Fdwin T. Jaynes

THE INTUITIVE INADEQUACY OF CLASSICAL STATISTICS

INTRODUCTION

The title of this talk, suggested to me in Professor Agazzi’s kind
letter of invitation, caused a moment of uncertainty. What variety
of statistics is meant by “classical”’? J.R. Oppenheimer [1955] held
that in science the word “classical’” has a special meaning: “[...] it
means ‘wrong’. That is, the classical theory is the one which is
wrong, but which was held yesterday to be right.” And indeed,
probabilists appear to follow the Oppenhcimer usage more or less
consistently, advocates of frequency definitions calling Bayesian
views “classical’’; while Bayesians call frequency views “classical”.

Although Oppenheimer (or, “Oppy” as we all called him) was
my respected teacher, his usage has always been rather mind-
wrenching for me, because in other fields “classical” carries the
opposite connotation of “having great and timeless merit”, Classi-
cal music, sculpture, and architecture are the kind I like. So, in
which way should one interpret this title? In the end I opted for
Oppy on pragmatic grounds.

If by “classical” professor Agazzi meant “Bayesian” then this
would be a very short talk indeed; for I do not believe that there
are any intuitive inadequacies in Bayesian statistics. Of course, this
is not to say that Bayesian methods require no further technical
development; that development has been my main concern for

Epistemologia VII (1984}, Fascicolo Speciale - Special Issue.
Probability, Statistics, and Inductive Logic, pp. 43-74.



44 Edwin T, Jaynes

thirty years. Nevertheless, many of the recent advances in statistics
consist of realizing that, on closer examination, past objections to
Bayesian methods were either misapplications or empty ideological
slogans.

For example, de Finetti’s famous exchangeability theorem vin-
dicated Laplace’s derivation of the Rule of Succession, which has
been attacked by a long list of writers starting with Venn [1866].
Laplace’s critics thought that he was assuming all kinds of meta-
physical nonsense; in fact, he was assuming only exchangeability.
To the best of my knowledge, no claim of an “intuitive inad-
equacy’’ in Bayesian methods has been sustained by modern reex-
amination of these issues.

In the following I shall take “classical”, “frequentist”, “‘ortho-
dox”, and “sampling theory’ as approximately synonymous, in
about as close agreement as one can come to a current usage that
is not itself quite consistent.

With this interpretation, Professor Agazzi’s suggested title be-
comes highly appropriate, although I wish it were otherwise. One
would prefer to take a positive stance: pro-Bayesian rather that
~ anti-orthodox; and that is, of course, my real purpose here. But a
principle of logic tells us that theories cannot be proved right, only
wrong.

Orthodox significance tests extend this to inference as well as
deduction. To argue for an hypothesis I, one proceeds indirectly:
first invent a ‘“‘null hypotheses” H, that denies H, then argue
againts I, . Like it or not, that is the methodology we must adopt
here also — and not only for logical, but also for psychological,
reasons.

It i1s now about 50 years since de Finetti’s first landmark contri-
bution to this field, which started conceptual thinking about prob-
ability toward the right track. It is 42 years since Jeffreys demon-
strated the superior power and generality of Bayesian methods,
not in the abstractness of ¢-algebras or philosophical taste, but in
the arena of real applications.

Indeed, the variety of applications demonstrated by Jeffreys in-
cluded all those for which “Student”, Fisher, Neyman, and Pear-
son had developed “orthodox” methods. Since 1960, the Bayesian
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literature has grown at an ever-increasing rate, and applications
have extended to a dozen new fields with uniformly great success.

A mathematically convenient subclass of Bayesian methods,
maximum entropy, succeeds best in just those generalized inverse
problems where orthodox methods met their greatest difficulty.
Today, with computer programs capable of dealing with dozens to
thousands of simultaneous constraints, the Burg-Shore maximum-
entropy spectral analysis of time series in geophysics and speech
processing, and the Skilling-Gull-Frieden maximum-entropy image
reconstructions in optics and radio astronomy, are in constant use.
They are routinely extracting detailed information from datain a
way that would not have been believed possible a few years ago.
On the theoretical side, a mass of Bayes-optimality theorems has
accumulated that leave no loophole visible to me. One might think
that the point has been made.

Yet all this has had, to the best of my knowledge, zero effect
on the thinking and teaching of most purveyors of orthodox statis-
tical doctrine. Their newest textbooks continue to expound the
lore of the 1930’s and 1940’s, complacently ignoring the Bayesian
advances that would improve many of their own results, and vastly
extend the range of useful applications of their methods.

Why is it that pointing out and demonstrating superior methods
— even proving their optimality — has no effect on advocates of
orthodox methods? Traditionally, one points to ideological bar-
riers to acceptance of Bayesian notions. But I wonder whether
ideology is really such a strong force today in statistics, when it is
in such disfavor in all the surrounding fields. Perhaps a more easy
explanation is simple inertia. Independently of all ideology, ortho-
dox methods work as well as they did 45 years ago. Persons who
were trained to be satisfied with that performance, and continue
to study only the problems of 45 years ago, see no need for any-
thing different.

After all, Ptolemaic epicycles still account for the facts of as-
tronomy as well as they did 500 years ago, and the caloric theory
of heat still accounts for the facts of thermodynamics as well as 1t
did 200 years ago. Anyone who is satisfied with that performance
can ignore what has happened since, and continue using them. But
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to continue teaching them is a more serious matter.

Instead of this complacency, I should think that orthodox
teachers would be very troubled by the following situation. Who
have made the important advances in statistical practice in this
Century? Others will judge differently, but my own list is: “Stu-
dent”, Jeffreys, Fisher, Wiener, von Neumann, Shannon, Wald,
Zellner, Burg, Skilling. Here we find a chemist, a physicist, a eu-
genicist, two mathematicians, an economist, an astronomer, two
engineers — and only one professional statistician! Whatever list
one makes, I think he will find that most of the important ad-
vances have come from outside the profession, and had to make
their way against the opposition of most statisticians.

Now in physics, if we were to discover that even ten percent of
the mmportant advances were coming from non-physicists and
being opposed by professional physicists, we would conclude that
there was something very drastically wrong in physics teaching.
But we have avoided this embarrassment, because physicists stop-
ped teaching the caloric theory some time ago even though it is
still as usable as it ever was.

The teaching of orthodox statistics seems to be based on a dif-
ferent psychology. Those ideological barriers — and just plain
inertial ones — are still there, and as long as the old methods are
usable at all, the fact that something better is available is not
enough to overcome them. Rather, we must exhibit important real
problems of current interest, which any statistician’s clients would
expect him to be able to handle, as a matter of professional com-
petence — but for which orthodox methods lead to unacceptable
results, or to no results at all. This is, unfortunately, the psychol-
ogical reason why we must take a negative rather than a positive
stance.

All statistical methods, of course, consist of using probability
theory in different ways, and to find such problems we need to
understand how the reasoning formats of orthodox and Bayesian
methods {it into probability theory.



The Intuitive Inadeguacy of Classical Statistics 47
RELATION TO PROBABILITY THEORY

As mathematical system, probability theory consists simply of
the basic product and sum rules

(1) p(AB | C) =p(4 | BC)p (B 1C)

(2) p(A(B)+p(~A1B)=1

and their consequences. All schools of thought accept these as cor-
rect — at least on finite sets and their well-behaved limits, which
are all we need consider here. In probability theory, as in any other
arca of applied mathematics, some paradoxes await those who
Jump carelessly into an infinite set without considering the limiting
process needed to define its properties — but that is their problem,
not ours.

We have, then, a well-defined and noncontroversial mathemat-
ical machine. But before this machine will run and perform useful
services for us, it must be plugged into the real world. It is over
how to make the connection that the centuries-old controversies
(or, more accurately, misunderstandings) swirl.

To state the difference most succinctly, orthodoxy holds that
Equations (1) and (2) are only rules for calculating frequencies;
Bayesians claim that they are the general rules for conducting in-
ference of any kind. If T may betray my youth in the fringes of
electrical engineering, one camp uses only the minimum connec-
tion (data and noise) that will enable the machine to run at all: the
other believes that it is capable of delivering far more useful work
if fed full three-phase power (prior information as well).

The personalistic approach of Savage [1954] represents an inter-
mediate transitional form, in which one recognized the legitimacy
of connecting that third wire, but did not propose any specific
way of accomplishing this. It is now of more historical than tech-
nical interest because today’s applications require that third wire
to be fully operational, carrying just as much current (informa-
tion) as the other two. However, some personal appreciations of
Jimmie Savage are given at the end of this work.
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In any approach, the reasoning format one can use is deter-
mined by the techniques used to make these connections between
the mathematics and the real world. In principle, orthodox theory
recognizes such a connection only when it consists of empirically
observable frequencies. But one can work in statistics for a long
time without ever encountering a real problem in which the data
actually consist of frequencies. Therefore, to maintain this view-
point, if frequencies are not already inherent in the nature of the
problem and the data, they must be implanted by artificial means.

The technique for doing this is well known. Given some data
D;, we imbed it in a “sample space” {D,, D,,...,Dy}containing
other data that one postulates might have been observed, but were
not. Then one introduces a “sampling distribution” consisting of
the probabilities

(3) p(D; | H), 1<i<N

that the data set D; would be observed if some hypothesis i were
true. The frequency connection is then made by asserting that, for
example, p(D, | H) is the frequency with which the unobserved
data set D), would have been obtained in the long run if the ex-
periment were repeated indefinitely with H constantly true. Usual-
ly, such sampling distributions are the only probabilities one is
allowed to use for inference, because a probability is not considered
respectable until a frequency interpretation is bestowed upon it;
and this special blessing is reserved for sampling distributions.

But where does the orthodox statistician obtain all this knowl-
edge? What determines the ‘“true” sample space and the “true”
sampling distribution? How can one know what the actual fre-
quencies would be? Surely, when one asserts the long-run results
of an arbitrarily long sequence of experiments that have not been
performed, he is drawing upon a vivid imagination; and not on any
fund of actual knowledge of the phenomenon. How is it possible
that for decades claims of great “scientific objectivity” for this
approach have not been effectively challenged? It cannot have
been only physicists and Bayesians who perceive the lack of sub-
stance in such pretensions.
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The answer must be that for decades workers have been cowed
by the oppressive weight of authority in this field. Indeed, Jimmie
Savage [1962a] used just this term in recalling his own early ex-
periences. The path of least resistance — also the one safest for
one’s worldly career — is to put up a public front, giving lip service
to things which we believe to be false, remaining silent on what we
see as the truth, out of fear of the “clamor of the Boeotians”. We
know that Newton, Gauss, and von Neumann delayed publication
of some of their most original ideas for this reason.

It is not only in science that this false public front is expedient.
At the turn of the century, Jules Massenet enjoyed enormous public
success with his religious and operatic music; but he said privately
to Vincent d’Indy, “I don’t believe in all that creeping Jesus stuff,
but the public likes it, and we must always agree with the public.”

Ilusions of objectivity are preserved, not so much by authority
imposed from above, but by the ring of authority in an official
language that encourages them. “It is a gaussian random process”
sounds very much like a statement of physical fact; 1.e., something
that is true or false independently of anybody’s state of knowl-
edge. The notions of sample space, population from which we
draw, and sampling frequencies, are almost always represented as
if they were physical facts. Like religion, this gives a certain feeling
of security that the statistical “public” likes.

Yet almost everyone has lucid moments in which he recognizes
that these representations cannot be really true. Fisher [1956] ob-
serves:

[...] the only populations that can be referred to in a test of significance
have no objective reality, being exclusively the product of the statis-
tician’s imagination through the hypotheses he has decided to test [...]

Lindley [1971] notes:

A statistician faced with some data often imbeds it in a family of poss-
ible data that is just as much a product of his fantasy as is a prior dis-
tribution. A good example occurred recently in a paper of Edwards
[1970]. The data here are the distribution of human blood-groups in
the world at the present day. What repetitions of this experiment are
envisaged to provide a sample space?
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But these lucid moments are rare, and the illusions of authority
artificially created by our language continue to dominate the way
we formulate, and think about, problems of inference. In the case
of a time series, that language almost forces us to believe that there
exists a “true but unknown” frequency distribution, mean, covari-
ance, power spectrum, etc. which we are to estimate by various
means. In occasional lucid moments we must recognize that these
things are only figments of our imagination. What does it mean to
“estimate” a figment? Our real goal, almost always, is to obtain a
predictive distribution. |

This supposed frequency connection encounters some problems
even for estimating a quantity, such as the velocity of light, which
everyone believes is something real; and not a figment. Suppose we
are trying to estimate an ‘“objectively real” location parameter 6
from a single measurement; 1.e., we use the sampling distribution
plx 10) =f(x -8) for the observed datum x. We can think of
(x - @) as the “error” or “noise” in the measurement. But this
sampling distribution might describe two quite different things:
(A) the frequencies of errors in many repetitions of the measure-
ment; (B) the probabilities of error in the specific measurement
actually made. Orthodoxy fails to distinguish between these mean-
ings; yet it is clearly (B) and not (A) that is directly relevant to our
inference about §.

Indeed, if we had independent evidence (B) telling us our actual
error, the frequency of errors (A) in other measurements would be
completely irrelevant. As a moment’s thought will show, for valid-
ity of the orthodox reasoning which draws inferences about the
present case from interpretation (A) it is necessary not only that
we have ample data from other measurements to determine those
frequencies, but also that we have no information about the actual
error in the present measurement, beyond those frequencies. I
know of no experiment in which these conditions were met.

This reminds us of Fisher’s admonition that the validity of some
orthodox reasoning depends on the absence of recognizable sub-
sets. In his last book (Fisher [1956]) he recognizes also that fiducial
inference is valid only when we have no prior information. This
work gives considerable support to a conjecture sometimes heard
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— that if Fisher were alive today he would now be a Bayesian.

If one examines the actual procedures — as distinguished from
the precepts — used in setting up orthodox statistical problems, it
is seen that sampling distributions are not, in practice, determined
by any consideration of frequencies. They are calculated from the-
oretical models (Bernoulli trials, Poisson process, ARMA model,
ctc.) or simply adopted by convention (iid normal errors, Weibull
failure law, etc.). It would not be casy to cite an orthodox work
which presented empirical evidence that the sampling distribution
used was indeed a real frequency.

The Bayesian reasoning format seeks to relate the mathematics
to the real world in a totally different way. We do not proceed in-
directly through supposed connections with frequencies of imag-
ined data sets that might have been observed but were not. Our
mathematics is attached directly to the real world by the fact that
our probability distributions represent our actual state of knowl-
edge of that world; i.e., they are conditional on the one real data
set that was observed, and on the prior information that we actual-
ly do have. That is our connection with “reality” and I submit
that it is vastly more objective and scientific than one that has to
conjure up frequencies in an imaginary universe, while ignoring
cogent prior information in this universe.

There is a famous expression of the opposite view, Norman
Campbell asserted that anyone who tried to claim that probability
in a physics experiment meant anything different from frequency,
“{...] would convince us of nothing but his ignorance of physics.”
On the contrary, throughout the history of this subject the per-
sons who have argued most strongly against frequency interpreta-
tions have been physicists. As a professional physicist, I can assure
you that there are reasons for this in the fact that physicists are
trained to direct their attention to the cause-effect relations con-
trolling real physical phenomena — an attention that is conspicu-
ously missing in frequentist descriptions of those phenomena.

Indeed, it appears to me that maintaince of a frequency view
requires one to ignore virtually all the professional knowledge that
physicists have — because that constitutes “‘prior information”
that would invalidate a naive frequency interpretation. This corre-
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sponds closely to what we noted five paragraphs before.

Of course, if the only information we have about aphenomenon
is its observed frequency, then the probability we shall assign to it
will be equal to that frequency. But this, far from standing in con-
flict with Bayesian principles, is an elementary mathematical con-
sequence of those principles. 1 have the impression that this has
been demonstrated adequately in every Bayesian work since Lapla-
ce’s memoir of 1774 on the Probability of Causes. Laplace, Max-
well, Gibbs, Poincaré, Jetfreys, and Cox have not succeeded in per-
suading anyone of their ignorance of physics.

However, after all these criticisms we must admit that orthodox
practice is often far more defensible than orthodox precepts, be-
cause common sense is powerful enough to make one lay the latter
aside when they become too obstructive to sanity. A good ex-
ample is the tail-area criterion for orthodox significance tests,
where the precept is surely wrong; yet in some cases I should de-
fend the actual practice against criticisms made by other Bayesian.

TAIL-AREA REASONING

It is true that, in an orthodox significance test or confidence in-
terval not based on sufficient statistics, using the tail area of a
sampling distribution as a criterion can lead to absurdly false con-
clusions. But this absurdity is clear also to orthodox statisticians;
and the tests in common use do use sufficient statistics. As a re-
sult, the orthodox, fiducial, and Bayesian results cannot be very
different unless the Bayesian has essential prior information not
usable by the others. But let us have a little fun with tail areas
anyway.

Jeffreys [1939] poked fun at the orthodox tail-area reasoning in
an amusing tongue-in-cheek way, noting that the null hypothesis
is rejected “[...] because it has not predicted observable results that
have not occurred. This seems a remarkable procedure.” I should
like to add my own version of this joke: In the orthodox test, the
sole basis for decision is probabilities conditional on the null hy-
pothesis H,. Suppose, then, that we reject Hy. Surely, we must
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also reject probabilities conditional on Hg ; but then what 1s the a
posteriori justification for the decision? Orthodox logic saws off
its own limb. |

This version applies to more than tail-area thinking. Any rule
for rejecting hypotheses based only on sampling distributions con-
ditional on the very hypotheses being tested, gets itself into this
limb-sawing logical difficulty. The Bayesian reasoning format
avoids it, since we decide on the grounds of probabilities of the
hypotheses being tested, conditional on the data and the prior
information,

Still, this is really only a joke; for any Bayesian who examines
the mathematics unblinded by his own ideology can discover that
if the orthodox test is based on sufficient statistics then there are
mathematical connections. Indeed, consider the orthodox f-text,
F-test, or tests for the parameter of the binomial or Poisson dis-
tribution. If we test a simple null hypothesis against a one-sided
alternative, the orthodox conclusions are not merely similar to,
but identical with, the Bayesian conclusions from a noninforma-
tive prior (Jaynes [1976]). If such connections did not exist, com-
mon sense examination of the results would have rejected ortho-
dox tail-area tests long ago.

It has always seemed to me that one of the most ridiculous
spectacles in statistics is the orthodox texbook writer who warns
his reader not to use those awful Bayesian methods on these prob-
lems; and then offers as a “more objective” alternative an ortho-
dox method which leads, in the entire class of problems con-
sidered, to precisely the same result. Clearly, in the view of such
writers the Bayesian’s sin cannot lie in any property of his actual
calculations; but only in his failure to pronounce the proper in-
cantations over them.

But for this same reason, it would be ridiculous for me to reject
an orthodox tail-area test; and then advocate a Bayesian test that
leads to precisely the same result. Indeed, a Bayesian will — and 1
think properly and necessarily — use tail-area criteria for some of
his own decisions. But if there are no sufficient or ancillary statis-
tics, or if there are nuisance paramecters, the Bayesian will avoid
the absurdities into which orthodox tail-area reasoning can lead,
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because he will use the tail-area of a posterior distribution that
contains all the relevant information; and not the tail-area of a
sampling distribution that contains only part of the information.

Several examples illustrating these remarks are given in Jaynes
- [1976]. Since the result is not a criticism of tail-area reasoning per
se, we must look further.

PRIOR INFORMATION

Savage ([1954], p. 4) finds the difficulty with orthodox methods
of inference in the fact that on this viewpoint one cannot use prob-
ability to express the degree of plausibility of anything but a ““ran-
dom variable”. This is indeed a serious difficulty, as I have also
pointed out several times. But this too has not been a fatal defect,
because if our ideology forbids us to use probability for expressing
the “measure of trust” to be put in an hypothesis, the human
mind is still able to invent any number of ad hockeries — Chi-
squared, likelihood, significance level, confidence level, power
functions — to replace it. These substitutes, if not optimal, were at
least usable, and from a pragmatic standpoint frequentist practice
did not actually suffer very much from them.

Of course, from an aesthetic standpoint this collection of ad
hockeries now appears to us as awkward, often far from optimal,
and — worst of all — unnecessary. The principles of probability
theory, Equations (1) and (2) above, already contain these things.
Jelfreys [1939] has shown this, more clearly and in more detalil,
fifteen vears before Savage did. But scientific practice is not de-
termined by aesthetic considerations; as noted above, to have any
effect a difficulty must not only extend to the pragmatic level, it
must be so serious that is stops us from functioning altogether.

The basic suggestion that 1 want to make here is that the really
fatal objection to orthodox methods is one that Savage never re-
cognized and which applies to his own position as well (although
this is largely my own fault; sec the concluding remarks). Neither
frequentist nor personalistic approaches give us any definite pro-
cedure for taking prior information into account. Of course, as
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long as we work only on problems where we have almost no prior
information, this does not seem to be a serious difficulty. Unfortu-
nately, both Fisher and Savage seem to have concentrated all their
attention on such problems.

Fisher, in his maxim “Let the data speak for themselves”, ap-
pears to consider it almost a principle of morality that we must
not allow ourselves to be influenced by prior information; at any
rate, that is the interpretation of his position that others have
made. As the writer remembers very well, this morality was infused
into students in the 1940’s; we were taught that it is not only il-
logical, but a reprehensible breach of “scientific objectivity” to
use prior information. Savage’s Principle of Precise Measurement 1s
a faint echo of this, holding that it is all right to use diffuse priors
because they won’t make much difference anyway.

John W. Tukey [1978] has noted that this attitude toward prior
information puts orthodox statistics in a curious position. It is
held to be decent to use judgment in deciding what parameters
should be present in a model; but then indecent to use judgment
to help us in estimating their values. Yet, as Tukey observes, be-
fore 1973 judgment offered a far better basis than all the world’s
time series for estimating the factors related to oil prices in econ-
ometric models.

To clinch our arguments here, we need only amplify Tukey’s
observation, no doubt carrying his line of thought further than he
himself would wish to. But what he pointed out leads us to a class
of real problems of inference in which orthodox methods fail so
completely that they cannot be redeemed by any ad hockery. In
fact, such problems have been well known for thousands of years.

THE GENERALIZED INVERSE PROBLEM

To the best of the writer’s knowledge, neither Fisher nor Savage
ever considered a generalized inverse problem, although they have
been the crux of medical diagnosis since Hippocretes. Indeced, in
the statistics classroom an orthodox professor may teach his stu-
dents to ignore prior information; yet if his personal physician
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ignored his medical history in diagnosis, he would hold the man
guilty of malpractice.

But a physician innocent of malpractice is reasoning according
to a totally different format than that taught in the orthodox stat-
~istical classroom. When apprised of your symptoms, he does not
start by imbedding them in an imaginary sample space. Instead of
thinking about the class of all symptoms you might have had but
don’t, he thinks about the class of all disorders consistent with the
symptoms you do have. The first one he will test for is the one
which, in that class, appears a priori the most likely, from your
medical history.

[In a discussion of this in June 1981, John Tukey objected that
a psychiatrist might very well wonder: “If the facts were A, what
is the probability that this patient would tell me B?"’ Perhaps he
knows something about this that I don’t; so let us agree that the
physician in our story is not a psychiatrist.]

The reasoning format here is in a sense that opposite of that
supposed by orthodox statistics. Let us state it in very general,
symbolic terms. There are a number of conceivable “diseases’ or
states of nature [x;, X5,...,] and we obtain data y that we write as

(4) y =Ax

determined by the unknown true state x, where 4 is a determin-
istic operator, assumed known. However, 4 is singular (i.e., the
same y could result from more than one x), and so we cannot in-
vert this relations to determine x form y. We must be content with
making some guess, or “‘estimate”

(5) % = By

where B is a “resolvent” operator to be chosen.

We have here no “noise”, and therefore no sampling distribution
except in the rudimentary sense that p(y; | x;) = 1 or 0, depending
on wheter y; is or is not the data set resulting from state x;. The
observed data yq tells us only that the true x; must lie in the
class C for which p(yqps 1 x;) = 1.
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This is a fairly realistic description of the medical diagnosis
problem, since it is typical that a given cause produces definite
symptoms, but a given symptom may have many different causes.
It is even more realistic for many problems of inference in present
technology, where the essence of the problem does not lie in ran-
dom “noise” perturbing our data, but rather in the fact that our
information, although essentially noiseless, is incomplete.

For example, in spectral analysis we have accurate measure-
ments of a function f(¢), but only on a finite set of times {¢y,...,2,}.
Given this noiseless but incomplete information, make the best
estimate of its power spectrum

(6) p(w) =| [ F(B)er de |

Or in image rcconstruction, let {x,,...,x,} be the luminances ot
the elements of a true scene, while our data consist of noiseless
but incomplete values for the elements of our image

and A;; is the digitized point-spread function of our imperfect tele-
scope.

In each of these cases, the data can tell us only that the true
spectrum or the true scene must lie in a certain class C of possibili-
ties, but orthodox statistical principles, finding a constant likeli-
hood for all of them, are helpless to make a definite decision with-
in that class.

Returning to our general format, y = Ax, £ = By, it would ap-
pear that any rational method for choosing the resolvent operator
B must have, at the very minimum, the property that the estimate
% lies in the class C of possible causes: for all x,

y = Ax =A;)2 -‘=ABy = ABAx
The resolvent operator must therefore be a generalized inverse:

(8) ABA = A
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By a “pure generalized inverse’ problem we mean one in which
there is no noise, and the likelihood is strictly rectangular, so Eq.
(8) contains all that orthodox statistics can tell us.

However, some orthodox statisticians have not even complied
with condition (8). For example, in the limit of zero noise, ‘“‘win-
dow” methods of spectral estimation (Brillinger [1980]) do not
satisfy condition (8), and so these estimates can conflict with what
we know from deductive reasoning. This takes two forms: (1) the
spectrum, by definition non-negative, can nevertheless be esti-
mated to be negative; and (2) the estimated spectrum disagrees
with the autocovariance data at every data point where the win-
dow function W # 1. Yet, as we deplored in our opening remarks,
such methods are still being put into new textbooks and taught.

By contrast, the Bayesian method deals with generalized inverse
problems without any difficulty, leading automatically to estimates
that satisfy condition (8). The posterior probability p(x | yI),
where I stands for prior information, is zero outside class €, and
within that class it is proportional to the prior probability p(x | I);
Just the medical diagnostician’s common-sense reasoning.

In real problems we often have a great deal of highly cogent
prior information, so that for a Bayesian the choice between dif-
ferent possibilities in class C may be extremely sharp and definite.
For example, suppose class € contains only two possibilities, x,
and x,. But x; is compatible with W; = 10'® different quantum
states, while x, can be realized in W, = 10%° independent ways.
With a multiplicity ratio W, /W, = 10'°, our decision problem is
not really very difficult. With sufficient knowledge of the laws of
physics, these multiplicity factors can be calculated, often by
quite nontrivial combinatorial methods.

If our prior information consists entirely of multiplicity factors
(as it does in most of the current problems), then the Bayesian’s
optimal estimate X = By will be that one which, in class C, has the
greatest multiplicity W(x). At this point, perhaps our story will
start to sound familiar again; for the quantity H(x) = log W(x) is
just what we call the “entropy” of x.

The original pure generalized inverse problem, therefore, was just
the statistical mechanics of Boltzmann and Gibbs. Their algorithm:
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the macroscopic state which is overwhelmingly more likely than
any other is the one which has maximum entropy subject to the
constraints of the data and the laws of physics. As we hope to show
elsewhere, all of presently known statistical mechanics — equilib-
rium and nonequilibrium — is contained in this algorithm, suitably
generalized to allow for space-time variations. A preliminary sur-
vey is given in Jaynes [1980].

What is new and exciting in statistics today is, however, the
quite recent realization that this maximum entropy principle ap-
plies in a beautiful way to the aforementioned spectral analysis
and Image reconstruction problems, and to “black hole thermody-
namics’ In general relativity. A spectrum function, a scene; or a
black hole possesses a calculable entropy; and the one which has
maximum entropy subject to the available data is overwhelmingly
the most likely to occur in Nature. It was surprising to all of us
— although mathematically elementary — to realize that in such
problems multiplicity ratios of 10'® or more are not unusual. Fur-
ther details may be found in Burg [1975], Childers [1978], Gull
and Daniell [1978], Bekenstein [1981]; and in a mass of other
papers currently in process of writing or publication, for which
references are not yet available.

Today, generalized inverse problems have become so important
in engineering (for example, control systems) that mathematicians
have devoted a great deal of attention to them. However most,
being still encumbered by frequentist views of probability, have
not recognized these as being problems of inference at all (there
is no “randomness” in sight); and so they call them “ill-posed
problems.” We have, for example, the treatise of Tikhonov and
Arsenin [1977] which explores a variety of ad hoc algorithms for
their inversion, but never at any point recognizes that the only
rational basis for choosing one algorithm over another lies in our
prior information. From a Bayesian standpoint, these problems
are often very well posed, with unique and useful solutions. The
services of a few Bayesians are much needed in this field.

Generalized inverse problems are also, or very soon will be, im-
portant in economics. Here, many struggle with the seemingly ill-
posed problem of seasonal adjustment of economic time series. The
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U.S. Census Bureau’s XII program for this has been in use since
the middle 1960’s; but in 1979 three different Government-spon-
sored committees of Statisticians were searching for improved
methods.

The Bell Laboratories SABL program was announced recently
(Cleveland et al. [1980]) as a major advance over XII. However,
from the writer’s discussions with Cleveland in December 1980, it
appears that SABL is still an entirely orthodox procedure, with
the defects that one can readily anticipate; in problems where the
essence lies not in the “randomness’ of the data, but in its incom-
pleteness, one had better do some very careful searching of his
fund of prior information, and use it. In this field also, the services
of a few Bayesians are clearly needed; although W.S. Cleveland is a
former student of Jimmie Savage, the personalistic approach has
never taken seriously the explicit conversion of prior information
into prior probabilities.

It is hardly surprising that it is geophysics, the field in which Sir
Harold Jeffreys works, that has developed the most highly sophisti-
cated methods of time series analysis. But we have no more time
~and must refer the reader to the extensive review of Smylie,

Clarke, and Ulrych [1973].

In conclusion, it appears to the writer that in generalized inverse
problems we have the ultimate ““intuitive inadequacy’’ that will be
the fatal Achilles heel of orthodox statistical principles. Orthodox
concentrates attention on a ‘“‘randomness’ that is not present in
the problem — but fails to recognize the prior information without
which there is no criterion for solution. Bayesian methods, which
had been shown by Jeffreys [1939] to be more powerful than or-
thodox methods in the very problems for which orthodox methods
were developed, work just as well in generalized inverse problems,
and 1n so doing achieve the long-needed unity of statistical infer-
ence and statistical mechanics.

ADDENDUM - IN MEMORY OF JIMMIE SAVAGE

Knowing from his own lips of the happy and productive time



The Intuitive Inadequacy of Classical Statistics 61

Jimmie Savage spent in Italy working with Bruno de Finetti, it is
impossible to close a talk about Bayesian statistics — on Italian
soil, and with Professor de Finetti so much in our thoughts —
without some personal remarks.

It is now ten years since Jimmie Savage left us, but the feeling
of tragedy has hardly lessened. Dozens of reminiscences about him
have appeared; my reason for wanting to add still another is that
the man had so many sides that those who knew him see his life
and influence in many different ways.

The most common reaction was shock at his sudden and unex-
pected passing at the relatively early age of 54. Jimmie was five
years older than I, and so I have now lived five years longer than
he did, and am in a position to know that 54 years is not nearly
enough to accomplish all that one has in him. Still, it is quite long
enough to accomplish something; the history of science and art
teaches us that virtually all creative people reach the peak of their
intellectual powers in their 20’s and 30’s. So, let us at least take
note of the fact that Jimmie Savage had a longer life than did Spi-
noza, Shakespeare, Mozart, Bellini, Chopin, Donizetti, Bizet, Abel,
Jacobi, Riemann, Maxwell, or Fermi.

The side of the tragedy that touched me most directly was our
failure to reach agreement on some very fundamental issues of
statistical practice. As many readers will know, each of us is on re-
cord as criticizing the other’s position with respect to the determi-
nation of prior probabilities (Jaynes [1968], {1976}; Savage
[1977]). Now that it is too late, I fell that I finally understand
what our difficulty was, and if we could only talk again our differ-
ences would be resolved in an hour. But the sadness is not just per-
sonal; I fear that this failure may have condemned statistics to
more years of useless debate over issues that do not really exist
any more.

Psychologically, the difference between Savage and me in the
1960’s was only a continuation of that between Fisher and Jef-
freys thirthy years carlier. Both Fisher and Savage had, obviously,
deeply penetrating insight that saw at once what was relevant and
what was irrelevant in a problem of inference. Why then, did they
not see the simple, obvious things that the physicists — Maxwell,
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Boltzmann, Gibbs, Jeffreys, and I — all saw at once?

Superficially, it appeared to everybody that the differences were
over the “philosophical meaning of probability”; and as long as
both sides argued on that level, the stalemate was bound to con-
tinue. But as I now realize, both Fisher and Savage were advo-
cating positions and principles that were adequate and appropriate
for the problems they had in mind; while the physicists were
thinking in the context of an entirely different class of problems.

In these arguments, the two sides were talking past each other,
each saying what the other found meaningless in the context of
his own problems. When Fisher insisted that probabilities ought
to be frequencies, he was thinking of sampling distributions; when
Jeffreys denied it he was thinking mostly of prior distributions.
Fisher did not envisage the possibility that one would have prior
information that cannot be properly expressed by choice of a
model, but which was nevertheless so cogent that it must be incor-
porated explicitly into the process of inference; Jetfreys, with his
background in physics, was thinking of just such problems as the
general kind calling for inference. As long as neither emphasized
these qualifications, the difference appeared to be philosophical.

My difference with Savage was very much like this. At first
glance, it seemed to be a difference over what was later called
“subjective Bayesian” and “‘objective Bayesian’ views of probabil-
ity. Neither of us realized that we were thinking of different prob-
lems; and so in spite of my repeated denials Savage persisted in
accusing me of holding “necessary’” views of probability, while I
accused him of openly condoning inconsistency by failing to see
the need for normative rules determining prior probabilities from
our prior information.

It was from Savage’s book [1954] that I first learned of de Fi-
netti and the modern theory of exchangeable (or as they were
then called, symmetric) sequences; this went immediately into my
lectures at Stanford and many other places, in the period 1955-
1960. Strangely enough, Jeffreys [1939], [1948] did not seem to
know of de Finetti’s work, which would have fit in so beautifully
with his own. Even more surprising, it was clear that Savage had
not understood Jeffreys’ position, which was for me the definitive
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statement of probability theory.

Almost upon my arrival in St. Louis in 1960, I met William and
Esther Sleator and learned that thay had known Savage since boy-
hood, were still in touch with him, and that all his friends called
him “Jimmie”. This inspired me to approach Savage through them;
I wrote an analysis comparing Jeffreys’ theory with Savage’s defi-
nition of “necessary” and tried to show that Laplace and jeffreys
were not necessarians (in fact, I do not know of anyone, in the
entire history of probability theory, who has ever held such aview;
Keynes 1s the only one who comes close to it), and their work had
far more merit than Savage had recognized. This was transmitted
to Savage by the Sleators.

Jimmie’s reaction, characteristic of him, was not to respond
until he had done a much deeper analysis of my own work. He
located a copy of my Socony-Mobil lectures (Jaynes [1958]}),
wrote marginal comments on almost every page, and brought it
with him when we finally met in Dallas, Texas on June 25, 1963.
The Socony-Mobil Research Laboratories had arranged the meet-
ing by inviting us both to visit them on that day.

In the morning, in an audience of about 60 others, Jimmie lis-
tened to a 90-minute lecture by me on prior probabilities; where-
upon [ sat down and listened to a 90-minute lecture by him on the
same topic. All afternoon we were closeted together privately,
having a technical discussion unlike any I have ever had before or
since. What made it unique was that we had prepared ourselves so
well; each was familiar with the other’s work, and came with a
mass of written comments and questions. At the same time — let
us admit it — each wanted to do a little probing to find out just
how much the other really knew.

Finally, we were dragged out to attend a kind of banquet in our
honor; but we insisted on sitting together and continuing our dis-
cussion — practically ignoring our kind hosts — all through dinner
and past midnight. But our hosts managed surreptitiously to keep
our wine-glasses filled, and no doubt noted with satisfaction that
with each sip we became more fiendly but less coherent.

Of course, we covered a dozen different topics on which we were
in full agreement; so it is a gross distortion of the scene that I now
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mention only the two on which we disagreed. Qur mathematical
tastes were very different; in commenting on my work, up to the
determination of prior probabilities he agreed with practically
everything I had said, but wanted me to make the derivations
more rigorous by restating them in measure-theory terms. I replied
that I did not consider measure theory arguments more rigorous,
only more general; but it was a generality that was not needed in
problems of the real world and both our works would be intelli-
gible and useful to a wider audience if we avoided them.

Likewise, in my comments on Savage’s work, up to the determi-
nation of prior probabilities I agreed with everything he said, but
felt that at the foundation level the consistency desiderata of R.T.
Cox [1961] were more elementary — and therefore more com-
pelling logically — than the notion of coherence. He replied that I
ought to read de Finetti more carefully, and told me of their work
together.

Indeed, each of us had written a review of Cox’s book, mine
(Jaynes, [1963]) higly laudatory and his (Savage [1962b]) quite
critical. Appearing almost simultaneously was his little book of
mutually admiring conversations with British orthodox statisticians
(Savage [1962a]); and the contrast was too much for some. Jim-
mie told me that, as soon as my review appeared a colleague sent
him a copy of it with a note asking, “Why don’t you write reviews
like this one? Why do you always criticize your friends and cozy
up to your enemies?” I had felt exactly the same dismay, and real-
ized only much later that he was, as always, taking what he saw as
the wise course best calculated to influence both for the better.

But while I can now appreciate the ‘‘far-seeing grand strategy”
aspect of his policy, it did — and still does - seem to smack of the
“new morality” that persons like Jeffreys and Cox, whose work
was almost entirely correct and of the greatest importance, could
expect from Savage no appreciation but only criticism for the
small imperfections that remained; while others whose work was
almost entirely wrong and misleading received no criticism, only
praise for finding one grain of truth. I could never behave in that
way. |

The above matters were only differences in taste, to be expected



The Intuitive Inadequacy of Classical Statistics 65

between two people who insist on doing their own thinking; and
did not really trouble either of us. Our serious disagreement was
over the determination of prior probabilities. Put most briefly, he
wanted prior probabilities to express prior opinions; I wanted
them to express prior information. But this is just the point on
which we were talking past each other. He thought of parameters
as no more than real numbers, and did not associate them in his
mind with any such thing as multiplicity factors. I thought of
parameters as projections of a deeper “microscopic’ reality onto
the macroscopic world; and their multiplicities were seen as abso-
lutely crucial to inference about them.

It is now clear that this misunderstanding was almost entirely
my own fault, because I thought I had to talk down to him, re-
moving the physicist’s technical details and jargon, and stating
things in a way that I thought would sound familiar to a statisti-
cian. This was, of course, just the worst thing I could possibly have
done; there was no need to spare him the technical details, and the
result was that I failed to put across to him even the existence of
multiplicity factors in the problems I was concerned with. So he
thought that I was espousing a ‘“necessary’ view of probability;
and I thought that he was ignoring vital information. We never
managed to clear this up.

Surely, if Savage had ever studied a pure generalized inverse
problem such as physicists have always had in statistical mechanics
(for example, given the energy of a system, predict its pressure),
he would have perceived instantly that the lore of “diffuse priors”
for a parameter does not work here. The only basis that exists for
choosing one estimate over another is explicit, quantitative prior
information about the laws of physics; and any method of infer-
ence that fails to offer mathematical rules for translating that prior
information into an explicit prior probability assignment, is simply
helpless to deal with such problems. He would have discovered the
principle of maximum entropy for himself, very quickly - just as
Boltzmann had done in 1877.

Savage [1976], in almost his last work, made some revealing
comments about the mathematical difference between him and
Fisher. He deplored the fact that Fisher seemed ‘“‘ignorant of those
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parts of mathematics in which I was best trained”. But it seemed
to me that the difference in their mathematical training was just
the place where Fisher had the greatest advantage over Savage.

Once he finished his anti-Bayesian polemics and got down to
the mathematics, Fisher did not waste one line on irrelevancies;
he proceeded directly to the problem at hand, and did the analyt-
ical calculation that needed to be done, efficiently and correctly.
Savage was so busy over minutiae of infinite sets and measure the-
ory that, as noted also by Lindley [1981], he seems never to have
got around to developing a solution or working method useful in
problems of the real world.

Perhaps this was the greatest tragedy of all; if Jimmie Savage
had been able to shake off his abstract mathematical training and
thereby fully appreciate the work of competent, down-to-earth
analysts like Jeffreys and Fisher, his own contributions to statistics
might have been more solid and lasting.

As It 1s, Savage exerted a great and beneficial influence on the
general thinking of his contemporaries — far more than Jeftreys
was able to accomplish and, with his unique tact and willingness to
work hard to understand another person’s viewpoint, more than
any other person could have accomplished. But for the permanent,
functional substance of Bayesian methods we are still dependent
almost entirely on the work of Jeffreys and de Finetti, done be-
fore Savage entered the field.

Arthur Holly Compton Laboratory of Physics
Washington University
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DISCUSSION

Question Coben to Jaynes

I'd like to raise a small point about medical diagnosis and the Bayesian
approach to it. Now there is of course, as I am sure Professor Jaynes knows,
a great deal of controversy in the medical literature about this question. One
of the objections that have been raised against Bayesianism is in regard to the
diagnosis of rare diseases. If you have a disease which is very rare, and if you
train your physicians to calculate the posterior probability of a particular
diagnosis by Bayesian methods, there is a risk that a correct diagnosis of your
rare disease will not be made; its very low prior probability may infect the
eventual estimate, as it were. The alternative technique is a system of what is
called flow-chart diagnosis whereby you seek to eliminate some possibilities
at each branching node (compare L. Jonathan Cohen, “Bayesianism versus
Baconianism in the Evaluation of Medical Diagnoses”, British Journal for
Philosophy of Science 31 (1980), pp. 45-62). Now this is I think a little
more like what one might call the classical Baconian method. There is a sort
of long-term risk here that if people were to adopt Bayesian methods system-
atically and therefore miss quite often or relatively often the diagnosis of rare
diseases would be affected and in a subjective sense these diseases would get
rarer and rarer and more and more people would fail to be diagnosed who
actually have them, There is a sort of double risk here.

Now of course there may be ways of adding cautions to the Bayesian
method which avoid this danger. But the antiBayesians in the medical pro-
fession, as I read the literature, claim that this is not the case and that there is
a standing risk in the Bayesian approach to medical diagnosis (and in teaching
this to clinicians) that in actual medical practice people will miss the diagnosis
of a rare disease.

Jaynes to Coben I

First, I should stress that my topic was the principles of inference, with
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medical diagnosis mentioned only to illustrate the generalized inverse situ-
ation. There was no thought of giving a serious discussion of, much less a new
contribution to, medical diagnosis itself. However, if there are people in the
medical profession who think — and even worse, teach their students — that
Bayesian methods present us with dangers that some other method avoids,
then perhaps [ have a contribution to make after all.

If 1 understand the term ““flow-chart method” correctly, this refers to the
efficiency of the technical means of testing, and really concerns the design of
experiments and not principles of inference. If a single test can eliminate sev-
eral possibilities at once, so much the better on Bayesian or any other philos-
ophy of inference. But I think that the kind of antiBayesian arguments that
Professor Cohen quotes pose a quite different danger to medical diagnosis.

We have all heard of the proverbial medicine that cures the disease, but
unfortunately turns out to have side-effects worse than the disease. We need
to be on guard equally against an emotional argument that fills a psychologi-
cal need of the person making it, but when translated into policy turns out to
have disastrous consequences that a rational argument would have foreseen.
Probably most of us have been in the following scenario.

More students than you can accept want admission to your University; and
so you find yourself sitting in a committee reading grade records and letters
of application and recommendation. The committee must decide today which
ones we shall admit, and which ones we shall not. In every such committee
there is always some person who raises the argument: ‘“Well, now, if you
admit only the promising students then there is a terrible possibility that
someone who does not look goad in these documents, is actually brilliant and
you could be missing him.” This is true, this is a risk we are taking, and if
anyone can tell me how to remove that risk without incurring side-effects that
are even worse, please let me know about it.

If you choose the promising applicant over the unpromising one, there is
inevitably a small chance that you are doing an injustice; but with the oppo-
site policy you are virtually certain to be doing an injustice. 1 have spent
many hours expounding Bayesian decision theory to colleagues in such com-
mittees, and am pleased to report that those with medical training tend to ap-
preciate this even more quickly than those with pure mathematical training.

If you test for the probable disease before the rare one, there is inevitably
a small chance that you are doing the wrong thing. Testing for the rare one
first does not diminish that chance but increases it. I would hold it to be a
great merit of the Bayesian method that by requiring us to state our entire
loss function — and not just the part of it referring to rare or emotionally
charged contingencies — it foresees these side effects and protects us against
them. No method can eliminate risk, but the Bayesian method minimizes it.
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Coben to Jaynes

The risk is, if you teach students the Bayesian approach to the subject,
then they will adopt attitudes which will make them content with preferring
the more probable to the less probable, under certain circumstances, without

~carrying out the further tests which might raise the probability of the rare
disease’s being present. The Bayesian approach does not force a search for
high weight of evidence, as the flow-chart, or Baconian, method does.

Jaynes to Coben IT

My apologies — after that exhortation to state our full loss function, I
should have followed my own advice. In my remarks, the supposed objective
was not to get accurate statistics on rare diseases (although that may be a
worthy objective in its own right).

I supposed implicitly, but failed to state explicitly, that our physician’s
objective was to help the current patient by diagnosing whatever disease he
may have — rare or common — as quickly as possible. In a real situation, only
a finite amount of facilities and time are available. How, then, in the light of
all the information at hand, shall those facilities be best used to achieve that
end?

Clearly, if our technology can test for only one disease at a time, the op-
timal strategy is the one that tests for the more probable diseases first. But
this does not mean that the rare disease will fail to be diagnosed if the patient
actually has it; at least, I would hope that medical students are taught to keep
testing until a positive diagnosis is made. I cannot see how anything in Baye-
sian teaching would cause students to “adopt attitudes” predisposed to stop
testing earlier, but would think that antiBayesian teaching might well do so,
because it does not predispose one to think in terms of loss functions at all.

Of course, real medical diagnosis is vastly more complicated than these
simple examples suggest, and other objectives may be called for. If our class
€ of possible diseases contains {(a) a very common but mild one that poses no
threat to life, and (b) a rare one that is fatal if not treated within 48 hours,
then a prudent physician would test first for (b). But this is not an unBaye-
sian procedure; it is a Bayesian one with a different loss function.

The issues that Professor Cohen brings up seem to be, not Bayesian vs
nonBayesian principles of inference in medical diagnosis, but rather the op-
timal design of experiments and: “Which loss function should the physician
use?” Probably no full agreement can be hoped for here, since the question
raises matters of ethics as well as of medical fact.

It is, however, a theorem that a person who adopts a policy that is unBaye-
sian with respect to his prior and loss function, is necessarily violating some
very elementary desiderata of rational behavior, This has been shown by Bru-
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no de Finetti, Abraham Wald, and Richard T. Cox. Therefore, while physi-
cians should think very hard about their loss functions, it is appalling to me
to think of medical students being taught to deviate from Bayesian principles
in their inferences. I hope that neither Professor Cohen nor I ever comes
under the care of such a physician.

Question Kuipers to Jaynes

I have a question of clarification, which could be answered by you or some
of the other speakers of today. You have shown us a number of problem situ-
ations in which Bayesian statistics gives really impressive results. If T under-
stood you correctly, you claim that classical statistics is not applicable in
these types of situations. My question is whether yvou also claim to have an
explanation of the apparent Bayesian successful applications or not: why
does it work?

Jaynes to Kuipers

The rationale of the Bayesian approach in the problems we were just talk-
ing about is, like the principle of relativity, so simple that there is no way to
explain it in terms of something still simpler. We looked at all the possibilities
(the “scenes”) that were compatible with our data, and asked, “In how many
different ways W; could Nature have made scene 1; in how many ways W,
could she have made scene 2?” and so on.

This is a question that orthodox statistics does not ask, because a scene is
not a “random variable’ and a multiplicity W is not a frequency in any “ran-
dom experiment”. But then the orthodoxian has no basis for choosing one
possible scene over another, because they all have the same likelihood. And if
all those possible scene also had about the same multiplicity W, then the Ba-
yesian would be in just the same trouble. Such cases may indeed exist, but
none has been found as yet.

The cases where Bayesian methods work beatifully are those in which mul-
tiplicities vary greatly from one possible scene to another, so that the Baye-
sian’s question yields a great deal of cogent information that orthodox statis-
tics does not recognize.

The surprisingly big effect that this has, is due to the fact that combina-
torial factors (multinomial coefficients) mount up very rapidly to enormous
numerical values. The multiplicity of a scene shown by Gull and Daniell was
greater than that of a neighboring, very similar looking, scene by a factor of
perhaps 101°,

By definition, the scene of maximum entropy log W can be realized in
more ways than can any other; but in fact the scenes with entropy close
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to maximum can be realized in overwhelmingly more ways than can all others
combined. This is the gist of the “‘entropy concentration theorem” given in
my forthcoming collection of articles (E.T. Jaynes, Papers on Probability,
Statistics and Statistical Physics, R.D. Rosenkrantz (ed.), D. Reidel Pub-
lishing Co., 1982).

So the explanation of the Bayesian success amounts to this: suppose there
are two scenes compatible with your data. But for every way in which Na-
ture could have created scene 1, there are 10'° ways (about four times the
number of minutes since the Great Pyramid was built) in which she could
have made scene 2. I shall, rather confidently, place my bets on scene 2 as
being the right one, and nobody should be surprised to find that we have al-
ways got the right predictions from such reasoning.

This is by no means the same thing as asserting that all those ways were
“equally likely”. Unless Nature had for other reasons some strong predilec-
tion for scene 1 over scene 2 - and by more than a factor of 10'° — the result
would not be different. Psychologically, if you show people the entropy num-
bers log W, they do not see why such a small difference should be so import-
ant. If you show them the multiplicity factors W, they see the point at once.

Question Hacking to Jaynes

Referring to your example of the photograph it seems to me that saying
the number of ways that nature could have produced the photograph which
you are going to reconstruct, is slightly misleading and it is just not nature, it
is nature and a piece of apparatus about which you have a substantial body of
physical knowledge. You know roughly speaking how it works. Now it seems
to me that it is so often the case that a piece of Bayesian reasoning can also
be reconstructed in an alternative way. Could you not tell a very different
story of what is going on here, that you really do have approximate physical
hypotheses about the relative frequency of the ways in which the blurred
scene would have been produced; relative frequencies which are based on
your views of how the photographic apparatus works in the first place?

Jaynes to Hacking

The knowledge about how the apparatus works, generating the relative
frequency with which different blurred scenes would be produced, is what
the orthodox statistician would call the “sampling distribution”. That infor-
mation is available to and used by both the Bayesian and the orthodoxian.

The extra information used by the Bayesian alone, is that multiplicity
factor W, which is not the number of ways in which Nature could have made
the known blurred scene, but the number of ways she could have made the
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various possible true but unknown scenes. These multiplicity factors deter-
mine the enormous variations in prior probabilities of different scenes, on
which the success of the Bayesian reconstructions depend. At the present
time, orthodox ideology does not recognize the relevance of this information
at all.

I do, however, agree most emphatically with your general remark that
any given result can be rationalized in various ways. If you give twenty stu-
dents the answer to their homework problem in advance, their hand-ins will
all arrive at exactly that answer, and offer twenty different reasons for it.

Likewise, now that the Bayesian — Maximum Entropy arguments have
shown us the right answers to the image reconstruction problem, I am confi-
dent that antiBayesians will find ways in which they can rationalize using
that multiplicity information after all, and thus show how they could have
got the same results. '



