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22 E. T. Jaynes
1. introduction

With this meeting, we enter a new era for the Principle of Maximum
Entropy. Gathered in one room are many people who have been working
largely in isolation from each other, while thinking very similar thoughts.
Each has discovered, in his own way and in his own context, that this princi-
ple solves real, nontrivial problems in a way that cannot be approached by
other statistical methods.

But future progress will be more rapid if we can pool the experience
gained thus far in many different applications, and recognize common prob-
lems still in need of solution. That is the main purpose of these meetings.

My own work has been concerned mostly with development of the gen-
eral theory of irreversible thermodynamics, although attempts have been
made also to point out other possible applications. The history of the prin-
ciple of maximum entropy, as it applies to thermodynamics, has been told
recently (Jaynes, 1978) at such great length that hardly anyone could wish
to have it all told again here. But as applied to problems far removed from
thermodynamics, a few recollections about early experiences may help to set
the record straight and explain to present students why the method is only
now coming into its own.

Section 2 of this paper recalls a little history, but very briefly because
our concern today should be with the future, It appears, in retrospect, that
the development of computer programs capable of dealing with dozens to
thousands of simultaneous constraints was the key factor in establishing the
power of this method, in a way that transcended all philosophical arguments.

Sections 3 through 6 deal with technical problems, first in generality,
then as applied specifically to spectrum analysis and image reconstruction.
In these discussions we try to formulate some of the common problems that
need to be dealt with in the immediate future in connection with presently
established applications. Finally, we speculate a little about new applica-
tions that might develop in the more distant future.

2. Setting the Record Straight

Of course, the maximum-entropy algorithm originated with Boltzmann
and Gibbs. But in their writings they did not make its meaning crystal
clear—Boltzmann because he was not very clear in his own mind, repeatedly
changing his position (Klein, 1973), and Gibbs because his work was feft un-
finished (Jaynes, 1967). In Cibbs' "Heterogeneous Equilibrium® {1875-1878),
in fact, we find a much clearer and deeper explanation of the properties of
entropy than in his final work, Statistical Mechanics (1902),

Therefore, as far as the rationale of the method was concerned,
Boltzmann and Gibbs left a kind of vacuum that was filled, as such vacua
always are, by followers whose thinking had little in common with that of
Boltzmann, and nothing in common with that of Gibbs. For 60 years after
Gibbs, the "official® statistical mechanics of our textbooks stood on the
premise that the canonical {maximum entropy) distribution was an actual
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physical fact, the ultimate result of the mechanical equations of motion
operating over long times, and that the fundamental unfinished goal of sta-
tistical mechanics was to prove this rigorously by "ergodic’ theorems.

In the early 1950s—just when Enders Robinson was doing some of the
first hand-run predictive deconvolutions of geophysical data at MIT—1 was
at Stanford, studying not only statistical mechanics but also the problem of
detecting hidden regions of different dielectric or acoustical properties
(nonmetatlic land mines in Korea, crevasses in Greenland, brain tumors,
flaws in structural materials, etc.).

In those days nobody even dreamed of being able to use digital signal
processing hardware for such purposes although we did dream of analog cal-
culation, recording the observed signal s(x,y) as a function of the antenna
position, and correlating it with those to be expected from every possible
target by endless-loop tape recorders (which would have been so bulky and
slow as to be almost useless).

A conceivable fast solution was to try to design the antenna so that its
radiation pattern (or more accurately, the dot product E*E, of transmitter
and receiver fields) maximized the ratio (peak signal)?/(mean square re-
sponse to soil anomalies), that is, so that the antenna itself approximated a
two-dimensional matched filter. But of course the equations defining the
optimal matched filter contradicted Maxwell's equations or the acoustical
wave equations; and even if the optimal antenna could have been realized, it
would have been optimal only for soil of one particular autocorrelation
function. Today, of course, all this sounds trivial: an electronic package the
size of a matchbook could do digital processing of these signals, according
to any afgorithm we please, in real time.

It was realized that if we had the capability to deconvolve any antenna
response pattern, the antenna design problem would be radically changed.
As those familiar with the theory of integral equations will see at once, the
only important antenna design parameter is then the size of the 'window"®
that it opens up in Fourier transform space. That is, over how large a
region (kk,) is the transform

F(ky k) = dx dY(Er'Et) expli(k;x+k,y)]

above the thermal noise level, thus delivering relevant information to the
computer?

These theoretical conclusions were summed up in a classified report in
1954, but at the time the technology to exploit them did not exist and no
actual hardware resulted. Still, this association was an important influence
on my general thinking, making me see a close relationship between the ra-
tionale of these engineering problems and that of Gibbsian statistical
mechanics.

To see why a relationship exists, let us ask: What determines our prob-
ability distribution for soil anomalies?  Conventional thinking—then and
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now—would suppose this is an actual physical fact, a "real physical prop-
erty" of the soil, like density, chemical composition, etc., with different
kinds of soil having different intrinsic autocorrelation functions. The more |
held lumps of soil in my hand, the less | believed this,

The probability distribution for the soil dielectric constant that we use
in our detection theory can be useful only to the extent that it tells us
something about the one sample of soil that exists under our antenna,
Whether variations in other samples do or do not follow this distribution in
the frequency sense cannot be relevant to our problem. Indeed, if we had
prior information telling us the actual condition of our sample of soil, the
frequency distributions in other samples that we are not looking at would be
completely irrelevant.

Realizing this seemed to me an important new insight into the nature of
statistical inference. Orthodox thinking—then and now—wants us to define
probabilities only as physical frequencies, and deplores any other criterion as
not "objective.” Yet when confronted with a (literally) dirty, objective real
problem, common sense overrides orthodox teaching and tells us that to
make the most reliable inferences about the special case before us, we
ought to take into account all the information we have, whatever its nature;
a rational person does not throw away cogent evidence merely because it
does not fit into a preconceived pattern, But this means that our probabili-
ties can be equal to frequencies only when (a) we actually have frequency
data and (b) we have no other "prior information” beyond those frequen-
cies, (We should add here that R, A, Fisher, the great proponent of fre-
quency interpretations, eventually recognized this also, and in his final book
(1956) he acknowledged that fiducial inference is valid only when we have
no prior information; unfortunately, many writers of statistics textbooks still
have not recognized this.)

The probability distributions that we use for inference must in general
represent not merely frequencies, but our total state of knowledge, of which
frequencies are only a part. I[ndeed, some of the most important real prob-
lems of inference are unrelated to frequencies in any "random experiment,’
The problem is that our information is incomplete; there is nothing "random®
about it. But strict adherence to orthodox principles would deny us the use
of probability theory in such problems.

So there is the connection: the only way known to set up a probability
distribution that honestly represents a state of incomplete knowledge is to
maximize the entropy, subject to ail the information we have. Any other
distribution would necessarily either assume information that we do not
have, or contradict information that we do have. But that is just the pro-
cedure that Boltzmann and Cibbs advocated in statistical mechanics, long
before Shannon showed us how to interpret it.

The principle itself was not new at all, but the realization that it
applied as well to problems far removed from thermodynamics, and that
these engineering problems, when finally solved correctly, would be seen as
having the same rationale and the same algorithm as statistical mechanics,
was so new and startling that it could not be conveyed to others. Attempts
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to explain this to other physicists, engineers, mathematicians, and statisti-
cians at Stanford and Berkeley, and to the Army Engineers, met with strictly
zero success—with only one exception.

David Blackwell saw the point at once, and put his finger on the basic
*fairness’ property of the MAXENT algorithm: It does not allow you to
assign zero probability to any situation unless your information really rules
out that situation., Nobody else was able to free his mind from frequentist
preconceptions; and so from this engineering episode | returned to statistical
mechanics with nothing to show for it except a new appreciation of the
generality of the MAXENT principle.

But before one can see this generality it is necessary to realize that it
is a principle of reasoning, not a principle of mechanics, and thus free it
from the supposed dependence on Hamiltonian equations of motion and er-
godic theorems.

What | did (Jaynes, 1957) was only to suggest a different interpretation
of Gibbs' "canonical ensemble’ method, If we regard it as representing, not
mechanical prediction from the equations of motion, but only the process of
inference (make the best predictions you can from the information you
have), then in that sense his algorithm can be justified in great generality as
a principle of probability theory—essentially just the process of rational
thinking—without any appeal to ergodicity.

To this day, our ergodist critics seem to have a hang-up over the dis-
tinction between mechanical prediction and inference; they continue to
complain about the latter because it is not the former. Nevertheless, for
thermal equilibrium (the only case where ergodic theorems could ever have
applied) we obtain the same actual predictions that the ergodists wanted;
and indeed, any other predictions would be in conflict with experiment.
Ergo: the most that ergodic theorems could ever have accomplished is to
confirm what we already know, namely that in equilibrium problems taking
the equations of motion into account does not alter the predictions that we
obtain directly by maximizing the entropy.

In fact, it is rather elementary that equations of motion can tell us only
how probabilities change with time, and not what probabilities should be
assigned initially. Therefore, in any problem where the given information
(set of constraints) tells us only something about constants of the motion,
the equations of motion can provide zero additional information about the
state of the system. In John Burg's happy phrase, then, ali the philosophical
arguments "do not change a single number® in the calculations.

The pragmatic advantage of the inference viewpoint (which hardly
needs pointing out to this audience) is that we then see Gibbs' method as
something of far greater generality than the ergodists ever dreamed of. It
applies equally well not only to nonequilibrium situations but to any problem
of inference, in or out of physics, in which the information at hand can be
described by enumerating a set of conceivable hypotheses ("prior informa-
tion') and specifying whatever else we know ("data’) in the form of con-
straints that narrow down the set of possibilities. In such applications, it
has some easily proved optimality properties.
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However, in my papers of 1957 | was still under the influence of text-
books that attributed the ergodic view to Gibbs; therefore | thought | was
suggesting something new, Three years later, finally getting around to a
really careful reading of Gibbs, | realized that | had been brainwashed.
Gibbs' actual thinking was utterly different from that commonly attributed
to him, and | had only rediscovered his original viewpoint! (There was,
however, a technical advance in that we now had Shannon's theorems that
filled a gap in Gibbs' argument.) In the trauma of this discovery, a book
review | wrote just then {Jaynes, 1961) came down hard on two other poor
souls who had only been victims of this same brainwashing, but who had had
the misfortune to write books before realizing it. Expressions of sympathy
would have been more appropriate.

For some years (1958-1964) | traveled around a circuit of talks at uni-
versities and industrial research laboratories (including those of three well
known oil companies, at Dallas, Tulsa, and Bartlesviile), pointing out the
existence and generality of the MAXENT algorithm to hundreds of people
who might have profited by using it in all kinds of applications. But the
reaction was mostly negative. Few saw the point, and most (under the in-
fluence of conventional physical and/or statistical teaching) denied vehe-
mently—even angrily—that useful predictions could come from a method
that expressed only "subjective” probabilities, not "objective® frequencies.

On one of these occasions a member of the audience was moved to ex-
press these doubts in poetry. | do not recall his name, or even the year and
place, but the poem has been preserved because | was in turn moved to
compose a counter-poem and read them both to my students. They were
rediscovered this year in some yellowed old course notes.

Here is the original, whose author is presumably just as happy to remain
anonymous (if not, he may come forward and claim it):

MAXIMUM ENTROPY

There's a great new branch of science which is coming to the fore,

And if you learn its principles you'll need to learn no more,

For though others may be doubtful (which can make them fuss and fret)
You'll be certain your uncertainty's as large as it can get.

This is no toy of theory, to invite the critic's jeering

But a powerful new method used in modern engineering.

For uncertainty, which often in the past just gave us fidgets
Has proved to be a vital tool in mass-producing Widgets.

The procedure's very simple (it is due to Dr. jaynes)

You just maximize the entropy, which doesn't take much brains.
Then you form a certain function which we designate by Z,
Differentiate its log by every lambda that you see.
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And LO!—we see before us (there is nothing more to do)

All the laws of thermal physics, and decision theory too.
Possibilities are endless, no frontier is yet in sight,

And regardless of your ignorance, you'll always know you're right!

So, are you faced with problems you can barely understand?

Do you have to make decisions, though the facts are not at hand?
Perhaps you'd like to win a game you don't know how to play.
Just apply your lack of knowledge in a systematic way,

Handed a copy of this upon leaving the meeting, | composed a reply
during my return flight:

MAXIMUM ENTROPY REVISITED

There's a fine old branch of science coming back now to the fore

And if you learn its principles you'll need to grope no more,

For though others may be blinded (which can make them twist and turn)
You'll be certain that you see whatever is there to discern.

This is no cut-and-try device, empirical ad hockery

But a principle of reasoning, of proven optimality.

For prior information, which empiricism spurns

Has proved to be the pivot point on which decision turns.

The procedure's very simple (it is due to Willard Gibbs)
First define your prior knowledge without telling any fibs
On this space of possibilities, a constraint is then applied
For every piece of data, until all are satisfied,

If the states you thought were possible, in setting up this game
And the real possibilities in Nature, are the same

Then LO! you see before you (there is nothing more to grind)
Reproducible connections that experimenters find,

But the principles of logic are the same in every field

And regardless of your ignorance, you'll always know they yield
What your information indicates; and (whether good or bad)
The best predictions one could make, from data that you had,

This reply tried to correct the historical record and the mistaken
emphasis by pointing out the positive nature of the principle, which seemed
obviously true to me—and obviously false to nearly everybody else.
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Not quite everybody, however, During the early 1960s several rumors
circulated, too vague to leave a trail to fact, but hinting guardedly at uses
of maximum entropy in oil exploration. Finally, with the landmark paper of
Burg (1967), it became public knowledge that a few people had indeed taken
the trouble to work out the detailed algorithms and computer programs
needed to try the method on some real problems far removed from thermo-
dynamics. They found, of course, that it worked just as | had said it would
(or else we would not be meeting here today).

From this point on, | shall not presume to recount a history of these
applications, so much better known to those here who made it. But, for
that goal of setting the record straight, perhaps other speakers will be will-
ing to share with us some of their own recollections of how it all started.

3. General Remarks

Maximum entropy represents an entirely different kind of thinking from
what has been taught in statistics courses for 50 years. Many of those
trained in orthodox statistics find the difference so mind-wrenching that the
rationale of MAXENT remains incomprehensible to them after repeated
attempts at explanation. Yet beginning students see the point at once with
no difficulty because MAXENT is just the natural, common-sense way in
which anybody does think about his problems of inference—unless his mind
has been warped by orthodox teaching. This difference will be less trouble-
some if we explain it first in very general terms.

ORTHODOX APPROACH. You are given a set of observed data Dgpg =
{d,ssedm} from which you are to decide whether some hypothesis H about
the real world is true (or, put more cautiously, whether to act as if it were
true), For example, H might be the statement that some unobserved quan-
tity 6 has a value in a specified interval (a < 9 <b); in fact, by imaginative
use of language, almost any hypothesis could be stated in this form.

Given this problem, the first thing orthodox statistics does is to imbed
the observed data set in a "sample space,” which is an imaginary collection
containing other data sets {D,...DN} that one thinks might have been
observed but were not. Then one introduces the probabilities

p(Dj[H), 1<i<N, (1)

that the data set Dj would be observed if H were true. This is called the
"sampling distribution,” and p(Dj|H) is interpreted as the frequency with
which the data set D; would be observed in the long run if the measurement
were made repeatedly with H constantly true,

When one asserts the long-run results of an arbitrarily long sequence of
measurements that have not been performed. it would appear that he is
drawing either on a vivid imagination or on a rather large hidden fund of
prior knowledge about the phenomenon. If we are not told what that
knowledge is and how it was obtained, we might be excused for doubting its
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existence. But, for the sake of argument, let us suppress these doubts and
accept the orthodox interpretation of p(D;|H) at its face value.

The sampling distribution is the only probability distribution we are
allowed to use. For that reason, orthodox statistics is often called "sam-
pling theory." In principle, the merits of any proposed method of data anal-
ysis are to be judged by its sampling properties. That is, in the long run,
how often would it lead us to a correct conclusion, or how large would the
average error of estimation be? But practice sometimes ignores precept (as
when one insists on using an unbiased estimator (n-1)"! Z(Xi-;)z of vari-
ance, even though the biased estimator n™! I(x;~x)? would yield a smaller
mean square error),

PURE MAXENT APPROACH. By contrast, in the pure maximum-entropy
{noiseless Bayes) method, our reasoning format is almost the opposite.
Instead of considering the class of all data sets {D,...DnN} consistent with a
hypothesis H, we consider the class of all hypotheses {H,...Hy} consistent
with the one data set Dypg that was actually observed. In addition we use
prior information | that represents our knowledge {from physical law, usually
expressed as combinatorial muitiplicity factors W;) of the possible ways in
which Nature could have generated the various Hj, Out of the class C of
hypotheses consistent with our data, we pick the one favored by the prior
information |=which means, usually, having the greatest multiplicity W (that
is, greatest entropy log W).

Now, which kind of reasoning do you and | use in our everyday problems
of inference? An automobile driver must make a decision (stop, slow down,
go through, speed up, turn) at every intersection, based on what he can see.
He does not think about the class of all things he might have seen but
doesn't see., He thinks about the class of all contingencies that are consis-
tent with what he does see, and acts according to which ones, in that class,
seem a priori most likely from his previous experience.

If you go to a doctor and tell him your symptoms, he does not start
thinking about the class of all symptoms you might have had but don't have.
He thinks about the class of all disorders that might cause the symptoms you
do have. The first one he will test for is the one which, in that ciass,
appears to be a priori most likely from your medical history.

The same common-sense reasoning format is used by a TV repairman, a
detective, an analytical chemist—and a player of the game 'Twenty Ques-
tions.” FEach successive piece of data that one obtains is a new constraint
that, if cogent, restricts the possibilities permitted by our previous informa-
tion. By Blackwell's principle, at any stage an honest description of what
we know must take into account (that is, assign nonzero probability to)
every possibility that is not ruled out by our prior information and data.

Clearly, this is the way any rational person does—and should—think
about such problems of inference. Only a warped mentality could see any-
thing peculiar or illogical about it. Yet for 25 years MAXENT methods have
been rejected—in some cases attacked—by persons who did not comprehend
this simple rationale.
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Even when we come to the proof of the pudding and present our supe-
rior numerical results (such as those of Burg, Currie, Montgomery, Frieden,
Skilling, Gull and Daniell, and Shore as presented or recailed at this meet-
ing), the issue is not always resolved. MAXENT results are sometimes
regarded with suspicion because those familiar only with orthodox methods
and results simply cannot believe it is possible to extract so much detailed
information from the data.

In fact, their instincts are quite correct. It is not possible to extract
all that detail from the data alone, or else orthodox methods might have
done so. MAXENT gives us more information only because we have put more
information into it. In image reconstruction, MAXENT is taking into account
not only the data, but also our prior information about the multiplicity of
different scenes. This information is, as we shall see, of the highest rele-
vance to the problem, but orthodox ideology does not recognize it because it
does not consist of frequencies in any random experiment.

In the problems where pure MAXENT is appropriate (which include all
of statistical mechanics, equilibrium or nonequilibrium) we are concerned,
not with frequencies in any random experiment, but with rational thinking in
a situation where our information is incomplete., We are trying to do the
best reasoning we can about the real situation that exists here and now—
and not about the long run in some other situations that exist only in a stat-
istician's imagination. In such applications, a probability distribution is not
an assertion about frequencies but only a means of describing our state of
knowledge.

In orthodox thinking, a frequency is considered "objective” and there-
fore respectable, while a mere state of knowledge is "subjective® and unsci-
entific., But in the real-world problems of inference faced by every en-
gineer, scientist, economist, business man, or administrator, it is evidently
his state of knowledge that determines the quality of the decisions he is able
to make in situations that will never be repeated; and it is the frequencies
that are figments of the imagination,

Interestingly, the sampling distribution that orthodox theory does allow
us to use is nothing more than a way of describing our prior knowledge
about the "noise" (measurement errors), Thus, orthodox thinking is in the
curious position of holding it decent to use prior information about noise, but
indecent to use prior information about the ‘signal® of interest. Yet one
man's signal is another man's noise. This arbitrary rejection of part of the
information is the reason orthodox methods are incapable of dealing with
"generalized inverse” problems of the aforementioned kind, which arise con-
stantly in the real world.

FULL BAYES METHOD. We have expounded two more or less opposite ex-
tremes of reasoning, each of which is appropriate in a certain class of prob-
lems. The orthodox sampling distribution p(Dj|H) is described only loosely
as "noise.” Stated more carefully, it might represent two different things:
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(A) The variability of the data to be expected if the experiment were re-
peated under seemingly identical conditions.
(B) The likely deviations of the actually observed data Dgpg from the truth.

Orthodox statistics, failing to distinguish between meanings (A) and (B),
makes a single sampling distribution p(D; |H) serve two different functions.
But, as | realized while holding those lumps of soil, (A) and (B) are logically
quite different things. Indeed, it is (B) that one needs to know in order to
make sound inferences that make allowance for the unreliabiiity of the data
Dobs actually obtained. Given the probability distribution appropriate for
(B), it may or may not give also the variability (A) of data on other meas-
urements that are not made, but the question is obviously irrelevant to our
inference from the data we do have,

However, if the sole information we have pertaining to question (B) is
derived from knowledge of variability in sense (A), then one may confuse
the meanings (A) and (B) without harm, If in addition there is no prior in-
formation about the quantities being estimated, orthodox methods will be at
least useful, and perhaps (if we have sufficient statistics and no nuisance
parameters) even optimal, Llikewise, if we have relevant prior information
but no appreciable noise, the pure MAXENT method will be appropriate and
near-optimal,

But just as prior information can make an orthodox analysis invalid (a
maximum likelihood estimate 8§ = 8 is useless and misleading if we know in
advance that 8 < 6), so appreciable noise can make the pure MAXENT
method inappropriate and misleading.

Fortunately, in most of our everyday problems of inference, noise is not
an important factor, so the MAXENT reasoning format applies, But if that
automobile driver at the intersection had to look out through an optically
turbulent medium, and so saw something different every time he looked even
though the factual situation was unchanging, then he would have a more
complicated problem and the MAXENT reasoning would have to be modified
to make allowances for the unreliability of his data. We ail know how much
more cautiously we drive when a heavy rainstorm converts the windshield
into just that turbulent medium. We cannot be sure what lies before us and
must first guess at that before trying to decide what action to take.

{f we have both noise and prior information, neither of the above meth-
ods is adequate. But both are only limiting special cases of a more general
method that applies in all cases known to the writer, Adding prior informa-
tion capabilities to orthodox methods, or noise capabilities to MAXENT, we
arrive in either case at the Bayes method, which is actually simpler concep~
tually and older historically than either of these special cases,

To define the Bayesian method, we introduce some rudimentary Boolean
algebra, We denote various propositions by A, B, C, etc., "not A" by ~A, "A
and B" by AB, Then the probability symbols p(A|~B) and p(AB |C) are read
as "the probability that A is true, given that B is false,” and "the probability
that both A and B are true, given that C is true," Mathematically, then,
probability theory consists of nothing but the sum and product rules
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p(A|B) +p(~A|B) = 1 (2a)
P(AB|C) = p(A|C) p(B|AC) (2b)

and the unending stream of consequences that can be deduced from them.

All schools of thought accept these rules as mathematically correct. It
is over their interpretation—their relationship to the real world—that the
150-year-old philosophical controversies swirl. Orthodox doctrine, as noted,
interprets p as a frequency, and it is a trivial observation that frequencies
do indeed combine according to these rules. But orthodoxy also takes a
militant stand, declaring all other interpretations to be metaphysical non-
sense. in some 35 years of perusing the literature, | have found no ortho-
dox writer who has advanced a logical reason for this position; it is merely
asserted, But there is a vast literature indicating that this position was ill-
advised, in effect putting orthodox statistics in a kind of straitjacket that
makes it incapable of dealing with the current real problems of science,
engineering, and economics.

A broader—and, we believe, far more useful—view, interprets p(A | B) as
a measure of the degree of plausibility of A, on a (0,1) scale. Then the
equations of probability theory are not merely rules for calculating frequen-
cies; they are also rules for conducting inference. In fact, R. T. Cox
showed many years ago (Jaynes, 1976, 1978) that any set of rules for con-
ducting inference, in which we represent degrees of plausibility by real
numbers, is necessarily either equivalent to Egs. (2) or inconsistent (in the
sense that with any other rules one can find two different methods of calcuy-
lation, both obeying the rules, that yield different results).

Of course, since Godel one does not expect probability theory to pro-
vide a proof of its own consistency. The rules (2) as derived by Cox refer
to finite discrete sets, and when they are applied in problems of inference
on such sets, no inconsistency has ever been found. But there are many
"paradoxes’ in the literature—the marginalization paradox, the ambiguity of
posterior odds ratios, the Borel-Kolmogorov paradox, the nonconglomerabil-
ity paradox, etc.—all of which are caused by trying to apply these rules
directly and indiscriminately on infinite sets. The common technique by
which all these paradoxes, and any number of others, can be manufactured,
is: (1) start from a well behaved finite result; (2) pass to a limit without
specifying how the limit is to be approached; (3) ask a question whose
answer depends on how the limit was carried out.

Clearly, the paradoxes of infinite sets have nothing to do with real
problems of inference. After all, the number of atoms in our galaxy is only
G < 107°, a safely finite number, and it is hard to believe that a real problem
will ever require a larger set than G! We propose a conjecture: All correct
results in probability theory are either combinatorial theorems on finite sets
generated by Egs. (2), or well-behaved limits of such theorems. !f this is
correct, probability theory may be able to feed for a century on the combi-
natorial work of Rota (1975),
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Let us see some consequences of Eq. {2), interpreted as rules for con-
ducting inference, Take, as above, | = prior information, H = some hypoth-
esis, D = data. Then, since the product rule (2b) is symmetric in A and B,
we have

p(DH|1) = p(D{1) p(H|DH) = p(H|I) p(D]H!) . (3)
If p(D|1) # 0 (that is, the data set is a possible one), this yields Bayes'
theorem:
p(H|DI) = p(H|1) RICIHD (4)
p(D|D)

which represents in a very explicit form the process of learning. [t shows
how the ‘prior probability” p(H|l) changes to the “posterior probability"
p(H|DIl) as a result of acquiring new information D. This is exactly the
kind of rule we need for inference. Let us note some of its properties,

Suppose we obtain data D, today, then additional data D, tomorrow,
Today's data D, will of course be part of tomorrow's prior information, so
our inferences about H on the two successive days will take the form

p(D, [HI)
HiD ) = Hil) ————— 5
p(H]DH) = p(H) STNTE (5)
_ p(D, | HD,I)
p(H{D,D,1) = p(H|D,l) m . (6)

But substituting Eq. (5) into Eq. {6), and using the product rule (3) in num-
erator and denominator, reduces Eq. (6) to

p(DlelHl)

— (6"
p(DzD, 1)

D(HlDzDLU = P(Hl 1

which is just of the form (4) of the original Bayes' theorem with D = D,D,,
the total data now available. The result extends by induction to any number
of additional data sets D,, D,, etc. Thus, when we take into account many
different pieces of information, Bayes' theorem updates our state of knowl-
edge at each step, but in such a way that our conclusions always depend
only on the total information at hand, and would be the same if we got the
information all at once. This is a most welcome consistency property, with-
out which we would be in reai trouble, Bayes' theorem has dozens of other
nice features that express just the properties that a rational person would
demand of a method of inference. Another important one is noted below
[Eq. (56}].

But how does orthodoxy view this? Orthodoxy never gets to Eq. (6')
because at the start it rejects Bayes’ theorem (4) out of hand, as a method
of inference, without ever bothering to examine the kind of results it gives.
In orthodox ideology, probabilities can be assigned only to "random vari-
ables™ because a probability, to be respectable, must be also a frequency.
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But a hypothesis H is not a "random variable," so p(H|1) and p(H|DI) are
held to be meaningless! At this point, orthodox statistics denies itself the
use of the single most powerful and useful principle in probability theory,
and it is feft with no way to take the prior information | into account. This
failure of orthodox statistics is just the reason why the new methods to be
discussed at this workshop had to be developed.

Further details about the workings of Bayes' theorem are in Section 6,
where we shall see that, in the Gull-Daniell image reconstruction problem,
both MAXENT and orthodox results are contained in the Bayes solution, in
the limits of zero noise and zero prior information respectively,

4. The Maximum-Entropy Formalism

Like any fairly general method, MAXENT can be approached in various
ways. It can be based on information theory, on combinatorial theorems, or
as a limiting form of Bayes' theorem. That is, all these approaches lead to
the same algorithm although conceptually they express three slightly differ-
ent problems. Arguing over these slight differences may solve the unem-
ployment problems of philosophers for the next 50 years, but we need not
dwell on them here,

We introduce "The Maximum-Entropy Formalism' by the information-
theory approach. A real variable x can take on the values {Xjeeaxpn} and we
are to assign corresponding probabilities {pi+e.pPp} so as to represent our
partial information about x. The information theory basis noted that the
Shannon entropy

n
H = - Z pi log pj (7)
i=1

is a measure of the "amount of uncertainty” in the distribution {PeesPn},
uniquely determined by certain very elementary consistency and additivity
requirements (Shannon, 1948). Intuitively, then, the distribution that most
honestly describes what we know, without assuming anything else (that is, is
as noncommittal about x as it can be without violating what we know) is the
one that maximizes H subject to the constraints imposed by our information.

But this is not a mathematically well-posed problem until we write
down the explicit form of the constraints. Some kinds of information are
too vague to use in a mathematical theory by any presently known methods,
although our intuitive common sense may be able to make some use of them.
Various aspects of this are discussed more fully elsewhere (Jaynes, 1968,
1978). With experience one becomes more adept at converting verbal infor-
mation into mathematical constraints. For present purposes it is enough to
give only one special case, which is by far the most useful one so far.

What does it mean to say that a probability distribution {pyeeePpn} "con-
tains® certain information? Presumably, this ought to mean that we can
extract that information back out of it. Suppose we had a probability dis-
tribution and were asked to make the best estimate A of some function A(x).
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The exact value of A is not determined by the distribution, so we must intro-
duce some criterion of what we mean by "best.*

Since the time of Gauss, the mean square error criterion has been the
most popular and easily implemented. Other criteria could be used if there
were any advantage in using them; but for the applications we have in mind
they would only make the computations longer, while leading to final results
practicallx indistinguishable from the ones given below. If we make the
estimate A, the expected square of the error will be

AA-AD = Y pilA) - A2

= [<AD - <A>?] + (A - <A»)?, (8)

where the brackets < > denote averages over the distribution p;, often called
'expectations.” The first term, the variance of the distribution of A,

var{A) = <AD - A2 (9)

is fixed by the distribution pj, so the mean square error is minimized by
choosing as our estimate the average

A = EA) = <A> = Z pi A(Xi) (10)
i

Statisticians denote expectations by E(A), while physicists, having already
preempted E for energy and electric field, use the bracket notation <A>.
Writing for both, we use both notations.

Conversely, if we are asked to adjust the distribution {p,...pn} to in-
corporate given information about A, we shall understand this as meaning
that, by applying the usual prediction rule, (10), we can get that information
back out of {p,...pny}. Thus our mathematical constraints, in the problems
considered here, will take the form of fixing expectations of various quanti-
ties about which we have some information.

If we wish to incorporate information, not only about the value of A,
but also about the accuracy with which A is known, we merely add another
constraint, fixing <A?> as well as <A>, The general formalism below auto-
matically includes this possibility. But in practice this usually makes no
appreciable difference in our conclusions. An exception can arise in the
limit n » », where a constraint on <A?> may be needed to get a convergent
solution, Ip; = 1.

More generally, whenever we find we are not getting a normalizable
solution, that is how the theory tells us we have not yet specified enough
information to justify any definite inferences. As in any situation of insuffi-
cient information, we cannot hope to get something for nothing, and the
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only remedy is to get more information. Almost always, it turns out that
the person using the theory actually did have some more information that he
had failed to put into the equations, not realizing that it was essential,

To proceed to "The Maximum=-Entropy Formalism,* there are m functions
{A(x)eeeAp(x) } for which we are given, in the statement of the problem,
our ‘data,” that is, a set of numbers {Al...Aln} which are the values we
want our probability distribution {p,...pp} to predict. To fit the distribu-
tion to our data, we impose the m simultaneous constraints:

n
z Pi Ak(Xi) = Ak, 1<k<m. (11)
i=1

Much ink has been spilled over the relationship between the numbers A
appearing in Eq. (11) and real data. A persistent misconception is that
MAXENT requires our data to consist of "mathematical expectations.” This
does not make sense, and is an egregious case of putting the cart before the
horse. If we adjust a mathematical expectation to fit our new state of
knowledge after getting some data, it does not follow that the data con-
sisted of expectations. If | adjust my belt to fit my new state of girth after
a heavy meal, it does not follow that my meal consisted of belt leather,

In various problems the A could be generated in various ways. For
present purposes we note that A is simply a number given to us in the
statement of the problem, and our present task is the mathematical one of
incorporating the conditions (11) into our probability distribution. For
further discussion, see Jaynes (1978, pp. 72-77 and 95-96).

The solution was given by Gibbs (in, of course, different notation):

Define the partition function

n

Z(Xjesedpyp) = z exp[-X1A{X;) = <+ = AmAmixi)] . (12)
i=1

Then the MAXENT distribution is

1

T00my SPLMAG) = e = AmAm(X))] (13)

Pi
with the A's determined, as our poet noted, by

' a
Ak='mlogl, 1<k<m, (14)

a set of m simultaneous equations for the m unknowns {x 1evs Amte
The result has also a combinatorial basis, a special case of which
was given by Boltzmann (1877), Some process happens N times, and each
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time a result is that one of the x; is chosen. This includes many different
scenarios:

(1) BERNOULLI TRIALS, A random experiment is repeated N times, each
trial yielding one of the values {x;}.

(H) COMMUNICATION. We receive a message of N letters, chosen from
the alphabet {x,...xp}.

(111y KINETIC THEORY, A gas contains N molecules, each in one of the
quantum states {X,...Xp}.

(IV) IMAGE RECONSTRUCTION. N elements of luminance are distributed
over n pixels, labeled {x,...xp}, to form an image.

In any of these, the particular result x; is chosen N; times; that is, it is
generated with frequency f; = Nj/N, Needing a short name for the set F =
{f,...f4} whatever the scenario, we call it simply "the scene,’ which seems
particularly appropriate in image reconstruction. Any given scene F has a
certain multiplicity W(F):

Nt

W(F) = , {(15)
(NF) oo (N

which is equal to the number of ways in which Nature could have generated
it. When N becomes large we have, by Stirling's rule,

n
%log W)+ - Y filogfi = H(f), (16)
i=1

just the Shannon entropy again, only now depending on ‘objective’ frequen-
cies f; instead of "subjective” probabilities pj. For this reason, the combi-
natorial approach is the one most easily understood by those with orthodox
training although the first approach is more general,

Now we do not know the specific sequence of {x;} that was generated;
all we know is the resulting averages of m quantities {A;(X}.eeAp(x)}:

n
Y fiAx) = Ay, 1<k<m. (17)
<

If we are asked which scene we consider most likely, it seems reasonable to
favor the one that Nature could have generated in the greatest number of
ways consistent with what we know, that is, the one that has maximum mul-
tiplicity W(F) subject to the constraints (17). In view of Eq. (16), then, we
have formulated the same mathematical problem as in Egs. (7) to (11), and
the same MAXENT algorithm Eqs. (12) to (14) will solve it. We need only

write fi in place of pj.
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For those who have not seen elementary examples of numerical solutions
by this method, the extensive analysis of Rudolph Wolf's dice-tossing experi-
ments in Jaynes (1978) is a recommended tutorial introduction that explains
many further points of rationale. A still more efficient procedure for testing
hypotheses in the light of data by MAXENT appears in Jaynes (1983, Chapter
10). But let us turn now to some of the current nontrivial applications.

5. The No-Noise Spectral Analysis Problem

In the field of spectral analysis, this case is rather special but never-
theless real, Many time series that arise in econometrics and geophysics
may be considered essentially uncontaminated by noise, because the varia-
bility of the phenomenon being observed greatly exceeds the error of the
measurements. Sales on the New York Stock Exchange vary greatly from
day to day, yet the value for any one day can be determined exactly. The
air temperature in Tulsa may vary by 50 degrees in a few hours, yet its
value at any one time can be measured to a fraction of a degree.

We have, then, some discrete time series {yoYi .o, YN} that has a Four-
ier transform

Y, = (N+T) Z yi eiwk (18)
and a power spectrum
Sy = [Yalt =} Ryeiuk (19)
where R-k = R': and
N-k
R, = Zy‘j’ykﬂ, 0<k<N, (20)

is usually called the "autocovariance® or "autocorrelation® although both
terms seem unfortunate and inconsistent with other established usage. The
Fourier inversion of Eq. (19) is

m

(21)

’

21—“ s,eKdu = Ry, -N <k <N
-m

where wy = 7 is the Nyquist frequency, above which S, repeats itself peri-
odically. Note that we have defined these quantities so that the last four

equations are exact for finite N, without "end-effects.” There is no mathe-
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matical advantage, in either precision or simplicity, to be gained by passing
to the physically nonexistent limit N + =,

The difficulty is that not all the Ry are known, Our data D, although
exact, comprise only a subset D = {R....Rh} where m < N. The problem
we shall consider is how to estimate S, from this incomplete information.
(Of course, practically everything we say can be carried over mutatis mu-
tandis to the similar problem of estimating Y, from a subset of the yy.)

This no-noise spectrum analysis problem is, then, an example of the
standard generalized inverse difficulty; the data cannot distinguish between
two spectra S, and S, that differ by a solution of the homogeneous equation

T

’

W k| <m. (22)

-7

Therefore, by Eq. (19) the class C of possible spectra compatible with our
data consists of all functions of the form

m

m
Z Rf< eimk + Z (ﬁk eimk + ﬁ-k e_iwk) , {23)
k-—-_

k=m+1

where the Rk (m < k < N) may be chosen arbitrarily but for the condition
S > 0 that any power “spectrum, by definition, must satisfy. Clearly, the Rk
represent estimates of the autocovariance, extrapolated beyond the data,
Thus the problem of choosing, out of the class C of possible spectra, one
"best® estimate of S, is equivaient to the problem of extrapolating the
autocovariance to all lags (=N <k <N).

Now, because there is no noise (the R| are considered known exactly
for lags |k| < m), there is no sampling distribution to describe it. It ap-
pears, then, that sampling theory can provide no basis for choosing one
spectral estimate S, over another; a pure generalized inverse problem lies
entirely outside the domain of sampling theory statistical methods.

indeed, in the Blackman-Tukey (1958) method of spectrum analysis the
problem is never seen as one of extrapolating Ry at all. Blackman and
Tukey state unequivocally that, "Surely, no estimate can be made for lags
longer than the record.” Nevertheless, because of the mathematical con-
nections (19) and (21), any method of estimating S, is necessarily also a
rule for estimating Ry beyond the record.

A spectral estimate (S,)gT found by the Blackman-Tukey method is, in
fact, the spectrum of a time series whose autocovariance is zero at all lags
beyond the data. As Burg (1975) pointed out, this is tantamount to making
an extrapolation of Ry that is almost certainly wrong and that may_even
stand in violation of the nonnegativity condition S, > 0, thus making (S )BT
outside the class C of logically possible spectra,

Even if this implied extrapolation fails to get us outside the class C, the
following difficulty remains. The S, that we obtain from Eq. (21) by setting
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ﬁk =0, k > m, is the spectrum of a time series whose autocovariance is
truncated abruptly at k > m. It is therefore the convolution of the true
spectrum with the *Dirichlet kernel® D(w) = (27)~!sin[(2m+1)w/2]/sin{w/2)
and will exhibit spurious "side lobe® maxima that are not in the spectrum of
the true time series {yy} but are separated from the true spectral lines by
odd harmonics of wg = 7/(2m+1). As Burg realized, these side lobes are
only an artifact of the method, caused by the failure to extrapolate Ry in a
reasonable way.

However, the BT method proceeded to treat the symptom rather than
the disease. To get rid of the abrupt truncation, instead of raising R for
k> m, it lowers Ry for k < m by introducing a "lag window" function Wy
(-m <k <m), It thus replaces Eq. (23) by

m
SOBT = 2 WiRk elvk, (24)
k=-m

and indeed, by various choices of window functions, one can reduce the side
lobes greatly, at the cost of losing about half the resolution.

But this does violence to Eq. (23), which is the most general estimate
that lies in the class C of logically possible spectra. (S4)BT is the spectrum
of a time series that is known to disagree with our data at every data point
k where Wi # 1, We know, not as a plausible inference but as a logical
deduction, that a time series with the spectrum (24) could not have pro-
duced our data!

In the noiseless case this criticism by Burg was crystal clear and
unanswerable, Then does the use of windows become more defensible if the
data are contaminated by noise? Our examination of the theoretically
simpler image reconstruction problem below will provide a clue suggesting
that allowing for noise must take us not toward window solutions, but away
from them, that is, to solutions of still higher entropy.

But the claims of sampling theory are not yet disposed of. One might
think that in a pure (noiseless) generalized inverse problem there is no place
for sampling theory at all. Yet sampling theory has managed to work itself
into the problem anyway, by a remarkable conceptual feat., If the real
world has no sampling distribution, then we shall invent one, not by imbed-
ding our data in a set of possible data, but by imbedding the whole real
world in a set of possible worlds (just as Everett {1957) did in quantum
theory). The one real, finite time series Y = {yg..yN} that actually exists
is regarded as only a "sample® drawn from some hypothetical ensemble of
other infinitely long series—and we are back in business!

Of course, from this standpoint Ry—which was by definition the exact
autocovariance of Y—then appears to be 'biased." So it is replaced by the
‘unbiased estimator"'

Ry N*1_pi 0<k<m. (25)

N+T-k - =
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However, we stress again that Egs. (18) to (21) are exact as they stand for
finite N, and so we have made a second error of reasoning. But pragmati-
cally, this helps by canceling out some of the effect of the first error.
Before falsifying our data R| downward by a window function wy, if we first
falsify them upward by using Eg. (25), we end up a little closer to being in
the class C of possible spectra.

Here are some of the things that bother me about orthodox reasoning.
In the real world no infinitely long time series exist~much less any ensemble
of them. What does it mean to say that we are "estimating” something that
is only a figment of our imagination? What determines this sampling dis-~
tribution according to which the real world is now to be seiected from this
figment? If we are only imagining this ensemble, then it would seem that
we are free to imagine it as having any properties we please. Then whose
imagination is to take precedence—vyours or mine?

If to achieve the 'objectivity” of a frequency interpretation of our
probabilities we must sacrifice the ‘objectivity® of dealing with the real
world, then it seems to me that we have paid too high a price. True ‘objec-
tivity" ought to address itself not to estimating figments of our imagination,
but rather to representing the state of knowledge about the one real world
that actually exists, based on the one data set that actually exists.

Now consider the generalized inverse problem (23) from the standpoint
of maximum entropy. The given data

{R }

! yees Roees R

m

represent, in complex notation where we treat Ry and R_| = RE independ-
ently, (2m+1) constraints. (If we revert to the real notation R-k = Rk and
treat only (R,...Ry,) independently, then we have only (m+1) independent
conditions.)

The maximum entropy distribution subject to these constraints is a
Cibbsian generalized canonical ensembie

m
P(YoessYN) = exp |- ¥ Ak R . (26)
k=-m

Writing out the exponent in full, we have

Z}kRk= ng+ﬁ+-u+w®
A (Yo¥1 FY1Y2 * oees ¥ YN-1YN)

*AYo¥2 T Y1Ys * aes F YN-2YN)
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*Am(Yo¥Ym * ese ¥ YN-mYN)

FAL(YiYo t YY1 *f ees * YNYN-1)

+

*A-mYmYoe * see Y YNYN-m) - {27)

But this can be rearranged into a matrix product:
N
Z Ak Rk = Z Ajjyiyj (28)
ij=0

where A is a Toeplitz matrix:

(29)

Ao [i=i] <m
-1 —
Aij {

0, [j=i] >m

with the Lagrange multipliers repeated down bands parallel to the main
diagonal.

Thus, without our having assumed any "Gaussian random process,” the
maximum entropy principle constructs the Gaussian form for us, as the dis-
tribution that most honestly represents our data:

P(YoeerVYN) = exn[- ZAi; YinJ- (30)
i

The partition function (12) is then proportional to [det(A)]"'% and so

N
log 1 = -—% Z log %j + constant ,
j=0

where {2;} are the eigenvalues of A, Determination of the A's from
Eq. (14) tLen involves solving a number of simultaneous equations. In the
fimit N » =, the eigenvalues {ij} are given by known theory of Toeplitz
matrices,

The Levinson-Burg numerical algorithm proceeds by a Wiener-Hopf fac-
torization of the polynomial

m
P Mzk = 1Y ack)® (31)
k=0

k=-m
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and evaluating the new coefficients {ax} recursively, The {ax} may be in-
terpreted as the coefficients of a Wiener prediction filter, or as the coeffi-
cients of an autoregressive model, if they are chosen to correspond to a
minimum delay wavelet, However, from the standpoint of maximum entropy
this choice is not mandatory, only the A's appearing in our final results,

The details of this solution are so well known, and so well covered by
others at this workshop, that it would be a needless duplication to repeat
them here (they are, however, given from the writer's point of view in
Jaynes, 1982), Suffice it to say that maximum entropy uses the form (23),
thus guaranteeing that our estimated spectrum S, lies in the class C of
possible spectra—but we use the optimal extrapolation {Ry+1...RN} Of the
covariance beyond our data, determined as expectations over the maximum-
entropy distribution (30). By a bit of algebraic magic, the final maximum-
entropy spectrum estimate turns out unexpectedly simple:

2 1
Guw)MAXENT = —m : (32)
Ak e-iwk
k=-m

which is the now classic result of Burg (1967).

The virtues of this solution are many. It not only gets us back into the
class C of logically possible spectra, but also, instead of forcing us to com-
promise between side lobes and resolution, it gives us the best of both
worlds—eliminating side lobes while giving much greater resolution., The
practice of spectrum analysis was revolutionized by this discovery, which
made all previous thinking and methods obsolete,

NEW PROBLEMS. Of course, this does not mean that the theory is now fin-
ished, and Eq. (32) with the Levinson-Burg evaluation of the {ip} is the
optimal solution for every conceivable problem., Some assumptions were
made in the derivation of Eq. (32), and although our result is as robust with
respect to small departures from those assumptions as were any previous
solutions, we are now looking for higher standards of performance than were
expected from previous methods. So, instead of being finished, now that our
eyes have been opened we can see a mass of new problems in need of solu-
tion, some of which could not even be formulated in terms of previous
notions,

Two problems now pressing for immediate attention are the variability
of Eq. (32) in the presence of noise, pointed out to the writer by David Bril-
linger in December 1980, and the "line-splitting® phenomenon pointed out to
the writer by John Tukey just before this meeting. These can be traced to
assumptions made in the derivation of Eq. (32) that are not always satisfied
in real problems,

We assumed that our data were noiseless; otherwise the class C of pos-
sible spectra would not be sharply defined. With noise, the boundary of C
becomes smeared out into a smooth transition region whose thickness repre-
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sents the noise level. From the analogous image reconstruction solution to
be noted in Section 6, we expect this will lead us to modify the pure
MAXENT spectrum (32) in the direction of slightly higher entropy, by an
amount of the order of the thickness of the transition region. However, the
analytical details for the spectrum analysis case are not yet available,

Also it was assumed implicitly in the algorithm for evaluation of the i}
that the autocovariance data {R,...Rp} were from a very long sample of
length N >> m, since one used the asymptotic distribution of eigenvalues for
the limit of an infinitely large Toeplitz matrix. [f our data are from a time
series {y,...Y,;} of only 44 observations, then the exact MAXENT spectrum
should use the Ay's computed from Egs. (14) and (31) with the exact eigen-
values of the finite Toeplitz matrix with 44 rows and columns.

Again, the analytical details are not yet available, but | am confident,
for reasons to be discussed more fully elsewhere, that this small correction
of the algorithm will remove the line-splitting difficulty., The point is that
when we have only a finite time series {y,...yN}, the present algorithm
gives us only an approximate solution of the real problem; but that happens
to be the exact solution for a circular time series that repeats itself for-
ever: y, = YN+1, Y1 = YN+2, €tc. A circular time series with the same auto-
covariances {R;...Ry} would indeed have a spectrum with split lines close
together,

These two problems appear to be of high priority but also straight-
forward in principle, and surely solvable. But the details are not trivial, and
some honest labor will be required to find the new algorithms, Fortunately,
some of the analytical machinery needed has been provided by Gohberg and
Fel'dman (1974) and Bleher (1981).

6. Image Reconstruction

The spectacular recent successes of Frieden, Cull and Daniell, Skilling,
and others in the area of image reconstruction have done more than any-
thing else to convert doubters into believers, because here the demonstra-
tion of what MAXENT can do stands, literally, before your eyes. Also, at its
present stage of development, the problem is simpler theoretically than that
of spectrum analysis because correlations in luminance of adjacent pixels are
not yet incorporated into the MAXENT equations (whereas in spectrum anal-
ysis the whole problem lies in correlations).

This relative simplicity allows us to use the combinatorial approach to
MAXENT, Egs. (15) to (17) above, and to discuss the full Bayes solution, If
N equal elements of luminance are distributed over n pixels to form a scene
F = {f,...fn}, fj = Nj/N, the number K of conceivable different scenes that
could result is equal to the number of terms in the multinomial expansion of
(f, + oo + f)N:

{N +n-1)!
Nt(n-1)!

K (33)

and when N is large, a given scene of entropy H(f,...f,;) has a multiplicity
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(number of ways it can be realized) given asymptotically by Eq. (16):
W(F) ~ eNH(F) | (34)

Our data D = {d,...dy} consist of the luminances of m pixels of our
blurred image, which we suppose determined by

n
dy = zAkiNi+ekr 1<k<{m<n, (35)
1

where Nj = Nfj is the number of elements of luminance in the ith pixel, A;
is the digitized point spread function of our telescope, and ey are the tradi-
tional *Gaussian noise® terms, which are to have independently the proba-
bility distributions

pleglo) = o7t exp(-e? /20%), 1<k<m

' (36)
and o is the RMS noise level,

Let us proceed directly to the application of Bayes' theorem, (4).
Civen prior information | and data D, the probability that any specific scene
F is the true one is

p(FID,o,1) = p(F|1) BARLEEL. (37)

The denominator, being independent of F, is just a normalizing constant and
is not needed in most applications. We have, then, to get the prior probabil-
ity p(F| 1) and the sampling distribution p(D|Fol), The latter is determined
from Egs. (35) and (36): Given that the true scene is F = {f,...f,}, the
probability (density) that we shall obtain the data D = (d,...d,,) is just the
probability that the noise terms ey will make up the difference:

p(D|F,0,1) = (2n0?)"M/2 exp(-Q/0?), (38)
where
; m{ n )
QDR = 5 ¥ |de- ¥ Adfi (39)
k=1 i=1

is the basic quadratic form of the kind that always gets into problems with
Gaussian noise.

Assigning the prior probabilities p(F{l) is not so straightforward
because there is no end to the variety of different kinds of prior information
that one might have in various problems, Clearly, any cogent prior informa-
tion about which scenes are a priori likely ought to be taken into account
and will increase the reliability of our reconstructed scene. For example,
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say
I = lg = 'The scene is a distant galaxy" ;

we know in advance, in a general way, what galaxies look like; and a recon-
struction depicting a horse or a New Jersey license plate is so improbable
that we would not hesitate to assign

p(FHilg) = p(FNjLPllG) = O.

Equally clearly, however, it would be a task of unlimited complexity to try
to characterize every conceivable nongalactic scene and eliminate ali of
them from our prior probability assignment, although that would undeniably
improve our reconstructions.

Therefore, for the present we are going to do what is feasible, and pre-
tend that we have no prior knowledge at all about what is being looked at,
and so we cannot exclude any scene. |f N elements of luminance are dis-
tributed, one by one, to the n pixels, this can be done in nN different ways,
and we shall look at the consequences of a state of primitive ignorance |,
that assigns equal probability n™N to each of them.

Indeed, the impressive results achieved thus far correspond to this I,
although they are only the "minimal performance" of the theory, and we
know that they could be improved with a more elaborate treatment of prior
information. We do not know how much further improvement is possible
with a feasible amount of further analysis, but the present results prove to
be quite good enough for many purposes.

Out of the nN conceivable ways Nature could have made all possible
scenes, any particular one {f;...f,} can be realized in W(F) different ways,
so our prior probability assignment is

p(F|ly) = n"NW(F) . (40)

But since N is large and constant factors are irrelevant, it will suffice to
take, from Eq. (34),

p(F|ly) = eNH(F) | (41)

Then Bayes' theorem, (37), reduces to

p(FID,0,l,) « eNIH(F) - wQ(F)] (42)
where 1
WoE e (43)

The factor exp(NH) represents our prior information about the multiplicities
of different scenes. The factor exp(-NwQ) in its dependence on {f,...f,} is
the 'likelihood function® that tells what we have learned from the data,
making allowance for the noise.
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The most probable scene {f ...f } is then at the peak of this distribu-
tion, To locate it we maximize (H - wQ) subject to the constraint ify =1,
By Lagrange multipliers, this tells us immediately that, at the peak, the f;
are proportional to

af,-

?i=exp{-wa—g}, 1<i<n. (44)

This relationship, although interesting, is implicit only because all the f; are
still hidden in Q. Still, from Eq. (44) we can understand the transition from
full Bayes to pure MAXENT, When w is small (large noise), the data provide
only a rather “soft” constraint on the possible f; and Eq. (44) allows the
solution point to wander up the entropy hill (that is, in the direction of uni-
form f;), away from the hyperplane HP whose equation is Q = 0. But as the
noise decreases and w *» =, Eq, (44) goes into a rigid "stone wall" con-
straint, forcing the solution point back to HP. In the zero-noise limit, the
term wQ in the Bayes solution thus puts in just the constraint of the pure
MAXENT solution. '

Conversely, if all scenes had the same multiplicity, H(F) = constant, the
most probable scene would revert to the maximum likelihood estimate corre-
sponding to Q = 0. But if m < n, Q = 0 is the equation of the hyperplane
HP, not a point, and there is no unique solution, the likelihood is flat at all
points of HP and we have a generalized inverse problem of just the kind that
orthodox statistics is unable to deal with, Without prior information, there
is no criterion for preferring any point of HP satisfying f; > 0, If; = 1, to
any other, The Bayes solution thus contains the MAXENT and orthodox solu-
tions as special cases.

But we have glossed over some conceptual difficulties in getting this
result. There are quite a few unspecified quantities (n,m,N,a) still flapping
about loose. How do we decide on their values?

WHAT ABOUT n,m,N? In some cases the circumstances of the problem may
determine one or more of these in a way not under our control, but in many
problems it is up to us to choose them, That is how we define our "hypoth-
esis space”—the conceptual field on which our game is to be played.

One might question why we bring in all these discrete integers at all,
In the real world, Nature seldom divides up her scenes into neat little rec~
tangular cells, The true scene has a continuous structure, and it would seem
more realistic to replace Eq. {35) by an integral equation

d{x} = Alxy)f(y)d?y + e(x) (45)

to be inverted, The discrete version, (35), that we have adopted is only a
crude, inelegant approximation to Eq. (45).

MNow if we were going to find an analytical solution, this would be the
right way of looking at it, and in principle the general Bayes solution of
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Eq. (45) might be given once and for all. Indeed, any specific galaxy, horse,
or New Jersey license plate can be portrayed by some analytic function
f(y). But an analytic solution that contains enough parameters to include
all those possibilities does not seem feasible, and so we are being pragma-
tists, after useful numbers rather than formal elegance.

It is a practical necessity that our reconstructions be found, not by sub-
stituting into some grand and glorious general solution, but in each specific
case by numerical processing of the data. Any data set that we can actu-
ally record is a collection of a finite number of integers. Any numerical
calculation that we can actually perform—whether by hand or by the most
powerful computer—is nothing but a finite number of manipulations of a
finite number of integers. So if our problem is not solvable in finite, dis-
crete terms, we shall not be able to solve it at all, Introducing discrete in-
tegers gives us a solvable problem.

QOur choice of (n,m) is of course to be guided by our prior information
about the nature of the problem, the quantity and quality of data, and the
computing facilities available, For example, regardless of what the theory
says, it would be fatal to chose (n,m) so large that our computer memory
could not hold all the (f;,dk). Likewise, it seems irrational to choose n or m
so small that we are obviously throwing away resolution that the data are
capable of giving.

It seems, then, that the choice of {n,m) will involve some compromise
between performance and computation cost. Larger values increase the
potential resolution and squeeze more information out of our data; but
beyond a certain point we have extracted essentially all that the data have
to tell us, and further increases would only increase the amount of computa-
tion without useful return. To make an intelligent choice, we must under-
stand how the resolution depends on our choice. Fortunately, this is not
critical, and wide variations—within reason—make little difference in the
quality of the reconstruction.,

The choice of N is more subtle. As a first orientation, let us get some
idea of the rather interesting numbers involved, Gull and Daniell (1978)
considered an early example with n = 128 x 128 = 16384 pixels (determined,
obviously, by computer considerations), How many primitive elements of
luminance N should we think of as strewn over them to make the unknown
true scene F? This is something one can argue about for a long time, and !
am sure John Skilling will agree with me that more thinking about it is also
needed. But for purposes of illustration and to start the discussion, the fol-
fowing seems a reasonable first guess.,

The question is important because at issue here is the relative weighting
of the prior information (entropy) factor exp(NH) and the likelihood factor
exp(-Q/a?). Just as the choice of the number n of pixels to use in our re-
constructed scene is a pragmatic one (make it large enough that we achieve
all the spatial resolution the data are capable of giving, but not much
larger), so the choice of the number N of elements of luminance we suppose
to be in the scene is a way of stating how fine-grained an intensity resolu-
tion the data are capable of giving. (Perhaps we should add, if it were not
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already obvious, that the term "luminance” is being used in a loose collo-
quial sense, not as a technical term of optometrics.)

The little elements of luminance represent basically the smallest incre-
ment that we could detect. Conceivably, at very high frequencies and very
jow intensities they might have something to do with individual photons, but
in radio astronomy we are surely very far from that case, and “quantum
considerations” are irrelevant. In optical cases they might bhe identified
with individual developed grains in a photograph. If our RMS error g de-
creases, then we can detect a smaller increment, and so N increases.

However, looking at it that way may be putting the cart before the
horse. Presumably, if our apparatus is reasonably well designed, the "noise’
o is not coming from the apparatus itself but rather is generated by the
phenomenon under observation. So perhaps we should state it the other way
around: |f N increases, then we can detect a smaller relative increment,
and so ¢ decreases.

In any event, the result is that N and ¢ are linked in some way. Vari-
ous relationships between them may be appropriate in different problems; we
indicate one such connection that appears ‘crudely reasonable® in some
cases,

If we think of our noise o as generated by variability of the scene to be
expected if it were created anew, then if the ith pixel got N;j elements of
luminance, we should expect this might vary by about t/ﬁi, and so f; might
be uncertain to about

§f, = /Nj/N = Yf/N. (46)
The uncertainty ¢ in our data resulting from this uncertainty in f; is then

g = L//N, (47)

where I depends on details of the smearing matrix Ay; and the values of fj,
but is independent of N. But, comparing with Eq. (43), we see that w =
272, This is the "weight® of the log likelihood factor Q relative to the
entropy factor H.

Obviously, many refinements in detail are possible and desirable—in par-
ticular, pursuing this line of reasoning will teach us, very quickly, that the
errors e in Eq. (35) should not be taken as independent and identically dis-
tributed, which means that Q in Eq. (39) should be written as a more gen-
eral quadratic form. But our important conclusion that w is independent of
N will remain as long as the errors o are generated more in the phenomenon
than in the measuring instrument.

in the posterior distribution (42}, increasing N and decreasing o so as
to keep w™! = No? constant has the effect of increasing the sharpness of
the peak without affecting its actual location. We do not change our re-
constructed scene, but only become more confident about its accuracy.
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For most purposes it is w, not N, that is of primary interest. If we
know that our reconstructed scene is the best one that can be made on the
information used, then whether the peak at {?,...?n} is sharp or broad we
shall not be induced to seek another, Some nontrivial analysis may be
needed to find the best value of w, but fortunately it appears from the re-
sults of Gull and Daniell that this too is not very critical, variations within
reason not making a great deal of difference in the reconstructed scene,

Of course, if w is taken unreasonably low, that is tantamount to saying
that the data are nearly worthless, and the reconstruction goes to the unin-
formative uniform gray scene of absolute maximum entropy. If w is taken
unreasonably high, we are claiming that every tiny bit of detail in the data
is real and not noise, and so the reconstruction starts showing spurious de-
tails. Even then, however, the pure MAXENT reconstruction, like the
MAXENT spectrum estimate, has at least the merit that it keeps us in the
class C of possible scenes and cannot yield a negative f; for any pixel, as did
some previous reconstruction aigorithms,

Now we are ready for those interesting numbers. With the value n =
16384 of the Gull-Daniell 1978 work, let us choose arbitrarily N = 10n =
163840, This is probably unfair to Gull and Daniell, since it supposes the
data were not very accurate, but even so it gives us big enough numbers to
make our point, The number K of conceivable scenes from Eq. (33) is then

- 1803321 = 3 x 1023840 (48)
163840! 163831 )
Their multiplicities (15) range from
Whin = 1 (49)
up to
163840!
Wmax = (101)1838% 4 x 10875707 {50)

Therefore, we could partition the scenes into 67571 categories, those in cat-
egory c having multiplicity in

101°€ < W < 10to{c+1) ) 0 <c<67570. (51)

Higher W (higher entropy)} means a smoother reconstructed scene, but the
eye does not distinguish 30000 different degrees of smoothness., Two
scenes, as alike as possible except that one is in category {c), the other in
(c+2), will be virtually undistinguishable to the eye. But every scene in
(c+2) has a greater multiplicity than any scene in {¢) by a factor of more
than 10!°,
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So not only do we have variations
W/W, = 1010 (52)

between scenes, we have chains of thousands of such comparisons, with a
factor of 10!? at each step.

These numbers should give us an appreciation of the importance of mul-
tiplicity factors in inference, and explain why methods that ignore them are
at such a disadvantage. The success of MAXENT reconstructions appears
almost magical until we realize that, as an elementary combinatorial result,
the overwhelming majority of all possible scenes compatible with our data
have entropy very close to the maximum, This statement can be refined
into an "entropy concentration theorem® (Jaynes, 1982, 1983),

Before closing this discussion, let us note one other aspect of Bayes'
theorem, Suppose our problem was different from what was assumed in Egs.
(46} and (47) and we knew N in advance, but this told us nothing about o.
(Perhaps ¢ is instrumental noise in a new instrument never before used.)

WHAT ABOUT g? In all the above, we have supposed the noise level ¢
known, What if it isn't? The answer will give us a good example of the
power of Bayesian methods. If g is unknown, then it too becomes a param-
eter to which we assign some prior probability p(o|1), and Bayes' theorem
will give us, instead of Eq. (37), a joint posterior distribution for F and ¢

@ ’ = piro .
’ ’ p(D[1,)

As we have argued very extensively elsewhere (Jaynes 1968, 1978,
1980), "complete ignorance® of any scale parameter such as ¢ corresponds
to the Jeffreys prior p(o{l,) = do/g (strictly, the limit of a sequence of
such distributions over finite intervals (0 < a < ¢ < b < =), but our present
problem has such good convergence that this nit-picking isn't needed). On
prior information |, the prior probabilities of F and ¢ are independent:
p(F,o|ly) = p(F[1,)p(e]l,); so in place of Eq. (38) we have

p(F,0|D,1) = o~ (M¥2)/2 oyn(NH - Q/0?) . (54)

But if we care only about estimating F, then o is what is called a "nuisance
parameter® in statistics. To get rid of it, we integrate it out to get the
marginal posterior distribution of various scenes:

o

p(F|DI) = p(F,a |DI) do . (55)
0

The integration yields

p(F|DI) « eNH/qm 2 (56)
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So now, in order to find the most probable scene, instead of maximizing
(NH - 0-2Q) we should maximize [NH - (m/2) log Q]. This gives, in place
of £q. (44), the implicit relationship

3
fi < exp [— ir% FI log Q} . (57)

But this is formally the same as Eq. (44), if we put into Eq. (44)

2 o 2Q
ot = =, {58)

which is just the estimate of o2 that any rational person would make if he
knows the (d,f;) and nothing else,

To make a long story short, then, Bayes' theorem tells us that, if o is
unknown, then: (A) we should choose the scene {?1...?,1} as the point of
“self-consistency” where the previous connection (44) still holds, with o
replaced by our best estimate of 0% (B) the penalty we pay for this igno-
rance is that the peak of the distribution (56) is not as sharp (no longer
exponential in Q) as that of Eq. (42)., We still get a definite reconstruction
but are not quite so confident of it, This is a good example of what | meant
back in Section 3 [Eq. {6)], in saying that Bayes' theorem has other nice
features that a rational person would demand of a method of inference.

7. Speculations—Realizable Fantasies

Already in the third issue of Dr., Dobb's Journal of Computer Calisthen-
ics and Orthodontia (March 1976), it seemed time for an editorial with our
same title, "Where do we go from here?® Dr, Dobb noted the obvious
extensions and more powerful implementations of things already under way,
and added: “We will continue the active pursuit of 'realizable fantasies.'"
By this was meant projects not yet under way but that appear to be within
the bounds of present technology and knowiedge, and achievable within the
next few years,

Doubtless, each of us has his own favorite list of realizable fantasies:
those we would like to do ourselves, and those we would like to persuade
others to do. Each of us would like to achieve some new breakthrough that
is conceptually difficult but technically easy, and leave to others problems
that are technically difficult. Problems that are both conceptually and
technically easy are going to be solved automaticaily,

From a historical perspective, the great achievements of the past
always appear to be new advances in conceptual understanding, rather than
"mere" technical accomplishments, But we are seeing this through a filter;
although technical accomplishment is often a prerequisite for conceptual
advance, it tends to be forgotten. Today, everybody knows about the
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concept of ellipses, but very few living people know even the formulation,
much less the technical details, of Kepler's analysis that led to this concept.

But there is also truth in the opposite emphasis. As we have learned in
the theory of irreversible statistical mechanics, problems that seemed hor-
rendously difficult technically may become, if not exactly "easy,” at least
many orders of magnitude less difficult, as a result of deeper conceptual
insight,

There are many problems that may become technically easy as soon as
the conceptual cobwebs are swept away. Decades of discussion from the
standpoint of sampling theory may have obscured completely the fact that
there is no sampling distribution, and the real problem is logically a general-
ized inverse type where MAXENT, rather than orthodox statistics, is the
appropriate method. But the actual implementation of MAXENT may still be
very difficult conceptually, because it requires us to define an explicit
"hypothesis space® on which our counting of multiplicities is done.

In statistical mechanics we feel we know how to do this: The set of
linearly independent "global® quantum states of a system is, according to all
present knowledge, the proper field on which our game is to be played. But
in forecasting economic time series, it may be perfectly clear that the
essence lies not in the "randomness® of our data but in its incompleteness,
yet still very unclear just what is the proper hypothesis space of elementary
possibilities on which we should define multiplicities W and entropies log W.

There are many problems of this type, in which it seems clear that sub-
stantial improvements shouid be realizable, since these multiplicities must be
highly cogent evidence, but present methods do not even recognize their
existence. Even in areas such as spectrum analysis and image reconstruc-
tion, which are in a sense already "established,® there is still much room for
creative thinking about what is the appropriate hypothesis space for differ-
ent kinds of problems. In this respect, | don't think any of our present solu-
tions are optimal except in some very special kinds of problems. Burg's
solution is now the classic example, but in time it may be seen as only the
first of several MAXENT solutions for various spectral analysis problems.

Let us illustrate the last three paragraphs by the example of turbulence,
which has indeed been discussed for decades from the standpoint of sampling
theory. s it a realizable fantasy to find a different conceptual standpoint
which makes it clear that the problem is logically a generalized inverse one
rather than a sampling theory exercise?

TURBULENCE. In thermodynamics, the first law for closed systems, or a
"generalized first law" for open systems (conservation of energy plus the
other conservation laws for number of atoms of each type, charge, etc.)
determines a class of possible macroscopic states that is permitted by those
constraints, Out of all these possibilities allowed by the first law, the one
chosen by Nature (second law) is the one that can be realized in the great-
est number of ways, that is, that has maximum entropy. This is the principle
given by Gibbs (1875-1878), governing heterogeneous equilibrium. For 100
years most of physical chemistry has been based on it.,
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A similar principle must govern the spectrum of turbulence; a stirred
fluid has energy added to it in motions of small wavenumber k, such that
kL = 1, where L is a typical dimension of the system, This is transferred to
successively smaller eddies, of greater wavenumber, until it finally degrades
into the uniform thermal energy of the highest possible wavenumbers, such
that kd = 1, where d is the molecular separation,

Imagining this degradation process in a momentary steady state, suppose
the energy in turbulent eddies in the wavenumber range dk varies as (1/kn).
As far as conservation of mass, energy, and momentum are concerned, many
different values of n are allowed. Which one is chosen by Nature? This
must be the value that provides the greatest number of channels (sequences
of microstates) by which the process can take place. The logarithm of the
number of channels W(P) by which a macroscopic process P can take place is
a kind of entropy, which we have ventured (Jaynes, 1980) to call the "cal-
iber" of P.

As an analogy, even if individual drivers have no particular preference
for one traffic lane over another, still the six-lane road will end up carrying
more traffic than the two-iane road to the same place. However, we are
concerned here with ratios, not of 3:1, but perhaps of 102%:1,

Among the possible macroscopic paths by which low-k kinetic energy
may be degraded into high-k thermal energy, there will be one that opens up
overwhelmingly more “traffic lanes” than any other—or indeed, than all
others. This is surely the one that Nature will choose, Since the caliber of
a path is not determined by the Navier-Stokes equation, but by the muiti-
plicity factors that the N-S equation ignores, we can understand why
attempts to base turbulence theory on the N-S equation met with little suc-
cess, and degenerated into attempts to “guess the right statistical assump-
tions,” Again, the problem is not one of mechanics, but of inference, of the
generalized inverse type.

Many years ago, on the basis of some "statistical assumptions” and rea-
soning that ! have been unable to follow, Kolmogorov proposed the value n =
5/3, which does seem to have some experimental support. But its theoreti-
cal justification and range of validity do not seem at all well understood as
yet. This is a problem for the future, on which | think we have a good
chance of succeeding.

Now turbulence theory is in so many respects like quantum field theory
that a realizable fantasy in one may point to a realizable fantasy in the
other. The high-caliber paths in .turbulence are undoubtedly ’lumpy® in
time, small bifurcations suddenly transforming a lump of energy, which
would appear as a suddenly generated wavelet rather than a continuous
mode-transfer process. This immediately reminds us of quantum theory.

QUANTUM WAVELETS. Having started out as a conventionally trained, if
somewhat apostate, quantum theorist, | was of course well indoctrinated in
the quantum theorists' view of the world, in which they see themselves at
the top of the pecking order in science, and almost disdain to recognize a
geophysicist.
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Just in the past year | have been shocked by the discovery that geo-
physicists, uninhibited by the kind of logic taught in quantum theory courses,
have answered questions that quantum theorists were afraid to ask. Geo-
physicists have learned how to deal with wave phenomena in a more com-
plete and sophisticated manner, and are in possession of some fundamental
knowledge that quantum physicists need to have, if they could only bring
themselves to admit it.

A recent review (Jaynes, 1973) concludes with a very incomplete pre-
liminary sketch, suggesting that today the interesting, relevant physics of
blackbody radlation may be contained in the intermode correlations that
conventional theory neglects at the outset., To the best of my knowledge,
only von Laue (1915) had ever recognized that these correlations might be
important, His ideas were not pursued by others because Einstein (1915)
argued against them, and, for that reason, the issue remains unresolved to
this day.

The ultimate verdict may be that this is the only error Einstein ever
made. Apparently, an earlier analysis (Einstein and Hopf, 1910) had con-
vinced him that equilibrium of radiation necessarily leads to independent
Gaussian probability distributions for the mode amplitudes. But here we
meet again that constant plague of probability theory: What is the Problem?
Einstein and Hopf had of course given a correct solution—but to a different
problem.

Clearly, in the present problem, every act of emission or absorption
must affect not only the field energy but also the intermode correlations.
If our probability distribution is independent Gaussian immediately before an
emission, it cannot be independent Gaussian immediately afterward.

It is curious that Einstein's theory (1917) of blackbody radiation insisted
on, from the standpoint of the atoms, instantaneous transfer of energy and
momentum=—but blandly ignored, from the standpoint of the field, the inter-
mode correlations that this would necessarily entail. Just at this point,
causality was lost, and we have never learned how to restore it.

The probability theory of the early 1900s was not attuned to these real-
ities, because Maxwell was dead and Jeffreys had not yet been heard from.
If we define the probability of some condition as the fraction of a very long
‘time in which the condition holds, as Einstein did, then we have sacrificed
the very concept of a time-dependent probability, A theory of probability
so curtailed cannot be used for inference about situations where we have
information referring to specific times. Yet the change in our knowledge
about a radiation field when we are told that an emission has occurred at
time t must clearly affect our subsequent predictions about it, in a way that
depends on t,

Now a correlation in the amplitudes of many modes close together in
k-space is what we should describe in ordinary coordinate space (x-space)
as a "wave packet’ or "wavelet.” It is not essentially different from the
wavelets envisaged by Huygens. An emitting atom generates a spherical
wavelet that propagates outward at the speed of light. Until it has been
scattered, reflected, or otherwise perturbed, it retains its integrity and
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represents an additional contribution to the amplitudes of many modes,
perfectly correlated.

These wavelets are the entities that figure so prominently in the work
of H. Wold and have been exploited so well in the work of Enders Robinson
and other geophysicists. It is surprising that physicists outside geophysics
have made almost no use of the concept of wavelets, and had virtually no
awareness of their existence, until the recent interest in solitons, which are
wavelets that have become somewhat more indestructible thanks to nonline-
arities in the wave equation,

For this reason, conventional physical theory does not use causal
mechanisms to account for radiative equilibrium. Indeed, it cannot until it
is reformulated in wavelet terms. Emission from an atom does not go into
just one mode at a time as one might think from the conventional "Fermi
Colden Rule® approximations of quantum theory; it goes into a coherent
superposition of many modes simultaneously,

Likewise, absorption of energy by an atom is accomplished by emission
of a wavelet of such phase that it cancels out, partially and momentarily,
the incident wave in the forward direction (incipient shadow formation).
Thus we conjecture that, in both turbulence and blackbody radiation, it is
these wavelets that provide the physical mechanism by which the equilibrium
energy distribution is brought about and maintained.

This is thrown out as a half-baked idea to ponder: When equilibrium is
not maintained by a continuous process, is it possible that the temperature
might be related more closely to the average energy of a wavelet than to
the average energy of a mode?

After all, when the wavelet gets "hard" and indestructible, we call it a
"particle,” and then there is no doubt that the temperature relates to its
kinetic energy. Then at what degree of hardness does the transition from
mode to wavelet take place? |Is localization in space a necessary part of
that indestructibility? Or does this require only phase persistence for a time
long compared to some characteristic interaction time? Indeed, if our con-
cern is with the spectral distribution of the energy, why should its spatial
distribution matter? It seems to me that it is the coherent organization of
the energy—whether it occupies a cubic micron or a cubic mile—that makes
a wavelet a unique "object.”

So, to take the final deep plunge into fantasy: Is it possible that wave-
lets are the missing link, which physics has needed all these years, to resolve
the contradictions of the "wave-particle duality"? In quantum theory, two
generations of physicists have been taught that waves and particles are so
antithetical that when we think about them we must forego using even the
notion of an ‘objectively real® world, That is, present quantum theory
cannot, as a matter of principle, answer any question of the form: 'What is
really happening when , , . #' It can answer only: *What are the possible
results of this experiment and their probabilities?® Yet after being taught
that waves and particles form a fundamental, unbridgeable dichotomy, do
not wavelets provide a simple, continuous interpolation between them?
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