How Does the Brain do Plausible Reasoning?
By
E. T. Jaynes
Microwave Laboratory and Department of Physics

Stanford University, Stanford, California

ABSTRACT

We start from the observation that the human brain doss plausible
reasoning in a fairly definite way. It is shown that there is only a
single set of rules for doing this which is consistent and in qualita-
tive correspondence with common sense, These rules are simply the
equations of probability theory, and they can be deduced without any
reference to frequencies.

We conclude that the method of maximum-entropy inference and the
use of Bayes’ theorem are statistical techniques fully as valid as any
based on the frequency interpretation of probability. Their introduc-

tion enables us to broaden the scope of statistical inference so that

it includes both communication theory and thermodynamics as special cases.

The program of statistical inference is thus formulated in a new way.

We regard the general problem of statistical inference as that of devising

new consistent principles by which we can franslate “raw” information into

numerical values of probabilities, so that the Laplace-Bayes model is en~

abled to operate on more and more different kinds of information. That
there must exist many such principles, as yet undiscovered, is shown by

the simple fact that our brains do this every day.



1. INTRODUCTION

Shannon’s theorem 2, in which the formula H(pi...pﬁ) = - K Py log Py
is deduced,l is a very remarkable argument. He shows that a gualitative
requirement, plus the condition that the informaticn measure be consistent,
already determines a definite mathematical function. Actually, this is not
quite true, because he chooses the condition of consistency (the composition
law) in a particular way so as to make H additive., Any continuous differ-
entiable function f(H) for which £(H) > O would also satisfy the quali-
tative requirements and a different, but equally consistent, composition
law. Thus a qualitative requirement plus the condition of consistency de-
termines the function H only to within an arbitrary monotonic function.
The content of communication theory would, however, be exactly the same
regardless of which monotonic function was chosen. Shannon’s H thus
involves alsc a conventien which leads to simple rules of combination.

This interesting situation led the writer to ask whether it might be
possible to deduce the entire theory of probability from a qualitative
requirement and the condition that it be consistent. It turns out that this
is indeed possible. In terms of the resulting theory we are enabled to see
that communication theory, thermodynamics, and current practice in statisti-
cal inference, are all special cases of a single principle of reasoning.

In developing this theory we find ourselves in the fortunate pesition
of having all the hard work already done for us. The methodology has been
supplied by Shannon, the necessary mathematics has been worked out by Abelé/
and Cox:gfgnd the cualitative principle was given by Laplaceféjﬁll we have
to do is-fit them together.

Laplace’s qualitative principle is his famous remargé/that "Probability

theory is nothing but common sense reduced to calculation.” The main
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object of this paper is to show that this is not just a play on words, but
a literal statement of fact,

One of the most familiar facts of our experience is this: that there
is such a thing as common sense, which enables us to do plausible reasoning
in a fairly consistent way:§L9/’People who have the same background of
experience and the same amount of information about a proposition come to
pretty much the same conclusions as to its plausibility. No jury has ever
reached a verdict on the basis of pure deductive reasoning. Therefore the
human brain must contain some fairly definite mechanism for plausible
reasoning, undoubtedly much more complex than that required for deductive

reasoning. But in order for this fo be possible, there must exist consistent

rules for carrving out plausible reasoning, in terms of operations so definite

that they can be programmed on the computing machine which is the human brain.

This is the “experimental fact” on which ocur theory is based. We know that
it must be true, because we ali use it every day. Our direct knowledge
about this precess is, however, only gualitative in much the same way as

is our direct experience of temperature. For that reason it is necessary

to use the methodology of Shannon.

2. LAPLACE’S MODEL OF COMMON SENSE
We now turn to development of our first mathematical model. We
attempt to associate mertal states with real numbers which are to be manipulat-
ed according to definite rules. Now it is clear that our attitude toward
any given proposition may have a very large number of different “coordinates.”
We form simultaneous judgments as to whether it is probable, whether it
is desirable, whether it is interesting, whether it is amusing, whether it

is important, whether it is beautiful, whether it is morally right, etc.
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If we assume that each of these judgments might be represented by a number,
a fully adequate description of a state of mind would then be represented
by a vector in a space of a very large, and perhaps indefinitely large,
number of dimensions. Not all propositions require this. For example,
the proposifion, ”"The refractive index of water is 1.3,” generates no
emotions; consequently the state of mind which it produces has very few
coordinates. On the other hand, the proposition, *Your wife just wrecked
your new car,” generates a state of mind with an extremely large mumber
of coordinates. A moment’s introspection will show that, quite generally,
the situations of everyday life are those involving the greatest number
of coordinates. It is just for this reason that the most familiar examples
of mental activity are the most difficult ones to reproduce by a model.
We might speculate that this is the reason why natural science and mathematics
are the most successful of human activities; they deal with propositions
which produce the simplest of all mental states. Such states would be the
ones least perturbed by a given amount of imperfection in the human brain.
The simplest possible model is one-dimensional. We allow ocurselves
only a single number to represent a state of mind, and wish to discover
how much of mental activity we can reproduce subject to that limitation.

For the time being we call these numbers plausibilities, reserving the term

"probability” for a particular quantity to be introduced later.

The way in which states of mind are to be reduced te numbers is at this
stage very indefinite. TFor the time being we say only that greafer plausi-
bility must always correspond to a greater number, and we assume a continuity
property which can be stated only imprecisely: infinitesimally greater

plausibility should correspond only to an infinitesimally greater number.



We dencte various propositions by letters A, B, C,=*+ . By the product
AB we mean the proposition "Both A and B are frue.” The expression
(A+B) is to be read, "At least one of the propositions A, B is true.”
The plausibility of any proposition A will in general depend on whether
we accept some other proposition B as true., We indicate this by the
symbol

(A!B) = conditional plausibility of A, given B.

Thus, for example,

(AB]C)

plausibility of A and B, given C.

(A+B|CD) = plausibility that at least one of the propositions

A, B is true, given that both C and D are true,
(A!C) > (BIC) means that, on data C, & is more plausible than 3,
In order to find rules for manipulation of fhese symbols, we are guided
by two requirements:

1) The rules must correspend gualitatively to commen sense. (2-1)

2} The males must be consistent. This is used in two ways:

{f If & result can be arrived at in more than one way, }

é we must obtain the same result for every possible % (2-2)
% sequence of operations on our symbols. j

LA

r The rules must include deductive logic as a special

j case. In the limit where propogitions become certain}? (2-3)
E or impossible in any way, every equation must reduce g

% to a valid example of deductive reasoning. /j



By a successful model we mean any set of rules satisfying these con-

ditions. If we find that we have any freedom of choice lefi after imposing
them, we can exercise that freedom to adopt conventicns so as to make the
rules as simple as possible. If we find that these requirements are so
restrictive that there is in effect only one possible model satisfying them,

are we entitled to claim that we have discovered the mechanism by which the

e g

" brain deces "one~dimensional” plausible reasoning? Except forkthe proviso
that the human mind is imperfect, it seems that to deny that claim would be
to assert that the human mind operates in a deliberately inconsistent way.

We now seek a consistent rule for obtairing the plausibility of AB
from the plausibilities of A and B separately, In particular, let us
find the plausibility.(AB]C). Now in order for AB to be true on data C,
it is first of all necessary that B be true; thus the plausibility (B%C)
must be involved. If B is true, it is further necessary that A be true;
thus (A|{BC) is needed. If, however, B is false, then AB 1is false inde-
pendently of any statement about A, Therefore (A‘C) is not needed; it tells
us nothing about AB that we did not already have in (AIBC). Similarly,
(AiB) and (B|A) are not needed:; whatever plausibility A or B mighi have
in the absence of data C, could not be relevant to judgments of a case
where we know from the start that C 1s true.

We could, of course, interchange A and B in the above paragraph,
so that knowledge of (AIC) and (BI&C) would also suffice. The fact that
we must obtain the same value for (AB!C) no matter which procedure we choose
is one of our conditions of consistency.

Thus, we seek some function F(x,y) such that

(ABlC) = PE(A!BC),(B]C)]. (2-4)
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It is easy to exhibit special cases which show that no relation of the fomm
B0y = FL(A]), (B]0)1, or of the fom (AB|C) = P[(A]G),(AlB),(BIO)], could
satisfy conditions (2-1), (2-2), (2-3).

Condition (2-1) imposes the following limitations on the function
Flx,v). An increase in either of the plausibilities (A;BC) or (B%C) must
never produce a decrease in {AB|C). Purthérmore, Flx,v) mﬁst be a continuous
function, otherwise we could-produce é situation where an arbitrarily small
increase in (AIBC) or (B;C) still results in the same large increase in
(AB!C). Finally, an increase in either of the quantities (AEBC} or (BgC)
must always produce some increase in (ABiC), unless the other one happened
to represent lmpossibility. Thus condificn {2-1) requires that

P(x,y) must be a continuous function, with gg >0

dy

i (ABiC) represents impossibility.
i

ﬁ and 9k > O. The equality sign can apply only when (2-5)

The condition of consistency {2-2) places further limitations on the
possible form of the function F{x,y). For we can calculate (ABDIC) from
{(2-4) in two different ways. If we first group AB together as a single
proposition, two applications of (2-4) give us

(ABD}c) = PL(ABiDC),(ch)] = P{Pf_(A%BDc),(B}DG)],(DIC)}.

But if we first regard BD as a single proposition, (2;4) leads to

(amfc) = FL(a[Boc), (80 |0)1 = #{(amDC), P[(BlDC),{DlC)]}.

Thus, if (254) is to be consistent, F(x,y) must satisfy the functional
equation

FIF(x,v),2] = F[x,F{y,=)]. {2-5)
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Conversely, it is easily shown by induction that if (2-6) is satisfied, then
{2-4) is automatically consistent for all possible ways of finding any
number of joint plausibilities, such as (ABCDEF|G). This functional equa-
tion turns out to be one which was studied by N. H. Bbel.z Its solution,
given also by Coxfﬁ/is
el Flx,y)] = plx) ply), (2-7)
where pl(x) is an arbitrary function. By (2~5) it must be a continuous
monotonic function. Therefore our rule necessarily has the form
PL(AB]C)] = pL(A[BCY] pl(B]e),
which we will also write, for brevity, as’
p(3B[C) = p(A{BO) p(B|C). (2-8)
The condition (2-3) above places further resirictions on the function
p(x). Assume first that A is certain, given C. Then (AB!C) = (BIC),
and (AiBC) = (AIC) = (A'A). Equation (2-8) then reduces to
p(B|C) = pla|a) p(B|C)

and this must hold for all (BEC). Therefore,

Certainty must be represented by p = 1. (2-9)

If for some particular degree of plausibility (AIBC), the function
p(# |BC) becomes zero or infinite, then (2-8) says that (B%C) becomes
irrelevant to (AB!C). This contradicts common sense unless (A{BC) corresponds

to impossibility. Therefore

p cannot become gero or infinite for any

degree of plausibility other than impossibility. (2-10)

: 1 !
Now assume that A 1is impossible, given C, Then (ABEC) = (A{BC) = (A|C),

and (2-8) reduces to



p(alc) = p(a]c) p(BlC)
which must hold for all (B%C). There are three choices for p(AiC) which
satisfy this; p{A;C) =0, or + @, 0r = w. But by {2-9) and (2-10) the
choice - « must be excluded, for any continuous monctonic function which
ha$ the values +1 and - = at two given points necessarily passes through

zero at some point between them. Therefore

Impossibility must be represented by p = 0, or p = =, (2-11)

Evidently the plausibility that A is false is detemined by the
plausibility that A is true in some reciprocal fashion. We denote the

denial of any propesition by the corresponding small letter: i.e.

#

a "A is falge”

b

1]

"B is false”
We could equally well say that A = "a is false,” etc. Clearly, {A+a) is
always true, and Aa 1is always false. -

Since we already have some rules for manipulation of the quantities
p(A%B), it will be convenient to work with p(AgB) rather than (AEB). For

brevity in the following derivation we use the notation

[a|B] = n(a[B),
Now there must be some functional relationship of the form

lajE] = S[A|B] (2-12)
where by (2-1), 8S(x) must be a monotonic, decreasing function. Since the
propositions a and A are reciprocally related, we must have also

(a{BT = sfalBl. (2-13)
Therefore the function S(x) must satisfy the functional ecquation

8T8(x)] = =, (2-14)



To find another condition which S(x) must satisfy, apply (2-8)

and (2-12) alternately as follows:

1 H
( i ; o}
(AB ] = ralBcirslel - sa|BC1(B]C] = B{cls #Lﬁgégﬁf‘ (2-15)
= L LBjer)
The original expression fﬁBgC] is symmetric in A and B. 3So¢ also,
therefore, is the final expression] thus
r 3
[aBjc] = [A[c] sf LALC] (2-15)

T
The expressions (2-15) and (2-16) must be equal whatever A, B, C, may be.

In particular, they must be equal when b = AD, But in this case,

it
il

{bAiC} “bic] sLBjcj ,
[aB 3 =lalcl=8aC,
Substituting these into (2-15) and (2-16), we see that S(x) must also

satisfy the functional equation

x s[EH] -y s{S;X)E (2-17)

R, T, Coiﬁfhas shown that the only continuous differentiable function
satisfying both {2-14) and (2-17) is

S(x) = (1 - /=

(2-18)
where m 1is any non-zero constant. Therefore the reciprocal relation

|
between {[a|B} and LA;B} necessarily has the form

B 4 [alp®= 1, (2-19)
Suppose we represent impossibility by p = O, Then, from {2-19), m
must be chosen positive. However, use of different values for m does not
represent any freedom of choice that we did not already have in the arbi-
trariness of the function p(x). The only condition on p(x) is that it
be a continuous monotonic function which increases from O to 1 as we
go from impossibility to certainty. If the function gi{x) satisfies this

condition, so also does the function
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b, (x) = {pl(x)i‘?f’.

Therefore if we write (2~19) in the form
p(a|B) + plalB) = 1 (2-20)

in which p(x) is understood to be an arbifrary monotonic function,
Eg. (2-20) is just as general as is (2-19}.

Suppose, on the other hand, that we represent impossibility by
p =« , Then we must choose m negative. Once again, to say that we can
uée different values of m does not say anything that is not already said
in the statement that p{x) is an arbitrary monotonic function which
increases from 1 to = as.we go from certainty to impossibility. The
ecuation

1 1

p(A[E] * pla[B) ~ 1 (2-21)

is alsc just as general as (2-19).

An entire consistent theory of plausible reasoning can be based on
(2-21) as well as on (2-20). They are not, however, different theories,
for if piQX) satisfies (2-21), the equally good function

Q§§X) = 1/py{x)

satisfies (2-20), and says exactly the same thing. If we agree to use
only functions of type {2~20), we are not excluding any possibility of
representation, but only removing a certain redundancy in the mathematics.
From (2-20) we can derive the last of our fundamental equations. We
seek an expression for the plausibility of (A+B), the statement that at
least one of the propesitions A, B is tme., HNoting that if D = A+B,

then d = ab, we can apply (2-20) and (2-8) in alternation to get
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p(A+B[C) = 1 - plablc) = 1 - p(ajbC) p(b]0)
=1 - 01 - plajpe)] pibfc) = p(8[c) + plable)
= p(3{C) + p(alc) 1 - p(Blac)]
or,
p(A+3(C) = p(Alc) + p(B[C) - paB|c) (2-22)

Zquations {2-8) and (2-22) are the fundamental equations of the theory of
probability. From them all other relations follow.

We have foﬁnd that the.most general consistent rules for plausible
reasoning can be expressed in the form of the product and sum rules (2-8)
and (2-22), in which p(x) is an arbitrary continuous monotonic function
ranging from O to 1. It might appear that different choices of the
function p(x) will lead to models with different content, so that we
have found in effect an infinite number of different possible consistent
rules for plausible reasoning. This, however, is not the case, for re-
gardless of which function p{x) we choose, when we start to use the
theory we find that it is always p, not x, that has a definitely ascertain-
able numerical value. Yo demonstrate this in the simplest case, consider
n propositions Af.v Aﬁﬁ, I Aﬂ? which are mutualiy exclusive; i.e.,

C) 5 Then repeated application of (2-22) gives the

p(AiAﬁJC) = p(%ﬂ ﬁf}:'

usual sum rule

P& ]C). (2-23)

Pis

plA+.. '*Aﬁ., C =

N
]

1

If now the Aﬁ are all equally likely on data C (this means only that
data C gives us nc reason to expect that one of them is more valid than
the others), and one of them must be true on data €, the p(AkiC) are all

equal and their sum is unity. Therefore we necessarily have
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pla ) = 2, (2-24)
This is Laplace’s "Principle of Insufficient Reason.” No matter what
function p(x) we choose, there is no escape from the result (2-24).
Therefore, rather than saying that p is an arbitrary monotonic function
of (A?C), it is more to the point to say that {A|C) is an arbitrary mono-
tonic function of p, in the interval 0 < p < 1. Tt is the connection of
the numbers (A%C) with intuitive states of mind that never gets tied down
in any definité way. In changing the function p(x), or better =x(p), we
are not changing our model, but just displaying the fact that cur intuitive

”

gengations provide us only with the relation “greater than,” not any
definite numbers. Throughout these changes, the numerical values of, and
relations between,the quantities p remain unchanged.

.All this is in very clese analogy with the concept of temperature,
which alse originates only as a qualitative sensation., Once it has been
discovered that, out of all fthe monotconic functions represented by the
readings of different kinds of thermometers, one particular definition of
temperature (the Kelvin definition) renders the equations of thermodynamics
especially simple, the obvious thing to do is to recalibrate the scales of
the various thermometers so that they agree with the Kelvin temperaturef
The Kelvin temperature is no more "correct” than any other) it is simply
more convenlent. Similarly, the obvious thing for us to do at this point
is to adopt the convention plx) = x, so that the distinction between a
plausibility and the quantity p {which we henceforth call the probability)
disappears. This means only that we have found a way of calibrating our
“plausibility~meters” so that the consistent rules of reasoning take on
a simple form. The content of the theory would, however, be exactiy the

same no matter what functien p(x) was chosen, Thus, there is only one

consistent model of common sense.
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From now on, we write our fundamental rules of calculation in the
form
(Blc) = (ajBC)(B|C) = (8]8c)afe) (2-25)
(s+3]c) = (alc) + (Blc) - (sle) (2-26)
lLaplace’s model of common sense congists of these rules, with numerical
values determined by the principle of insufficient reason.
Out of all the propositions which we encounter in this theory, there
is one which must be discussed separately. The proposition X stands for

all of our past experience. There can be no such thing as an “absolute”

or "correct” probability? all probabilities are conditional on X at least,

and X is not only different for different people, but it is continually

changing for any one person. If X happens to be irrelevant to a certain

cuestion, then this cbservation is unnecessary but harmless. We often
suppress X for brevity, with the understanding that even when it does
not appear explicitly, it is still *built into” all bracket expressions:
(A?B) = (A%BX). Any probabilities conditional on X alone are called
a~-priori probabilities. In an a-priori probability we will always insext
X explicitly: (& X).

I+ is of the greatest importance teo avoid any impression that X 1is
some sort of hidden major premise representing a universally valid proposi-
tion about nature; it is.simply whatever initial information we have at
our disposal for attacking the problem. Alternatively, we can egually well
regard X as a set of hypotheses whose consequences we wish to investigate,
so that all equations may be read, "If X were true, then ~ -~ -~ .7 It

makes no difference in the formal theory.
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3. DISCUSSION

It is well known that criticism of the thecry of Laplace, and pointing
out of its obvious absurdity, has been a favorite indoor sport of writers
on prebability and statistics for decades. In view of the fact that we
have just shown it to be the only way of doing plausible reasoning which
is consisﬁent and in agreement with common sense, it becomes necessary to
congider the objections to Laplace’s theory and if possible to answer them,

Broadly speaking, there are three points which have been raised in the
literature. The first is that any quantity which is only subjective, i.e.
which represents a "degree of reasonable belief,” in Jeffreys’ terminology)gf
cannot be measured numerically, and thus cannot be the object of a mathe~
matical theory. Secondly, there is a widespread impression that even if
this could be accomplished, a quantity which is different for different
observers is not “real,” and cannot be relevant to applications.%" Thirdly,
there is a lonyg history of pathology associated with this view; it is
tempting and easy to misuse it.

The latter is of course not a valid objection to any theory, and we
need qnly answer the first two. The arguments of Sec. 2 almost answer the
first, but there remains the question of finding numerical values of
probabilities in cases where there is no apparent way of reducing the
situation to one of "equally possible” cases. We must hasten to point out
that the notion of "equally possible” has, at this stage, nothing whatscever
to do with fregquencies. The notion of frequency has not vet appeared in

the theory. Now the question of how one finds numerical values of proba-

bilities is evidently an entirely different problem than that of finding

a congistent definition of probakility, and consistent rules for calculation.

- 14 =



In physics, after the Kelvin temperature is defined, there remains the diffi-

cult problem of devising experiments to establish its numerical value.

I "

Similarly, after our model has been set up, the problem of reducing "raw
information to a statement of probability numerical walues remains,

Most of the objections to Laplace’s theory which one finds in the
literaturéﬁ}‘consist of applying it to some simple problem, and pointing

out that the result flatly contradicts common sense. However, study of

these examples will show that in every case where the theory leads to

results which contradict common sense, the person applying the theory has

additional information of some sort, relevant to the question being asked,

but not actually incorporated into the ecuations. Then his common sense

utilizes this information unconsciously and of necessity comes to a different
wonelusien than that provided by the theory.
Here is one of Polya’s exarrl.plesf11 A boy is ten years old foday.
Bccording to Laplace’s law of succession, he has the probability 11/12
of living one more year. His grandfather is 70, According to the same
law, he has the probability 71/72 of living one more year. Obviously,
the result contradicts common sense. Laplace’s law of succession, however,
applies only to the case where we have absolutely no prior information
about the problem.13 In this example it is even more cbvicus that we do
have a great deal of additional infommation relevant to this question,
which our common sense used but we did not allow Laplace’s theory to use.
Laplace’s theory glves the result of consistent plausible reasoning

on the basis of the information which was put into it. The additional

information is offen of a vague nature, but nevertheless highly relevant,
and it is just the difficultyef translating it into numerical wvalues which

causes all the trouble. This shows that the human brain must have extremely
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powerful means, the nature of which we have not yet imagined, for converting
raw information into probabilities.

We can see from this why Laplace’s theory was incomplete and why it
will always remain incomplete. It is simply that there is no end to the
variety of kinds of partial information with which we might be confronted,
and therefore no end to the preblem of finding consistent ways of trans-
lating that information into probability statements. Here again there is
a close analogy with physics. Whenever research involving temperature
extends into some new field, science is dependent on the ingenuity of
experimenters in devising new procedures which will give the Kelvin tempera-
ture in terms of observed quantities. Physicists must continually invent
new kinds of thermometers, and statisticians must continuwally invent new

r

kinds of "plausimeters. laplace’s theory is incomplete in the same sense,
and for the same reason, that physics is incomplete: but Laplace’s basic
model occupies the same fundamental position in statistics as do the laws
of themmodynamics in physics.

The principle of insufficient reason is only one of many techniques
which one needs in current applications of probability theory, and it needs
to be generalized before it is applicable to a very wide range of problems.14
In the following sections we will show two principles available for doing
this. The first has been made possible by information theory, and the
second comes from a relation between probabilities and frequencies.,

Consider now the second objection, that a probability which is only
subjective and different for different people cannot be relevant to applica-

tions., It seems to the writer that this is the exact opposite of the truth:

it is only a subjective probability which could possibly be relevant to

applications, What is the purpose of any application of probability theory?
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Simply to help us in forming reascnable judgments in situations where we
do not have complete infommation. Whether some other person may have
complete information is quite irrelevant to our problem. We must do the
hest we can with the information we have, and it is only when this is
incomplete that we have any need for probability theory. The only “objective”
probabilities are those which describe frequencies observed in experiments
already completed. 3Before they can serve any purpese in applications they
must be converted into subjective judgments about other situations where
we do neot know the answer.

If a communication engineer says, "The statistical properties of the
message and noise are known,” he means only that he has some knowledgs
about the past behavicr of some particular set of messages and some particular
sample of noise. VWhen he infers that some of these properties will held
also in the future and designs a communicaticn system accordingly, he is
making a subjective judgment of exactly the type accounted for by Laplace’s

theory, and the scle purpose of the statistical analysis of past events was

to obtain that subjective judgment.

Two engineers who have different amounts of statistical information
aboult messages will assign different n-gram probabilities and design
different coding systems. Each represents rational design on the basis of
the available information, and it is quite meaningless to ask which is
“ocorrect.” COf course, the man who has more advance knowledge about what a
system is teo do will generally be able fo utilize that knowledge to preduce
a more efficient design, because he does not have to provide for so many
possibilities. This is in no way paradeoxical, but just simple common sense.
Similarly, if a medical rescarcher says, "This new medicine is effective

in 85 rer cent of the cases,” he means only that this is the freguenc
r ' v
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obgerved in past experiments. If he infers that it will hold approximately
in the future, he is making a subjective judgment which might be (and often
is} entirely erroneous. Nevertheless, it was the most reascnable judgment
he could have made on the basis of the information available. The judgment,
and also its level of significance, are accounted for by Laplace’s theory.
Its conclusions are, for all practical purpcses, identical with those pro-
vided by the method of confidence intervals,Q? and it is our contention

that the validity of the latter method depends on this agreement.

4. THE PRINCIPLE OF INSUFFICIENT REASON
Two conditlons are necessary before we can assign probabilities by

meansg of the principle of insufficient reason:

We must be able to analyze the situation into an

ermmeration of the different possgibilities which - (4-1)

we recognize as mutually exclusive and exhaustive,

Having done this, we rmst then find that the avail- E

able information gives us no reason to prefer any ; {4-2)

possibility to any other.

In practice these conditions are hardly ever met unless there is some evident
element of symmetry in the problem, as is usually the case in games of chance.
Note, however, that there are two different ways in which condition (4-2)
may be satisfied. It may be the conseguence of complete ignorance, or it

may be the consequence of positive knowledge.
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Suppese a person, known to be very dishonest, 1s going to toss a die.
Cbserver A 1is allowed to examine the die, and he has at his disposal all
the facilities of the National Bureau of Standards. He performs thousands
of experiments with scales, calipers, microscopes, magnetometers, x-rays,
neutron beams, etc., and finally is convinced that the die is perfectly
symmetrical. Observer B is not told this; he knows only that a die is
being tossed by a shady character. He suspects that it is biased, but has
no idea in which direction. Condition (4-2} is satisfied for both, and
they will both assign probability 1/6 to each face. The same probability
assignment may describe either knowledge or ignorance. This scems para-
doxical: why doesn’t A‘s extra knowledge make any difference?

Well, it does make a difference, and a very important one, but the
difference reguires time to “develop.” Suppose that the first toss gives
a “3.” To cbserver B this constitutes evidence that the die is biased to
favor 3, and so on the second throw B will assign different probabilities
which take this into account. Observer A, however, will continue to assign
probability 1/6 to each face, because to him the evidence of symmetry
carries overwhelmingly greater weight than does the svidence of cne throw.

It is now fairly clear what will happen. To observer B, every throw
of the die represents new evidence about its bias, which causes him to
change his probability assignments for the next throw, Under certain
circumstances, his assigmments are given by a generalization of Laplace’s
law of succession. To observer A, the evidence of symmetry continues to
carry greater weight than does the evidence of the randem experiment, and
he persists in assigning probabllity 1/6. Each observer has done consistent

plausible reasoning on the basis of the information available to him, and
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Laplace’s theory accounts for the behavior of each (Sec., 8).

This difference in behavier is not, however, accounted for by any
theory based on a frequency definition of probability, because when you
define a probability simply as a frequency you deprive yourself of any
way of saying that vou have evidence unless it is in the form of an ob-
served frequency. Everything which the National Bureau of Standards can

tell us must be ignered, because it has no frequency interpretation.

5. THE ENTROPY PRINCIPLE

A biased die, colored black with white spots, has been tossed many
times onto a black table, and we have recorded the experiment with a camera,
obtaining a multiple exposure of uniform density. From the blackening of
the film we cannot detemmine the relative frequencies of the different
faces, but only the average number of spois which were on top. This average
is not 3.5, as we might expect from an honest die, but 4.5. On the basis
of this information, what are the probabilities for the different faces?

Butomebiles of make i have weight W& and length Li.' We obhserve
a cluster of 1000 cars packed bumper to bumper, occupying a total length of
3 miles. As these cars pass an intersection they go over a machine which
weighs each one and totals the resuit, not retaining the record of the
individual weighits. Therefore we have only the total length and total weight
of the 1000 cars. What caniwe infer about the number of cars of each make
in the cluster?

During an earthcquake, 100 windows were broken into 1000 pieces. What
is the probability for a window to be broken into exactly m pieces?

These are examples of problems where condition {4-1) is satisfied but

not condition (4~2), They can be formulated in a general way as follows.
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The quantity x can assume the discrete values Ky e X There are

k functions fi{x), axng fﬁﬁx) for which we know the average values

n:
£, = f=“i p; £ (x;), 1<r<k. (5-1}

I )

(=

The problem 1s to find the Py - If k < {n-1), there are not enough
conditions to determine the Py in the sense of a mathematical solution
of (5-1) and - Py = 1. We cannot use the principle of insufficient
reason because we have too much information; there are reasons for pre-
ferring scme possibilities to others. There are many probability assign-
ments which would all agree with the available information. Which is the
most reasomnabie one to adopt?

Consider the third example above, and restate it as: the average window
is broken into 10 pieces. If we were to conclude that each window is broken
into 10 pieces, this would be in complete agreement with all the available
information., However, ocur common sense tells us that it would not be a
reasonable probability assignment; we would be assuming far more than was
given in the statement of the problem. It is more reasonable to assign
probability Py = 1/5 for a window to be broken inte m pieces, where
m = 8,9,10,11,12. But this still assumes more than was warranted by the
given information. It says, for example, that it is impossible for a window
to be broken into 13 pieces. Evidently we regard a broad distribution as
more reasonable than a sharply peaked one, and there is no value of m for
which we would be justified in assigning ?ﬁ,z 0.

To make a long story short, we want the probability assigmment which
assumes nothing beyond what was given in the statment of the problem.
Shannon’s theorem 2 tells us that the consistent measure of the "amount of

uncertainty” in a probability distributicn is its entropy, and therefore

- 21 -



we must choose the distribution which has maximum entropy subject to the
constraints {5-1). Any other distribution would represent an arbitrary
assumption of some kind of information which was not given to us. The
maximam-entropy distribution is “maximally noncommittal” with respect to
missing information.

The solufion follows immediately from the method of Lagrangian multi-
pliers, by arguments which are very well known in a different context. The

results are expressed compactly if we define the partition function:

n

BOqeeedy) =) erp [- M Gg) - een - ()] (5-2)
i=1

Then the maximum—entropy distribution is
p,. = exXp [— Ag = MEplxg) - e - ?‘kfi&{x'iﬂ (5-3)

1

with the kr determined by

hg = log Z (5-4)
3
<fds(x>- e log I, 1<r<k. (5-5)

At first glance it seems idle and trivial that we should have to do
all this in order to learn how to say nothing. The important point, however,
is that we have here found a consistent way of saying nothing in a new
language! the language of probability theory. The triviality fades away
entirely when we notice that the problem of inferring the macroscopic
properties of matter from the laws of atemic physics is of exactly the

type we are considering. All of themmodynamics, including the prediction

of every experimentally reproducible feature of irreversible ﬁrocesses, is

contained in the above solution;1§'17'18

-

ra
Iy
Iy

"
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This 1s so easy to demonstrate that we will sketch the argument here.
In any macroscopic experiment the exact microscopic state of a system is
never under control or observation; there will be perhaps ZLOl(_‘)'zrO = (IOlQiojgd;O
different quantum states compatible with a given set of experimental cdonditions.
Although the microscopic state is changing rapidly, the time required for
any reasonably complete "sampling” of so many states is still rather long;
perhaps 10%?%0 yvears. When we repeat the experiment we will surely not
repeat the microscopic state, Therefore, any property which is experimentally
reproducible must be characteristic of each of the great majority of the
class Qé\ of microscopic states allowed by the experimental conditions.
This is not necessarily the same as the subjective class Cg_ consisting of
all reasonably probable states in the maximum-entropy distribution.13: Clearly,
the only properties which we will be able to predict definitely from the
maximum-ent ropy distribution will be those characteristic of the great majority

'al

of the states in class C

7%

Now if it is found that the class Pg\ of properties predictable by
maximum~entropy inference is identical with the class Péﬁ of experimentally
reproducible properties, the theory is entirely successful. This would by
no means imply that the class Cé‘ is identical with the class Qei. If,
however, the class Pé is found fto differ in any way from the élass Pe ,
we would be forced to conclude that ggi% Qe" But this could be true
only if there exist new physical states, or new constraints on the possible
physical states, which we did not take into account in our initial enumera-
tion.,

Therefore, strictly speaking, we should not assert that maximum-entropy

inference must lead to correct predictions. But we can assert something
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even more importants if the class of predictable properties is found to

differ in any way from the class of experimentally reproducible proper-—

ties, that fact would in itself demonstrate the existence of new laws of

physics., Assuming that this occurs and the new laws are evenitually worked
ocut, then maximum-~entropy inference based on the new laws will again have
this property.

From this we see that maximum-entropy inference is precisely the
appropriate tool for reasoning from the microscopic to the macroscopic.
Its characteristic property is that it does not allow us to form any con-
clusions which are not indicated by the available evidence. Any other
distribution would permit one to draw conclusions not warranted by the
evidence.

Historically, maximum-entropy inference was discovered, in its mathe-
matical aspects, by Boltzmann about 1870, and greatly advanéed by Gibbs
around 1900, The result is what the physicist calls statistical mechanics.

However, the interpretation of the mathematical rules has always been a

subject of great confusion, because of the illusion that probabilities must
ke given a frequency interpretation. This made it appear that the rules
could be justified only by demonstrating a certain physical property called
ergodicity, or in modern terms, metric transitivity. All attempts to
demonstrate this have, however, failed. Until the discovery of Shannon’s
theorem 2, it was not possible to understand just what we were doing in
statistical mechanics, or to have any confidence in it for the prediction
of irreversible processes, However, we can now see that statistical

mechanics is a much more powerful tool than physicists had realized.
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6. PROBABILITY AND FREQUENCY

Although the word "frequency” has appeared a few times above, we have
not so far made any use of it in developing the basic theory or in demonstra-
ting its application to thermodynamics. This has been done deliberately in
order to emphasize the fact that the notions of probability and frequency
are entirely distinet., Many of the most important applications of probability
theory can be justified and carried to completion without ever introducing
the notien of frequency. However, in cases where a random experiment pro-
vides most or all of the available information, there should exist some
relationship between the observed Irequency of the event and the probability
which we assign to it. Similarly, if an event can be regarded as a possible
result of a random experimenit, there may in some cases be a relation between
the probability which we assign to it, and the relative frequency with which
we expect it to cccur. Such relations must, of course, be deduced from
the theory and not postulated.

To demonstrate the latter relation, we introduce the propositions,

1t

A

o "The probability of A in each case is p.” (6-1)

N

n "In N trials, A was (or will be) true

n times,” {6-2)
The probability (Nﬁjﬁp), obtained immediately from the sum and product rules
(2-26), (2-25), is the binomial distribution

/HY n N-n

(Nr{‘a:lﬁp) = i) p (1 - pl (6-3)

As a function of n, this attains & maximum value when n is within one
unit of Np, so that the most probable frequency is substantially equal to

the probability.

- 25 -



Hote that the phrase ”in each case,” in {6-1) is essential. To
demonstrate this, we look more closely at the derivation of {6-3) from our
basic rules, Define the proposition

@6\3 “A is true in the nfth trial.” (6-4)

Now according to (2-25) we have

B.JA ) = (BoIB.A (B A
(132131.&‘g p) (Bzi_ffglgp__)(lal}%) ,
. . 1 5, | . = \\2". ] N . = ( . n o1 >
which reduces to (BZIAp)(BI&Aﬁ) pY only if {BZ*BlAp) (32 Ap), i.e.,

the probability of A at the second trial which is inveolved in (6-3} is
that based on Aﬁk and knowledge of the result of the first trial. It is
equal to p, as assumed in (6-3), only if knowing the result of the first
trial would have given us no reason to change the assigmment, This in spite
of the fact that in (6-3) we are predicting a frequency entirely on the
basisg of Aﬁ\' since only %ﬁ\ appears to the right of the vertical stroke.
Even though we are not given the results of any trial, the expected fre-
quency still depends on whether such knowledge would have been relevant.

This again corresponds to common sense. To take the most extreme case,
suppose we are tossing a coin and A stands for "heads.” Let it be a very
dishonest coin, and define the proposition

gw\z "The coin has either fwo heads or two tails,

and the probability of the former is p.” (6-5)
Now on thé basis of this evidence alone, it is still true that the probability
of "heads” in each particular throw is p. But no one expects the relative
freggencx of heads to be pl We now have (Bﬁ’@iQﬁ) = 1, so that

(3,810, = (85130 [c,) -

and by repeated applications of (2-25), we find that the only sequences of

- 26 -



N  throws which do not have probability zero, correspond to

(BN"'B2315053 = p

(byessbyb) C3) =1 - p
sc that in place of (6-3) we have
1
(Nnécp) =p 5{n, N} + {1 - p} &(n,0), (6-56)

which is exactly what our common sense told us without any calculation.

This shows that before we can infer any definite freguency from a

probability assignment, the evidence on which that probability assigrment

is based must be very good evidence indeed. It corresponds to that possessed

by the man from the Bureau of Standards in the dice game of Sec., 3. 1In
order for {6-3) to hold, the evidence on which Aﬁ% is based must carry
overwhelmingly more weight than does the evidence éf N throws. For this
reason, the probabilities obtained from maximum-entropy inference have no
reasonable frequency interpretation, and we can see why statistical mechanics
was so confusing as long as we tried to interpret it this way.
Now introduce the proposition,
Df = “In an infinitely long sequence of trials,

the relative frequency of A approaches f.” (67}

In the limit as N-+ =, the binomial distribution becomes infinitely sharp,

and so we obtain the Dirac delta—functionzo

(D4/y) = ol - p). (6-8)

Equation {6-8) is loaded with logical booby-traps, which we must hasten

to peint out.- Note first that it by no means says that the relative fre-
Quency f = p must occur. It says only that, on the basis of the informa-
tion which led to the assignment Ap" this is the only relative freguency

which it is reasonable to expect; the available evidence gives no support
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at all to any other value. The probability (6-8) is still only a subjective
quantity.

Equation (6-8) represents a limiting case which can never be justified
in practice, because in order for {6-3) to contimue to hold as N-—»w, the
evidence on which Ap\ is based must cérry overwhelmingly more weight than
do the results of an infinite number of trials. Not even the Bureau of
Standards can provide us with evidence this good.

But there is still a paradox here, BSuppose that the evidence Ap was
perfectly reliable. It would still represent only partial information about
the random experiment. According to {6-8), the probability that the limiting
frequency lies in the interval (p ~ g} < £ < (p + &) is

-pre.

f (D, /A ) df = 1 (6-9)
Se CBOP

i.e., T was cerfain, on data %ﬁ_' to lie in this interval. How could we
have been certain of anything on the basis of only partial information?
How could we have been certain that a limiting frequency even exists?

Well, Eg. (6-8) is actually a logical contradiction, but a useful one.
We have asked the theory a foolish question, and it has given us a foolish
answer, LEquation (6-~8) refers only to an infinite number of trials. If

A.} = 0. We are

N is finite, there isno n in 0 < n <N for which (Nni-p

not certain of the result of any possible experiment. It is only when the
experiment is impossible that we can be certain of the result! Any attempt
to define a probability as the limit of a frequency is evidently subject to
the same logical difficulty, but in a much more acute form, because there

is no way at all of avoiding it.
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In spite of this, (6-8) is useful if we understand how to use it. IFf
N is large and the evidence Ap' fairly good, it may be a perfectly valid
'approximation to (6-3) for some purposes, and it will then lead to simpler
formulas than would (6-3).

Equation (6-8) can also be used in a different way. If we had
evidence about limiting frequencies, that evidence would be equivalent to
a perfectly reliable assignment Aﬁ » Thus, if E 1is any proposition,

and Aﬁ- is perfectly reliable so that (6-8) holds, we would have

(E‘Df_) = (Eiﬁp?, £ = p.
in particular,
T I i N—n
(Ndde? = Kn/‘ 01 - £) (6-10)

which is the form used in the frequency theory.
The inverse problem, of inferring a probability from an cbserved

frequency, is much more difficult. The quantity which we have here to
evaluate is (BN+1iNnX)' where we denote, as in Sec. 2, the prior evidence
by X. It does not seem possible to carry out this calculation once and
for all in the most general case, because the prior evidence might provide
intricate relations between the probabilities at different trials, in an
infinite number of different ways. The order in which "A true” and
a = "A false” occurred would in genéral be relevant to the probability
of Bﬁ+i" but the abqve notation implies that we are not going teo consider
that evidence.

The only case which the frequency school of thought can treat is the

one where we ignore completely all the prior evidence; the frequency school

regards a-priori probabilities as nonsense. This simplifies our problem,
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because it is only that case that we need to exhibit here in order to
establish the relation between the frequency theory and Laplace’s theory.
In other werds, the pricr evidence X is now to te¢ll us nothing whaiso-

ever. We have, from (2-25) and {2-26]),

!
(Byoy I f(BNﬂ Dy |Ny) af = g( Byray | DN )(ngNn‘) at, (6-11)

Also, by (2-25),

(Nﬁ Df)

(D.iN.) = (D.I%)
fon 1)

" (6-12)

The a-priori probabilities (DfiX) and (NnIK) must now say nothing about the
values of £ or n. The consistent way of saying this is, from the princi-

ple of maximum entropy,

(D1 X) = 1; (N‘,ﬁ_‘.X) =

FPurthermore, the evidence Df carries overwhelmingly more weight than does
N_, so that
n

N+llD ) = (§N+1§D£) = f,

Substituting these results and (6~10) inte (6~11), we have

(8 + 1) (S)ﬁ A R LL .

o

(B, N)

N+l

n+ 1
N+ 27

(6-13)

which is Laplace’s law of succession. If N is sufficiently large, the
probability which we assign to A at the next trial is substantially ecual
to its observed frequency in the previous trials.

From these results we conclude that the general relation between the

two theories is the following. Whenever all of the available evidence
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consists of observed freguencies, the conclusions obtained from the fre
quency theory approach those given by Laplace’s theory asymptotically as
the number of observations increases. If we have additional evidence not
expressible in terms of frequencies, the conclusions of the theories may
differ widely, and it is Laplace’s theory which will agree with common
sense.

As a simple example of this, suppose that two cobservers listen to a
geiger counter, known by both to have an efficiency of 10 per cent. Ol
has no knowledge about the source of the particles being counted. Qéq
knows that the source is a radicactive sample of long lifetime, in a fixed
position. He does not know anything about its strength except, of course,
that it is not infinite. During the first minute, 10 counts are registered.
Oi; infers, by maximum-likelihood, that about 100 particles actually passed
through the counter, and Qéﬁ agrees, During the second minute, 16 counts
are registered, Qi\ infers that about 16C particles were present, and
he does not change his estimate for the first minute. Qé\J using Bayes’
theorem, concludes that the most probable value is only 137, and he revises
his estimate for the first minute to 123. FEach has done consistent plausible

reasconing, but prior evidence which has no frequency interpretation can

completely change the conclusions which we draw from random data, and their

degree of reliability.

7. “SURJECTIVE” COMMUNICATION THEORY
Laplace’s theory is of such-wide scope-that in principle it includes
every example of plausible reasoning, and thus a fortiori, communication

theory. In particular, much of communication theory can be regarded as an
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application of maximum~entropy inference. This viewpecint may or may not
lead to new mathematical results unlikely to be found without it. However,
the conditions for validity of some known results can be extended. Also,
it clarifies a constantly recurring cuestion: what parts of communication
theory describe measurable properties of messages, and what parts describe
only the state of knowledge of some observer?

The current tendency is to state and prove theorems using the freguency
terminology. Mathematical properties needed for the proof must then be re-
garded as objective properties of the messages or noise, and this makes
it appear that the theorem is valid only if these properties can be demonstrated
as “"true.” Por example, Shannon’s proof of theorem 3 starts out with the
statement; “We assume the source to be ergodic so that the strong law of
large numbers can be applied.” But how are we to decide whether a sburce
is "really” ergodic? What measurements could we perform on it? Ergodicity
has a precise frequency interpretation only for behavior over infinite periods
of time. TFrom an operational viewpoint it is therefore meaningless. How,
then, can we ever trust the result of the theorem?

If we look at the problem in Laplace’s way this difficulty disappears.
When we say, “The source is ergedic,” we are not describing the source, but
‘ rather our’state of knowledge about the source. We mean only that nothing-:
in the available evidence leads us to expect that it has a sub-class of

states in which it can get stuck. As far as we know, there is always a

possible route by which it can get from any state to any other.

Whether or not this is actually true is irrelevant for the use we make
of the theorem. Our job, again, is only to do ithe best we can with the
information we have, and it would be quite unjustified to assume an invariant

sub-class of states unless we have evidence to support this. It could, for
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example, lead to design of a communication system which turns out to be
incapable of handling the actual messages. Ergodicity of this subjective
kind is & consequence only of our being conservative and avoiding
unwarranted assumptions; the resulting probabilities are the ones which
maximize the entropy subject to whatever we do know. Exactly the same
argument applies to ergodicity in statistical mechanics.

Many of the fundamental theorems of communication theory can be re-
interpreted in this way, and we then see that they are valid and useful
in far more general conditions than one would suppose from the frequency
definition of probability.

Consider an observer Qﬁu who knows in advance the n-gram frequencies
which a source is going to generate, but has nc other knowledge about it.
What communication system represents rational design on the basis of this
much knowledge, what is the best way of encoding into binary digits for
the neiselegs case, and what channel capacity does Oﬁn require? In principle,
the answer is always the same; we need to find the probabilities b(M) which
Qé\ assigns to each of the conceivable messages, and use the method of
Fano and Shannon;%}; We wish to emphasize that it makes no sense whatever
to say that there exists a “correct” distribution p(M) for this problem;
p(M) is an entirely subjective quanfity. This becoﬁes especially clear if
we suppose that only a single message is ever going to be sent over the
communication system, but we wish to transmit it as guickly as possible.
Thus there is no conceivable procedure by which p(M) could be measured.
This would in ne way affect the problem of engineeriﬁg design which we are

considering.
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In choosing a distribution p(M), it would be possikle to assume a
particular message structure beyond n symbols. But from the standpoint

of Qﬁ~ this could not be justified, for as far as he knows, an encoding

system based on any such structure is as likely to hurt as to help. From
Oﬁfs standpoint, rational conservative design consists in carefully

avoiding any such assumption. This means, in short, that Qh\ should choose
the distribution p{M) by maximum-entropy inference based on the known

n~gram frequencies;g?"Por Qf\ and Oé\ the solution is well known in a

\

different context: the physicist calls them the linear Ising chain with no
interactions, and with nearest-neighbor interactions respectively:géﬁ
Laplace’s point of view is helpful also in the problem of detecting
a radar signal in noise. Anyone who studies this problem comes to the
conclusion that there is no way of evading the notion of a-priori probabilities
of different signals. They are an essential part of the problem, because
any prior knowledge we have about the signal is extremely relevant to the
proper engineering design. The question of how one finds their "true”
numerical values then becomes quite embarrassing. They can be given a fre-
quency interpretation only by devices so arbitrary and forced that they could
haveyno relevance to the problem,

We can now see the answer to this. In the first place, no one needs to

apologize for, or do any cautious egg-walking around, the use of Bayes’ theorem

and a-priori probabilities. This is in fact the only consistent way of

handling the problem. We have at present no known procedure for transla-

ting our prior knowledge abouft signals into numerical values of probabilities.
At least not on paper. But we still have our brains, and until new principles
are discovered, we wiil have to use them. We must take inte account everything

we know about the signal, and then guess the a-priori prokabilities.
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8., CONCLUSION

We have tried to show above how a re-interpretation of the probability
concept can clarify and extend the power of statistical methods for current
applications in science and engineering. Laplace’s view of prebability
theory as the symbolic logic of plausible reascning enables us to follow
the process which our brains must be using, in every case where numerical
values of probabilities can be found. It enables us toe do this in far
greater detail than is possible on the freguency theory, and to take into
account additional evidence which cannot even be stated in terms of fre-
quencies.

The analysis of Jec. 2 above i1s, of course, far from rigorous in the
modern sense of the term. However, I believe that all the necessary
epsilons and delftas can be supplied by anyvone sophisticated enough to feel
the need for them. There is always a danger that too much generality will
chscure the important points of an argument. Finally, it is interesting
to note the increasing importance of the theory of functional equations in

this field, shown also by Bellman and Kalaba.24
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John Wiley and Seons, Inc., k. Y., 1950, Any reader familiar witl this
noolt will see at once that the present paper is largely a rcactlion against,

and search for an alternative to, the philosophical views expressed ltherein.
I believe this is necessary if preobabllity theory is to mzel all the needs
of sclence and engineering. DBult no one can challenge Feller’s beautiful
mathematical results, the validity of which does not depend on how we choose

to interpret them. They are as useful in Laplace’s thecry as in the fre-

quency theory.

8o o . = . , . , . . - .
This is far from being a precise statement. The derivation of Eg. (8-13)

shows in more detall whalt 1s required for the law of succession to apply.

4However, it served Laplace very well indeed. The following procedure led
him to some of the mest Important discoveries in celestial mechanics. HNoting
a discrepancy between cbservation and existiﬁg theory, he would break down
the situation into alternaltives which seemed intuitively “equally possible.”

He would then compare the probability that a discrepancy of this size is



due to a systematic effect, with the prcbability that it is due to errors
of observation, Whenever the ratio was sufficiently high, he would decide
that this is a problem worth working on, and attack it. He was, in fact,
using Wald’s decision theory, in exactly the way developed recently by
Middleton, van Meter, and others for the detection of signals in noise!

Dopet. 10, pp. 507-524.

IBE. T. Jaynes, “Information Theory and Statistical Mechanics,” Phys. Rev.,

Vol. 106, pp. 620-630; May 15, 1957. At the time of writing this, I was
under the impression that the frequency theory and laplace’s theory are
parallel, co-equal theories using the same mathematical rules. However,
the arguments of the present paper show that the frecquency theory is only
a special case of Laplace’s theory.

17E. T. Jaynes, "Information Theory and Statistical Mechanics II,” Submitted

to the Phys, Rev.

18E. T. Jaynes, “Poincaré Recurrence Times and Statistical Mechaniecs,” Submitted

to the Phys. Rev.

19This can be stated in a more precise epsilon~delta language, but the reader

will anticipate that the conclusions are largely independent of what we mean

by "reasonably probable,” for the same reason as in Shannon’s theorem 4,

ZO(QfEAp) is a probakility density, (Dfé%p) df being a probability. Since,
however, the differentials cancel out“of equations and the distinction is
already determined by whether the variable is continucus or discrete, there
is no need to invent a new notaticn. On the other hand, it is essential in
this theory that we do distinguish in notation between a probability and a

frequency.



21Reference l,é 9.

22This was recognized by Shannon (Ref. 1, élO),

233, F. Newell and E, W. Montroll, “On the Theory of the Ising Model of

Ferromagnetism,” Rev. Med. Phys. Vol. 25, pp. 353-389; April, 1953.

24R. Bellman and R. Xalaba, “On the Role of Dynamic Programming in

Statistical Communication Theory,” Rand Corp. Report P-949, Dec. 19, 1956,



I R E Professional Group Correspondence

UNIVERSITY OF ILLINOIS
COLLEGE OF ENGINEERING
URBANA, ILLINOIS Please address

DEPARTMENT OF ELECTRICAL ENGINEERING December 23, 1958 keply to:
Prof. G.A. Deschamps
University of Illinois
Electrical Engineering
Research Laboratory
Urbana, Illinois

Dr. E.T. Jaynes

Stanford University

W.W. Hansen Iaborateories of Physics
Stanford, California

Dear Dr. Jaynes:

I have accepbed the Jjob of editor for the PCGIT and one of my
first unpleagsant tasks is to report on your paper "How Does the Brain
do Plausible Reasoning". It has finally begreviewed and the reviewers
have recommended its rejection. -

I am returning your menuscript and a copy of the reviewers'
comments. I have also to apologize, in the name of the editorial
comnittee, for the extremely slow handling of this review and the fact
that one reviewer even lost the manuscript that was sent to him!

Persconally I enjoyed reading your paper where I found some
echos of comments you made to me when I visited Stanford. My impression
ig that your Title has misled the reviewers. ¥You are not really
discussing functioning of the brain but rather showing a possible
axiomatic derivation of probebility theory. It is almest ag if Euchid
had called his Elements (at least the axiomatic part) "How dos the
Brain do Ceometric Reasoning"f.

T have still a very pleasant memory of my visit with you,
three years ago, and hope that we may meet again. I am presently
teaching Electromegnetic Theory at the University of Illinois. How
is your project of a book on the subject coming along?

I wish you a pleasant holidsy season and happy new year.

With my best perscnal regards,

Cordially yours,

&, 252 'Df/flawrvfa
orges A. Deschamps
Editor of IRE
Transactions on
GAD:wjh Information Theory



Reviewers' Comments on
"How Does the Brain do Plausible Reasoning"

by Dr. E. T. Jaynes

The author attempts to show that there is only a single set
ol rules that the brain uses for plausible reasoning. He then relates
these rules to statistlcs more generally and includes communication
theory and thermodynemics. He fails to conviance me of the relation
of these things to the brain, and I wiil explain this below. The rest
of the paper might be termed philosophizing about the justification for
probability theory and related subjects. T am inclined to think that this
would not be particularly appropriate for the Trans. PCIT.

Many of Prof. Jaynes remarks about the brain do not seem
adeguately supported by evidence that he cites. Furthermore there are
many places where his chaln of reasoning is weak. Thig is illustrated
by the Tollowing guotations.

On page 2, line 7, he says, "No jury has ever reached a verdict
on the basis of pure deductive reasoning”. This i3 & rather sweeping
statement which I suspect that Prof., Jaynes would weaken 1f it were
called to his attention.

Right after the statement about juries, he says, "Therefore,
the buman braln must contain some fairly definite mechanism for plausible
reasoning." I gather that he means that there must be similarity between
the mechanism in one braln and the mechanism in the next. To show that
this does not follow from the evidence he cites beforehand, let me propose
a set of affairs that is different.

Perhaps different people have widely differing mechaniscms
for plausible reasoning, however, they are all subject to
the social pressures of our culture. These pressures
enable the widely differing brains to, by and large, learn
to produce similar behavior. These brains that never manage
to learn tec produce acceptably conforming behavior are
eventually restrained by prisons or mental hospltals and
would, therefore, not show up on juries, In other words,
we might have, at large, bralns with many different sets
of rules, however, these different sets will all produce
roughly a simllar reasoning in just those situations
required for staying out of constraining institutions.

Prof. Jaynes has not eliminated this possibility and since he
says that, "This is the 'experimental fact' on which our theory is based”,
some patching is needed.

The kind of evidence needed is the kind that experimental
psychologists use when they support assertions about the brain. He
should cite experimental evidence that (1) can be tested by the reader,
and (2) makes any alternative Lo his assertion quite uniikely.
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In the next section he says, "Now it is clear that ocur attitude
toward any given proposition may have a very large number of different
'coordinates'. We form simultsneous judgments as to whether it is
probably, whether it is desirable,...” He gives no evidence to indicate
that these judgments are made every time the propesition appears as &
conscious thought, It mey be that these judgments are merely potential
sequels and have no existence except when the train of thought continues
in some particular direction.

To illustrate this objection more clearly, let us consider it in
mechine terms. BSuppose we have a serial machine, and suppose a L came
into the units position of the address register. By an argument similar
to that of Prof, Jaymes, I believe that I can say that this L would have
as "coordinates" every number that was stored in memory at an address
ending in 1.

On pages 3, line 9, he says, "A moment's introspection will
show that..." TIntrospection is apt %o be misleading. It may safely
be used as a mehcanism T suggest a solution but it isn't good as a
way to prove something to scmebody else, Different people's intro-
spection leads to different answers.

In whatl follows in the middle of page % he makes some statew
ments that I interpret to mean that reascning about nafural science
and mathematics 1s the kind of reasoning that is least perturbed by
g given amcunt of imperfection of the human brain. It seems to me
that the behavior of mildly intoxicated scientists at a party provides
a counter example., The ability Lo react suctessfully to many situa-
tions in daily 1ife is retained long after the individual has lost the
ability to do rapid correct arithmetic.

My judgment is that this paper does not now present convinecing
evidence about the nature of the brain. If additional evidence could be
found and the reasoning in the paper made more secure, it would be an
important paper. It is not clear to me that our knowledge of the brain
has reached the stage of refinement at which we can say with amy degree
of certalnty how it does any reascning, plaugible or not. At most he
should assert that he is conjecturing about the brain, and, if so, he
should provide more substantial support for his conjectures.

The presentation is very uneven. The author seems to address
alternately people with greal sophistication and highly specialized
knowledge and, on other occasions, reduces himselif to trivialities. In
wmany Instances he ssems cryptic when he says, for instance, on page 12:
"It is the connection of the numbers "Plausibility A, given ¢" with
intuitive states of mind that never gets tied down in any dafinite way".
On other instances he seems to be just sloppy, e.£., on the same page,
what are "intultive sensations"? Or on page 11 "data' is three times used
as a singular., On page 5, I do not believe that he really thinks that
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if one has - even a unigue - mathematical model of some process, one has
discovered its mechanism. For the reader who would like to know a little
bit more about the background of the different arguments existing in
probability theory I would suggest a more complete bibliography.

Unfortunately, two of the most sweeping statements in the paper
are backed by articles by the author which are yet to be published. This
makes it very hard on the reader to judge their validity.

The paper does nct even touch the problem of the organization
of the brain which is capable of performing a stunt like "Plausible
Reasoning'.



Dee. F1, 1955

ur. Georgss A. Deaschamps

Dep't of Tlectrical Englncering
University of Illingis

Urbans, Illinois

Dear Dwv, Deschamps:

Thank you for your letter of Dec. 23, 1950, I an delighted to leamn
that you are not the PGIT Zditor.

I had been swaiting action on wy menuseript, "How Does the Brain do
Piausible Reasoning,” vwith more amusement than Impabience. the lonyg delay
indiceting the consternation it must have causcd. Your dlagncsis was, of
courge, 100 percent correct. The refurecs complebely mlssdd the point iu
thinking that I was writlog sbout the physilology of the human braln, and
attacking the paper on those grounds.

I expected that snyone with a sense of humor would sce that we were
developing the priaciples of operation of an ideslized "robot” bhrain whieh
does inductive reazoning, the important result being that elementary
gualitetive reguirements for this brain lead uniguely to classical probability
theory a2 eovisaged by Laplace. This has an cbvious bearing on an argument
that has been going on for a century, conceruing the proper usc of probabllity
theory.

Since no oae gusstloned the soundoess of the mathenatlcal argugsnts,
T think I will write & new paper giving only thewm, and subalt it o you in
a few weeka, &lso, be vamed that I am ebout 4o send you another short paper
conceraing wiquely decipherable codes.

Tn the sixbeen months since svbmitiing my "brain” paper, this theory
has becn developed much Turther, and I have obtained U. 3. Alr Force Contract
support o comtinue i%. At present, I heve three graduste students here
studylng its application o Jtatlatical prOﬂleﬂ: in §h sics, and two
Q&bllcationg based on it are currently "in the milil.”

Hecently, I spent a week In Dallas, Texss, glving & serles of lectuies
on thic st ey the Magnolis Petroleum Company Rescarch Jamuratory. A uu% ol
notes, made from tepe recovdings of the lectures, will be availaple soon and
I will send yow & capy. I think you will agrec, after reading them, that
clascical probebllity theory, with the principle of insufficlent reason
senerslized Lo the prigeiple of masxiinun entropy, unifics and sirplifles this
witole f£ield.



One of the referees expresced doubt as o the applicablility of this
theory to physics. might point out that the approach to statlstical
mechaniec: which this glves

other than Stantord. L, Professor M. Tribus has just written 2 now
textbock on thermodyansmics and statlstical mechanles based on it. Begluning
next school year, nginesring students at UCLA are golng to be teuvght this

fo thoory in their Junior undevgraduste year, with thermodynemics, industrial
yuality control, and comamwmication theory then e derived from it as special

CEDEN .
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I will remove the features which the referses dildnot like (i.e. remove
the words "humen brain”), and shorten the paper by abouil e facior of two,
befor: re-submitbing 1t.

It will be at least snother year beiore wy book on Mlerowave Circuls
Theory wilil be out. I have delayed it several tiues because I wanted Lo
include new material, and glve & move rlgorous treatment of expansions iz
orthogonal functions. Particularly, it turns ouat that you often want to
differentiate these expansions term by term, cub the resulting seriws
divergey. Hevertheless, it can be made rale failyly rigorous that you cam
5611l use them 1f you “subtract out” the divergent part. This has guite
a bit to do € with the theory of distributions, and it took me a long
time bto {igure out how Lo present this in s simpls way.

Very trualy yours,

Z, T, Jayaes
Assoclate Professor




