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The Concept and Measurement of Impedance in Periodically Loaded Wave Guides

*

Epwin T. JAYNES
Microwave Laboratory, Stanford University, California

(Received April 2, 1952)

A generalization of ordinary circuit theory which enables one to define impedances in any periodic struc-
ture is developed, based on the concept of expansion of electromagnetic fields in terms of a set of linearly
independent basis fields. Techniques for measurement of impedances in a periodic structure are described,
involving a determination of the parameters of a coupling system by an extension of the well-known nodal

shift method.

I. INTRODUCTION

N a coupling system connecting two different trans-

mission lines or wave guidest it is usually desired
that a matched line on the load side be reflected through
the coupling system as a match in the input trans-
mission line. The obvious way to test for this is to
install a matched load and then measure the input
SWR. However, an accurate match may be very difh-
cult to obtain; or if the output transmission line happens
to be of some special construction, such as the periodi-
cally disk-loaded wave guides used in particle acceler-
ators,! there may be no independent method of de-
termining when the load line is matched, other than
looking at it through some coupling system.

It is always easy, however, to produce a pure re-
actance (i.e., completely reflecting) termination of the
load line, and if the coupling system is lossless, its
input impedance must also be a pure reactance. This
reactance is determined merely by locating the position

* This work was supported in part by Navy Contract N6-
onr-25116, .

t We will understand the term “transmission line” to mean any
structure in which waves may be propagated according to the
usual transmission-line equations. The term thus includes wave
guides, coaxial lines, and two-wire lines.

' W, W. Hansen, Consiglio Nazionale de Ricerche (Tipografia del
Senato, Roma, 1948), p. 111; Ginzton, Hansen, and Kennedy,
Rev. Sci. Instr. 19, 89 (1948); E. L. Chu and W. W. Hansen,
J. Appl. Phys. 18, 996 (1947); 20, 280 (1949); E. L. Chu, Ph.D.
thesis (Stanford University, 1951).

of the extremciy sharp node on the input transmission
line, so that if we can find a way of determining the
coupling sys‘vm parameters from the relation of load
reactance to input reactance, we can expect this method
to give us a more convenient as well as more accurate
determination of the coupling system performance.
Once the parameters of the coupling system are known,
the relations between its input and output impedance
may be used hackwards to measure impedances in the
load transmi=-<ion system.

In Sec. IT we review the well-known theory of the
nodal shift m:thod as applied to “smooth” transmission
lines. Section- 1L, IV, and V are devoted to developing
the concept i impedance in periodically loaded wave
guides, and = Sec. VI the theory of the nodal shift
method is ex' nded to such guides. The resulting meas-
urement tec ique was developed and used by the
writer in 194 in connection with the design of coupling
systems for t.ie Stanford linear accelerator tubes.!

II. NODAL SHIFT THEORY

First, we note the familiar fact that the voltage-
current relationships of any linear, passive, four-
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F16. 1. Voltage and
current conventions
for a four-terminal Wi
network.
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Fic. 2. Definition of reference planes. (a) The load line is matched;
(b) the load is a pure reactance.

terminal network may be expressed in terms of the
network parameters A, B, C, D, in the form (see Fig. 1
for notation)

Vl o A Vg-l- sz,

I,=CV+DI,,
(1)
A B{
=]1.
¢ D

For a lossless network, 4 and D are real, while B and C
are imaginary.® The input impedance Z,=1'}/I is thus
given in terms of the load impedance Z.=1./7. by

Z\=(AZx+B)/(CZ++ D). (2)

We may consider the network of which the coupling
system is a part as including arbitrary lengths of input
and output transmission lines. We now show that for a
lossless system the reference planes (terminals) may be
chosen so as to simplify (2). Assume that voltages and
currents are so defined that all impedances are normal-
ized, i.e., Z=1 on any matched transmission line; and
consider the two situations depicted in Fig. 2. In
Fig. 2(a) the output line is matched. Choose terminals
(1) at a voltage maximum on the input line. Then the
impedance Z, is real and greater than unity. This par-
ticular value of impedance is numerically equal to the
voltage SWR 7 seen on line 1 when line 2 is matched,
and may be called the SWR of the coupling system.
From Eq. (2) we have

n=(4+B)/(C+D).

In Fig. 2(b) we have chosen the output terminals so
that a short there also places a short at the input
terminals. For this case, Eq. (2) reduces to

B/D=0. or B=0.

But since g is real, we must have C=0 also. Therefore
n=A/D, and the general impedance relation (2) re-

*E. A. Guillemin, Communication Networks (John Wiley and
Sons, Inc., New York, 1935), Vol. II.
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duces, for this choice of terminals, to
Zy=nZa. (3)

In general, the input impedance to a shorted trans-
mission line of length x is ;Z; tand, with 6=2ax'\ the
clectrical length of the line. With normalized im-
pedances, Zo=1. From this we see that if a short is
placed a distance #, to the right of terminals (2), there
will be a short a distance 4, to the right of terminals (1)
(TFig. 3), where

tanf, =7 tanfs. (4)

If one places a movable short in the load transmission
line and measures the position of the short in the input
line as a function of the position of the load short,
Eq. (4) will enable one to find from these data the
value of » and the positions of the two reference planes.
Usually these are the only parameters of the coupling
system in which one is interested.

In practice one would plot the difference (6,—6.) as
a function of 8., or if more convenient, the distances
(¥y—x2) and xy may be plotted directly. Since the
reference points are not in general known at this stage
of the process, one measures position of the nodes from
arbitrary origins, and the origin of the (#,—0.) vs 0.
graph remains arbitrary. The shape and orientation of
the plot, however, are determined by the value of 1.
The ecuation represented is

8, —Oa=tan™"» tanfa—tan~! tand,
(p—1) tants
=tan~'——— . (3)
147 tan®@.,
As a funetion of 0, this reaches o maximum of
Af= F-lt-'}l._' B'.:)ih::x =tan _!{"?1_ 1!']}) (6)

at a value of # g¢iven by

tan*f.=1/y. (7)
Solving (6) {4, we have
= (14-sinA#)/ (1 —sindf), (8)

n coefficient is simply

=(np—1)/(n+41)=sinAd. (9)

and the reflec

Figure 4 is « »lot of actual data taken at a wavelength
of about 10 ¢, with a coupling system of reflection
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Fi6, 3. Definitions of node positions 6, and 6.
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coefficient I'=0.466. One finds Af from the difference
hetween maximum and minimum values of (x;—x2)
and from this determines T' and #. Then, as is seen
from differentiating (5) at #,=0, the positions of the
input and output reference points are determined as
the point where (x;—x;) is midway between the maxi-
mum and minimum values, with positive slope. Thus,
the three parameters of the coupling system are all
determined from a single plot of data.

III. THE CONCEPT OF GENERALIZED IMPEDANCE

When we come to the case of a periodically loaded
wave guide (see Fig. 6 for an example), it is not immedi-
ately obvious what is meant by impedance and position
of a node. In fact, the exact distinction between a
running wave and a standing wave is none too clear.
One thing which we need is a generalization of the
concept of impedance which goes beyond the familiar
generalization to wave impedance in “smooth” wave
guides (i.e., wave guides in which all boundary condi-
tions are independent of the z coordinate). The concept
of impedance is useful because it gives us a certain
piece of information about the configuration of electro-
magnetic fields, and any quantity, however defined,
which conveys the same information may be called a
generalized impedance.

In any guide in which only one mode type is excited,
there are only two linearly independent possible fields;
any tvpe of wave, standing or running, may be ex-
pressed as a linear combination of any two linearly
independent fields. This situation exists in the guides
under consideration in regions far from the local fields
due to coupling systems, and it is in these regions that
we must be able to define what we mean by impedance
or node position. Let (E;, Hy) and (E,, Hy) be two
different possible field configurations; then any field is
specified by two complex amplitudes a,, a.:

E=&1E1+(E2E2,
H= (I1I'I1+(22H2.

(10)

Instead of giving ay, @y, we might specify the product
(ai@s) and the ratio (@i/a.); the former quantity is
essentially a measure of the power level, while the latter
specifies the field configuration to within a multiplica-
tive constant and is therefore a generalized impedance.

The quantities a;, a; are evidently wvery loosely
analogous to voltage and current. This analogy may
be greatly strengthened by a proper choice of the basis
fields (E,, H;) and (E., H.). In the first place, we should
like to have the power flow given by the usual formula

P=1Re(VI)=1Re(a\d>), (11)

where the bar denotes the complex conjugate. This
power flow is given by an integral of the complex
Poynting vector across any surface S’ spanning the
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F1c. 4. Experimental plot of Eq. (5). As explained in Sec. VI,
these data were actually taken with a periodically loaded guide as
the output line. .

guide; using the expansion (10) we have

Pz%Ref (ExH)-dS
P

=4Re f [a:] Q(E]Xﬁ1)+ald2(ELXHQ)
s

+d132<E2Xﬁ1)+ | ﬂzl E(EEX Hg):] ds. {:12)

This will of course be independent of which particular
surface S’ is chosen, provided losses in the guide can
be neglected. Now if the equality of (11) and (12) is to
be an identity in @y, @s, it is evident that we must have

Re [ (Bxil)-dS=Re [ (BaxHy-ds=0, (13
S

g

whereupon (1.2) becomes

P=%Rc][ a1

(izf (E1Xﬁz+EzXH1)°dS . (14)
57

In (14) use ha- been made of the fact that any term in
(12) may be :-placed by its complex conjugate since
only the real | irt is taken. Equation (13) implies that
we should ch ose basis fields that carry no power;
i.e., standing + ves for which E and H are everywhere
w/2 out of p se. The basis fields (E, Hy), (E,, Hy)
thus correspor  to two different pure reactance termina-
tions or to t o different node positions. They still
contain arbitr. rv phase factors, however, and in order
to reduce (14 to (11) we should choose them so that
the integral in (14), which is in any event a constant
independent ¢7 the surface S’, becomes real. Proper
choices of the amplitudes of the basis fields will then
give us

| [BaxH+ExHL-ds=1. (15)

If we choose the following conditions (sufficient but
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not necessary):

E,, H; real,

E,, H; imaginary, (16)

then (13) is automatically satisfied, and with proper
normalization so is (15). Thus if the conditions (13), (16)
are imposed on the basis fields, the power flow is given
correctly by (11).

It remains to be demonstrated that a,, a» are still
analogous to voltage and current in the sense that the
voltage and current (V, I) seen at some other part of a
complicated network (in particular in a smooth trans-
mission line on the other side of some coupling system
to which the periodically loaded guide is connected) are
related to @y and a; by the equations appropriate to a
four-terminal network. Merely from the fact that
Maxwell’s equations are linear, we know that a relation

of the form
( V) (A B) (a;)
I N C D/ \a»

must exist; it must now be shown that the determinant
of the transformation is unity:

4 B
-

(17)

= 18
& b (18)

and that in the case of a lossless network - and D are
real while B and C are pure imaginary. The first of these
follows from the reciprocity theorem; let us consider
the functions (E,, H,), (E., H:) as standing not only
for the base functions in the periodically loaded guide,
but also their analytic continuations through the coup-
ling system and into the smooth transmission line on
which ¥V, I are measured. Then at all points inside the
complete network both of these fields will satisfy
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Maxwell’s equations
UXH=jweE VXE= (19)

in which in general ¢, p are functions of position. If the
coupling network is lossy, e will be complex at some
points within it. Because of (19) it is easily shown that

- (ExxH.— E.xHy)=0

— jwuH,

ur

f (B Ha— EsXH,)- d$=0, (20)
8

where we integrate over any closed surface. Equation
(20) is an expression of the reciprocity theorem in the
form given by Lorentz. Let us now carry out this
integration over the surface S consisting of the surface
5" spanning the periodically loaded guide, as used in
Eqs. (12)-(15), the metallic walls S’ of the system
extending from S’ through the coupling system, and
out to a plane surface S normal to the smooth guide
on the other side of the coupling system, as shown in
Fig. 5. $” is the reference plane at which the voitage
and current V, 7 are measured. The region enclosed by
this closed surface §=S5"45"45"" is shaded in Fig. 5.

Because of the boundary conditions satisfied by
Ei, E: on the metallic surface, the integral over 5
vanishes separately. Then, if the positive normals
to S’, §” are chosen so that both point in the direction
of power flow, we have

(ExXHa=E.

Rer

,’4"111)‘[18
=f (E;X Ho— B H,)- dS.
S5

But with the <hoice of phases given by (16) the
integral over .S’ is the same as that in 113), which we
have normalized 1o unitv. (This incidentally gives an
independent prooi “hat the integral (13) is independent
of our choice of ti - surface S’.) Therefore,

f (.- XH>—E.xH,)-dS=1. (21)

Now at the r
current are ordin
transverse electri
The transverse fi

rence plane S the voltage and
ly defined as proportional 1o the
ind magnetic fields, respectively.
< at S are therefore expressible as
E(S")=TVE«(S"),
H(S"y=TH.(S"),

rmal mode functions so normalized
+ given by (11). We consider the
smooth transmiss’ n system to support only a single
propagating modr at the frequency of operation and
the reference planc N to be far from the local fields of
the coupling system. Therefore,

where E,, H, are -
that power tlow

f (ExH)-dS=VT. (22)
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If the smooth transmission system is a coaxial line,
it is easily shown that (22) is valid where V and I are
the actual voltage between conductors and actual
current flow, respectively. Thus we can put in general

f (E1XH_>‘_E3><II1)‘ dS= L"lfr;;— lz',_,f!:_- ]} (2{;)

g

where V, is the voltage at S§” when the field E, is
excited, [, is the current when H, is excited, ete. But
reference to (17) shows that

V] = ."I 3
V‘l: 18)

Jr]=C,
Jr‘g:D,

since, for example, A and C are the voltage and current
when a;=1, a,=0, i.e., when the basis field (E,, H,) is
excited. Therefore (23) is equivalent to (18). Further-
more, it is evident that when the entire network is
lossless, the choice of phases made in (16) for the region
of the periodically loaded guide applies also to the
analytical continuation of E,, Hy, etc., to the surface $*,
so that 4 and D are real; B and C are imaginary. Thus
all of the properties of the network equations (1) which
were needed for deriving the nodal shift formulas have
been shown to hold for the connection (17) in which
@i, @2 are used n place of voltage and current.

IV. CHANGE OF BASIS FIELDS

The conditions which we have imposed on the basis
fields are merely that E,, E. be linearly independent
and that (15), (16) be satisfied. Even with these very
weak restrictions, the analogy between the expansion
coefficients (ay, a;) and the circuit quantities of voltage
and current has become so complete that all of the
relations of general circuit theory remain valid when
(@1, as) are used. The basis fields are, however, far
from being uniquely determined by (15), (16); if
(Ey, Hy) and (E., H.) is any set allowed by our condi-
tions, then an equally good set is (E/, HY), (EY, H'),
where

]‘:|r=ngE1—G:|Eg, H'!'=(;ﬂ}' 1""(;;”1!17—2,

(24)

I£2!= '_GlﬁE1+Gll-E23 -H"E’= "G1QII1+GJ_1I12,
in which the matrix

Gll Gl?
o=

Gar G
has determinant unity, Gy, and Gas being real while G»
and Goy are pure imaginary. These are just the condi-
tions that the new basis fields should satisfy (15), (16)
when the old ones do. A matrix with these properties
will be called a ¢ matrix. A field which has expansion

coefficients (a;, @.) with respect to the old basis fields
will have coefficients (a;’, a2’) with respect to the new
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ones, where
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(e
ay’ G

Gl:!) (au)
G/ \a. '
for we then find that

F;={11E|+(’I-3E2=EIIFE]"*JF(I-;.{":-_»!, ele.,

The product of any two G matrices is another G
matrix, so that the totality of all transformations of
the type (25) forms an infinite group. Since the matrix

4 B )
s &

of general circuit parameters for a lossless four-terminal
network is a ¢ matrix, we see that there is a one-to-
one correspondence between all possible lossless four-
terminal networks and possible changes of basis fields
which preserve the analogies of (a;, a2) to voltage and
current. Any such change of basis fields is equivalent to
looking at the original voltage and current through
some particular lossless network.

Since a G matrix has three independent parameters,
we may expect in general that three more independent
conditions may be imposed on our basis ficlds in addi-
tion to the above ones before they hecome uniquely
determined. Additional conditions which would be con-
venient in various problems are that the two basis
fields should represent the same stored energy, that
the generalized impedance (a,/a») should equal unity
when a pure riining wave is excited, etc.

V. APPLICATION TO A PERIODICALLY
LOADED GUIDE

Suppose that the wave guide contains regularly
spaced structurcs with a repetition distance “a”; in
other words, + entire system is invariant under
translations in e z direction through the distance a.
The guide mayv be considered as a cascaded line of
“unit cells” eaci: of length a, but the boundaries of the
cells are arbitrar ~. Now we can choose any two linearly
independent bu s fields Ey(x, v, 2); Eu(x, v, 2) which
satisfy conditic - (13) and (16). Suppressing the x, y
coordinates for revity, we write the expansion of a
general field in ¢ periodic structure as

Els)=aEi(z)+a.Eals). (26)

We now inq:ire under what conditions E(z) repre-
sents a pure rus ning wave. By this we mean that the
value of E in « ¢ cell is a multiple of its value in an
adjacent one:

Elzta)=e3E(s), (27)

where j8 is the propagation constant per cell, which is
purely imaginary in the passband. This corresponds to
the condition oi impedance match in the theory of
iterated networks, if we consider each cell to correspond
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to a four-terminal network.] To see this, we note that
the expansion (26), while valid at all values of z, may
be considered as applying to one section only, say the
n’th, in which case @, a; correspond to voltage and
current at the output of the »'th of the iterated net-
works. The fields in the (n+1)th section may be ex-
panded in terms of new basis fields E,’, E)’ which bear
the same relation to the (n+41)th section as E,, E, did
to the n'th; in other words, they are obtained by trans-
lating E,, E; one section down the pipe:

E/(z)=Ei(z—a),

(28)
E,' (z)=E.(z—a).
and the new expansion is
E(z)= al’El’(z)Jraa’ Ea'(z) (29)

so that @/, ¢’ correspond to voltage and current de-
livered by the (rn41)th network. This is a particular
type of change of basis fields as discussed above, since
E/, E./ are linearly related to E;, E, through some G

matrix:
El Gll G12 El’
(Ez)—(Gm ng)(E;)'
We now substitute these relations into the condition
(27) for a running wave. Express E(z4a) by means of

Egs. (28) and (29) and E(z) by Eq. (26), and it assumes
the form

E(z+a) = a/'Ei(2)4a)'Eo(z) = e~ #[a,E,(3) +a:Ea(2) ]

or, since E,, E, are linearly independent,

(30)

(;2" =g ."5{3,.,

(31)
(32)

a)y =¢e Pqy,

T ELH

I

-
Ls

| |
Fre. 6. Electric lines of a possible choice of basis fields for the
disk-loaded linear accelerator pipe.

{ We are, however, particularly anxious to avoid drawing equiv-
alent circuits of the sections, because one of the principal purposes
of this analysis is to show that a rigorous treatment of fields leads
to relations of the same form as the ordinary circuit-theory rela-
tions independently of any approximate equivalent circuit.
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The impedance is the same in each cell for a running
wave, the same situation that one finds in the theory of
iterated networks. As in the classical filter theory, we
expect that the propagation constant j3 and the charac-
teristic impedance (32) are determined by the frequency
and the structure of the network. The only properties
of the network that are needed to determine them are
the elements of the &G matrix in (30). This is clear from
the relation (23) which, using (31), becomes

. (Gl) (Gu GI?)(G'])
el = :
Ay Gsy G (13

Thus, e=# is an eigenvalue, while @y, a; are the com-
ponents of the corresponding eigenvector, of the G
matrix connecting the original basis fields with their
translations through one period. By standard methods,
we obtain the explicit solutions

ﬂ_j’a:%{(Gu‘i'Gz?):I:[(Gn‘l‘G-z)g—‘1']%}1

[+ 5] -"d'-z = (_8_ B (I‘ﬂ) 'FGQ 1-

(33)

(34)
(35)

The two values of 8 from (34) satisfy the relation
B'=—p", corresponding to the two directions of propa-
gation. In the passbands 8 is real, and we have

cosli= é{(;”'}'cgg) < 1. (36)

We now observe that relations (34), (33) may be
greatly simplified by a particular choice of basis fields.
We may choose E; and E, to differ essentially only by a
translation of one period down the guide, provided that
the fields so lefined are linearly independent. (In
general, this will be the case, but the edges of the pass-
bands are criticu! frequenciesat which E(z) = & E,(z+a)
so that linear in:lependence fails.) In addition, we must
introduce a 90° phase shift as required by condition
(16). Therefore, let us define E. by

E.(s'=—jE(z—a)=—jFE/(2).
A possible choice of these fields for the Stanford linear

accelerator is skctched in Fig. 6. Then the G matrix in
(30) becomes

(37)

c;u _j
G= ( _ ), (38)
—j 0
while (34), (35). nd (36) reduce to
¢ =Gn/2£[(Gn/2)*=1] (39)
(@1 y=je B, (40)
cr.arj——-an"Z. (-“}

The characterist i impedance and propagation constant
are not essentia!|v different quantities with this choice
of basis fields. At the edges of the passband, 3=0 or ,
and the charactoristic impedance becomes purely im-
aginary; while at the center of the passband, 3=#/2,
and the characteristic impedance is unity.

To sum up the results found above, there is a com-
plete analogy between wave propagation in a periodic
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structure and the classical theory of filters composed
of iterated four-terminal networks. The device of ex-
panding fields in terms of a set of linearly independent
basis fields has enabled us to find coefficients ay, a»
which satisfy the same relations as do voltage and
current in lumped-constant network theory. This is
not just a coincidence, for ordinary circuit theory is a
special case of the analysis presented here. In any
lumped-constant four-terminal network we can define
fields (E;, H,) to be those resulting from unit voltage,
zero current at the output (i.e., open-circuited load),
while (E,, H;) are the fields resulting from unit current,
zero voltage at the same terminals. Then any possible
state of excitation of the network is described by the
expansion (26) in which ay, a; are the output voltage
and current in the ordinary sense. The G matrix giving
the rule of translation of basis fields through one section
then reduces to the matrix of general circuit parameters
4, B, C, D as treated by Guillemin.? Thus, by intro-
ducing the concept of basis fields and then allowing
ourselves a greater freedom of choice in their definitions
than is usual (the extent of this freedom being precisely
described by the group of G matrices), we create a
rather sweeping generalization of ordinary circuit-
theory, which applies without approximation to any
periodic structure.

VI. EXPERIMENTAL MEASUREMENTS

We are now able to say just what it is that we want
a coupling svstem to the periodically loaded guide to do;
when load conditions are so adjusted that we have a
pure running wave in it, as in the Stanford linear
accelerator, we want a match to appear also in the
smooth transmission line on the other side of the
coupling system. The problem is to find an experi-
mental procedure, using only pure reactance termina-
tions of the loaded wave guide, that will tell us what the
input impedance on the smooth transmission line would
be if there were a running wave in the loaded guide.

We may produce all reactive values of the impedance
(@y/a.) in the loaded guide by sliding a metal shorting-
plug into it at various distances, as shown in Fig. 7.
However, we do not at the outset know how this re-
actance is related to the position of the shorting plug.
This may be found from the behavior of the impedance
seen on the other side of the coupling system as follows.
First we define the input reference plane and the basis
fields in a manner analogous to the definitions of
Sec, I1:

(a) Match the periodic guide: a/as=j exp(— j8),
and choose the input reference plane at a point on the
input line where the impedance seen looking toward
the coupling system is V//=Kjexp(—jB), with K
real. If 8 is very small (i.e., the repetition distance a is
very small compared to a wavelength), such a point
may not exist, in which case we redefine the cell to
contain n# of the small cells, =2, 3, 4, ---. This
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Fie. 7. DMetallic
plunger for varying
load reactance, with
definitions of quanti-
ties used in Fig. 9.
The actual plunger is
a brass tube with fin-
gers that ensure good
metallic contact when
a disk is reached.

multiplies 8 by n, and a suitable value of n can always
be found such that this reference plane will exist.

(b) Find the plunger position which places a voltage
node at this input reference plane, and define the fields
in the periodic guide for this plunger position (and
sufficiently far from the local fields of the coupling
system and plunger) as (E., H.).

Then we have, remembering that /1 and D are real
and B and C are imaginary,

from (b): B=0,
from (a): C=0, K=4/D;

and the impedance relation, for this choice of reference
plane and basis fields, again reduces to a simple pro-
portionality

V/I=K(a/aq). (42)

By transmission-line theory, the SWR of the coupling
system i then

p=HRKN K1) cseB4+ [ HEK+HRT) eseBd— 1],

which, for 3=w/2, reduces to n=A.

As in Sce. II, the above are definitions of reference
plane and hasis fields, not experimental methods for
finding them, because by hypothesis we have no experi-
mental wuy of knowing when the periodic guide is
matched until the parameters of some coupling system
have been found. We can find these parameters as
follows: First, note that when the plunger is moved in
through onc repetition period (as defined in (a) above),
the basis fic [s E,, H; are then excited so that there is an
infinite imp ance at the input reference plane; experi-
mentally, pushing the plunger in through the distance ¢
moves the node in the smooth transmission line just a
quarter-wa- -length. Suppose we mecasure the node
position a; 1 the input line as a function of the plunger

(43)

position x 1 plot a graph of x1(x)—x:(x+a) versus x.
At the poir where this crosses (A\/4), x, is the position
of the inpu: reference plane, x is the plunger position

which creatcs the basis fields (E,, Hs), and (x+4a) is the
plunger po-ition which creates (E,, H,). (Note that
according to Iig. 7, the direction of increasing x is
opposite to the direction of increasing = as used in
Sec. V. The -cason for this is experimenta! convenience.)

The analogy between the relations of this section
and those of Sec. IT may be strengthened if we define an
effective node position 6 in the periodic guide for any
plunger position by

7 tanf,=(ai/a-).



Fre. 8. Modification of
plunger to avoid contact dis-
continuities.

Since, as before, the node position on the input line is
given by jtan®i=V/I, Eq. (42) assumes a form
analogous to (4):

tand, = K tanf.. (-44)

The remaining quantities which we wish to find are
the effective node position #; (or what is more con-
venient experimentally, the length r.=a6./3) as a
function of plunger position x, the impedance magnifi-
cation constant K, and the phase-shift per section, 3.
To find these, let us express the fields as functions of
the longitudinal coordinate z, and the plunger posi-
tion x:

E(z, x)=ai(x)Ei(2) + ax(x) Es(5).

If we pull the plunger out by a distance a;, the new
fields are just translated in the 4z direction by an
amount a:

E(z, v—a)=a,(x—a) E\(2) +as(x—a) Eu(z)
= E(z—aq, x)=0a,(x) E\(z—a)+a:(x)E_(z—a).

From this, using (30), we obtain
a1(x)
: ) (45)

o

as(x—a) 7 Gu/ \as(x)

Now calling the plunger position x=0 at the position
which generates the basis fields (E,, H.), we find that

(a1/a2)2=0=0 (definition),
(@1/@2):—a= = (in agreement with the
previous discussion),
o (319{62)1“:—«:.)5-!61]1 (46)

(al/a?)F—mszu/(Gu?“‘ 1) 47)

Taking the product and ratio of (46), (47) we have,
using the relation 7 tan@;=V/7 and (42),

(tanby)ze— 1
g, (9)
(tanf;)ze—sq Gyy?

(tand))s—o: (tand)susa= K/ (1—Gy?), (49)

from which Gu=2cos8 and K may be determined.
Once K is known, we can use Eq. (42) backwards to
find the effective node position xs(x) from the data on x;
versus x already taken. Thus, once more, from an experi-
mental determination of x; as a function of x, we can
deduce the SWR of the coupling system [using Eq.
(43)], the propagation constant of the periodic guide,
the position of the reference planes at which the
impedance relations are particularly simple, and the
effective node position in the periodic guide as a func-
tion of plunger position. Most of the work at Stanford
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has been done at that frequency for which 8=r=/2,
where the situation is greatly simplified, as is seen from
inspection of the above equations for that case.

The use of a metallic plunger with a flat end as in
Fig. 7 was found to have a disadvantage that when
metallic contact is made to a disk in pushing it forward,
there is a small but annoving discontinuity in the
function x,(x). However, one can shape the plunger as
in Fig. 8, and it is possible to find a length for the
extension (1.3 ¢m in our case) at which no measurable
discontinuity in x,(x) is found. The condition for this is,
of course, that there should be no rf voltage across the
gap just before it closes. A theoretical reason why the
extension should produce this condition has not been
sought; we merely record it as an experimental fact
that it is not at all difficult to find the proper length.

The function 1»(x) is a universal one, depending on
the periodic guide, the frequency, and the plunger, but
not on the particular coupling svstem with which it
was obtained. Therefore, once one has this universal
curve (Fig. 9 applies to the present linear accelerator
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Ire. 9. Effective nodle position as a function of plunger position
for the Stanford linear accelerator guides.

guide in use at Stanford) one can return to the method
of Sec. II and obhtain the parameters of a number of
different couplin: systems by plotting (x,— x2) versus .
The data of Fig. + were taken in this way.

One tricky point which nearly everyone finds dis-
concerting at firs <ight concerns the direction of motion
of the effective 1 «le position. According to Fig. 9 and
the definitions i Fig. 7, moving the plunger to the
lefl moves the e ctive node to the right, whereas one
naively expects | = opposite behavior. The direction of
node motion dep s on the details of the fields around
the plunger, and .1e can show that the general criterion
is as follows: Pu<h the plunger in through an infini-
tesimal distance ind consider the fields in the small
volume that was removed in front of the plunger. If be-
fore the movem: nt there was more energy stored in
electric than in i agnetic fields in this volume, then the
effective node moves in the opposite direction to the
plunger, and vice versa.

The writer is indebted to the Jate Dr. W. W. Hansen,
under whose direction the experimental part of this
work was done, for many helpful discussions.



