to a lower temperatufg.

A better idea of the numerical improvement allowed by  syppose then that we want to heat an oven at the standard
the second law is given in Fig. 1, where we give contours Ofcooking temperature 6F,=400 °F=204 °C=477 K, using
constant gainG=Q,/Q, in the (To,T;) plane for T;  peat extracted from the air of a kitchen at room temperature
=25°C, room temperature. Even in cold climates, averager, = 25 °C=298 K. Our equations use the sign convention
gains of the order of 5 are indicated. The reason for this highnatQ, is the heatlelivered tothe reservoir af;, while Q,
efficiency is thatT, and T, are not very different on the an4Q, represent heatxtracted fronthose affy,T,. There-
Kelvin scale. With the values of inside and outside temperasz o Qo, Q;, andQ, are now all negative, so{Q,) is the

ture assumed in EdJ), one Joule of work will pump heat extracted from the room and Q,) is the resulting heat

To/(T;—Ty)=10.9 (8) delivered to the oven; but EE6) still holds. If we write the
Joules of heat from the outside world, and deliver 11.9 JoulegrSt as
to the inside. Unfortunately, presently available heat pumps 1-To/Ty
are far from realizing this theoretical efficiency. Si¥eotes (—Q2)=<(—Qy) 1=T,/T,’ 9)

that if present engines realize only half of the theoretical ) )

efficiency, then the heat pump componentfwill be only ~ We see that the maximum heat that can be delivered to the

a quarter of our calculated value. oven is less than that extracted from the room, but if the
Evidently, the development of heat pumps that approaclRutside temperatur&, is low enough, the efficiency can be

the theoretical efficiency for small temperature differenceguite high; unlike room heating, oven heating becomes more

would be of very great economic importance, and no physigfficient as the outside temperature is lowered.

cal law stands in the way of realizing them. It is only a Indeed, we have only to run a Carnot engine betwéen

matter of the ingenuity of inventors, and the one who suc-andT, extracting the workNV=(—Q,)(1—T,/T,), then use
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that to run a heat pump betwe&g andT,, which delivers ating cost ovens to eskimos, but not free air-conditioning to
the heat - Q,)=W/(1—T,/T,), in agreement with Eq9).  hottentots because they have no lower temperature reservoir
If the outside temperatur@, is —40°F=—-40°C=233 K  to take up that entropy.

then according to Eq(9), 1000 calories of heat removed

from the room can deliver 426 calories to the oven. If this ?Professor Edwin Jaynes died on 28 April 1998 and this paper was found
leaks back eventually to reheat the room, it might appear that among his unpublished works; its message remains timely. Correspon-
the “cost” of running the oven was not the 1000 calories dence concerning this paper can be addressed to W. T. Grandy, Jr. at

removed from the room, but only the 574 calories lost to the Wig@uwyo.edu. o ,
outside. WTG—Actually, Kelvin had realized it much earlier: W. Thomson

B his leaki back i . . ibl . (Lord Kelvin), “On the economy of the heating or cooling of buildings by
ut this leaking back Is again an Irreversible process in means of currents of air,” Proc. R. Philos. SdGlasgow 3, 269-272

which something is wasted, and we can do better. If the oven(igs),
is well insulated, then when we are done with it the heat2yTG—There is, however, at least one textbook that presents the principle
(—Q,) is still in it, so we have only to run those Carnot in terms of Carnot engines: F. H. Crawfordeat, Thermodynamics, and
engines backward, obtaining the wov=426(1—-T,/T,) Statistical PhysicgHarcourt, Brace & World, New York, 1963pp. 217—
from which the heat pump can return the heat (1 219. _ _ _
—T,/T,)=1000 calories to the room, completely restoring SR. S. Silver, “Reflexions sur la puissance chaleurique du feu,” J. Heat
o/ 11)= )

Recovery Systl, 205-207(1981).

the status quoThe second law allows us to operate an oven VY (1389

h | h _a“.]. W. Gibbs, “Electrochemical thermodynamics,” Report Brit. Assoc. Adv.
at whatever temperature we please, at zero cost, the outsi &ci. 388(1886; reprinted inThe Scientific Papers of J. Willard Gibbs

reservoirT, serving Onl_y as a tem_porary_repository for the (Longmans, Green & Co., New York, 1906 and Dover Publications, Inc.,
entropy that must be disposed of in heating the oven. New York, 1963, pp. 406—412.

Unfortunately, the second law will not allow us to supply SwTG—There is still some loss in the form of the energy required to
our cooling needs as easily; it offers fr@bat is, zero oper-  change the state of whatever was cooked, bubjterating cosis zero.

Comment on “The hidden symmetry for a quantum system
with an infinitely deep square-well potential,” by Shi-Hai Dong
and Zhong-Qi Ma [Am. J. Phys. 70 (5), 520-521 (2002)]
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Dong and Ma have used the ladder-operator technique to dW(x,a)
solve the infinitely deep square well problem and have ex- V:ZWZ(X,a)iT, (1)
amined the group theoretical properties of their solutions,
concluding that the eigenstates belong to representations ofeand ladder operators
spectrum generating $,1) algebral We demonstrate here
that their technique is an example of the method of supe
symmetric quantum mechanicSUSY-QM).?2 SUSY-QM
provides an elegant and useful prescription for obtaining . )
closed analytical expressions for both the energy eigenvalud Subset of all possible superpotentiligx,a) has the prop-
and the eigenfunctions of a large class of one-dimensiondi'y known as shape invarianteExamples of two such
problems. SUSY-QM extends Dirac’s raising and IoweringShape mvanant_ partner pqtentlals are the infinite well and the
operatorsa’ anda, first developed for obtaining the energy cose€ x po“tentlal (S.Ome.th'”,;q one WO.UId hardly guess from
eigenvalues of the one-dimensional harmonic oscillator, to 5hef{ nril_n}e shage '(;‘Vf‘”ar?l- Ehg enltlrebspectrtégr;f trese
similar pairA andA" which connecdifferentpotentials that potentia’s can be determined by aigebraic m malo-

. gous to the way that the one-dimensional harmonic oscillator
share thesameenergy eigenvaluegexcept for the ground g golved by Dirac’s method.

statg. It also naturally imposes an algebraic structure on all |, 5qdition and independently, it was discovered that each
analyt|cz_;1IIy solvable pro_bl_ems of nonrel_atlwstlc quantum ¢ these exactly solvable systems possesses a SO(2,1)
mechanics. In fact the infinite square well is a special case Qilgebra7'8 as Dong and Ma have deduced for the infinite
the Eckart potential, one of the class of shape invariant poge|l. The connection between the SUSY-QM method of so-

tentials described earlier in this jourrialyhose group theo- ution and the group theoretical potential algebra method was
retical properties have been extensively studiguparticu-  then established®

lar, we have reviewed the characteristics of the SO(2,1) In the following we will use units such that and 2m

"A(x,a)= i+W(x a), Al(x,a)=- iJrW(x a). (2
' dx Y ' dx T

~SU(1,1) potential algebra. =1. In SUSY-QM, the partner potentid_ is adjusted to
In SUSY-QM, each superpotentislV/(x,a) produces two make the ground state ener@y=0. Each of the excited
“partner potentials” state energies is thus shifted from the traditional Sdimger
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value by —E,. The superpotentiaW produces a ground Balantekin, “Algebraic approach to shape invariance,” Phys. Re&7A

. . (=) " 4188-4191(1998; S. Chaturvedi, R. Dutt, A. Gangopadhyaya, P. Pani-
state eigenfunction ¢y (x,a)~exp(—fX0W(x,a)dx). For grahi, C. Rasinariu, and U. Sukhatme, “Algebraic shape invariant mod-

W(x,a)=—a cotx, we find ¢8—)(X'a)~5ina x. We have els,” Phys. Lett. A248 109-1131998; A. Gangopadhyaya, J. V. Mallow,

idered the infinit I f hich=1 for th d and U. P. Sukhatme, “Translational shape invariance and the inherent
considere € Infinite well, tor whicR= 1 Tor the groun potential algebra,” Phys. Rev. B8, 4287-42921998; A. B. Balantekin,

statey)(x,1)~sinx.? If we operate successively with', M. A. C. Ribeiro, and A. N. F. Aleixo, “Algebraic nature of shape-
we produce the excited states s The primary difference invariant and self-similar potentials,” J. Phys.3®, 2785-27901999.
between the SUSY-QM methddnd that of Dong and Ma is 5An algebra is a system of operators with commutation relations, in which
that A* operates on a ground state with a shifted IDau,ameterone, called the Casimir operator, commutes with all the others. A common

. i1 . . example is the angular momentun, which commutes with its compo-
a ‘l/(x’a_'— 1)~S| x, while theer+ operates on the cus- nentsL; (i=x,y,z), and which has the same eigenval(le+ 1)%? for all

tomary ground state s The techniques are equivalent. The the eigenstates defined by it and one of its compong@uistomarilyL ,).
corresponding eigenvaluﬁf are obtained from the shape Their eigenstatefi,m) constitute the representation for this example. A
invariance condition, which represents them as a simple sumpotential algebra _is one for which the Hamilton_ian is the Casimir operator.
of algebraic remainders from the difference of the values of Because the Casimir operator has the same eigenvalue for each eigenstate,

the two partner potentiafsThev are the shifted eigenvalues in this case the representation consists of a set of states with a common
_ 5 p2 2 P + T y 9 n value for energy. But here, each state is an eigenstate of a distinct poten-
E,=n“m“/L*—Eq; E;=E,;;. (As an added bonus, tial. Thus, reversing the usual paradigm for quantum mechanics—a single

are the energy levels of the CO%EQJOtential) potential generating a set of energy eigenvalues and eigenstates—this su-
The connection between shape invariant potentials andpersymmetric algebra pulls together states of the same energy from an
SO(2,1) or its extension algebra has been obtatwd.have infinite set of different potentials. Hence, we are led to the name potential

h that th ial f th lized Nat algebra. For more details, see Ref. 7 for the Eckart potential, as well as
shown that they are special cases of the generalize alaNgeyeral other shape invariant potentiedee Ref.

)

zon potentiaf. “We have also shown that the set of already ¢ infeid and T. E. Hull, “The factorization method,” Rev. Mod. Phy2S,
known potentials constitutes the full $et.Our approach  21-68(1951: see Ref. 3 for more references.

therefore links the group theoretipotential algebra ap- 3. Wu, Y. Alhassid, and F. Gsey, “Group theory approach to scattering.
proach and the supersymmetric quantum mechanics ap4V. Solvable potentials associated with &®),” Ann. Phys. (Leipzig)

proach for treating shape invariant potentials. 196, 163-181(1989.
8A. O. Barut, A. Inomata, and R. Wilson, “A new realization of dynamical
aE|ectronic mail: agangop@Iuc.edu, asim@uic.edu groups and factorization method,” J. Phys28, 4075-40821987); ibid.
bElectronic mail: jmallow@Iluc.edu ' “Algebraic treatment of second Bohl-Teller, Morse—Rosen, Eckart equa-
1S.-H. Dong and Z.-Q. Ma, “The hidden symmetry for a quantum system tions.” ibid. 20, 4083—-40961987; M. J. Englefield and C. Quesne, “Dy-
with an infinitely deep square-well potential,” Am. J. Phy€, 520-521 namical potential algebras for Gendenshtein and Morse potentibld,”
(2002. 24, 3557-35741991).
2For a review of SUSY-QM, see F. Cooper, A. Khare, and U. Sukhatme, °A- Gangopadhyaya, J. V. Mallow, C. Rasinariu, and U. P. Sukhatme, “Ex-
“Supersymmetry and quantum-mechanics,” Phys. R2p1, 268—-385 actly solvable models in supersymmetric quantum mechanics and connec-
(1995, and references therein. tion with spectrum-generating algebras,” Theor. Math. PHy8 285-—
°R. Dutt, A. Khare, and U. Sukhatme, “Supersymmetry, shape invariance 294 (1999; “Exact solutions of the Schdinger equation: Connection
and exactly solvable potentials,” Am. J. Phys6, 163—168(1988. between supersymmetric quantum mechanics and spectrum generating al-

“A. Gangopadhyaya, J. V. Mallow, and U. P. Sukhatme, “Shape invariance gebras,” Chin. J. PhygTaipej 39, 101-121(2002).

and its connection to potential algebra,” Rroceedings of Workshop on '°G. A. Natanzon, Vestn. Leningr. Uni{Biol.] 10, 22-28(1973 (in Rus-
Supersymmetry and Integrable Mode&dited by H. Aratyn, T. Imbo, sian. An English translation by H. Rosu is available at http://arxiv.org/
W.-Y. Keung, and U. SukhatméSpringer-Verlag, Berlin, 1998 A. B. PS_cache/physics/pdf/9907/9907032.pdf.
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