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Abstract. Fitting the \best" straight line to a scatter plot of data D � f(x1; y1) : : :(xn; yn)g in
which both variables xi; yi are subject to unknown error is undoubtedly the most common problem
of inference faced by scientists, engineers, medical researchers, and economists. The problem is to
estimate the parameters �; � in the straight line equation y = � + �x , and assess the accuracy
of the estimates. Whenever we try to discover or estimate a relationship between two factors we
are almost sure to be in this situation. But from the viewpoint of orthodox statistics the problem
turned out to be a horrendous can of worms; generations of e�orts led only to a long line of false
starts, and no satisfactory solution.

We give the Bayesian solution to the problem, which turns out to be eminently satisfactory
and straightforward, although a little tricky in the derivation. However, not much of the �nal result
is really new. Arnold Zellner (1971) gave a very similar solution long ago, but it went unnoticed by
those who had the most need to know about it. We give a pedagogical introduction to the problem
and add a few �nal touches, dealing with choice of priors and parameterizations.

In any event, whether or not the following solution has anything new in it, the currently great
and universal importance of the problem would warrant bringing the result to the attention of the
scienti�c community. Many workers, from astronomers to biologists, are still struggling with the
problem, unaware that the solution is known.
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1. INTRODUCTION

The following discussion is an instructive case history showing how nontrivial Bayesian results
evolve. It illustrates three very important points:

(a) The di�culties are never mathematical; at no point do we encounter any mathematical
problem that could not be dealt with by an undergraduate who had passed a �rst course in elemen-
tary algebra, and also had some sense of the proper order of carrying out limits. The long decades
of error, in which the most famous �gures in the �eld tried and failed to �nd a solution, were due to
conceptual di�culties (inability to make the right connection between the real world problem and
the mathematics of probability theory), lack of direction (failure to obey the rules of probability
theory), or mathematical ineptness (throwing out the baby with the bath water by trying to pass
to in�nite limits too soon in the calculation).

(b) After one has the �nal correct solution, it all becomes intuitively obvious and we are
chagrined at not having seen the answer immediately. This is typical of all nontrivial Bayesian
solutions. In an ideal world, our intuition would be so powerful that we would have no need of
probability theory. But in this world a little application of probability theory as logic can do
wonders in educating our intuition.

(c) Finally, we realize that there are very simple rules of conduct about what the rules of
probability theory are and about how to handle limits in potentially singular mathematics, that
if followed would have bypassed all those di�culties and led us automatically, in a few lines to
the �nal correct solution. But these rules are ignored { or worse, summarily rejected { by those
whose mathematical training has concentrated on set theory rather than analysis. For those with
this handicap, mere exhortations to follow the rules are not enough; the need to follow them can
be appreciated only from studying case histories like the present one, demonstrating the speci�c
consequences of not following them.

In the next three sections we survey the long and complicated background of the problem.
The reader who wants to get on with the technical content of this work may turn immediately to
Section 5 below.

2. HISTORY

This problem, seemingly straightforward from a Bayesian viewpoint, has a long history going back to
Gauss (1809), who gave what are still the most used results (found, we note, by Bayesian methods;
he interpreted his least { squares �tting as locating the most probable value of a parameter). The
term \Gaussian distribution" derives from this work. Here we seek to generalize that solution to
the case of unknown error in both variables. Orthodox statistical theory was helpless to do this,
for three reasons.

Firstly, orthodox ideology requires one to specify which quantities are `random' and which are
not; yet nothing in the real problem tells one how to decide this. If some quantity X is declared to
be `random', then orthodoxy demands that we assign probabilibites to it, even though it may be a
datum and therefore, in the context of our problem, a known constant. If a quantity � is declared
to be `nonrandom', then orthodoxy forbids us to assign probabilities to it at all, even though it
may be the unknown quantity about which inference is being made. This view of things is already
su�cient to prevent orthodoxy from solving the problem; the connection between the real world
and the mathematics is seen backwards.

Secondly, the problem is swamped with nuisance parameters (with n data points we have n+2
nuisance parameters), which orthodox principles cannot cope with. Finally, because that ideology
does not permit the use of the prior probabilities for unknown parameters (on the grounds that the
parameters are not \random variables", only unknown constants), it denies itself any way to take
prior information into account. As a result, orthodox statistics has never found a satisfactory way
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of estimating parameters � in a model equation y = f(x; �) when both the x and y measurements
are subject to error; it has produced only contrived adhockeries, not derived from the principles of
probability theory and with unacceptable performance.

Here Bayesians have the advantage because we see the connection between the real world
problem and the mathematics in a very di�erent way. We assign a probability to some quantity,
not because it is `random', but because it is unknown, and it is therefore a quantity about which
probabilistic inference is needed and appropriate. This gives us immediately the technical power
needed to solve the problem.

Because we admit the notion of probability of an hypothesis, the Bayesian mathematical
apparatus is able to deal easily with nuisance parameters and prior information. So the Bayesian
solution for the most general case might be on the level of a simple homework problem, but for some
tricky points about limits that require careful explanation today (although earlier mathematicians,
trained in analysis rather than set theory, considered them obvious).

Before 1960, the only person who could have solved this problem was Harold Je�reys. His
Bayesian treatment of regression (Je�reys, 1939) �nds easily the correct solutions to simpler prob-
lems, by methods that would have succeeded on our problem, had he tackled it. Then various
writers attempted to deal with it by nonBayesian methods, as follows.

If the errors are known to be only in the y {measurements, the problem reverts to that of Gauss
and the optimal solution found by everybody, Bayesian or nonBayesian, is the simple regression
line that minimizes the sum of squares of the y {residuals. If the errors were known to be only in
the x {measurements, one would instead minimize the sum of squares of the x {residuals. The fact
that these two procedures yield di�erent (often very di�erent) estimated line slopes �̂ is the origin
of the di�culty that has troubled so many for so long.

The astronomer Str�omberg (1940) advocated that we take the geometric mean of the two
estimated slopes, and called this the `impartial' regression line. It does indeed appear `impartial'
to interchange of x and y ; but this suggests at once two other ad hoc devices that seem equally
impartial: to take the bisector of the two simple regression lines, or to minimize the sum of squares
of the perpendicular distances from the data points to the line.

All three of these devices have been advocated, all seem more or less reasonable intuitively,
and all are impartial to interchange of x and y . Yet none was shown to follow from the principles
of probability theory, none gives any indication of the accuracy of the estimates, and they yield
three di�erent results. We are left with no criterion of choice.

Of course, impartiality to interchange of x and y does not seem a desideratum if x and
y are quantities of a di�erent kind (such as the magnitude and redshift of a galaxy in a Hubble
diagram). This indicates that we are really concerned with several di�erent problems here, arising
from di�erent prior information of this type about the meaning of our variables; and shows another
reason why methods which fail to use such prior information could not have succeeded.

Recently, some astronomers (Isobe, et al, 1990) have launched an ambitious e�ort to summarize
the present situation; but they take no note of the existence of Bayesian methods, and so are
able to give only a long, somewhat dreary, list of one adhockery after another, with no �rm �nal
conclusions. The same ambiguity that has puzzled astronomers for �fty years has given rise to
equally long controversy among biologists (Sokal & Rohlf, 1981), as to how one is to choose the
`best' straight line.

Throughout those same �fty years, statisticians have also been trying to to deal with the
problem. Abraham Wald (1940) made a stab at estimating � by orthodox methods when both xi
and yi are subject to error. But his rule (separate the data points into two subsets, and take the
slope of the line joining their centroids) gives a probable error many times that of the Bayesian
result when the variances �x; �y are known, and its accuracy is indeterminate when they are



4

unknown (in contrast, the Bayesian solution given below automatically estimates the noise level
from the internal evidence in the data, and always gives accuracy estimates which correspond nicely
with the indications of common sense). Unfortunately, Wald died in an airplane accident, so soon
after his conversion to Bayesianity that he had no opportunity to correct this early attempt.

W. E. Deming (1943) concluded that the problem is fundamentally indeterminate and that
it is necessary to know the ratio � = �y=�x in order to make any estimates of �; � . Then he
estimated them by minimizing the sum of squaresX

i

h
�2(xi � X̂i)

2 + (yi � Ŷi)
2
i

(1)

with respect to X̂; Ŷ , subject to Ŷ = �̂ + �̂X̂ . The resulting estimates are not entirely un-
reasonable; they clearly do the right thing, reducing to the original simple solution, in the limits
� ! 0 and � ! 1 , and interpolate somehow between these in intermediate cases. This method
was advocated by Mandel (1964). But it is basically inapplicable; it is hard to imagine any real
problem where we would know � if we did not know �x and �y .

Cram�er (1946) considers straight line �tting problems, but does not attempt to deal with this
problem at all; like most orthodox writers, he is able to deal only with the case where the xi are
known without error (i.e., �x = 0) and �y is known. Then the nuisance parameters go away and
the maximum likelihood estimates of �; � succeed in reproducing the estimates of Je�reys (but
without his accuracy statements).

Kendall & Stuart (1961), in what was ostensibly the de�nitive account of the state of the art
at the time, devote four Chapters, comprising 141 pages, to such problems. Yet their viewpoint
is completely orthodox, and they take no note of the fact that the correct (Bayesian) solutions
to most of their problems were already in print at that time. For example, in trying to estimate
a correlation coe�cient � , they o�er several di�erent ad hockeries which they acknowledge to be
unsatisfactory; but do not mention the correct solution which had been given 22 years earlier by
Je�reys (1939).

In the case where both variables are subject to error, they have nothing to o�er beyond
repeating the method of Wald, noting its unsatisfactory nature, and closing the discussion at
that. It is a sad performance; while they recognize that orthodox methods fail to give satisfactory
solutions to most of their problems, still they do not recognize the Bayesian methods which had
already demonstrated, in the hands of Je�reys, their power to give the useful solutions that scientists
needed.

This is particularly deplorable in view of the fact that Maurice Kendall was at St. John's
College, Cambridge and presumably saw Je�reys almost daily; he could hardly claim that he was
unaware of what Je�reys had to o�er him, or that he had no opportunity to learn from Je�reys.
It was the orthodox ideology { promoted vigorously by R. A. Fisher { which led him to reject
Je�reys' approach without taking the trouble to examine its theoretical basis or its performance on
real problems. No better illustration could be found of the devastating e�ects which that ideology
has in
icted upon this �eld.

Zellner (1971, Chapter 5) �nally gave the next Bayesian solutions beyond Je�reys, and all
but disposed of our present problem as far as theory is concerned. But he had so many useful
solutions like this to present that the background discussion and applications are missing. It seems
that few Bayesians and no orthodoxians took note of this important advance (the presence of the
word `Econometrics' in the title automatically prevented physicists and engineers from examining
it, while the presence of the word `Bayesian' prevented orthodoxians from examining it).

Kempthorne & Folks (1974) become so involved in the question: \Which quantities are ran-
dom?" that they are led to formulate sixteen di�erent problems corresponding to all possible
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answers; and then give up without �nding any usable solution, and proceed to fall back on the
aforementioned method of Wald still another time. Yet they reject any attempt to �nd a Bayesian
solution, with charge (p. 439) that the likelihood function for this problem is \totally uninforma-
tive" (which shows only that they were uninformed about the work of Zellner). They proceed to
deny the validity of the likelihood principle itself (which shows that they were uninformed about
the work of dozens of other authors, from Je�reys to Lindley).

This performance of Kempthorne & Folks is what the present writer was replying to in Jaynes
(1976), by giving a bit of the general solution, to show just how much useful information is contained
in that \completely uninformative" likelihood function. Unfortunately, at the time I too was
ignorant of the work of Zellner for the reason just noted, and so gave only part of the full Bayesian
solution. Let us hope that, for the next Edition of his book, Arnold can be persuaded to choose a
di�erent title which does not frighten away the very people who have the most need to know what
is in it.

Steve Gull (1989) has just re-opened this discussion with an article which takes note of my
old work (but unfortunately not the more complete work of Zellner which had appeared �ve years
earlier) and improves on my solution. But he too did not �nd the full, �nal solution. The present
work undertakes to complete this long discussion, now 180 years old. Whether it has �nally
succeeded will be judged, necessarily, by others.

3. TERMINOLOGY

As we warned in the Calgary tutorial (Jaynes, 1986), old terminology inherited from orthodox
statistics can be totally inappropriate for Bayesian situations. Orthodoxy by its preoccupation with
the question \Which quantities are random?" is obliged to draw several �ne distinctions which a
Bayesian �nds not only irrelevant to the problem, but basically meaningless. But orthodoxy takes
no note of such crucial things as prior information or the full shape of the likelihood function, and
thus fails to draw the distinctions that are essential in real problems of inference.

We are glad to follow standard orthodox terminology whenever it is useful and has the same
meaning in Bayesian and orthodox theory; but if Bayesians are ever to make ourselves understood
to those with orthodox training, it is imperative that we jettison all orthodox terminology which
is misleading in a Bayesian setting. We need to use di�erent terms which are descriptive of their
proper Bayesian meaning.

The terms \linear regression problem" or \linear model problem" are interpreted di�erently
by di�erent authors. One might expect this to mean �tting straight lines to the data: i.e., a model
represented by a straight line model equation: yi = � + �xi + ei . However, in the standard
literature [for example, Graybill (1961, p. 97)] a \linear model" is de�ned as one for which the
model equation is linear in the parameters and the noise, not necessarily in the observations. Thus

exp (yi) = � + � cos(x3=2i ) + ei

is also a `linear model'.

Both the Bayesian Steve Gull (1989) and the nearly-Bayesian Morris de Groot (1985) make a
break with this terminology, and de�ne the term \linear model" as referring to straight line �tting.
So, while recognizing that our analysis applies equally well to �tting curves of any shape, we shall
go along with de Groot and Gull by considering only straight line �tting here.

This still leaves us confronted with the term \regression". Kendall & Stuart (1961) draw a
very great distinction between \regression" and \straight line �tting". They de�ne the former
as estimating yi , given xi , from the conditional sampling distribution p(yjx) = p(xy)=p(x) ; the
latter as estimating the parameters �; � in the model equation y = � + �x + e , where e is
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\random error". Thus in regression our estimate of yi is to depend only on xi and the sampling
distribution; it does not make any use of other observed data values fxj; yjg . In e�ect \regression"
presupposes a perfectly factorized sampling distribution p(fxj ; yjg) =

Q
j p(xj:yj) without any

variable parameters; it is only n repetitions of a trivial bivariate problem.

It seems to us that this would make the regression problem so specialized that it has virtually
no applications. Almost always, our sampling distributions contain unknown parameters common
to all observations, and for estimating yi given xi it is essential to take into account the other data
values fxj ; yjg because they help us to estimate the common parameters. That is, if the model

equation is a straight line y = � + �x , we would always estimate yi as �̂ + �̂xi , where �̂; �̂ are
our estimates of the parameters.

Steve Gull also draws a distinction between \straight line �tting" and \regression" but one
that that seems to us of a quite di�erent nature. His distinction appears to refer to the conceptual
meaning we attach to the variables rather than the form of the actual equations. We may consider
fXi; Yig to be the unknown true values of some real physical quantities (such as load and de
ection
of a steel beam) connected by (1), and fei; fig as the measurement errors in observing them. Then
we would think of the scatter plot of the data points as a kind of cloudy image of the unknown true
straight line (1), and estimating � and � amounts to �tting the best straight line to the data.

Alternatively, we could think of the observations fxi; yig as the true physical quantities (for
example, the barometric pressures at New York and Boston, at noon on the i 'th day) which are
measured with negligible error. Then fei; fig would represent, not mere measurement errors, but
the variability of the physical phenomenon of interest, and we might think of fXi; Yi; �; �g as
mental constructs invented by us to help us reason about it.

Perhaps � and � are thought of as `propensities' for weather in the Eastern U. S. as a whole,
representing the predictable component of the weather, while fei; fig comprise the unpredictable
component. We hasten to add that by \unpredictable" we do not mean the conventional Mind-
Projection Fallacy meaning of \not determined by anything". We mean \determined by factors
that are not in the data set of the weather forecaster." Steve calls this a `regression problem'.

While we recognize the conceptual di�erence between Steve's `regression' and `straight line �t-
ting' problems, we see very little mathematical di�erence. Of course, there may be great di�erences
in the prior information in the two cases.

4. LEAPFROGGING ARTIFICIAL HORIZONS

During my year at St. John's College, Cambridge, I had to force myself not to get seriously involved
in history, simply because it is addicting and there is too much of it there; you could easily �nd
yourself trapped for a lifetime, and never again accomplish anything in contemporary science.

Perhaps one reason why some people hesitate to get seriously into Bayesian analysis is the
same. A problem in sampling theory, which takes no note of prior information, is �nite and having
solved it, that is the end of it. But every Bayesian problem is open-ended; no matter how much
analysis you have completed, this only suggests still other kinds of prior information that you might
have had, and therefore still more interesting calculations that need to be done, to get still deeper
insight into the problem.

A person who tries to present a Bayesian solution, being obliged to produce a �nite sized
manuscript in a �nite time, must forego mentioning many other interesting things about the problem
that he became aware of while writing it. My frustration at this came out particularly at the end
of the \Bayesian Spectrum and Chirp Analysis" paper (Jaynes, 1987) which noted, helplessly, that
we had examined only one almost trivial special case, and it would require several volumes to deal
with all the interesting and important things that are to be found in that simple-looking model.
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Since then, Larry Bretthorst (1988) has provided one of those volumes, and there is hope that he
may produce a second.

In e�ect, anyone writing about a Bayesian solution must draw a kind of arti�cial horizon about
the problem, beyond which he dare not tread however great the temptation. For most readers it
does not matter just where that horizon is, because their horizon of expectations is well within it.

The aforementioned discussion of Bayesian linear regression in Jaynes (1976) was only a small
part of that general reply to Oscar Kempthorne's antiBayesian charges. His provocation led me
to note a few things about that allegedly impossible Bayesian solution, enough to show its vast
superiority over the many di�erent false starts of Kempthorne & Folks (1974). But because of
space limitations I drew a rather tight horizon around the problem, just wide enough to answer
Kempthorne.

Steve Gull is perhaps the only person who can be counted on to read one of my papers so
deeply that he detects the horizon I chose, and gleefully takes a peek beyond it. In Gull (1989)
he has leapfrogged that old horizon, and thereby goaded me into doing �nally what I should have
done 15 years ago: completing the discussion of Bayesian straight line �tting (and in the process
leapfrogging his horizon). This leads to some results of current interest and importance, as well as
a needed lesson in how to deal with potentially{singular mathematics.

5. FORMULATION OF THE PROBLEM

By hypothesis, there is an exact model equation

Y = � + �X (2)

in which �; � are the unknown parameters of interest. But the data D consist of n pairs of
observed values:

D � f(x1; y1); (x2; y2); : : : ; (xn; yn)g (3)

related to (2) by
xi = Xi + ei; yi = Yi + fi; 1 � i � n (4)

where ei; fi are measurement errors, and we consider the two problems of parameter estimation
and prediction: given the data D and certain prior probability assignments to �; �; Xi; Yi; ei; fi ,

(A) Straight Line Fitting: What do we know about � and � ?

(B) Regression: Given m more values fxn+1; : : : ; xn+mg , what do we know about the
corresponding fyn+1; : : : ; yn+mg ?

In estimating �; � , we have potentially n+2 nuisance parameters, fX1 : : :Xn; �x; �yg . Denoting
prior information by I , the most general solution will then have a joint prior pdf for n + 4
parameters:

p (�; �;X1 : : :Xn; �x; �yjI) = p (�; �jI) p (X1 : : :Xn; �x; �yj�; �; I) (5)

and an unending variety of di�erent kinds of prior information I might be expressed by this
function, which we understand is to be properly normalized to unit integral.

By the product rule, p(�; �jI) can always be factored as shown, although the possibility
of a Borel{Kolmogorov paradox should be kept in mind. That is, by a probability p(Aj�; �I)
conditional on point values of �; � , we must understand the limit of the well-de�ned

P (Ajd�d�I) � P (A; d�d�jI)
P (d� d�jI) (6)
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as d� ! 0; d� ! 0 . To avoid ambiguity it is necessary to prescribe the exact way in which the
limit is to be approached.

For example, if we set d� = � g(�) and pass �rst to the limit � ! 0 , our �nal results will in
general depend on which function g(�) we chose. But there is no `right choice' or `wrong choice'
because it is for us to say which limit we want to take; i.e., which problem we want to solve.
Any choice presumably corresponds to a legitimate problem that we might want to reason about,
and probability theory will then give us the correct solution to that problem. But having made
one choice, we must stick to that choice throughout the calculation, otherwise we are switching
problems in midstream and are pretty sure to generate contradictions.

This is Sermon #1 on mathematical limits; although it was given long ago by Kolmogorov, many
who try to do probability calculations still fail to heed it and get themselves into trouble. The
moral is that, unless they are de�ned in the statement of a problem, probabilities of the form
p(Aj�I) conditional on point values of a parameter, have no meaning until the speci�c limiting
process is stated. More generally, probabilities conditional on any propositions of probability zero,
are unde�ned.

In the following we use the abbreviations

x � fx1 : : : xng; Y � fY1 : : : Yng; etc:; (7)

so that our data are denoted by D = x; y . Then the most general sampling pdf would have the
functional form

p (x; yj�; �;X; �x; �y; I) (8)

and the most general solution we contemplate here would have the form

p (�; �jx; y; I) = p (�; �jI) p (x; yj�; �; I)
p (x; yjI) (9)

in which

p (x; yj�; �; I) =
Z

dnX d�x d�y p (x; yj�; �;X; �x; �y; I) p (X;�x; �yj�; �; I) (10)

p (x; yjI) =
Z

d� d� p (x; yj�; �; I) p (�;�jI) (11)

and, writing x�; y� � f(xm+1; ym+1 : : :(xm+n; ym+n)g , our most general predictive distribution is

p(y�jx�; x; y; I) =
Z

p(y�jx�; �; �; I) p(�; �jx; y; I)d�d� (12)

This de�nes our present horizon (but having found this solution, its extension to such details as
more than two variables, correlated noise, noise known to vary with x , etc. is an easy homework
problem, involving little more than promoting some of our symbols from numbers to matrices).

6. SPECIAL CASES

Note �rst how the standard solutions are contained in this as special cases. If, as is almost univer-
sally supposed, the prior pdf for the errors factors completely:

p (eifijI) =
nY

i=1

p (eijI) p (fijI) (13)



9

with common Gaussian distributions

p (eijI) = 1p
2��2x

exp

�
� e2i
2�2x

�
; p (fijI) = 1q

2��2y

exp

�
� f2i
2�2y

�
; (14)

Now, dropping the prior information symbol I , which we suppose henceforth to be hidden in the
right-hand side of all our probabilities, our sampling pdf is

p (x; yj�; �; �x; �y; X) =
nY
i=1

1

2��x�y
exp

�
� (yi � �� �Xi)

2

2�2y
� (xi �Xi)

2

2�2x

�

= p (yj�; �;X; �y) p (xjX; �x)

(15)

which we note factors as shown. By Bayes' theorem,

p (�; �jx; y; �x; �y) =
Z

dnX p (�; �;X jx; y; �x; �y)

=

Z
dnX p (�; �;X j�x; �y) p (x; yj�; �; �x; �y)

p (x; yj�x; �y)
(16)

and whether �x; �y are known or unkwown, the solutions will depend on the data only through
their �rst and second moments, which are su�cient statistics for �; � . Introducing the standard
notations for the observed sample �rst and second moments,

x � 1

n

nX
i=1

xi ; y � 1

n

nX
i=1

yi ; (17)

x2 � 1

n

X
x2i ; xy � 1

n

X
xi yi ; y2 � 1

n

X
y2i ; (18)

and the sample central moments and correlation coe�cient

sxx = s2x � x2 � x2 ; sxy � xy � x y ; syy = s2y � y2 � y2 ; r � sxyp
sxx syy

; (19)

we note for later purposes that eventually all solutions involve the fundamental quadratic form
determined by the data

Q(�; �) � 1

n

nX
i=1

(yi � �� �xi)
2

= C11(�� �̂)2 + 2C12(�� �̂)(� � �̂) + C22(� � �̂)2 + C0

(20)

where the matrix C is

C =

�
1 x
x x2

�
(21)

and the requirement that (20) be an identity in �; � uniquely determines the coe�cients:

�̂ = sxy=sxx

�̂ = y � �̂ x

C0 = syy � s2xy=sxx = syy(1� r2) :

(22)
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Of these, �̂ and �̂ are just the original least-squares estimates of �; � that one would make if
the errors were only in the yi {measurmenents. But before reaching the form Q(�; �) , we have to
integrate out the nuisance parameters X1 : : :Xn , and perhaps also �x; �y .

7. THE ONE{POINT PROBLEM

To orient our thinking about this, consider �rst the `baby' problem of estimating X1 given only
the datum x1 .

If �x were known and we had only the data component x1 , from (15) we would have imme-
diately for the posterior pdf for X1 :

p (X1jx1; I) = Ap (X1jI) exp
�
�(X1 � x1)

2

2�2x

�
(23)

where here and what follows, A always stands for a normalizing constant, not necessarily the same
in all equations. Suppose our prior information had led us to estimate X1 as about x0 � � ; we
could indicate this by the prior pdf

p (X1jI) = 1p
2��2

exp

�
�(X1 � x0)2

2�2

�
(24)

But we note that
(X1 � x0)2

�2
+

(X1 � x1)2

�2x
=

(X1 � X̂1)2

�2
+ (const:) (25)

where the (const:) is independent of X1 , and

X̂1 � x0=�
2 + x1=�

2
x

1=�2 + 1=�2x
; (26)

1

�2
=

1

�2
+

1

�2x
(27)

whereupon (23) becomes

p (X1jx1I) = 1p
2��2

exp

"
�(X1 � X̂1)2

2�2

#
(28)

We would estimate X1 as (mean � standard deviation)

(X1)est = X̂1 � � (29)

a weighted average of the prior estimate x0 and the datum x1 , weighted according to the respective
variances.

If we had almost no prior information about the unknown true value X1 , then � >> �x and
this would reduce for all practical purposes to (X1)est = x1 � �x . For example, if � > 10 � , then
the exact solution is within one percent of this limiting value, and the prior information would
hardly help at all. But if we had prior information �xing Xi to an uncertainty comparable to �x ,
this would evidently be cogent, enabling us to improve the accuracy of our estimates of �; � .

This discussion of the `baby' problem is to condition us to the usual argument for passage to
an improper prior, � ! 1 . Usually, the data will be highly informative compared to our prior
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information (indeed, data which tell us little that we did not know already, would be hardly worth
gathering). But if as usual our prior information is vague compared to the accuracy of the data,
then whether we keep the prior with �nite � or pass to the limit of an improper prior, � ! 1 ,
makes no di�erence in the results. This is the conventional argument, surely valid for the simple
problem being considered.

8. THE REAL PROBLEM

But note that the above passage to the limit is, in principle, to be carried out only at the end of
the calculation. In the real problem, the properly normalized posterior distribution (9) is a ratio
of two integrals, (10) and (11), and if we want to approach an improper prior it is the limit of the
ratio, not the ratio of the limits, that should be carried out according to the rules of probability
theory. The former limit is the well-behaved solution that we want; the latter may or may not
exist. Depending on how rapidly the likelihood factor cuts o� away from its peak, the separate
integrals (10), (11) may diverge in the limit.

In the integrations over Xi it does not matter, because the Gaussian factors guarantee con-
vergence of the integrals. Then we may behave in a rather reckless way and still get the right
answer; but this is a rather unfortunate accident, that encourages bad mathematical habits that
will fail on other similar{looking problems. For example, had we used a Cauchy noise distribution
p(ei) / (a2 + e2i )

�1 instead of the Gaussian (15), the limit of the ratio would still be a perfectly
well-behaved quantity, but the ratio of the limits would not exist. Our present problem involves
not only the safe integration over the Xi , but also integration over �x and �y , for which the limit
of the ratio continues to be well-behaved, but attempting to calculate instead the ratio of the limits
can get us into trouble.

Admittedly, the point we are making is quite trivial, since if one does not see the distinction
between the limit of a ratio and a ratio of the limits, he cannot even grasp the concept of a
derivative dy=dx . Nevertheless, the recent literature of probability theory has examples where the
use of improper priors as limits of proper priors is rejected, because well-known authors failed to
perceive this trivial point and tried to calculate the ratio of the limits instead of the limit of the
ratio. See, for example, our exchange with DSZ over the Marginalization Paradox (Zellner, 1980).

Let us see how easy it is for the unwary to commit this error; but also how easy it is to avoid
once we understand the point. If we assign uniform priors to the Xi on the above grounds, and
the Je�reys priors d�=� to �x; �y , we may as noted integrate fX1 : : :Xng out of (15) without
disaster, and this constructs for us the quadratic form Q(�; �) :

p(�; �; �x; �yjx; y; I) = A

(�x�y)(�2y + �2�2x)
n=2

exp

�
� nQ(�; �)

2(�2y + �2�2x)

�
(30)

and now we face the mathematical subtlety that is the real point of all this discussion. If we
try to get p (�; �jx; y; I) by integrating out �x; �y from this, the result diverges due to the factor
(�x�y) , which expresses the Je�reys prior indicating ignorance of �x; �y .

But in (30) we have violated the rules of probablity theory by passing to the limit of improper
priors before doing the normalizing integral; we are in e�ect trying to calculate the ratio of the
limits. We got away with this with the Xi , but not with the �x; �y . Had we calculated the
normalizing integral �rst for proper priors there could have been no divergence; then passing to
the limit of the improper priors afterward would be a perfectly safe, uneventful procedure leading
to the useful result that we want.

In 1965, the writer did not yet perceive this and was carried along by the arguments of Deming
and Mandel, that the problem was indeterminate; this led to a long comedy of errors which I have
seen others repeating many times since. My notebook entry of that time says: \This is symptomatic
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of the fact that the data of the problem do not provide any information at all about whether the

errors are in x or in the y measurement. Then supposing Deming's parameter � � �y=�x known,
we can see whether this enables us to get a Bayesian solution; instead of writing the joint prior
proportional to 1=(�x�y) , we use

p (�x; �yjI) / �(�y � ��x)

�x
(31)

then integration over �y merely makes the substitution �y = ��x , and it reduces to a convergent
integral:

p(�; �jx; y; I) = A

(�2 + �2)n=2

Z
1

0

d�x

�n+1x

exp

�
� nQ(�; �)

2(�2 + �2)

�

=
A

Q(�; �)n=2

(32)

which is just the bivariate t -distribution that we would have had for the simpler regression problem
in which the errors are only in the y -measurement and �y is completely unknown. Then, for
example, we can integrate out � to get the posterior marginal pdf for � :

p (�jx; y; I)/
h

2 + (� � �̂)2

i�(n�1)=2
(33)

where 
2 � syy (1 � r2)=sxx . As the initial pleasure at this nice result wore o�, a little warning
bell started ringing in my mind as it dawned on me that, unlike Deming's least squares result, (32)
is independent of � . How can it be that the problem is indeterminate if � is unknown; yet the
solution when � is known does not depend on � ?

A few years later, the answer suddenly seemed intuitively obvious. Instead of supposing
� known, make the change of variables (�x; �y)! (�; �) in (30):

� �
q
�2y + �2�2x; � � �y=�x (35)

The jacobian is
@(�x; �y)

@(�; �)
=

�

�2 + �2
(36)

from which we �nd that the element of prior probability transforms as

d�xd�y
�x�y

=
d�

�

d�

�
(37)

and (30) becomes

p (�; �; �; �jx; y; I) = A � d�
�
� d�

�n+1
exp

�
�nQ(�; �)

2�2

�
(38)

At the time, I drew the conclusion that � is completely decoupled from the problem:

p (�; �; �; �jx; y; I) = p (�jx; y; I) p (�;�; �jx; y; I) (39)

so whatever prior we had assigned to � would just integrate out again into a normalization constant,
and contribute nothing to the �nal result. The algebra now seems to tell us that, far from being
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essential to make a determinate problem, � is completely irrelevant to our problem! At least, from
(38) it is clear how it can be that integrating out � leads to divergence; yet supposing � known
leads to a result independent of � .

The `solution' which I o�ered at the 1973 Waterloo, Ontario meeting (Jaynes, 1976) is
then

p (�; �jx; y; I) =
Z
1

0

p(�; �; �jI)d� / Q(�; �)�n=2 ; (40)

the same as (32). But as the pleasure at this nice result wore o� for the second time, it dawned
on me that � ought to be relevant to the problem after all. The result (40) is identical with what
everybody, from Gauss on, had found for the case that �x is known to be zero; the measurement
errors are only in y . In the opposite extreme, where the errors are only in x , the roles of x and y
ought to be interchanged; but the quadratic form Q(�; �) is not a symmetric function of xi and
yi . So where did I go wrong?

Let us go back to (38) and the conclusion we drew from it. Seeing only (38), it appears that
not only is � irrelevant to �; � , the data x; y tell us nothing about � , for p (�jx; y; I) = p (�jI) .
That is what we meant by saying that � is completely decoupled from the problem.

The error in this reasoning was that (38) was derived only in the case of the Je�reys
prior (37); it has been shown thus far only that � is decoupled for that prior. It turns out that
exactly the same error of interpretation generated the \marginalization paradox" that was about
to burst upon us (Dawid, et al, 1973; Jaynes, 1980). But for a general prior f(�x; �y) d�xd�y the
transformation would be, in place of (36),

f(�x; �y) d�xd�y = f(�x; �y)
�

�2 + �2
d�d� (41)

Now the joint prior for � and � is

g(�; �) =
�

�2 + �2
f

 
�p

�2 + �2
;

��p
�2 + �2

!
(42)

which is in general very far from being decoupled!

But there is still another error in what we have done, which Steve Gull recognized. We
integrated out the Xi with respect to independent uniform priors on the grounds that our prior
uncertainty � is large compared to �x so its exact value does not matter appreciably. Steve senses
correctly that something is wrong here, but �xes his attention on the matter of independence of
the Xi . It is true that if we have prior information making them logically related, we should take
this into account by a correlated prior, and this may enable us to get better estimates of �; � ; but
we think this is a detail, not the crucial point.

The crucial point is that if we use any �xed prior for Xi , then as the estimated line rotates
we are expressing di�erent states of knowledge about the positions of the `true' points (Xi; Yi) on
it; and this is true even in the limit where the prior is uniform. To see this most clearly, suppose
that instead of integrating out the Xi we had integrated out the Yi with respect to independent
uniform priors. A short calculation shows the surprising fact that we get a di�erent posterior pdf
for �; � :

************** MORE COMING HERE!! *******************

But this is just the original Gauss solution for the case that �y = 0 ; the errors are only in
xi . Merely by changing from a prior uniform in Xi to one uniform in Yi the roles of xi; yi have
somehow become interchanged. This is far more than we bargained for; the conventional folklore
which says that prior information does not matter as long as the prior uncertainty is large compared
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to the width of the likelihood function, is surely true in the conventional situations one had in mind
before; but now we see that the principle needs to be stated more carefully in problems with many
parameters.

The reasoning here is much like that for location parameters: our prior information need not be
translationally invariant, yet the likelihood function for a location parameter will have an obvious
translational invariance; so a translationally invariant prior will lead to the simplest �nal solution.
This being the case, unless we have cogent prior information which is not translationally invariant,
it would be foolish not to use a uniform prior (uniform, that is, over an interval wide enough to
include all the high likelihood region). Indeed, this would be actively dishonest, in e�ect claiming
to have more information than we possess.

In our present problem, it is of course true that our prior information need not be rotationally
invariant. Indeed, even if x and y are quantities of exactly the same kind, the mixture z =
x cos � + y sin � may be without any meaning. Nevertheless, in solving this problem we shall �nd
ourselves dealing, inevitably, with at least the mathematics of rotations in the x { y plane.

You can see from the beginning that this must be so, because with Gaussian sampling distri-
butions, only the second central moments of the data will appear in the su�cient statistic. But
the collection of all those second moments forms a symmetric second rank tensor, and its minimum
eigenvalue is found by reduction to diagonal form, always accomplished by a rotation of the coordi-
nate axes. Therefore rotations will appear naturally in the likelihood function whether or not our
prior information has rotational invariance. (In fact, we shall �nd a rotational invariance property
exactly analogous to the translational invariance with a location parameter.)

This being the case, a rotationally invariant prior will lead to the (analytically) simplest so-
lution, so unless we have cogent prior information which is not rotationally invariant, it will be
prudent, both for pragmatic and philosophical reasons, to use an invariant prior.

*************************** MORE HERE! *************************

REDUCTION OF THE RESULT

Examine the modi�ed quadratic form that the mathematics led us to:

F (�; �) � Q(�; �)

1 + �2

=
(syy � �̂2sxx) + (�� �̂)2 + 2x(�� �̂)(� � �̂) + x2(� � �̂)2

1 + �2

(43)

It is evident by inspection that this has a single unique minimum with respect to � ; by di�eren-
tiation we �nd this is reached when � � �̂ = �x(� � �̂) . So, keeping � constantly �xed at this
value, (43) reduces to

F (�) =
(sxx � �̂2sxx) + sxx(� � �̂)2

1 + �2
(45)

which looks quite complicated and unsymmetrical in terms of the parameter � . But � is a
very unsymmetrical parameter; the real sense of the modi�ed quadratic form appears if we set
� = tan � and rewrite this in terms of the parameter � . All the complications cancel out, and it
reduces magically to the standard form

F (�) = S(�) = sxx sin
2 � � 2sxy sin � cos � + syy cos

2 � (46)
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which we recognize as a second rank tensor element s0yy in a coordinate system (x0; y0) rotated an
angle � from the original one. Separating o� the rotationally invariant part, this becomes

S(�) =
1

2
(sxx + syy) +

1

2
(syy � sxx) cos

2 � � sxy sin2 � (47)

To �nd the maxima and minima of this, de�ne an angle � by

8<
:

sxy = R sin �

1

2
(sxx � syy) = R cos�

9=
; ; (�� < � � �) (48)

or,

tan� =
2sxy

sxx � syy

2R =
q
(sxx � syy)2 + 4s2xy � 0

(49)

Note that this de�nes the branch of the function so that � has the same sign as sxy , and if
sxx > syy , then j�j < �=2 , otherwise �=2 � j�j � � . Now we have simply

S(�) =
1

2
(sxx + syy)� R cos(2� � �) (50)

so the minimum is reached at � = �̂ � �=2 , the maximum at right angles, � = �̂��=2 . If the prior
for �; � is rotationally invariant, we shall then estimate � as tan(�=2) ; now let us determine the
accuracy of that estimate.

Whatever the prior, the quasi-likelihood function, which contains all the information the data have
to give us about � , is now

L(�) =

�
1

S(�)

�n=2
(51)

****************************** MORE COMING! *********************************

But although the algebra tells us this, can we understand it intuitively in a way that makes it
obvious from the start? Yes, and in fact the solution to a more general problem than the one just
discussed is equally obvious, if we look at this way. Each data point has some error which may be
in either x , or y , or both. But if we make the estimates �̂; �̂ , then the component of error parallel
to that line contributes nothing to the error in our estimate of either � or � . Only the component
of error perpendicular to the estimated line matters.

Now an error vector (ei; fi) has components parallel and perpendicular to a regression line of
slope � = tan � of

ei cos � + fi sin � =
ei + �fip
1 + �2

; �ei sin � + fi cos � =
��ei + fip

1 + �2
(52)

respectively. But these have mean square values of

�2x + �2�2y
1 + �2

;
�2y + �2�2x
1 + �2

(53)
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respectively. Therefore the quantity �2 = �2y + �2�2x generated by our integration over the Xi

was, essentially, just the mean square value of the perpendicular component of error.

Recognizing this, it is clear that we need not have considered independent sampling probabili-
ties for ei; fi ; whether the errors are in x , in y , or in both; and whatever the shape or orientation
of the concentration ellipse, only the perpendicular component of the error can matter and we shall
be led to the same result. The algebra, once we learn how to state the problem correctly, gives us
this result so fast it seems like magic.

PRIOR PROBABILITIES AND TRANSFORMATION GROUPS

The transformation group principle for assigning priors in the regression problem is quite simple.
Given the straight line equation y = �+ �x with a prior probability element

f(�; �) d�d� (54)

we formulate Problem P: Given a data set D � f(x1; y1) : : :(xn; yn)g , estimate � and � .

Now consider a related problem: carry out a linear coordinate transformation (x; y)! (x0; y0)
such that in the new variables (54) takes the form

y0 = �0 + �0x0 (55)

with a prior probability element
g(�0; �0) d�0d�0 (56)

and consider Problem P 0 : Given a data set D0 � f(x01; y01) : : :(x0n; y0n)g , estimate �0 and �0 .

Now if the two priors (54), (56) express the same prior information, it must be true that

f(�; �) d�d� = g(�0; �0) d�0d�0 (57)

or,

f(�; �) = g(�0; �0)
@(�0; �0)

@(�; �)
(58)

This transformation equation tells how the two problems are related to each other, and it will
hold whatever linear transformation we carry out, and whether or not we consider the problems P,
P 0 to be equivalent.

But now suppose that our prior information is invariant under the transformation. For example,
if x is the distance from our present location to some origin of whose location we know nothing,
then after the transformation x0 = x + a , of walking a distance a , we are in the same state of
ignorance; ignorance of one's location is a state of knowledge which is not changed by a small
change in that location.
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