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JABSTRACT

A gemeral formalism 'fez‘ calc:ulation of irk‘ewrﬁibia DroCess5es, 'ana'logous
o the pax‘tition s algoritha of equil:.brium thsaiz::ax:yi ‘is present;ed. Mathe-
matiually, it iz a gane.xaliza,tim of the procedure by which Gibbs constructed
his a:i:ﬁmical and grand canon.;cal ensemhles, S.n which the paxt.ttion function
53. gxtended to_a partition functionsl. Conceptually, it has a simple inter~
pratation in terms of -xnfunfnaticzz Theory. 3By this means, ensembles can be
constructed in which macroscopic quantitioi; have sny spa&gQ'time ﬁepén&eracae
ecmﬁ;ible s_fitﬁ' the Hamiiwnian_af the s}#teng We illustrate its uss by |
- daveioping a theory of trméport'plwnma; in which the following f—eatu'xms '
emarge: {1} Dissipative effeé:ts are obtﬁineﬁ _by. di.reéf. q;uaér_atnres_ over the
ﬁeﬁ ensemble-s. with no need fc;z the .forwm:d'. integration and co&rse-graining
cpazaticas daé.mcteristi# of previous t.i:eai:mﬁnts. In consequence, the theory is
not mstficta& to the quasi-stationary, 1mg—’-wa§élength liwmit; i.t spplies aqually
mi‘.’. to ?henmna such &8 ultrasonic attenuation. (2) The fama}.im.}eadsf to |
® nmloéai thascry;- and ko ex;:fessibﬁs-fjo: lima;.r 'transpm:t coafficlents closely
| related to those cf Xubo. anemhléi' ;r&_gi:hihite_d in wﬁj.-ch Kubﬁ'-s formulas
are siract. {3) The staﬁistiéal zralog of the éaucby init.ial-valuerpreéalem is
: mc;gﬁeé as._a't special case. In linear. a’pproxmtian._i t'iﬂ found n‘,-_g;e mthne.__-

matically eqté»iw?l&ﬂk%t to ng&?grt Wiener's thaory afopt:imal pred;;:tien of the



Fugu:a of & random function whose past is given. (4) The statistical anaiog
of ti‘:xa anchlet—!@emann boundary-vaiue probiem. often a more zealistie
_daewzxpt:r.ms of experimental conditions, is also indluded as a special case.
wg, moptaing é "atatistical Kirchoff-Huygens principle”, according & which
uge of cartain infom’atimi about the macroscopic state can make other kinds
of information redundant for c:ertain predictions. (5} The theory yislds

& s:atmai;_icaliy_cmmbiguous rule for calculation of nonlinear éffects, such-
_m' those due to extremely-large ts_mperai:m.:e or concentration gradisnts, which

are not easily described in terms of 2 dynamical perturbation oa the systom,

1. INTRODUCTION

‘ L recent years the theory of ﬁonequilibrium statistical
nechanics has madé great progresé,in thé sense of suecgséfu}
caleulation of several particular effects. Many workers

have speculated on the possibility that we may eventually

learn how to formulate thia theory with a generality comparible
to that of the parti tion sum algorithm of equilibrium theory,
in which a single formai rule,applies to a1l cases, _The

basic principles have, hbwevér; reméined so obscure that

5&& has net'seen ho@ to earrﬁ out this generallzation, and
doubt has even been expregsed%*as to whether such & development

is posaible. It now appears that the missing formal principle
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haz long been kﬁown3 and special cases of it have been used
by almost every worker in statistical mechanics; bﬁt conceptual
'.difficulties have prevented us from seeing its generality,
| _ The calculation of an irreversible process usually
 ;nve1vas three diétipct stages: (1} Setting‘up an "ensemble, ®
;i.e; cheosing é density matrix  P{¢) , or an N-particle dis-
. tribution function, which 1s to describe the initial stéte
of the system of interest; {2} Solving the dyhamical problem;
i.e. applying the microscopic. equations of motion to obtain
the fimeweveiution.of the system ffﬁ] 3 {3} Extracting
the final physical pred;ctions'from the time-developed
ensembie E{H | |
Stage (3) has never preseuted any procedural difficulty;

to pasdiet. the quantity ¥ from the ensemble £ , one computes
the expectation value « F> = Tr{ P -.F). While the ultim}ate.
Jumtificatidn-of this rule has been much discﬁssed (ergodic
:theory), no alternative procedure has been widely used.

| in this connectian, we note the ro$lowing. Suppose we
are'to ehoaaa & number £, reﬁresenting our-estimate of the
physical qﬁantity F,“béaed oh the ensemble P . A réasonable
fcriterian for the “heat" estimabe 1s. that the expected aquare,
of the error, {(P-r)°> shall be made 2 minimum. The solution
of this simple varigtioml pmbleg; 48: f = {F> . Thus, if
we regard statistical mechanics as.an éxample of atatistical
estimation theory based on the mean square error criterion,
the usual procedure 1s uniquely determined as the optimal

ohe, independently of ergodic theory., A justification not
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ﬁependiﬁg on ergodic the;?y is, of course; necessary &s soon
as we try to predict’time—varying‘quantiﬁies. Tnla point,
. and the neason:for the reli&bilit# of the predictions made
by the present theory, are discussed further in Appendix A,

The dynamical probvlem of stage (2) is the most difficult
to carry out, but it is alsc the one in wﬁich most recent
progress has been booked (Green's function methods). While
the present paper is not primarily concernéd-with these
technigqueg, they are available;, and needed‘ in carrying out
the caliculations indicated here for all but the simplest
problams. |

It is curious that stage (1), which must logically

preceds all the others, has redeived virtually no attention
Alince iheqpieneﬁning.nnnk_nf,ﬁihbs,;in ¥hich the problem of
enaembie construction was first recogﬁized, Most receﬁt
'aiacgasions of irreversible prbcesseg concentrate all attention
._cn stage (2); some fail to note even the.existénce bf'stage
{1). One consequence of this is that the resulting theories
apply unsmbiguously only to the case of "presponse functions”,
in which the nonequilibrium state 1£-ane resulting from a
dynamical perturbation (i.e., an explicitly given term in
the Hamiltonian), starting from thefmal equilibrium in the
remote pést;'ﬁhe initlal dénsity matrix iz then given b#
conventional equilibrium theory, ' |

- &f, however, ﬁhe nonequilibrium state is défined (as 1t '

usually is from the experimental standpoint) in terms of
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temperature or concentration gradients;_rate of heat (low,
shearing stress, sound wave amplitudes, etc., such a procedure -
dees not spply -- 8t least, not unambiguously. An extreme
example is provided by some problems in astrophysics, in |

which 1t is clear %that the system of interest-has never, in

the age of the universe, béen in a state approximating thermal
equiiibrium. Such cases, which have been well recognizedE*B

a8 presenting special difflieculties of prinoiple, are just

the cocnes in which the probleﬁ of atage (1) cannot be evéded,

The main result of the present work 1s this: recognition
of the existence of the stage (1) problem, and that its
general aolutlion is available, can remove the aforementioned
-azbiguities and reduce the labor of stage {2}, 1In the case
of the nonequilibrium steady state, stage (2} can b&.dispensed
with entirely 1f stage (1) has been properly treated,

in the following Section we' survey previocus me thods of
transport theory related to our work, and in S8ec. 3 the
generalization of Gibbs' algorithm is given. The special
case of dynamlcal perturbations is discussed briefly in Sec,
4, vhile Sec. 5 is a mathematical digresaion to collect the
basic formulas needed for applications. In Sections 6, 7 the
general prediction formulas are obtained in linear approximation
.and the relation to the wiener predicticn theory established.
Secticns 8, 9 10 apply the resulting theory to the problems i
of diffusion, thermal conductivity, and ultrasonic attentuation;
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~and in the final See. 11 nonlinear problems are discussed.
4 pumber of points essential for understanding of the theory,
but not needed for the actusl manipulations, are relegated

tc Appendices,

2. BACKGROUND OF THE PROBLEM

Because of the great d:tveé:sity ‘of poseible non.equilibrim states, a faull
niezoscoplic theozy geems’ st first glance hopelessly camplicated; yet from an
experimental standpoint irreversible processes are bhasically simple, ia the
sense t.haf: controlling only .a fow aaéroeccpié quantities suffices to Aetermineg
a ze#roducible outcome. Thue, ‘most of the microscopic detsails must be i?relevant -
#or the prediciions Sf intarest, and with pmcper-nnderstanﬁing we szhould be
able to sliminate them matheaatically. ‘ . o |

An important clue as to the manner in which one separates relwant and
irrelavant details was provided in the work of Kirkwood,® in. which diffusion
coefficients were shown to dspend only on the correlation function of forces
acting on a partiéle. Rirkwood's final formulass axe very similar to those now
baliseved to ba exact, but the mathematiczl technique used would be difficult to
genaralize. 'Furthermore,'it aade it sppear that a certain time-aversging
operat.on is ueceaaary in cxdor to obtain dissipative effects: but by this.
Process one loses oertain observable high-frequency effects that clearly Bust be
rat&ine& in a ganeral theory.

: dﬂcisiw step in the direction of simplicity and generality was made by
Callen and c.:o—wcrkgrslin a series of azti;:lass-s in which the problem was attacked
£free ba&s the aiéroscopic and mcmcopic standp«oim:a.. Generalizing the well-

: . 2 N
known theorem by Hyquist on slectrical noise, thay
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showed that 1ineaf responses of a system initially in thermsl
equilibrium depend on microscopic details only through the
coupled equiiibfium fiuctuaﬁions of the macroscopic qu&ntities
inv@;ved,_‘CaI;eﬁ and Weléon5 cpnjectured thdt the theory of .
iinear irreversible processes in general could be approached
vis study of equilibrium fluctuations, Developments in the

field since 3heﬁ@ particularly those cf Green,lo 11

Knha,lg and their co-workers, represent a serles of confirma-

Mori,

tioms of this idea. Bernard and CallenS showed that the

- ecase of nonlinear response of a driven system'caﬁ aiso be
reduced to the theory of higher moments of equilibrium fluctu-
atioﬁa, The present paper may be regarded as s8%ill another
sonfirmation of Callen and Welton's prediction, in which we
gext@mﬁ ﬁhe.&haarya,oﬁacne@uilibnium atates whose representative
’@nsembles are not the result of any dynamical perturbation
starting from equilibrium,

In previous transport theories of the aforementioned
types, digs1pativémirre?ersible,effabta.did not appear in the-_
ensemble initially set up. For example, a system of R-pargiaies‘
of Bass m, d‘iatribute(i with mecroscopic density {’(x}, |
logal tempefatare ?(x), is often described in ciaasieai'theery
by an N-particle distribution funection, or Licuville funection,
of the form: | | |

. l .
¥ ) ' Y N -
W&, (x_g ?j_ e .xﬁ?#) s 77‘ :5_;‘_- Ijjﬁ'h"fhg)}{é;f{ - Jn,{Tﬁc'}} '

{2.1)
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Pag, although this distribution represents aonvanishing

density and temperature gradients o9, G ‘T, the diffusion

current or hest flow computed from (2.1) is zero. '
Likewise, in quantum theory such a physical situation

il

h&s been described™” by the "local equilibrium"; or ¥frozen-

state” density matrix:

_}f_ (—.. J’: th_ﬂﬁ)n!ﬂ} |
b - & eve{- [Peqralhmeronny o

where H{(x), n{x)} are the Hamiltonian density and number
density oﬁer&tora. Agein, although {2.2) describes gradients
of'temperature, concentraticng and ehemical potentiai, the
fluxss computed from {2, 2) are zero,

-wxieally,‘it was fﬂuﬂﬁ*@h&t*&tﬁﬁtpﬁttve effects

appear in the equations anly after one has carried out the |
following operhtions: (&) approximate forward integration

of th@ &quationa of'maﬁion for a éhort "induction time®, énd
_{b} tim@ amoething or other coaraemgrain4ng of diatribution
fﬁm@tiens or Helsenberg operators,

Phyaic&lly, it has aiways been samewhat of a mgstery
why eithar of these operations is needed; for one can argue
that, in moat experimeﬁtally rezlizable cases, dissipative |
efracts (A) ' are already "in progress" at the time the experi-
ment is s%&r%eﬁ, and fﬁ} teke place slowly, so that the
lou-order ﬁistéibution'fuﬁctiana ang expecﬁation values of

measurable quantities must already be slowly-varying functions
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of time and position; and thus not affected by coarse-graining.
In cases where this is not true, coarse-graining would result
i loes of the physical effects of interest. This point is
discussed further in Appendix B.

1t appears, therefore, that the real nature of the forward
integration and coarse-graining operations has not yet heen
expizined; in a correctly formulated theory neither should
pe required. Qe,are led to suspect thé choice of initial
ensemble; i.e. that ensembles suéh as {2.1) and {2.2) do not
fullj describe the conditions under which irreversible
phenonena are obsefved, and therefore do not represent the
correct solution of the stage (1) problem, [@e note thag (eal)
and {E.Q}Ihave never been "derived" from anything more funda-
mental; they have been written down intuitively, by analogy
with the grand canonical ensemble of equilibrium theoryﬂ.-The
forward integration and coarse-graining'aper;tions would, on
this view, be regarded as corrective weasures which in_some
way compenséte for‘the erroé in the initiél ense¢mble, |

This conclusion is in‘agreemgnt with that of Mord,
Oppenheim, and Rossih‘(hereafter denoted MOR), who have pro-
vided a useful review of this field. These authors never
claimed that ft iﬁ {2.2) was the correct density matrix,
but supposed that it differed by only & small amount from
another matrix £(t}, which they désignate as the "actual
éiétribution". They further supposed that after a short

induetion time, e y Pelaxes into £ (ty, which would
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explaln the need for forward integratidn, Some such relaxa-
tion undoubtedly takes place in the low-order distribﬁtioﬁ
munctions derived from € , as was first suggested by
Bagcliubov15 for the analogous claésical problem. However,
tais 18 not possible for the full “glopal" density matrix; if

¢, and € {t) differ at t = O and undergo the same
unitary tranaformétion in_their time development, they cannot
be equal ab any other time. Furthermore, . £(¢) was never
uniquely defined; given two different candidates § (t}a

f*git} for this role, MOR give no o¢riterion by which one
'eaulé decide which 48 indeed the "actual" distribution.

For reasons explained in Appendix A, we belleve that

guch criteria do not exist; i.e.; that the notion of an
_5ac$ua1_ﬂiatnihution"wis.illusary; the result of a persistent
semantic confusion that hgé long plagued statistical mechanics.
¥n the following section we approach the problem in & different
way, which yields a definite procedure for constructing a'density

matrix which is to replace | ?t’ and will play approximately
tne same role in our theory as the P (t) of MOR.



3. THE GIBBS ALGORITHM

If the above reasoning is correct, a re-examination of
the procedures by which ensembles are set up in statistieai_
mechanica'is indicated. If we can find an algorithm for
coﬁstrugting density'matricea which fully desceridbe nonequili-
brium conditions, we sﬁould'find that transport and other
dissipatiée effects are obtainable by direct duadraturea over
the initial ensemble. |
Thir algorithm, we nuggeat, was given already by Gibbs,lé
The great power and generality of the methods he introduced
have not yet been appreclated; until receﬁtly it was scarcely

possibls to ﬁnderstand the_proce#s by which he constructed

nis ensembles, This was {1oe. cit., . 143) to assign that

probadility distribution ‘which, ﬁhiie agreeing with what is
imown, "gives the least value of the average index of pro-
babllity of phase,™ or as we would deseribe 1t baday,fmaximizes

the éntropy. This process led Gibbs to his cancnical ensemble

for describing closed systems in thermal equilibrium, the

grand camonibal ensemble for cpen systems, and (loc. eit.,

p. 38); an ensemble to repreaent a system rotating at angular
velocity hJ s in which the probability density is proporticnal
to

exp | -B(n - .m)] - | o (3.1)
where H, M are the phase functibns repreéenting Hémiltonian

“lle
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and total angular momensum,

i few years later, the Ehrenfestsl7 dismigsed these
cusembles as mere "analybtical tricks”, devold of any real
7$igniricance,'and sﬁresséd.the physical superiqrity_af Boltzmann's
methods; thereby initiating'a schocl'bf thought in statistiecal ;
mechanicg which persists.to this day, The mathematical superioriﬁy
of the canonical and grana canonical ensembles for caleulating
equilibrium properties has since become firmly establ ished
- Purt’armore, although #ibbs gave no applications of the =

18 pnat

rot:tional ensemble {3.1), it has been shown recently
thi: ensemble provides a straightrerward method of caleylate
ing the gyromagnetic effects of Barnett a@éiﬂinstein—de Haus,
#t he §r888ﬂt-timﬁg thefefore, the Gibbs methods stand in & |
p@f;tion of proven Success. lnjagplicatinng, indepenﬂen» of
alil the eonceptual prﬂhlema regarﬁing their juat;ficatgon,
which are still bveing eratedn As a.result, Statistical

Meshanice has taken on a peeuliar hy%xid character,'in‘uhich.
tne practical caiculations are always based on the methods

¢ Gibba, while the pedagogy has tended to concentrate instead

an_ergédie thaory.lg

The recent development of Iﬁrcrmation~Théory2°'has made
11 possidbie to see the ﬁethod.dtldibbs aﬁ a general'proceéure-
far inductive reasoning, indepeﬁdent.of-érgedic theory ob
amr-ether-ghysical hypethésea, &ﬁd whose range of‘valiaity
is therefore not restricted to.équilibrium'probiema; or
-iﬁéee&.to physics, The significance of the principle.of

masimum entropy, in the light of Information Theory, has
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been described in detail elsewhere> s 22

and applications to
statistical problems outside of physics have been sketched,Z23
In the following we show tha; this principle is sufficiert
%0 construct ensembles repreéenting_a wide variety of non-
equilibrium conditions, and that;these new ensembleé yieid
transport coefficients by diﬁéct guadratures,

The general rule for conatfuctiﬁg ensembles is as follows,
The available information about the state of a system consists
of results of various macroaeopicrm&asurementau““%a; the
quantitiea measured be repreaented by the operatora ;1, FQ, |
ceng Fm The results of the measurement& are, or course,
‘simply a8 set of numbers; ,{fz,.,.,rm 1 which makes no
.refefencé to any probability diatéibutiqn, The ensemble

im theﬁ a.menﬁal'cons%ruct which'ue invent in order t0 deacribe

the range of Egssible mlcrosascopic states, compatidle with the
measured values of the F ‘
If we say that a densitﬁ matrix € “contains” certéin

infcrmatien, we.mean by this that, if we communicate the |
densiﬁy matrix to another-éeraon h¢ must be able, by applying.
the usual procedure of stage (3) above, to recover this
information from 1t. Thus we say that the density matrix
"ggrees” with the given 1nformationrif and only if it 1is
adjusted to gield.expectation véiues equal to the.meaaured

nurbherss .
fk = ?r( r Fk) = <Fk> 2 k‘ 1; cvray B | . (332)

&nd in order to ensure that the density matrix deacribes the
fvll ranga or possible m&croacopic states eompatible with (3 2),
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and not guat.sgme arbitrafy subset of them (in other wcrdég
that it;ﬁascribes‘ggéz'the 1nf03mgtion given, and contains
ne hidden srbitrery assumptions about the microscqpic'stéte),
we demand that, while satisfying the constraints {3.2), it
ghall maximize the quaniity | |

Sy=-te( P log € ) (3.3)

A great deal of confusion has resulted from the fasct
that, for three debaées, the aingie war& Tentropy" has heeﬁ
used interchangeably to stand for aither the gquantity {3.3},

. or the quantity measured-experimantaily'(1n the case of
cl@ae&-syetemai by the 1ntagfal ef &Q/T c#er & reversible
géth, ‘¥We will try %o maintain a clear distinctlon here by
rafercving to .Sy .as the “1afa?mati¢u entropy? and denoting

the experimentally wmeasured entropy by 33. These quaptities
are Gifferent in general; in the equilibrium case {which is
the onlyvane for which SE is defined‘injconvenﬁional thermo-
dynamics) the relation between them has been shown~ to be:
feé all density‘mgtrices' £ which agree with the macroscopic
information that defines the thermodynamic state,

Ky £ 8 B

where % is Boltzmann's constant, with equality in (3.4) if

and only if Sy is computed from the canonical density matrixo’

g w?{ 1 1 .o ‘_"1 m) 2RD . [ alpl + .00 + Rmpm] €3¢5)
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where the '}k are unapecifiéd real conatants, and for

narmalizatidn {Tr € = 1) we have

2 Ay ApleTrem [aF+ ...+ 3] (3.6)

which quantity will be calle& the partition function. It
remains only to choose the A. {which appear as Lagrangé-
mlesd pliers in the derivatioq of (3 5) fPom & variaticnali
yrinc;pieﬁ 50 that‘{3‘2)‘;§-aatisried,_ This 1s the case if

¥

D | ' ; .
£y m(?k§ = H log Z, kK= 1,8,...,m RS {3.7)
These relations are just sufficient to détermine all the
unknowns Ak %n terms of the glven data ‘ifi...fma; indeed,
‘we can solve (3.7} explicitly for the A, 88 follows. The

maximum attainable vaiue of SI is, trom (3 5), (3. 6}3

(31)ae - loez- E A {F>

If this quantity is expressed as a frunction of the given data,
22,24

S(fl fﬁ), it 18 easily shown from the above relations
thes
p WP - §
K X

A number of other general formal properties of maximum-entropy

Egrand it has deen shoungg'as

diﬁtributicnslare i1isted elsewhere
that the aeebnﬁ law of theﬁmodynamics is afsimple conaequence

~of the inequality (3.4) snd the dynamical invariance of Sy
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Further mathematical details concerning the process of

entropy maximizatian have been glven by von Heamann,zé

%iéhménn;z? and Eannier.ag In Appendix C, we point cut an
important property of the mézimum eﬁtropy ensemble, which

13 helipful 1n_géining an intuitive unﬁerstanéing_cf this theory.
diven eny density matrix @ and any € 1n 0 <€ < 1,

thers is defined 8 "high-probabiMty manifold" (HPM)} of finite
dimensionality W( € )y consiating of all state vectors to

which P assigns 8n "array'probabiiity* aa defined in Ref.

21, Sec. 7,-gréaterfthén a certain amount S( € ), and such
that the eilgenvectors of -ﬁ spanning the-ccmplemgntary |
menifold have total probsbility iéss than €. As € var;es,
any density matrix @ thus defines a'qeétéd sequence of
.EPM's, .For a.macroscopic system, the information entropy Sy
may be identified with log W{ € ) in-the:following sense:

17 N is the nﬁmber of Qarticles in £he-system, then as N —»oo
with the ihtenaive.parameters held censtant,:ﬁ*lsx and N}
log W € ) approach the same limit independently of € .
This is & form of the asymptotic equipartition theorem<® of
Information Theory. The-pﬁocesa_afIEptropy maximization
thersrdre amcunts, for all_practieél purposes, to the same
 thing as finding the density matrix which, while agreelng
with the a#ailable 1nrormation, defines the largest possible
. HPM; this is the basis of the remark following {3.2). &n

analegousvreault holds in clagsicai_ﬁhebryQB in which'ﬁ( & )}
g becomes‘thg phase volume ér the “high—probability region”

of phase space, as defingd“by:ﬁththart1clé d1stributian function.
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The above procedure is sufficient tQ'constru¢t the density
matrix representing equilibrium conditions, provided the
gquantitiea Fk are chosen to be constants of the motion, }The
gxtenaion to_nonequilibrinm casegé and to equilibrium problems
in which we wish to incorporate 1hf§rmation about qu&ntitie$ 
which are not intrins£c eonstants of the motlon {such as

streas or ﬁagnetizatianae)

requires mathematical generaliﬁa-
_¢ion which'we give in two steps. |
It 18 a common experience that the course of a physigal

groeaas does not in general depenﬂ eniy on'$he present values
of the ebaerved macroscopic quantities; ‘it d&penﬁsialac on
the paat history of the aystem._ The ' phenomenon of spin echoe529
is a partiaularly striking example af this. co:respondingly,
SUS— exyeet*ﬁh&t,‘tf*thefrkﬂqry'nat_aanstaute-af the motion,
an enﬁamﬁle cbnstrﬁcted as abave;using anly the present values
of the F&} will not in general suffice to predict elther
equiiibrium or nomequilibrium behavior. As we will see
ﬁreaently; it is 3uat this faet . nhich eauses tha error in
the "frozen state" dzn&ity matrix f} of Bg. (2.2).

| In ﬁrder te describe time variations, we extend the P,

£0 tha Beiaenberg operators
ﬂt)»u‘lct) w)n(t) . {3.8)

" 45 which the timeudevelcpmaﬁt_macrix U(t) 1s the solution of
the Schrddinger equation "

) -EwEe (3.9)
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wéfuh :S.mtial condii;iona 7(0) = 15 and ﬁ(t'} 18 the Hamiltonlan.
I we are glven values of me(?k{ti}}at various times &g,

- ¢then each of these data must be conaidere& 2 separate plece
of ni‘@mtion, to be given its Lagrange wultiplier lm
and included in the sum of {3.5).  In the 1imit where we
*magine information given over* & continuous time interval,

. v & t £ 0, the summation over the time index 1 becomes

an integration and the canonicel den'sity matrix {3.5) becomes

:-ﬂ

¢ = L err{ Z: ,mf;mﬁ} | (3.10)

where -the partition runétion' has been generallzed to & '

S & Ry
%B'””")"’_”] !ﬁ'.c”{;" -{}*l G } {3.11)

- and the unknown Lag?ange multiplier -runcticns l.k(t) am
getermined m the condition that the density matrix agree
with the given data { Fk(t)} over the "informetion-gathering”
‘time interval: |

‘mm ﬁ.{ff;m];m crgbie oo

By the perturbat:im methoda develeped in See. 5 below, we
30 that {3.12) reducea %o the natural ganeralization of

' {30? 4
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S ) < o :
D) 673 ~zstie.
(Rl = O © {3.13)
yhive & denotes the functional derivative.

Firally, if the ocperators Fk depend on position as well
as cime, as in (2.2}, Eq. (3.8) is changed %o

(x;«:)«-u’%nr (x,00U(8) O am)

and the values of these quantities at each point of space and

" time now constitube the independent pleces of 1nrormation,
whi'h are coupled into the d.en.sity matrix via the Lagrange

nm ¢iplier function },k(x,‘c). If we are given information °
abmd -Fk(x,,t) throughout a-" space-time region R (which can

be diffarent for different 'quantit.tes'?k), the ensemble which
irvorporates all this infermation, while locating the largest
poasible HPM, is

e - § exp { N f at a3« lk(;,t)pk(x,t)} (3.15)
sith the partition functional

2= Tr exp { b f - at a¥x agcx,t)yk(x,e)} (3.16)
ard the ﬁk{x,t) deterrgzined from

" .@k(‘xat.}>- = . ‘;k{,x’tj 1"_’3 Z,I(th) in Bk | ‘3.1?)




=20~

spediction of any quantity J(x,t)} is then accomplished by

ealculating
R - [ e 3mt)] (3.18)

Ty equations {3.15) - {3.18) we have the general algorithm
for calculaning irreversible processea. We emphasize that
the baaie physical and conceptual formulatisn af the theory
13 complete at this point; what foliows represents only the
woriking out of some mathematical consequencea of *his algorithm.
L simpls example of an éxactly soluble problem using these
pelationa, 48 given In Appendix D,

The form of squations (3.15) -f(3;i8) makes it appear
at first glance that stages (1) and (2), discussed in the
Introduction, aré now fused into é gingle stage. Houwever,
this is Qniy a cbﬁsequence of ocur using the Heisenberg.repfe~
sentatlion. ﬁecerding to the usual conventions, the Schr&dinger
gnd Heisenbairg repres entations eoiacide at time ¢t = O; thus
we may regard the stepe {3.15) - (3.17} equally well as
jetermining the demsity matrix  @(0) in the Schrdainger
representation; j.e. a8 solving the stage {1) problem. If,
 having found this 1nitia1 ensemble, we suitch to the |
Senr8dinger representation, Eq. {3.18) is then replaced by

{3x) > o = o (A=) € (8] - (3.29)

ip which the problem of atage {2) now appears explicitly as
that of finding the time-evolution of = P(t). The form
{3,19) will be more convenient'if & number of different
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qnant itles J,, ”2’ aes ADE to be prediﬁted

Zyidently, our arguments leading to the rule {3. 15},
{3,17) for conver ting experimental measurements into &
density matrix can be further refined by applying the quantum-
mechanical theory of measurement. We have not done this, for
several reasoﬁs. In the.first piace, the theary of measure-

30 and

ment is itself being subjected to renewaa serutiny,
fundamental modifications appear 1ike13 as & resultv., Secondl&,
the ;armalism here presented is capable of other interpre-
tations which give ita meaning independent of the theory

of measurement. Questions ccﬁcerning prﬁdicéions made by
enaemhles'whieh nave maximum phase volume for prescribed
expectation valiues are mathematically wellépese& and physically
interesting in their own right. Finslly, it will appear that
the above formallsm already yields tﬁe résulta of usual |

practical interest without these further elaborations,



4, DYHNAMICAL PERTURBATIONS

If the irreversible process is the reswit of a dynamical
perturbéticn on what wégla.otherwise be an egquilibrium
zondition -~ in other words, where it 1s caused entirely by
an explicitly given tefm vi{t) in the Hamiltonian -- the sbove
equations reduce to 8 familiar form. If ws remain in the
full Heisenberg representation, Eq. (3.18), then if the avail-
able infarmaticﬁ concerning the state of the system consiats
sclely of the faect that it was in thermal eguilibrium in the
remote past, the density matrix (3.15) remains the eénilibrium
one for &l11 time. The full cenﬁent of’ the theory then resideg
in {3.18}, ! | ‘ |

Suppressing the coordinate x.for brevity, the Heiaenberg
operator J{t} 1s found by & perturbation expansion of (3.8}.
£ vit) = Qv(t), where Q 1s an operator and v(t) a specified

numeriecal function, the first-order effect is given by

| t
a(e)> - {3(- = 1> = Pilt-t') V(Tasr  (4.1)

um

wner? - <ﬁ?(~ Lo f> ie the thermal equilibrium value, and

E  [eo(en, )] (b.2)

§it

.73Q€t“t’}

48 the impulse-response function, or "aftereffect function”

12

_&escrib&d by Kubo, and by Bernard and‘Callen,13 who also

-2
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give Wigher crder nonlinear terms. The superseripts in (4.2)
denote time development according to the unperturbed
&&Wiit@ﬁiaﬁ H .

#ﬁiﬁ aspect of the theory, which is adequate to treat
such probiems as magnetic resonance line shape and electrlcal
conductivity, has already been developed by many authorsEl
into an elegant, and undoubtedly final, ferm. Among specific
caleuzatiens paged on it, one may note the treatments of

32 and the Meissner effect

normai metal conductivity by Langer,

by Mastis and Bardeensa and_Nambussa
The case of non-dynamical perturbations, such aé tempera-

ture ar concentration gradlients, or shearing stress of a |

£iluid I8, as aiready noted, fundamentally different-and

presents pecullar difficulties both mathéﬁaﬁical and conceptual,

In soms cases, a8 Feynman and MontfollBS‘have shiown, one can

use.physical'reasoning to restore the appearance of a dynamical

problem by inventing a fictitious "effective Hamiltonian" H_{t)

which ﬁgulda'if present, produgce & similar nonequilibrium

gtate starting from equilibrium; or as Luttinger3 has shown,

one can find the equilibrlum distribution under the action

of a fiectitious force field and use "palancing" arguments

hased on such relations-as the Einstein equation connecting

4iffusion coefficient and mobility. However, these are

clearly artiflecial devices, and there seems t0 be no general,

vnigue prescription for finding He.(see, however, Appendix E;

in which we show that under certain conditions a 1l:1 corres-

pondence can be set up between statistical problems of the
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| present theory and a class of flctitlous dynamical pfoblems),
Host writers on transport theory have recognized that exigting-
treatments of diffusion, thermal conductivity, and viscosity
are net fully satisfactory for this reason. This has been
stressed particularly in the recént review.&rticle of Chesterke
who gives many more details and references, and concludes

thet "e~- 1t would be very,satisfying tc have a quite dif-
ferent approach to these problems”,

Tné above algorithm evidently provldes one such approach;
to investigate its sultabllity we note that the aforementioned
problems all involved near-equilibrium condltions, énd 80 in
- treating them by (3.15) - (3.18) weican ﬁake_the,corresponding
epproximation. In Tthe followlng section we c@lleét the baslc

perburbation formulas needed for this,



5. PERTURBATION THEORY FOR EXPECTATION VALUES

We denote an “unperturbed” density matrix Por DY,

' A
e : A -
e, = 7 z, = Tr(e ), 15.1)
a "perturbed" one by
A € B |
€
? = -;e—-—-z-——- ? Z = Tr(eA+ B)Q ! : {502)

where A, B are Hermitlan. The expectation values of any

gperator € over f:;heée_ ensembles are respectively
{ep, =T ¢ <c> =1 £ €) (5.3)

The expansion of LC» to all orders in € has been
derived in Ref, 18,_ Appendix B, The n'th order contribution

13 the covariance, in the unperturbed e;:xsemble, of C ﬁit’n an

operagor Q.n:

oy -85 < STEKG.oS, ~L@5L0 ]

bt ¥} . (5e1‘;‘

Here, Q@ 1s defined by Q; = 3,, and

Qn oz S C QS Seu, m>1 (5.5)

Ke)

in which Sn are the operators appearing in the well-known

expansion

~25-
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 More explicitly,

. ; r’ ) 3.—:-' B

Q ":;.. fd’" J{}..f;x-: 3(3;)---8(&)

e @ O

where

The first-order term is_"

{5.6)

(5.7

(5.8)

| <’:;$ "‘("3“0 rdx[(e I“Be""c> [B)o(’c%

(5.9}

and it uiil appear below that all relatians ‘of linear transport

‘theory ape apecial casea cr (5 9)-,;’351;;7 ”

Far a8 more eandensed notation, derine the average cf

any operator B over the 3equenea cf stmilarity transformations

ar

 {5.10)
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-whi,eh. we will call the Kﬁbﬁ transfofm of B fhen ( 5 9)
becomes e Ry - e
<c> <'c> | e xGB {s;m
in wh,{c.ch, for varioua choices of C; ﬁ, the quantiﬁies | -
| (5.12)

are the basic covariance functions ‘of the linear t-heory.

’g&a list a few usefu‘l px'opert "'es_of‘ hese quantities, in
all eaases, the result 1s easily proved by writi.ng aut the '

'expresz,ions 5'“ the ?ePreaentation ﬂhreﬁ ia ﬁiasena.l i
¥, @ be say two mmcrs, “then i

.{? > (g > T (5.3)

g =Ko (5.24)
| Kpgteweal, Kp 2 o (535)

oy ; ? o 1s A projection ayer&tar representing a pure statg >
then Km =0, ? is mt 'a
then wibh Bemitian F, G,

gtate density matrix ».

wam Km o (5.6)

= with equalitsr it and only 1f F - qG, where q is a: real number.




) = oA (o) B4 (5.7
th n _

T fgel - <YF'G 17o : (5 18)



6. APPLICATION TO NEAR-EQUILIBRIUM ENSEMBLES

A closed system in thermal _equilibrium is described,- as

usual, by the density matrix

| fH -BH
Po = TET ’E(—Bﬂ'j (6.2)
which mimizes SI for prescribed ( H} . and 13 a very special
case of {3.15). The theml._equ_j-.l:!._brium._p.::ed;cti_on_ for any

quantity ¥ is, as usual, - o
(F? nTr( ? F) S (6.2)

But suppose we are now given the value of ( F(t)> through-
" out the "1nformatien-gathering 1nterval -t & £ £ 0,

The ensemble which ineludes th:is new inromtion in addition
to information about - {H) as in (6. 1) s of the form (3.15),
whidzmwmmi.sus for preasribed 4Ii> . and (F(t)> in
~T €« t < 0. It cerresmnds to the partitim t‘unetionai

z[s, A(s)] =T axp:.[_-ﬁnﬂf L f ale) #t) _dt}-- - (6.3)
S L L "

which is a special case‘of {3. 11) if, duri-ng the information-

gathering 1nt;erval, this new :!.nfonaatian was simply 4F(t)'> =
B> o 1t is easily shown. from (3 13) that ve have

identically (see Appendix D for an explicit example)



S - . - *
j;m.p(;‘)ﬁ at = 0 (6.4)
In words: 4if the new 1nf0rmatioh'is'reéﬁﬁ&anb.(in the sense .
that it is only what we would have predicted from the oid
.1nformatioé},'then it will &éop out 6f'th§ équstions and the
ensemble iz unchanged, Aa ahown 1n &ppenﬁix ¥, this is a
genefal ?roperty of the formalism.hare-preaented. in applica— |
tionz this means that there 13 never any needs when setting
up an ensemble, to aseertain whether the ‘different piecea of
Vinfnrmation used are 1ndependent, any reéundant parts will
cansel out automatically. ' ' - o '_ ‘
ir, therefo?e, we treat the mtegral m (6 3) as a small
perturbation, we are-expan&ing~1n.powera qf=the departure
from eQui}ibrium, For valiﬁiby.Qf_th¢ §¢fturbat1dn'SQheme
it 1z not necessary that - _;,{_t..)z{_.i__).-_‘l_;e; fgi{r_e_ryuhe_re_ mall;
i1t is sufficlent if the 1ntesr§i.ia*émazi; ?irat-Order
effects in the departure from aquilibriam,rsuch as linzar aié-
fusi@n or heat flaw, are then predicted"using the ggnerai
_ramula (5. 9}, with the choicea A s.aﬁ, -

j m_)_ Pe) at - (e.5)
ex e S |

fwithlccnstant.ﬁ,.the Heiaenbéfgfgperﬁﬁdr P{t) reduces to
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“P(t) = exp(18t/h) F(0) exp(-1Et/M) (6.6)
and its Kubo trahsfoém_(s,lﬁ):bécémeg':
| ¢ S o o
F{t) n% j au F(tf-ﬁi u), | - {6.7)

12

the characteristic quantity of the Knho theory.

In the notation of {5,11), the first-grder expectation
value of any quantity c_(t),uin_ then._ ‘be _3_iven by

«{B(t)} - <C> ch,{t,t') X (t') atr  (6.8)

where Ky 18 now inﬁicated,as'a_runction'or the parameters t,

! contained 1n'the Ope?at°f3= . .
Kgp(tatt) = <r(t )c(t)> " 4? > <03’ (6.9)

Remembering that the paramgtgrs t,t*.are-part of the operators
¢, ¥, the geﬁeral reciprocity lfafw-_(5..'1%1)-7.11@.-3}3@@33.

xc,(t.w-»xm(t' t) S (6.10)
When R 18 coﬁstant, 1t followa alaa from (6 6) that

| Kop(t t*) =sK§?(t‘élt3).,tﬁf   _§ | (6.11)
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- More genarally, take the unpertarbﬂd ensembiexés the
grand canonical distribution (3.1) correspording to the cholce

Ac-p[¥ MMM N] T (622)

where

fo”r #x’.x)

fo’k mhr)

are the totzl Hamiltonian, and number operator for the 1'th

(6,13}

(6.14)

type of particle, anﬁ H(x), ﬂi(x) the earresponding density
oparatora. CIr Z ANy commutes with H and F(t) , then
{6,7) remains valid' otherniae the Knbo transforms Fle) musﬁ
be defined by (5. 10). | |

In the unperturbed {equilibrium} enseuble, expectation
values are_independant-of time, so fer any operator J{x,t)
we have | o L

<J’f§;ﬂ>¢ : T .' >o (6.13)

Often§ this will be 1ndependent of x alse._ Kdﬁ'suypose we

are given additional 1nrermation cansisting of the expectatien

values of several functions or positicn and time Fk(x,t)
iwhich may include  the a’bove operators H(x) and Ni(x)j . |

throughout the space-time regiens Rk of {3 15) ~The new
ensemble is of the rorm_(S;Q) with the-ghoice__
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(o= 5 (oo anaRBY o
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e P

which 18 a small perturbation if the given <TF (x,t):> are

not appreciably ﬁifferent from their equilibrium values
<F.§{{x} > o IR thiﬁ new ensemble, the predic‘ced value of

any quantity J{x,t) is given by another speciai case of (5.11):

S

<,j-‘_gx,%§> --{Tm) Z J"’x'ah’ (xf x +) 'At i’f #) (6 1,)

=t
Re

with

Ko trtixit) = (BT - CRIP, LT, (6.18)

From (6. 1”) the nonlocal charaﬂter of the theory 1p apparent.
. The problem of pre&icting effects of first order in the
de§a?ture from equilibrium is now reduced to that of finding
the lLagrange mult iplier functions [_ k(x,t) from (3.17).
This problem is treated; in the_1inear_é§pr§x1mation,-iﬁ the

foilcﬁing'section;



