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Abstract: We examine some points of the rationale underlying the choice of priors for MAXENT
image reconstruction. The original combinatorial (monkey) and exchangeability (kangaroo) ap-
proaches each contains important truth. Yet each also represents in a sense an extreme position
which ignores the truth in the other. The models of W. E. Johnson, 1. J. Good, and S. Zabell
provide a continuous interpolation between them, in which the monkeys’ entropy factor is always
present in the prior, but becomes increasingly levelled out and disappears in the limit.

However, it appears that the class of interpolated priors is still too narrow. A fully satisfactory
prior for image reconstruction, which expresses all our prior information, needs to be able to express
the common—sense judgment that correlations vary with the distance between pixels. To do this,
we must go outside the class of exchangeable priors, perhaps into an altogether deeper hypothesis
space.
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INTRODUCTION

Image reconstruction is an excellent ground for illustrating the generalities in our Tutorial Intro-
duction. Pedagogically, it is an instructive and nontrivial example of the open—ended problem of
determining priors which reprepresent real states of knowledge in the real world. In addition, better
understanding of this truly deep problem should lead in the future to better reconstructions and
perhaps improvements in results for other problems of interest at this Workshop.

In discussing the various priors that might be used for image reconstruction, it should be
emphasized that we are not dealing with an ideological problem, but a technical one. We should
not think that any choice of prior hypothesis space and measure on that space is in itself either
right or wrong. Presumably, any choice will be “right” in some circumstances, “wrong” in others.
It is failure to relate the choices to the circumstances that gives the appearance of arbitrariness.

In a new problem, it is inevitable that different people have in the back of their minds different
underlying hypothesis spaces, for several reasons:

(1) Different prior knowledge of the phenomenon.
(2) Different amounts or kinds of practical experience.
(3) Some have thought more deeply than others.
(4) Past training sets their minds in different channels.

(5) Psychological quirks that can’t be accounted for.

Therefore, rather than taking a partisan stand for one choice against another, we want to make a
start on better relating the choices to the circumstances.

This means that we must learn to define the problem much more carefully than in the past. If
you examine the literature with this in mind, I think you will find that 90% of the past confusions
and controversies in statistics have been caused, not by mathematical errors or even ideological
differences; but by the technical difficulty that the two parties had different problems in mind, and
failed to realize this. Thinking along different lines, each failed to perceive at all what the other
considered too obvious to mention. If you fail to specify your sample space, sampling distribution,
prior hypothesis space, and prior information, you may expect to be misunderstood — as I have
learned the hard way.

We are still caught up to some degree in the bad habits of orthodox statistics, taught almost
exclusively for decades. For example, denoting the unknown true scene by {p(¢), 1 < i < n}, we
specify the mock data

Mk:ZA(k,i)p(i), 1<k<m (1)

confidently, as if the point-spread function A(k,¢) were known exactly, and pretend it is a known,
“objectively real” fact that the measurement errors were “independent gaussian” with known stan-
dard deviation.

But we say nothing about the prior information we propose to use — not even the underlying
hypothesis space on which the prior probabilities are to exist. Then in applying Bayes’ theorem
with I = prior information:

p(DatalScene, I')

p(Scene|Data, I) = p(Scene|l) p(Datall)

(2)

the likelihood of a scene,



p(DatalScene, I') = exp Z (dy — My)?*| = exp(—x*/2) (3)
k

has been fully specified in the statement of the problem; while its prior probability p(Scene|l) is
left unspecified by failure to complete the statement of the problem.

In effect, we are claiming more knowledge than we really have for the likelihood, and less
than we really have for the prior; just the error that orthodox statistics has always made. This
makes it easy to say, “The data come first” and dismiss p(Scene|l) by declaring it to be completely
uninformative. Yet in generalized inverse problems we usually have prior information that is fully
as cogent as the data.

We need a more balanced treatment. A major point of Bayesian analysis is that it combines
the evidence of the data with the evidence of the prior information. Unless we use an informative
prior probability, Bayes’ theorem can add nothing to the evidence of the data, and its advantage
over sampling theory methods lies only in its ability to deal with technical problems like nuisance
parameters.

To repeat the platitudes: in image reconstruction the data alone, whether noisy or not, cannot
point to any particular scene because the domain R of maximum likelihood, where y? = 0, is not a
point but a manifold of high dimensionality, every point of which is in the “feasible set” R’ (which
we may think of as R enlarged by adding all points at which x? is less than some specified value).
An uninformative prior leaves us, inevitably, no wiser. So if entropy is denied a role in the prior
probability, it must then be invoked in the end as a value judgment in addition to Bayes’ theorem,
to pick out one point in R’. This does not necessarily lead to a difference in the actual algorithm,
for it is well known that in decision theory the optimal decision depends only on the product of
the prior probability and the utility function, not on the functions separately. But it does leave the
question of rationale rather up in the air.

We want, then, to reexamine the problem to see whether some of that deeper analysis might
have helped us; however, the following could hardly be called an analysis in depth. For lack of
time and space we can indicate only how big the problem is, and note a few places where more
theoretical work is needed. This is, in turn, only one facet of the general program to develop that
neglected half of probability theory. We are not about to run out of jobs needing to be done.

MONKEYS

In the pioneering work of Gull and Daniell (1978) the prior probability of a scene (map of the sky)
with n pixels of equal area and N; units of intensity in the ¢’th pixel, was taken proportional to its
multiplicity:

N!

p(SCQne|IO) x W = W (4)

One could visualize this by imagining the proverbial team of monkeys making test maps by strewing
white dots at random, N; being the number that happen to land in the ¢’th pixel. If the resulting
map disagrees with the data it is rejected and the monkeys try again. Whenever they succeed in
making a map that agrees with the data, it is saved. Clearly, the map most likely to result is the
one that has maximum multiplicity W, or equally well maximum entropy per dot, H = (log W)/N,
while agreeing with the data. If the N; are large, then as we have all noted countless times, H goes
asymptotically into the “Shannon entropy”:

H — = (Ni/N)log(N;/N) (5)

i
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and by the entropy concentration theorem (Jaynes, 1982) we expect that virtually all the feasible
scenes generated by the monkeys will be close to the one of maximum entropy.

Mathematically, this is just the combinatorial argument by which Boltzmann (1877) found his
most probable distribution of molecules in a force field. But in Boltzmann’s problem, N = >, N;
was the total number of molecules in the system, a determinate quantity.

In the image reconstruction problem, definition of the monkey hypothesis space stopped short
of specifying enough about the strewing process to determine N. Aslong as the data were considered
noiseless this did no harm, for then the boundary of the feasible set, or class C' of logically possible
scenes, was sharply defined (the likelihood was rectangular, so €' = R = R’) and Bayes’ theorem
merely set the posterior probability of every scene outside C' equal to zero, leaving the entire decision
within €' to the entropy factor. The value of N did not matter for the actual reconstruction.

But if we try to take into account the fact that real data are contaminated with noise, while
using the same “monkey hypothesis space” H1 with n”V elements, the scene of greatest posterior
probability is not the “pure MAXENT” one that maximizes H subject to hard constraints from
the data; it maximizes the sum (N H 4 log L), where L(Scene) = p(Data|Scene, I'), the likelihood
that allows for noise, is no longer rectangular but might, for example be given by (3). Then N
matters, for it determines the relative weighting of the prior probability and the noise factors.

If L is nonzero for all scenes and we allow N to become arbitrarily large, the entropy factor
exp(N H) will overwhelm the likelihood I and force the reconstruction to the uniform grey scene
that ignores the data. So if we are to retain the hypothesis space H1, we must either introduce
some cutoff in I that places an upper limit on the possible noise magnitude; or assign some definite
finite value of N. Present practice — or some of it — chooses the former alternative by placing an
upper limit on the allowable value of Y?. Although this leads, as we all know, to very impressive
results, it is clearly an ad hoc device, not a true Bayesian solution. Therefore we ought to be able
to do still better — how much better, we do not know.

Of course, having found a solution by this cutoff procedure, one can always find a value of
N for which Bayes’ theorem would have given the same solution without the cutoff. It would be
interesting, for diagnostic purposes, to know what these after—the—fact N values are, particularly
the ratios N/n; but we do not have this information.

In different problems of image reconstruction (optics, radio astronomy, tomography, crystal-
lography) the true scene may be generated by Nature in quite different ways, about which we know
something in advance. In some circumstances, this prior information might make the whole monkey
rationale and space H1 inappropriate from the start; in others it would be clearly “right”.

In a large class of intermediate cases, H1 is at least a usable starting point from which we
can build up to a realistic prior. In these cases, multiplicity factors are always cogent, in the sense
that they always appear as a factor in the prior probability of a scene. Further considerations may
“modulate” them by additional factors.

What are we trying to express by a choice of N7 There can be various answers to this. One
possible interpretation is that we are specifying something about the fineness of texture that we are
asking for in the reconstruction. On this view, our choice of N would express our prior information
about how much fineness the data are capable of giving. We discuss only this view here, and hope
to consider some others elsewhere.

A preliminary attempt to analyze the monkey picture more deeply with this in mind was made
by the writer at the 1981 Laramie Workshop. If the measurement errors ¢ are generated in the
variability of the scene itself:

N; £/ N;



5

there is a seemingly natural choice of N that makes No? = const. Varying N and o then varies only
the sharpness of the peak in the posterior probability space, not its location; with more accurate
measurements giving smaller ¢ and larger N, we do not change our reconstruction but only become
more confident of its accuracy, and so display it with a finer texture.

However, it appears that in the current applications we are closer to the truth if we suppose that
the errors are generated independently in the measurement apparatus. Then there is a seemingly
natural choice of N that expresses our prior information about the quality of the data by making
the typical smallest increments in the mock data My due to changes in the scene, of the same order
of magnitude as the smallest increment o that the real data could detect.

If p; = N;/N, this increment is dM) ~ A/N, where A is a typical large element of A; and No ~
A. Smaller values of N will yield an unnecessarily coarse reconstruction, lacking all the density
gradations that the data give evidence for; while larger values in effect ask for finer gradations than
the data can justify. The reconstruction depends on o for the intuitive reason that if, for given
data, we learned that the noise level is smaller than previously thought, then some details in the
data that were below the noise level and ignored, now emerge above the noise and so are believed,
and appear in the reconstruction.

At present, we have no actual reconstructions based on this idea, and so do not know whether
there are unrecognized difficulties with it. In one highly oversimplified case, where the data give
evidence only for p;, John Skilling concludes that the No ~ A choice leads to absurd conclusions
about (p2 — ps). Yet there are at least conceivable, and clearly definable, circumstances in which
they are not absurd. If the true scene is composed of N; quanta of intensity in the ¢’th pixel
(whether placed there by monkeys or not) then p; cannot be measured more accurately — because
it is not even defined more accurately — than dMy/A = N~ It is not possible to ‘measure’ p; to
one part in 100 unless Ny is at least 100.

Then if we specify that p; is measured more and more accurately without limit, we are not
considering a single problem with fixed N and a sequence of smaller and smaller values of a param-
eter 0. We are considering a sequence of problems with different V, in which we are drawing larger
and larger samples, of size Ny = Np;. From this one expects to estimate other quantities to a
relative accuracy improving like N=1/2. This is not to say that we are “measuring” (p2 — p3) more
and more accurately; we are not measuring it at all. In a sequence of different states of knowledge
we are inferring it more and more confidently, because the statement of the problem — that p; was
measured very accurately — implies that N must have been large.

Doubtless, there are other conceivable circumstances (i.e. other states of knowledge about how
Nature has generated the scene) in which our conclusion about (p2 — p3) would indeed be absurd.
Any new information which could make our old estimate seem absurd would be, to put it mildly,
highly cogent; and it would seem important that we state explicitly what this information is so we
can take full advantage of it. But at present, not having seen this information specified, we do not
know how to use it to correct our estimate of (p, — p3); no alternative estimate was proposed.

This situation of unspecified information — intuition feels it but does not define it — is not
anomalous, but the usual situation in exploring this neglected part of probability theory. It is not
an occasion for dispute, but for harder thinking on a technical problem that is qualitatively different
from the ones scientists are used to thinking about. One more step of that harder thinking, in a
case very similar to this, appears in our discussion of the kangaroo problem below.

In any event, as was stressed at the 1981 Laramie Workshop and needs to be stressed again, the
question of the choice of N cannot be separated from the choices of m and n, the number of pixels
into which we resolve the blurred image and the reconstruction, and u, v, the quantizing increments
that we use to represent the data d(k) and the reconstruction p(7) for calculational purposes.

In most problems the real and blurred scenes are continuous, and the binning and digitization



are done by us. Presumably, our choices of (N, m,n,u,v) all express something about the fineness
of texture that the data are capable of supporting; and also some compromises with computation
cost. Although computer programmers must necessarily have made decisions on this, we are not
aware of any discussion of the problem in the literature, and the writer’s thinking about it thus far
has been very informal and sketchy. More work on these questions seems much needed.

In this connection, we found it amusing to contemplate going to the “Fermi statistics” limit
where n is very large and we decree that each pixel can hold only one dot or none, as in the halftone
method for printing photographs.

Also one may wonder whether there would be advantages in working in a different space,
expanding the scene in an orthogonal basis and estimating the expansion coeflicients instead of the
pixel intensities. A particular orthogonal basis recommends itself; that generated by the singular-
value decomposition of the smearing matrix Ag;. Our data comprise an (m x 1) vector: d = Ap+e,
where e is the vector of “random errors”. Supposing the (m x n) matrix A to be of rank m, it can
be factored:

A=VDUT. (7)

where U and V are (n x n) and (m x m) orthogonal matrices that diagonalize AT A and AAT and
D? = VTAATV is the positive definite (m x m) diagonalized matrix. D = VT AU is its square root,
padded with (n —m) extra columns of zeroes. Label its tows and columns so that D¥; > D3, > ---
Then if we use the columns of U as our basis:

n

pi=> Uja;, 1<i<n (8)

i=1

our data equation d = Ap + e collapses to

dk—ek:szijjaj, 1§k§m (9)

i=1

Only the first m expansion coefficients (ay - - -a,,) appear; in this coordinate system the relevance
of the data is, so to speak, not spread all over the scene, but cleanly separated off into a known
m-dimensional region. The likelihood (3) of a scene becomes

L(Scene) = L(ay -+ -a,,) = exp T 552 Z [Dij(aj - b]')2] (10)

where b = dV D1 is the data vector in the new coordinates. The expansion coefficients a; belonging
to large eigenvalues of AAT are determined quite accurately by the data (to +0/D;;). But the
data give no evidence at all about the last (n — m) coordinates (@41 -+ -ay).

There might be advantages in a computational scheme that, by working in these coordinates,
is able to deal differently with those a; that are well determined by the data, and those that are
undetermined. Perhaps we might decree that for the former “the data come first”. But for the
latter, the data never come at all.

In any event, whatever our philosophy of image reconstruction, the coordinates (@41 - - ay)
must be chosen solely on grounds of prior information because the data give no evidence about
them. If (ay---a,,) are specified first, the problem reverts to a pure generalized inverse problem
(i.e. one with hard constraints). The scene which has maximum entropy subject to prescribed



(ar---ay) is determined without any reference to N. Computational algorithms for carrying out
the decomposition (7) are of course readily available (Chambers, 1977).

As we see from this list of unfinished projects, there is room for much more theoretical effort,
which might be quite pretty analytically and worthy of a Ph.D. thesis or two; even the specialized
monkey approach is open—ended.

KANGAROOS

A different rationale for maximizing entropy was illustrated by Steve Gull, on the occasion of a
talk in Australia in 1983, by supposing it established by observation that 3/4 of the kangaroos are
left—handed, and 3/4 drink Foster’s; from which we are to infer what fraction of them are both
right-handed and Foster’s drinkers, etc.; that is, to reconstruct the (2 x 2) table of proportions p;;

L R
F (Pn P12) 3/4 (11)
no " \(pa1 p22/) 1/4

3/4 1/4

from the specified marginal row and column totals given to the right and below the table.

It is interesting to compare the solutions of this problem given by various algorithms that
have been proposed. Gull and Skilling (1984), applying the work of Shore and Johnson, find the
remarkable result that if the solution is to be found by maximizing some quantity, entropy is
uniquely determined as the only choice that will not introduce spurious correlations in the matrix
(11), for which there is no evidence in the data. The maximum entropy solution is then advocated
on grounds of logical consistency rather than multiplicity.

I want to give an analysis of the kangaroo problem, with an apology in advance to Steve
Gull for taking his little scenario far more literally and seriously than he ever expected or wanted
anybody to do. My only excuse is that it is a conceivable real problem, so it provides a specific
example of constructing priors for real problems, exemplifying some of our Tutorial remarks about
deeper hypothesis spaces and measures. And, of course, the principles are relevant to more serious
real problems — else the kangaroo scenario would never have been invented.

What bits of prior information do we all have about kangaroos, that are relevant to Gull’s
question? Our intuition does not tell us this immediately, but a little pump priming analysis will
make us aware of it. In the first place, it is clear from (11) that the solution must be of the form:

(.50+¢q) (.25—9q)
((‘25_@ . ) 0<q<.25 (12)

But, kangaroos being indivisible, it is required also that the entries have the form p;; = N;;/N with
N;; integers, where N is the number of kangaroos. So for any finite NV there are a finite number of
integer solutions N;;. Any particular solution will have a multiplicity

NI

W = '
N11!N12!N21!N22!

(13)
This seems rather different from the image reconstruction problem; for there it was at least arguable
whether N makes any sense at all. The maximum entropy scene was undeniably the one the
monkeys would make; but the monkeys were themselves only figments of our imagination.

Now, it is given to us in the statement of the problem that we are counting and estimating
attributes of kangaroos, which are not figments of our imagination; their number N is a determinate



quantity. Therefore the multiplicities W are now quite real, concrete things; they are exactly equal
to the number of possibilities in the real world, compatible with the data. It appears that, far
from abandoning monkeys, if there is any place where the monkey (combinatorial) rationale seems
clearly called for, it is in the kangaroo problem!

Let us see some exact numerical solutions. Suppose N = 4; then there are only two solutions:

W) ()

with multiplicities W = 12,4 respectively. The solution with greater entropy comprises 75% of the
feasible set of possibilities consistent with the data. If N = 16, there are five integer solutions:

o (84 9 3 10 2 1n 1 12 0

= \4 0/ \3 1) \2 2/ \1 3] \0 4

W = 900900, 1601600, 720720, 87360, 1820 (15)
36%, 64%, 29%, 3.5%, 07%

The single maximum entropy solution comprises nearly two—thirds of the feasible set.

But there are many kangaroos; when N >> 1 the multiplicities go asymptotically into W —
exp(N H) where from (12), the entropy is

H = —(5+q)log(.5+ q) — 2(.25 — ¢) log(.25 — ) — qlogq (16)

This reaches its peak at ¢ = 1/16, corresponding as noted to no correlations between the attributes
of kangaroos. For ¢ < 1/16 we have negative correlations (drinkers tend to be right handed, etc.);
while the solutions with ¢ > 1/16 give positive correlations. Near the peak, a power series expansion
vields the asymptotic formula

128N ] (17)

W ~ exp [—T (¢ —1/16)?

which would lead us to the (mean + standard deviation) estimate of ¢:

Gest = 11—6 (1£3/VN) (18)

Thus if there are N = 900 kangaroos the last factor in (18)is (1£0.1);if N = 90,000it is (1+0.01);
and if there are N = 9,000,000 kangaroos it becomes (14 0.001). These are the predictions made
by uniform weighting on our first (monkey) hypothesis space H1.

Here we can start to discover our own hidden prior information by introspection; at what value
of N do you begin feeling unhappy at this result? Most of us are probably willing to believe that
the data reported by Steve Gull could justify an estimate of ¢ for which we could reasonably claim
10% accuracy; but we may be reluctant to believe that they could determine it to one part in 1000,
however many kangaroos there are.

Eq. (18) is essentially the same kind of result discussed above, that John Skilling called
“absurd”; but he could dismiss it before on the grounds that N was only an imagined quantity.
Now that argument is unavailable; for ¥ is a real, determinate quantity. So what has gone wrong
this time? I feel another Sermon coming on.



SERMON ON THE MULTIPLICITY

However large N, it is a combinatorial theorem that most of the possibilities allowed by the data are
within that shrinking interval (18). But at some point someone says: “This conclusion is absurd; I
don’t believe it!” What is he really saying?

It is well established by many different arguments that Bayesian inference yields the unique
consistent conclusions that follow from the model, the data, and the prior information that was
actually used in the calculation. Therefore, if anyone accepts the model and the data but rejects
the estimate (18), there are two possibilities: either he is reasoning inconsistently and his intuition
needs educating; or else he has extra prior information.

We have met nobody who claims the first distinction for himself, although we all have it to
some degree. Many times, the writer has been disconcerted by a Bayesian result on first finding it,
but realized on deeper thought that it was correct after all; his intuition thereby advanced a little
more.

The same policy — entertain the possibility that your intuition may need educating, and think
hard before rejecting a Bayesian result — is recommended most earnestly to others. As noted in
our Tutorial, intuition is good at perceiving the relevance of information, but bad at judging the
relative cogency of different pieces of information. If our intuition was always trustworthy, we would
have no need for probability theory.

Over the past 15 years many psychological tests have shown that in various problems of plausi-
ble inference with two different pieces of evidence to consider, intuition can err — sometimes violently
and in opposite directions — depending on how the information is received. Some examples are noted
in Appendix A.

This unreliability of intuition is particularly to be stressed in our present case, for it is not lim-
ited to the untrained subjects of psychological tests. Throughout the history of probability theory,
the intuition of those familiar with the mathematics has remained notoriously bad at perceiving
the cogency of multiplicity factors. Some expositions of probability theory start by pointing to
the fact that observed frequencies tend to remain within the +n~'/2. “random error” bounds.
This observed property of frequencies, to become increasingly stable with increasing number of
observations, is seen as a kind of Miracle of Nature — the empirical fact underlying probability
theory — showing that probabilities are physically real things.

Yet as Laplace noted, those frequencies are only staying within the interval of high multiplicity;
far from being a Miracle of Nature, the great majority of all things that could have happened corre-
spond to frequencies remaining in that interval. If one fails to recognize the cogency of multiplicity
factors, then virtually every “random experiment” does indeed appear to be a Miracle of Nature,
even more miraculous than (18).

In most of the useful applications of direct probability calculations — the standard queueing,
random walk, and stochastic relaxation problems — the real function of probability theory is to
correct our faulty intuition about multiplicities, and restore them to their proper strength in our
predictions. In particular, the Central Limit Theorem expresses how multiplicities tend to pile up
into a Gaussian under repeated convolution.

Present orthodox statistics takes multiplicity into account correctly in sampling distributions,
but takes no note of multiplicity on parameter spaces. This can lead to very bad estimates of a
parameter whose multiplicity varies greatly within the region of high likelihood. It behooves us to
be sure that we are not committing a similar error here.

Bear in mind, therefore, that in this problem the entire population of kangaroos is being
sampled; as N increases, so does the amount of data that is generating that estimate (18). Estimates
which improve as the square root of the number of observations are ubiquitous in all statistical
theory. But if, taking note of all this, you still cannot reconcile (18) to your intuition, then realize
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the implications. Anyone who adamantly refuses to accept (18) is really saying: “I have extra prior
information about kangaroos that was not taken into account in the calculation leading to (18).”

More generally, having done any Bayesian calculation, if you can look at the result and know
it is “wrong”; i.e. the conclusion does not follow reasonably from your information, then you must
have extra information that was not used in the calculation. You should have used it.

Indeed, unless you can put your finger on the specific piece of information that was left out of
the calculation, and show that the revised calculation corrects the difficulty, how can you be sure
that the fault is in the calculation and not in your intuition?

HIDDEN PRIOR INFORMATION

The moral of that Sermon was that, if we react to (18) by casting out the whole monkey picture
and calculation, and starting over from the beginning without asking what that extra information
is, we are losing the whole value and point of the calculation. The monkey calculation on H1 has
only primed the mental pump; at this point, the deep thought leading us down to H2 is just ready
to begin:

What do we know about kangaroos,
that our common sense suddenly warns us was relevant,
but we didn’t think to use at first?

There are various possibilities; again, intuition feels them but does not define them. Consider first
an extreme but conceivable state of prior knowledge:

(H2a): If we knew that the left-handed gene and the Foster’s gene were linked together on
the same chromosome, we would know in advance that these attributes are perfectly correlated and
the data are redundant: ¢ = 1/4. In the presence of this kind of prior information the “logical
consistency” argument pointing to ¢ = 1/16 would be inapplicable.

Indeed, any prior information that establishes a logical link between these two attributes of
kangaroos will make that argument inapplicable in our problem. Had our data or prior information
been different, in almost any way, they would have given evidence for correlations and MAXENT
would exhibit it. The “no correlations” phenomenon emphasized by the kangaroo rationale is a
good illustration of the “honesty” of MAXENT (i.e. it does not draw conclusions for which there
is no evidence in the data) in one particular case. But it seems to us a useful but isolated result — a
reward for virtue — rather than a basic desideratum for all MAXENT.

Of course, if we agree in advance that our probabilities are always to be found by maximizing
the same quantity whatever the data, then a single compelling case like this is sufficient to determine
that quantity, and the kangaroo argument does pick out entropy in preference to any proposed
alternative. This seems to have been Steve Gull’s purpose, and it served that purpose well.

The H2a case is rather unrealistic, but as we shall see it is nevertheless a kind of caricature of
the image reconstruction problem; it has, in grossly exaggerated form, a feature that was missing
from the pure monkey picture.

(H2b): More realistically, although there are several species of kangaroos with size varying
from man to mouse, we assume that Gull intended his problem to refer to the man—sized species
(who else could stand up at a bar and drink Foster’s?). The species has a common genetic pool and
environment; one is much like another. But we did not have any prior information about left /right—
handedness or drinking habits. In this state of prior knowledge, learning that one kangaroo is
left-handed makes it more likely that the next one is also left—-handed. This positive correlation
(not between attributes, but between kangaroos) was left out of the monkey picture.
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The same problem arises in survey sampling. Given that, in a sample of only 1000 kangaroos,
750 were left—handed, we would probably infer at once that about 3/4 of the millions of unsampled
kangaroos are also left—-handed. But as we demonstrate below, this would not follow from Bayes’
theorem with the monkey prior (13), proportional only to multiplicities. In that state of prior
knowledge (call it Iy), every kangaroo is a separate, independent thing; whatever we learn about
one specified individual is irrelevant to inference about any other.

Statisticians involved in survey sampling theory noticed this long ago and reacted in the usual
way: if your first Bayesian calculation contradicts intuition, do not think more deeply about what
prior information your intuition was using but your calculation was not; just throw out all Bayesian
notions. Thus was progress limited to the bits of Bayesian analysis (stratification) that intuition
could perceive without any theory, and could be expressed in non—-Bayesian terms by putting it
into the model instead of the prior probability.

Following Harold Jeffreys instead, we elect to think more deeply. Our state of knowledge
anticipates some positive correlation between kangaroos, but for purposes of defining H2, suppose
that we have no information distinguishing one kangaroo from another. Then whatever prior we
assign over the 4. possibilities, it will be invariant under permutations of kangaroos.

This reduces the problem at once; our neglected prior information about kangaroos must be
all contained in a single function g(x1,3,23) of three variables (the number of attributes minus
one) rather than N (the number of kangaroos). For it is a well-known theorem that a discrete
distribution over exchangeable kangaroos (or exchangeable anything else) is a de Finetti mixture
of multinomial distributions, and the problem reduces to finding the weighting function of that
mixture.

For easier notation and generality, let us now label the four mutually exclusive attributes of
kangaroos by (1, 2, 3, 4) instead of (11, 12, 21, 22), and consider instead of just four of them, any
number n of mutually exclusive attributes, one of which kangaroos must have. Then de Finetti’s
famous theorem (Kyburg & Smokler, 1981) says that there exists a generating function G(z1 - -2,)
such that the probability that Ny of them have attribute 1, and so on, is

p(Ny - N,|I)=W(N) /QC{W%NTL G(wy-my,)day - -+ day, (19)

where W(N) is the monkey multiplicity factor (4). Normalization for all N requires that G contain
a delta—function:

Glzy-xy) =68z, — 1)/, 9(z1---2p). (20)

Since ¢ need be defined only when Xa; = 1, it really depends only on (n — 1) variables, but it is
better for formal reasons to preserve symmetry by writing it as in (20).

As it stands, (19) expresses simply a mathematical fact, which holds independently of whatever
meaning you or I choose to attach to it. But it can be given a natural Bayesian interpretation if
we think of (z1---2,) as a set of “real” parameters which define a class of hypotheses about what
is generating our data. Then the factor

P(Ni - Nyloga,) = WN) " -l 1)

is the multinomial sampling distribution conditional on those parameters; the hypothesis indexed
by (21 - - -2,,) assigns a probability numerically equal to z; that any specified kangaroo has attribute
1, and so on. This suggests that we interpret the generating function as

G(ar-xp) =plar---xull), (22)
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the prior probability density for those parameters, following from some prior information /. Note,
to head off a common misconception, that this is in no way to introduce a “probability of a
probability”. It is simply convenient to index our hypotheses by parameters x; chosen to be
numerically equal to the probabilities assigned by those hypotheses; this avoids a doubling of our
notation. We could easily restate everything so that the misconception could not arise; it would
only be rather clumsy notationally and tedious verbally.

However, this is a slightly dangerous step for a different reason; the interpretation (21), (22)
has a mass of inevitable consequences that we might or might not like. So before taking this road,
let us note that we are here choosing, voluntarily, one particular interpretation of the theorem (19).
But the choice we are making is not forced on us, and after seeing its consequences we are free to
return to this point and make a different choice.

That this choice is a serious one conceptually is clear when we note that (22) implies that we
had some prior knowledge about the z;. But if the z; are merely auxiliary mathematical quantities
defined from p(Ny---N,|I) through (19), then they are, so to speak, not real at all, only figments
of our imagination. They are, moreover, not necessary to solve the problem, but created on the
spot for mathematical convenience; it would not make sense to speak of having prior knowledge
about them. They would be rather like normalization constants or MAXENT Lagrange multipliers,
which are also created on the spot only for mathematical convenience, so one would not think of
assigning prior probabilities to them.

But if we do consider the z; as “real” enough to have some independent existence justifying a
prior probability assignment, (19) becomes a standard relation of probability theory:

p(Ny---Ny|I)= /d”wp(Nl o Nplay-an) pler -+ xn|l) (23)

in which the left-hand side has now become the joint predictive prior probability that exactly V;
kangaroos have attribute 7, 1 < ¢ < n.

This choice is also serious functionally, because it opens up a long avenue of mathematical
development. We can now invoke the Bayesian apparatus to calculate the joint posterior probability
distribution for the parameters and the posterior predictive distribution for (Ny---N,,) given some
data D. Without the choice (22) of interpretation it would hardly make sense to do this, and we
would not see how (19) could lead us to any such notion as a posterior predictive distribution. Any
modification of (19) to take account of new data would have to be done in some other way.

But let us see the Bayesian solution. Suppose our data consist of sampling M kangaroos,
M < N, and finding that My have attribute 1, and so on. Then its sampling distribution is
p(Dler--wy) = W(M) e - e (24)

n

where W (M) is the multiplicity factor (4) with N’s replaced by M’s everywhere. The posterior
distribution is

p(D|$1 .. xn)
p(D|I)

where A is a normalizing constant, independent of the z;, and by G we always mean ¢ with the

delta function as in (20). This leads to a predictive posterior distribution for future observations;

if we sample K more kangaroos, the probability that we shall find exactly Ky ith attribute 1, and
so on, is

:A/,G(wl---xn)x{wl---xM" (25)

n

play---x,|DI) = play - -a,|l)

p(Ky--- K,

DI)y=AW(K) / Gy - xp) oKL g Mat Ka] gy (26)
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These generalities will hold in any exchangeable situation where it makes sense to think of G as a
prior probability.

Now, our aim being to relate the choices to the circumstances, we need to think about specific
choices of g to represent various kinds of prior information. Some suggestions are before us; a
generating function of the form

g=Aailphm gkl (27)

n

is often called a “Dirichlet prior”, although I do not know what Dirichlet had to do with it. For the
case k = 1 it was given by Laplace (1778) and for general k by Hardy (1889). However, they gave
only the choices, not the circumstances; intuitively, just what prior information is being expressed
by (27)?

A circumstance was given by the Cambridge philosopher W. E. Johnson (1924); he showed,
generalizing an argument that was in the original work of Bayes, that if in (19) all choices of
(Ny---N,) satisfying N; > 0, ¥N; = N are considered equally likely for all N, this uniquely
determines Laplace’s prior. In a posthumously published work (Johnson, 1932) he gave a much
more cogent circumstance, which in effect asked just John Skilling’s question: “Where would the
next photon come from?”. Defining the variables: yp = ¢ if the k’th kangaroo has attribute
i, (1 <k<N,1<1i<n),Johnson’s “sufficientness postulate” is that

P(Yyer =ty -yy, 1) = f(N,N) (28)

Let us state what this means intuitively in several different ways: (A) The probability that the next
kangaroo has attribute ¢ should depend only on how many have been sampled thus far, and how
many had attribute ¢; (B) If a sampled kangaroo did not have attribute 7, then it is irrelevant what
attribute it had; (C) A binary breakdown into (¢)/(not ¢) captures everything in the data that is
relevant to the question being asked; (D) Before analyzing the data, it is permissible to pool the
data that did not yield (7).

Johnson showed that if (28) is to hold for all (N, N;), this requires that the prior must have the
Dirichlet-Hardy form (27) for some value of k. For recent discussions of this result, with extensions
and more rigorous proofs, see Good (1965), Zabell (1982).

In particular, an extension we need is that the function f(N,N;) need not be the same for all
?7; we may express prior information that is not symmetric over all attributes, without losing either
Johnson’s basic idea or the symmetry over kangaroos, by using n different functions fi(N,N;),
which leads to n different values (ky---.k,) of k in the factors of (27). This intuitive insight of
Johnson still does not reveal the meaning of the parameter k. Most discussions have favored small
values, in (0 < k < 1), on the grounds of being uninformative. Let us look at the specific details
leading to the function f(N,N;)in (28). Analytically, everything follows from the generalized Beta
function integral

~ > - - ki) ooy (kn) g
d dn ki—=1  ky 1622‘— _ 7(1 P n K 1‘ 29
/0 o / rar Tl TS - a) = ST (29)

where K = Xk;. Thus a properly normalized generating function is

o — _ ’(I() wlﬁ—l‘”wkn—l
g($1 n) ,(kl),(kn) 1 n : (30)

Denote by Ip the prior information leading to (30). Conditional on Ip, the probability of obtaining
the data (Nqy--- N, ) in N observations is given by (19); using (29) and rearranging, we have
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NL(K) L (Nit k) (Nt k) (51)
N+ K) N (k) N (k)

(N1 Ny|Ip) =

Note that the monkey multiplicity factor W (N ) is still contained in (31). For Laplace’s prior (all
ki = 1) it reduces to

Nl(n-1)!

PN Nallo) = TR

(32)

independent of the N;, in accordance with Johnson’s 1924 circumstance.

This is the reciprocal of the familiar Bose-Einstein multiplicity factor (number of linearly
independent quantum states that can be made by putting N bosons into n single-particle states).
Indeed, the number of different scenes that can be made by putting N dots into n pixels or
N kangaroos into n categories, is combinatorially the same problem; one should not jump to
the conclusion that we are invoking ”quantum statistics” for photons. Note that the monkey
multiplicity factor W(N) is the solution to a very different combinatorial problem, namely the
number of ways in which a given scene can be made by putting N dots into n pixels.

In the ”uninformative” limit where one or more of the k; — 0, the integral (29) becomes
singular. However, the relevant quantity (31) is a ratio of such integrals, which does not become
singular. In the limit it remains a proper (i.e. normalized) distribution, for a typical factor of (31)
behaves as follows: as k — 0,

(N +k) E/N, N>0
NL%)%{l, N:O} (33)

Therefore, for example, as k; — 0, (31) goes into

(34)

0 N 0
p(Nl---NnuD)e{p ’ L }

(Ny---NyplIp), N; =0

The probability is concentrated on the subclass of cases where Ny = 0. In effect, attribute #1 is
removed from the menu available to the kangaroos (or pixel #1 is removed from the set of possible
scenes). Then if any other k; — 0, attribute 7 is removed, and so on.

But if all k£; tend to zero simultaneously in a fixed proportion; for example, if we set

ki:kai, a; >0, 1<i<n (35)

and let & — 0+, (31) goes into
a;/Ya; if N;= N, all other N, =0
s ) — { =0

0, otherwise

(36)

and the probability is concentrated entirely on those cases where all kangaroos have the same
attribute (or those scenes with all the intensity in a single pixel); i.e. the extreme points of the
sample space which have the minimum possible multiplicity W = 1.

But these results seem even more disconcerting to intuition than the one (18) which led us
to question the pure monkey rationale. There we felt intuitively that the parameter ¢ should
not be determined by the data to an accuracy of 1 part in 1000. Does it seem reasonable that
merely admitting the possibility of a positive correlation between kangaroos, should totally wipe
out multiplicity ratios of 10'° : 1, as it appears to be doing in (32), and even more strongly in

(36)?
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In the inference called for, relative multiplicities are cogent factors. We expect them to be
moderated somewhat by the knowledge that kangaroos are a homogeneous species; but surely
multiplicities must still retain much of their cogency. Common sense tells us that there should be a
smooth, continuous change in our results starting from the pure monkey case to a more realistic one
as, starting from the uncorrelated case, we allow the possibility of stronger and stronger correlations.
Instead, (32) represents a discontinuous jump to the opposite extreme, which denies entropy any
role at all in the prior probability. Eq. (36) goes even further and violently reverses the entropy
judgments, placing all the prior probability on the situations of zero entropy!

In what sense, then, can we consider small values of k to be "uninformative”? In view of (34),
(36) they are certainly not uninformative about the N;.

A major thing to be learned in developing this neglected half of probability theory is that the
mere unqualified epithet "uninformative” is meaningless. A distribution which is uninformative
about variables in one space need not be in any sense uninformative about related variables in some
other space. As we learn in quantum theory, the more sharply peaked one function, the broader is
its Fourier transform; yet both are held to be probability amplitudes for related variables.

Our present problem exhibits a similar "uncertainty relation”. The monkey multiplicity prior
is completely uninformative on the sample space S of n”N. possibilities. But on the parameter
space X of the z; it corresponds to an infinitely sharply peaked generating function G, a product
of delta functions 6(z; — n~1). Conversely, small values of k are uninformative about the z; but
highly informative about the different points in 9, in the limit (36) tying the sample numbers N;
rigidly together. It is for us to say which, if either, of these limits represents our state of knowledge.
This depends, among other things, on the meaning we attach to the variables.

In the present problem the x; are only provisionally "real” quantities. They were introduced
for mathematical convenience, the integral representation (19) being easy to calculate with. But
we have avoided saying anything about what they really mean.

We now see one of those inevitable consequences of assigning priors to the z;, that the reader
was warned he might or might not like.

In the kangaroo problem it is the N; that are the truly, unquestionably real things about which
we are drawing inferences. Prior to de Finetti, nobody’s intuition had perceived that exchangeabil-
ity alone, without knowledge of the z;, is such a strong condition that a broad generating function
can force such correlations between all the ;.

If our prior information were that the z; are themselves the "real physical quantities” of
interest and the N; only auxiliary quantities representing the exigencies of real data, then a prior
that is uninformative about the z; might be just what we need. This observation opens up another
interpretive question about the meaning of a de Finetti mixture, that we hope to consider elsewhere.
Now let us examine the opposite limit of (31). As k — oo, the LHS of (33) goes into k™ /N!. Thus
as k1 — 00, (31) goes into

(37)

1, N;=N, all other N; =0
pNr Nl — { }

otherwise

All categories except the first are removed from the menu. But if all k; increase in a fixed proportion
by letting k — oo in (35), the limiting form of (31) is

PN+ NalIp) = W) (K - (O ) (38)

just the multinomial distribution with selection probabilities k;/K. If the k; are all equal, this
reverts to a constant times the pure monkey multiplicity from whence we started. So it is the
region of large k, not small, that provides the smooth, continuous transition from the ”too good”
prediction (18).
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One way to define an intuitive meaning for the parameters k; is to calculate Johnson’s predictive
function f(N,N;) in (28) or its generalization f;(N,N;). With any initial generating function
G, (26) shows that, having observed M kangaroos and finding sample numbers (M ---M,), the
probability that the next kangaroo sampled will be found to have attribute ¢ is proportional to

/G[w{\/[l---xf\/[i'i'l---wnM"]d”x (39)

but for the particular generating function (30) the result is given, with the correct normalization
factor, by the RHS of (31) after the appropriate changes of notation:

ki — ki + M;;  N; =1, all other N; = 0.

We find

(M4 K) L (Mi+ki+1)  Mi+k
(M, M;) = _ : = : 4
Sl ) M+ EK+1) L (Mi+ k) M+ K (40)

a generalized form of Laplace’s famous Rule of Succession; it has a strange history.

THE RULE OF SUCCESSION

Given by Laplace in the 18th Century, this rule came under scathing attack in the 19’th Cen-
tury from the philosopher John Venn (here in Cambridge, where his portrait can be seen in the
Caius College Hall). Although the incident happened a long time ago, some comments about it
are still needed because the thinking of Venn persists in much of the recent statistical literature.
With today’s hindsight we can see that Venn suffered from a massive confusion over “What is the
Problem?”

Laplace derived the mathematical result as the solution of one problem. Venn (1866), not a
mathematician, ignored his derivation — which might have provided a clue as to what the problem
is — and tried to interpret the result as the solution to a variety of very different problems. Of
course, he chose his problems so that Laplace’s solution was indeed an absurd answer to every one
of them. Apparently, it never occurred to Venn that he himself might have misunderstood the
circumstances in which the solution applies. R. A. Fisher (1956), pointed this out and expressed
doubt as to whether Venn was even aware that Laplace’s Rule had a mathematical basis and like
other mathematical theorems had “stipulations specific for its validity”.

Fisher’s testimony is particularly cogent here, for he was an undergraduate in Caius College
when Venn was still alive (Venn eventually became the President of Caius College), and they must
have known each other. Furthermore, Fisher was himself an opponent of Laplace’s methods; yet
he is here driven to defending Laplace against Venn. Indeed, it apparently never occurred to Venn
that no single result — Laplace’s or anybody else’s — could possibly have provided the solution to
all of the great variety of problems where he tried to use it. Yet we still find Venn’s arguments
repeated uncritically in some recent “orthodox” textbooks; so let the reader beware.

Now in the 1910’s and 1920’s Laplace’s result became better understood by many: C. D.
Broad, H. Jeffreys, D. Wrinch, and W. E. Johnson (all here in Cambridge also). Their work being
ignored, it was rediscovered again in the 1930’s by de Finetti, who added the important observation
that the results apply to all exchangeable sequences. de Finetti’s work being in turn ignored, it
was partly rediscovered still another time by Carnap and Kemeny, whose work was in turn ignored
by almost everybody in statistics, still under the influence of Venn.

It was only through the evangelistic efforts of I. J. Good and L. J. Savage in the 1950’s and
1960’s, and D. V. Lindley in the 1960’s and 1970’s, that this exchangeability analysis finally became
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recognized as a respectable and necessary working part of statistics. Today, exchangeability is a
large and active area of research in probability theory, much as Markov chains were thirty years
ago.

We think, however, that the autoregressive models, in a sense intermediate between exchange-
able and markoffian ones, that were introduced in the 1920’s by G. Udny Yule (also here in Cam-
bridge, and living in the same rooms that John Skilling now occupies), offer even greater promise
for future applications.

Today, more than 200 years after Laplace started it, great mathematical generalizations are
known but we are still far from understanding the useful range of application of exchangeability
theory, because the problem of relating the choices to the circumstances is only now being taken
seriously and studied as a technical problem of statistics, rather than a debating point for philoso-
phers. Indeed, our present problem calls for better technical understanding than we really have at
the moment. But at least the mathematics flows on easily for some distance more.

Thinking of the z; as “real” parameters, we have a simple intuitive meaning of the hyperpa-
rameters (ky - --k,) if we denote the observed proportion of attribute ¢ in the sampled population
by pi = M;/M, and define a fictious prior proportion by g; = k;/ K. Then (40) can be written

fi(M, M;) = %7 (41)
a weighted average of the observed proportion and an initial estimate of it. Thus we may regard
K = Yk; as the “weight” we attach to our prior information, measured in equivalent number of
observations; i.e. the prior information Ip that leads to (30) has the same cogency as would K
observations yielding the proportions g; = k;/ K, starting from a state of complete ignorance about
the z;.

We may interpret the k’s also in terms of the survey sampling problem. Starting from the
prior information Ip and considering the data (My ---M,,) to be the result of a survey of M < N
kangaroos as in (24)-(26), what estimate should we now make of the proportion of kangaroos with
attribute :7 What accuracy are we entitled to claim for this estimate?

The answer is given by (26) with L = N — M, L; = N; — M;. Substituting (30) into (26), sum
out (Ly - - - L,) before doing the integrations using (29). The probability that exactly L; unsampled
kangaroos have attribute 1 is found to be a mixture of binomial distributions:

1
WLIDD = [ oLl (o) da (12)
0
where
U p———y R (43)
! LWL = Ly)!
and a generating function
b
ooy = D gamt(q_ gypmat (44)

(@), (b—a)
where a = (M7 + k1), b= (M 4 K). The first two factorial moments of (42) are then

<L1>:L/O ycg(x)dx:L% (45)
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from which the (mean) £ (standard deviation) estimate of the number L; of unsampled kangaroos
with attribute #1 is

p(1—p) ‘M—I—K—I—L
M+ K+1 N2

(I1)est = L [p + (47)
where p = a/b = (M;y + k1)/(M + K). Comparing with (40) we see that the Rule of Succession
has two different meanings; this estimated proportion p of unsampled kangaroos with attribute #1
is numerically equal to the probability that the next kangaroo sampled will have attribute #1. As
we have stressed repeatedly, such connections between probability and frequency always appear
automatically, as a consequence of probability theory, whenever they are justified. Generally, the
results of survey samplings are reported as estimated fractions of the total population N, rather
than of the unsampled part L = N — M. Since (N1)est = (L1)est + My, we find from (17), after a
little algebra, the estimated fraction of all kangaroos with attribute #1:

, p(l—-p) N4+ K N-M
(NI/N)est—p‘l'pj: M_I_I(_I_l N : N
where p' = (Kp—ky)/N.

Examining the dependence of (48) on each of its factors, we see what Bayes’ theorem tells us
about the interplay of the size of the population, the prior information, and the amount of data.
Suppose we have sampled only a small fraction of the population, M << N. If we also have
relatively little prior information about the z;, K << N, the accuracy of the estimate depends
basically on (M + K + 1), the number of actual observations plus the effective number implied by
the weight of prior information; and depends little on N. Thus the "too good” estimates implied
by (18) as N — 0 are now corrected.

(48)

But if K >> N (the monkey multiplicity factor limit), the accuracy goes into the limiting form
p(1 —p)/N and a result like (18) is recovered. The changeover point from one regime to the other
is at about ' = N. Note, however, that (48) is not directly comparable to (18) because in (18) we
used Steve Gull’s data on kangaroos to restrict the sample space before introducing probabilities.

Now suppose we have sampled an appreciable fraction of the entire population. Our estimates
must perforce become more accurate, and the (N — M)/N = 1—(M/N) factor so indicates. When
we have sampled the entire population, M = N, then we know the exact Ny, so the error vanishes,
the prior information becomes irrelevant, and the RHS of (48) reduces to My /M =+ 0, as it should.
Thus if we admit the z; as real quantities, so that it makes sense to apply Bayes’ theorem in the
way we have been doing, then Bayes’ theorem tells us in quantitative detail — just as it always
does — what our common sense might have perceived if our intuition was powerful enough.

THE NEW KANGAROO SOLUTION

We started considering Steve Gull’s kangaroo problem on the original monkey hypothesis space H1,
were somewhat unhappy at the result (18), and have now seen some of the general consequences of
going down into H2. How does this affect the answer to the original kangaroo problem, particularly
in the region of large N where we were unhappy before?

When the N; and k; are large enough to use the Stirling approximation for all terms, a typical
term in the exchangeable prior (31) goes into the form

where h = k — (1/2). Thus, when N and k are quite different we have for all practical purposes

] + const. (49)
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Nlog(ke/N N k
klog(Ne/k), E<<N
So if N; << k;, call it prior information [, the prior (31) is given by
log p(Ny -+ N, |Iy) ~ =X N;log(N;/k;) + const. (51)

and the most probable sample numbers (Ny ---N,,) subject to any data D that imposes a "hard”
constraint on them, are the ones that maximize the entropy relative to the “prior prejudice” (k;/ K ).
With no prior prejudice, k; = k, this will just lead us back to the original solution (18) from the pure
monkey multiplicity factors, confirming again that the region of large k is the one that connects
smoothly to the previous solution. When N >> k, call it prior information I3, instead of (51) we
have the limiting form

log p(Ny -+ - N,|I5) ~ Sk;log N; + const. (52)

and the solution will be the one that maximizes this expression, which resembles the “Burg entropy”
of spectrum analysis. So applying Bayes’ theorem with n = 4, the exchangeable prior (52) and
Steve Gull’s hard constraint data

D: N1—|-N22N1—|-N3I3N/4

the posterior probability for the parameter ¢ = N4/N can be read off from (12):

(¢! D) o (0.5 4 q)*1/,(0.25 — q)F2the g (53)

When all k; = k, this is proportional to

p(q|D1}) o (g — 6¢° + 32¢*)" (54)

This reaches its peak at ¢ = 0.915, and yields the (mean) + (standard deviation) estimate

Gest = 0.915(1+0.77/VE) . (55)

The "too good” estimate (18) where we had the accuracy factor (1 £ 3/+/N), is indeed corrected
by this prior information on H2; however large N, the accuracy cannot exceed that corresponding
to an effective value

Nejr=(3/.77)k = 15.2k = 3.8K (56 )

These comparisons have been quite educational; we had from the start the theorem that maximizing
any quantity other than entropy will introduce correlations in the (2 x 2) table (12) for which there
is no evidence in the data D. That is, starting from the pure monkey solution with ¢ = 1/16,
learning that one kangaroo is left handed makes no difference; the odds on his being a Foster’s
drinker remains 3:1. But now, admitting the possibility of a positive correlation between kangaroos
must, from the theorem, induce some correlation between their attributes. With the new solution
q is increased to about 1/11; so learning that a kangaroo is left—handed increases the odds on his
being a drinker to 3.73:1; while learning that he is right-handed reduces them to only 1.73:1.

At this point our intuition can again pass judgment; we might or might not be happy to see
such correlations. Our first analysis of the monkey rationale on H1 was a mental pump—priming that
made us aware of relevant information (correlations between kangaroos) that the monkey rationale



20

did not recognize, and led us down into H2. Now the analysis on H2 has become a second mental
pump—priming that suddenly makes us aware of still further pertinent prior information that we
had not thought to use, and leads us down into H3. When we see the consequences just noted, we
may feel that we have overcorrected by ignoring a nearness effect; it is relevant that correlations
between kangaroos living close together must be stronger than between those at opposite ends of
the Austral contintent. In the U.S.A. there are very marked differences in the songs and other
behavior of birds of the same species, living in New Hampshire and lowa. But an exchangeable
model insists on placing the same correlations between all individuals.

In image reconstruction, we feel intuitively that this nearness effect must be more important
than it is for kangaroos; in most cases we surely know in advance that correlations are to be
expected between nearby pixels, but not between pixels far apart. But in this survey we have only
managed to convey some idea of the size of the problem. To find the explicit hypothesis space H3
on which we can express this prior information, add the features that the data are noisy and N is
unknown; and work out the quantitative conequences, are tasks for the future.

CONCLUSION: RESEMBLANCE TO THE TRUTH

However far we may go into deeper spaces, we can never escape entirely from the original monkey
multiplicity factors, because counting the possibilities is always relevant to the problem, whatever
other considerations may also be relevant. Therefore, however you go at it, when you finally arrive
a satisfactory prior, you are going to find that monkey multiplicity factor sitting there, waiting for
you. This is more than a mere philosophical observation, for the following reason.

In image reconstruction or spectrum analysis, if entropy were not a factor at all in the prior
probability of a scene, then we would expect that MAXENT reconstructions from sparse data,
although they might be “preferred” on other grounds, would seldom resemble the true scene or the
true spectrum.

This would not be an argument against MAXENT in favor of any alternative method, for it
is a theorem that no alternative using the same information could have done better. Resemblance
to the truth is only a reward for having used good and sufficient information, whether it comes
from the data or the prior. If the requisite information is lacking, neither MAXENT nor any other
method can give something for nothing. But if the MAXENT reconstruction seldom resembled the
truth, neither would we have a very good argument for MAXENT in preference to alternatives;
there would be small comfort in the admittedly correct value judgment that MAXENT was the
only consistent thing we could have done.

More important, the moral of our Sermons on this in the Tutorial was that if such a discrepancy
should occur, far from being a calamity, it might enable us to repeat the Gibbs scenario and find
a better hypothesis space. In many cases, empirical evidence on this resemblance to the truth or
lack of it for image reconstruction can be obtained. It might be thought that there is no way to
do this with astronomical sources, since there is no other independent evidence. For an object of
a previously uncharted kind, this is of course true, but we already know pretty well what galaxies
look like. If Roy Frieden’s MAXENT reconstruction of a galaxy was no more likely to be true than
any other, then would we not expect it to display any one of a variety of weird structures different
from spiral arms?

We need hardly ask whether MAXENT reconstructions of blurred auto license plates do or do
not resemble the true plates, or whether MAXENT tomographic or crystal structure reconstructions
do or do not resemble the true objects. If they did not, nobody would have any interest in them.

The clear message is this: if we hold that entropy has no role in the prior probability of a scene,

but find that nevertheless the MAXENT reconstructions consistently resemble the true scene, does
it not follow that MAXENT was unnecessary? Put differently, if any of the feasible scenes is as
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likely to be true as the MAXENT one, then we should expect any feasible scene to resemble the
truth as much as does the MAXENT one; resemblance to the truth would not be ascribable to the
use of MAXENT at all.

It seems to us that there is only one way this could happen. As the amount of data increases,
the feasible set contracts about the true scene, and we might conjecture (by analogy with John
Parker Burg’s shrinking circles for reflection coefficients in spectrum analysis) that eventually all
the feasible scenes would resemble the true one very closely, making MAXENT indeed superfluous;
any old inversion algorithm, such as the canonical generalized inverse matrix R = AT(AAT)~! for
Eq. (1), would do as well. If so, how much data would we need to approach this condition?

In March 1984 the writer found, in a computer study of a one—dimensional image reconstruction
problem, that when the number of constraints was half the number of pixels the feasible set had
not contracted very much; it still contained a variety of wildly different scenes, having almost no
resemblance to the true one. The canonical inverse (which picks out the feasible scene of minimum
¥ f?) was about the wildest of all, grossly underestimating every pixel intensity that was not forced
to be large by the data, and having no aversion to negative estimates had the program allowed
them. So this amount of data still seems “sparse” and in need of MAXENT; any old algorithm
would have given any old result, seldom resembling the truth. Perhaps the conjecture is wrong;
more ambitious computer studies and analytical work will be needed to understand this.

To say: “The MAXENT reconstruction is no more likely to be true than any other” can be
misleading to many, including this writer, because it invites us to interpret “likely” in the colloquial
sense of the word. After months of puzzlement over this statement, I finally learned what John
Skilling meant by it, through some close interrogation just before leaving Cambridge. Indeed, it
requires only a slight rephrasing to convert it into a technically correct statement: “The MAXENT
reconstruction has no more likelihood than any other with equal or smaller Chisquared.” Then it
finally made sense.

The point is that “likelihood” is a well-defined technical term of statistics. What is being said
can be rendered, colloquially, as “The MAXENT reconstruction is not indicated by the data alone
any more strongly than any other with equal or smaller Chisquared.” But that is just the statement
that we are concerned with a generalized inverse problem, from whence we started. In any such
problem, a specific choice within the feasible set must be made on other considerations than the
data; prior information or value judgments. Procedurally, it is possible to put the entropy factor
in either. The difference is that if we consider entropy only a value judgment, it is still “preferred”
on logical consistency grounds, but we have less reason to expect that our reconstruction resembles
the true scene because we have invoked only our wishes, not any actual information, beyond the
data.

In my view, the MAXENT reconstruction is far more “likely” (in the colloquial sense of that
word) to be true than any other consistent with the data, precisely because it does take into
account some highly cogent prior information in addition to the data. MAXENT images and
spectrum estimates should become still better in the future, as we learn how to take into account
other prior information not now being used. Indeed, John Skilling’s noting that bare MAXENT is
surprised to find isolated stars, but astronomers are not; and choosing “prior prejudice” weighting
factors accordingly, has already demonstrated this improvement.

Pragmatically, all views about the role of entropy seem to lead to the same actual class of
algorithms for the current problems; different views have different implications for the future. For
diagnostic purposes in judging future possibilities it would be a useful research project to explore
the full feasible set very carefully to see just how great a variety of different scenes it holds,
how it contracts with increasing data, and whether it ever contracts enough to make MAXENT
unnecessary as far as resemblance to the truth is concerned. We conjecture that it will not, because
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as long as m < n it has not contracted in all directions; i.e., the coordinates (a,,41---a,) of Eq.
(8) remain undetermined by the data, and confined only by nonnegativity.

In the meantime, we think there is still some merit in monkeys, and no one needs to be
apologetic for invoking them. If they are not the whole story, they are still relevant and useful,
providing a natural starting point from which to construct a realistic prior. For very fundamental
reasons they will continue to be so.

APPENDIX A. PSYCHOLOGICAL TESTS

Kahneman and Tversky (1973) report on tests in which subjects were given the prior information:
I = “In a certain city, 85% of the taxicabs are blue, 15% green”; and then the data: D = “A witness
to a crash who is 80% reliable (i.e. who in the lighting conditions prevailing can distinguish correctly
between green and blue 80% of the time) reports that the cab involved was green.” The subjects
are then asked to judge the probability that the cab was actually blue. From Bayes’ theorem, the
correct answer is

p(B|DI) = .85 x .2/(.85 x .2+ .15 X .8) = 17/29 = .59

This is easiest to reason out in one’s head in terms of odds; since the statement of the problem told
us that the witness was equally likely to err in either direction (G — B or B — (), Bayes’ theorem
reduces to simple multiplication of odds. The prior odds in favor of blue are 85:15, or nearly 6:1;
but the odds on the witness being right are only 80:20 = 4:1, so the posterior odds on blue are
85:60 = 17:12. Yet the subjects in the test tended to guess p(B|DI) as about .2, corresponding
to odds of 4:1 in favor of green, thus ignoring the prior information. For them, “the data come
first” with a vengeance, even though the prior information implies many more observations than
the single datum.

The opposite error — clinging irrationally to prior opinions in the face of massive contrary
evidence — is equally familiar to us; that is the stuff of which fundamentalist religious/political
stances are made. The field is reviewed by Donmell and Du Charme (1975). It is perhaps not
surprising that the intuitive force of prior opinions depends on how long we have held them.

Persons untrained in inference are observed to commit wild irrationalities of judgment in other
respects. Slovic et al (1977) report experiments in which subjects, given certain personality profile
information, judged the probability that a person is a Republican lawyer to be greater than the
probability that he is a lawyer. Hacking (1984) surveys the history of the judicial problem and
notes that the Bayesian probability models of jury behavior given by Laplace and long ignored,
account very well for the performance of modern English juries. L. J. Cohen (1984) reports on
controversy in the medical profession over whether one should, in defiance of Bayesian principles,
test first for rare diseases before common ones.

Such findings not only confirm our worst fears about the soundness of jury decisions, but
engender new ones about medical decisions. These studies have led to proposals — doubtless 100
years overdue — to modify current jury systems. The services of some trained Bayesians are much
needed wherever important decisions are being made.
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