


ABSTRACT

As a preliminary to a theoretical study of the ultimate limita~
tions on noise figure and fregueney stability in molecular-beam masers,
we examine the relation between guantum electrodynamics and the semi-
classical theory of radiation. Solutiens according to both theories
are worked out in detail for the case of a single molecule interacting
with a single cavity oscillation mode. Comparison of the results
shows several features which make the relation of the two theories
appear rather different than is usually supposed. For example,
according to quantum electrodynamics, even in the limit of aribrarily
large photon occcupation numbers, the electromagnetiec field can be in
physical states qualitatively different from any describable in
classical terms, and a molecule-beam maser excited by molecules all
in the upper state should produce such a conditicn.

The molecular-beam maser provides an interesting example of the
Einstein~Podolsky-Rosen paradox, arising from correlations in states
of molecule and field. An attempt is made to find an experimental
situation in which effects of such correlations are observable, but
without success.

It is shown that; contrary to what is often assumed, the semi~
classical theory of radiation can acccunt for spontanecus emission of
radiation. It leads to a characteristic time just the same as pro-
vided by field quantization, when we take into account both the effect
of the field on the molecule and the effect of the molecule on the
field. The result is a system of coupled nonlinear equations whose
solutions can be found in terms of elliptic functions. Even in the
case of field intensities corresponding to one photon, this solution
reproduces almost quantitatively the same laws of energy exchange as
found in quantum electrodynamics. It is concluded that the szemi.
classical theory, as extended here, is a far more reliable means of

calcoulating radiation processes than usually supposed.
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SOME ASPECTS OF MASER THEORY

1. INTRODUCTION

From a theoretical standpoint, maser amplifiers and oscillators
offer some of the most interesting problems in physics, There are
few situations where quantum theory and classical theory are combined
so closely in a single description. Furthemrmore, relations between
the semiclassical theory of radiation, quantum electrodynamics, and
the statistical mechanics of irreversible processes, are here cxhib-
ited in a very simple model accessible to both calculation and
expariment.

The work here repeorted (which will continue after termination
of the present contract) comprises the first stages of an attempt to
treat maser operaticn entirely in terms of quantum theory. Although
it is hoped that it will lead to useful results concerning noise
figure and frequency stability, the primary objective is a more com-
plete understanding of the theoretical relations mentioned above,
Some of what is said below applies to solid-state masers, but we
have in mind specifically the case of molecular-beam devices.

Numerous theoretical treatments of masers now exist, based on
several different types of approximations and assumptions, and new
ones appear almost every month. Broadly speaking, there are two
different levels of approximation used in theories published to date:

(A) The most common type of theory, but alsc the crudest, is the
one wherein the emission of radiation from molecules ig considered to
take place via independent and iﬁstantaneous "cquantum jumps,” whose
probability of occurrence is proportional to the product of time of
interaction and energy density of the radiation at the transition
frequency. This is essentially an application of gquantum theory as
1t existed 40 years ago. It involves little that wés not already
given in Einstein’s famous paper of 1917, introducing the A and B
coefficients. Present quantum mechanics tells us that the notion of

time-proportional induced transition probabilities is only an



approximation valid when the correlation time of the radiation is short
compared to the time required to accumulate an appreciable transition
probability; in other words, that the radiation responsible for the
transitions must be random, with a spectrum wide compared to the line
width. This condition is satisfied in most optical experiments, but
in an ammenia maser the correlation time of the radiation may be of
the order of 103 to 106 times the flight time of a molecule through
the cavity. Under these conditions, any attempt to describe maser
operation in temms of the standard transition probability formulas,
such as

2m

127 7 |y | oto) (1-1)

W
may lead to conclusions that are net only cuantitatively, but also
cualitatively wrong. Unfortunately, most of the existing noise figure
calculations are based on a treatment of this type. Of course, use
of a poor approximation does not necessarily prevent one from getting
the right answer; but one can never be sure it is right until the
calculation has been checked in other ways.

(B) A second stage of approximation, resulting in a much more
realistic treatment, is represented by the theories of Basov and
Prokhorov, Lamb, and Feynman, This 1s based on the semiclassical
theory of radiation, in which, Ilnstead of using Eg. (1-1), one
actually solves the time~dependent Schrgdinger equation for a mole—
cule, as perturbed by a clasgsically described radiatlon field. The
effect of the molecule on the field is then assumed to be the same
as the effect one would obtain classically from a dipole whose
moment is egual to the expectation value of moment of the molecule.
Such a treatment gives definite predictions for saturation and fre-
quency-pulling effects, but it is not cbvious whether even this
approximation would lead to correct prediction of the fluctuwation
effects invelved in noise figure and frequency stakility. Theories
of this type still involve many approximations, among which are:

{1) the molecules are ascribed independent wave functions, whereas
in principle one should always treat the entire system of molecules
as a single gquantum-mechanical system, by a formalism like that of

Dicke’s “superradiant gas.” (2) In principle, one should also



quantize the radiation field and consider the proklem as one of
guantum electredynamics.

It is generally thought that the semiclassical appreach sheuld
be quite adecuate for any effects at microwave frequencies, by virtue
of the smallness of the Einstein A coefficients relative to the B
coefficients. However, the relation between semiclassical theory
and guantum electrodynamics is not a simple one. Quantization of the
radiation field introduces many changes in addition to the appearance
of A coefficients, In particular, it leads to the possibility that
the electromagnetic field may be in physical states qualitatively
different from any that can be described in c¢lassical temms, even in
the limit of arbitrarily high photon oeccupation rnumbers per field
nomal node, Such states will be shown, in the calculations to
follow, to be the ones actually produced in masers under certain ideal-
ized conditions.

We approach the theory of maser operation in several stages,
starting with simple special cases for which all details of the mathe-
matics can be worked out, then adding various features which tend in
the direction of more realistic models. The mathematical fomm of the
theory is guite similar to what one encounters in the statistical
mechanics of lrreversible processes. Of particular interest will be
the extent to which the semiclassical theory is derivable from guantum
electrodynanics, and the effect of different statistical assumptions

concerning the initial states ¢f the molecules.

2. FIELD QUANTIZATION

We first develop the formalism of field guantization in a form
suitable for microwave applications. There is, of course, no need
for elegant ceovariant formulaticns here; the simple approach to
electrodynamics given by Perrm'.:L is qguite adeguate for our purposes.
Also, the usual plane wave expansion 1s not appropriate here, and in
its place we need to use the expansicon of electromagnetic flelds in
terms of resonant modes of the particular cavity under congideration.

We use the cavity normal mode functions as defined by Slater.2

1%, Permi, Rev. Mod. Fhys. 4, 131 (1982),

ZJ. C. Slater, Microwave Electronics, D. van Nostrand Co., Inc.,
N. Y. (1950}, Chapter 4,




The cavity is represented by a volume V, bounded by a closed

surface 9. Let Ea(x), kaz = (wazjcz) be the eigenfunctions and

eigenvalues of the beundary-value problem

U< V> E-¥ E=0 in ¥,

(2~1)
n>< k on 3,

where n is & unit vector normal te 5. The Ea(x} are so noxrmal-

ized that

Jf (5, - EJaV =5 (2-2)
N

The vector functions Ha(x), related to Ea by

V >< Ea = ka Ha . V >< Ha = k_ Ea , (2-3)

are also orthonormal in V:

M/}(Ha CH)AV =5 (2-4)

The electric and magnetic fields can be expanded in the form

E{x,t) = - J4q E:: p(t) E_(x), (2-5)
a

k) = VB ) g (t) E_(x). (2-6)
a

From these relations, we find for the total field energy

| _ Ez + Hz 1 2 2 2
# "'J[ an v =3 ggi {pa Ty 9y e (2-7)
and the Maxwell equations,
V<E= ~ %,%% ¢ (2-8)
E
U><n=-2%2, (2-9)



then reduce teo the Hamiltondan eguations of motion,

s = aa'f#‘ =P, . (2-8a)
pa

L. E ~

S ag_ Wa Gy v (2-9a)

respectively.
On guantization of the field, the cancnically conjugate coordinate

and momenta satisfy the commutation rules
Eqa Fqb] = [pa "pb] = 0, (210}
(4, »p.] = lﬁéab, (2-11)

® . e X L
The cperators c_, e which create or annlhilate a photon in the a‘th
f=1

cavity mode are then

p t iw g p. -~ iw g
Caﬁ - _é__“__éwé,g o = a . .. ga , (2-12)
250 VZHw
a a
with the commutation rule
*®
[ca Sy 1= éab’ (2-13)

Denote by @(nl ¢ Ny ) the state vector of the field for

which there are ny quanta in mode 1, n, in mede 2, ete. The <

2
operaters have the properties

ORI ;Jn—a‘q)(n © o n=l, e 0] (2-14)

a a

o @(n a ﬂgn 7 s = E)‘m "n +l®(u ] lgn +10 ERE “);
a a a

(2-15)
from which we easily verify (2-13), and cbtain the matrix elements in

the n, repre sentation:

{na‘ca‘na;) - (nai

3* — Fid
c_ 'na) =yn_+ 16(n‘n +1). (3-16)

The Hamiltonian, with zero-point energy ramoved, then reduces fo



4 *
A = [Z fw_ c e = E: éma n_. (2-17)
a a

Pinally we work out, for later purposes, the matrix elements of
the electric field in the case of a cyliindrical cavity with only the
lowest TM mode excited. In this mode the only nonvanishing cemponent
of E is E__ = (const.) > J (k_r), independent of =z and &,

a az o a
The normalizing constant is obtained from evaluating the integral
{2-2), with the result that on the axis of the cylinder {along which
the molecules travel in an ammonia maser), the function Eaz reduces

to
1
az J1J7F'

Here Jl = Jl(u) = 0.5191, and u = 2,405 is the first root of

Jo(u} =0, V is the velume c¢f the cavity. The operator P, involved

23]
Il

(2-18)

in the electric field expansion is, from {2-12),

ﬁwa <
P, = —g— (ca *+ o )e {2~18)

Combining {2-5), (2-16), (2-18), and (2-19), we obtain the matrix element

1
21w \2
(n|Eln’) = - — [Jﬁ'énpn,+l +Vn T 1 5n+1pnd]p (2-20)
1

in which we have dropped the subscript a, it being understood that
(2-20) refers to the case where only the lowest TM mode is taken into
account., For the matrix elements of electric field at points off
the axis of the cylinder, this expression should be multiplied by
Jo(kr).

3, INTERACTICN WITH A SINGLE MOLECULE
The simplest possible situation is one where we consider a loss-
less cavity, which has only a single resonant mode near the natural
line frequency of the molecules, and a uniform field (electric or

magnetic, whichever is the one effective in field-molecule interaction)



along the path of the molecules, BSuppose further that only a single
melecule, which has only two possible energy levels, is in the caviiy.
With the molecule~field interaction of the usual (J - A} form, it
appears that even this problem cannot be solved exactly. However,
becauge of the simplicity of the medel we will be able to treat it
more accurately than is usually done in more difficult problems,
where one resorts to an expansion in powers of (ezlﬁc}. The station-
ary states of the system {molecule + field) can be found to an accuracy
of perhaps one part in 107 for radiation energy densities up Lo the
order of those encountered in masers, by a calculation which involves
nothing worse than seolving quadratic eguations. By use of perturba-
tion theory, still better accuracy would be feasible, but this is not
attempted here,

Let the two possible energy levels of the molecule be denoted
by EH1~ , and the corresponding states by 1#m(m = 1,2). Similarly,
the number of gquanta in the field oscillator will be n, and the corre-
spending state of the field by @n(n =0, 1, 2, **°). The state vectors
WﬁQn then form a basis for the system {(molecule + field), In this

representation, the total Hamiltonian is
(mn|Hlm n?) = (Em + nﬁm)émm,énn, + (mn]Hintlm’n’} {3-1)
The interaction Hamiltonian between molecule and field is taken
of the form

=W—"e-’ _\
H o w ° B (3-2}

where |& 1is the electric dipole moment of the molecule, whose component

along i? shall have matrix elements

(m[pzim’) =pul(l -&_,}). {3-3)

b1

Combining this with (2-20)}, we obtain the matrix elements for the inter-

action energy

(mn|Hintlm‘n”) =gl -5

where



a = J;’L’.., -2-_,1@ (3_5)
J v
1
is the interaction constant. Using the value3 po= 1,47 < 10_18 esu

for ammonia, and a cavity 10 cm long, we find {(o/fw) = 2.08 >< 10-100

or, in frequency units, o € 5.0 cps.

The interaction Hamiltonian has matrix elements of two different

types: Hint =V + W, where
Vn = (1, n+ 1/VI2, n) = {2, n|VIl, n+ 1) = aln + 131/2
(3-8}
W= (1, n|Wl2, n+ 1) = (2, n+ 1WlI, n} = aln+ 1)%/2

all other elements being zero. The term V cannot be treated as a per-
turbation, for its matrix elements connect “unperturbed” states with an
energy separation {Ez - El - %uw) which goes through zero as the cavity
is tuned exactly on the rmatural line frecuency., On the other hand,
elements of W connect states with unperturbed energy separation

(EZ - El + Hw) ® 2w, Since in typical operating conditions {(n = 106)
we have Wn/Zﬁw < lO"7g we may treat W as a small perturbation, or

even neglect it entirely. We thus write the Hamiltonian as

H=H +W,

in which the temm HO = (H V) must be diagonalized

molecule * Hfield *
exactly. This is readily done, since Ho has & "block form” consist-

ing of many (2 >< 2) matrices along the main diagonal. The eigenvalues
+

N @i , are the ground

and eigenfunctions o6f Ho , defined by Hy @i = E

state

E =E =%o_, o= v, 9 . (3-7)

and, for n> 20,

=ife +5 + 2n-1mo) 2L [5, -5 - fw)? 411(12_]1/2

= tw 2 ™ By
(3-8}

E

3+
31

3D, X. Coles, et al., Phys. Rev. 82, 877 (1951).



FEH
ES
I

w2®n=l cos8 eh + wlwn sin eh

s
{3-9)
@n - =1V2®n~1 sin eh * wlwn cos eh
where
~ 20 Vo
ta.n zen - m - (Ez - El) L] {:3"’”10)

We now require the time-development matrix (irn units with & = 1)
Ult,t9) = Ult - £9) = exp[-1H(t ~ £7)] , (3-11)

for which the perturbation expansion is
~iH_t altets)m  LtfH
Ult) = e -1 J[ e W e dtf + ° o =
0

(3-12)

The major term U0 = exp(niHot) has the matrix elements, for n > 0,

wiw;t -iw;t
(2,n = U |2,n - 1) =a_ = cos & e + gin” & e
o n n n
. ot it
(2,n - LU J1,n) =b_ = sin & cos & (e -e )
o n n n
{3-13)
{1En|uo|2gn - 1) = b
-iw;t miw;t
(1,nlU |1,n) =c_=cos” & = + sin & e
o n n n
and, for n = Q,
—iwot
(1,0iU_11,0) = e . (3~14)

A11 other elements vanish. The fransition probabilility for emission or
absorption of one photon during time t is therefore, neglecting terms
in W,

t naz sin2 Bt

Ibﬂ 12 = .‘?‘s:i.’ﬂ2 2@11 Sinz(w; - w;) I R T (3-15)
2 A B



where

2
w2 = [ - (8, - B))] ¢ 4t (8-15)

The above notation has been chosen in such a way that the block form

of Ub consists of the symmetric, (2 >< 2) unitary matrices

a b
n n
( . n:lgzy-n
b ol
n

n

along the main diagonal. The first row and column, however, contain
-only the single term (3-14),

We now consider the effect on the field of passing a single mole-
cule through the cavity, with flight time <. At the instant {+ = O)
when the molecule enters the cavity, let its state be described by the
density matrix pl(O)P and the state of the field by the deunsity matrix
pf(O). The initial density matrix of the entire system is thus the
direct product p(0) = pl(O) >< pf(O)p with matrix elemets

(mn|p(C) Im'n?) = (m]pl(O}lm’)(nlpf(O)ln’), (3-17}
During the interaction, p undergoes a unitary transformation

o(t) = U(t,0) pl0) U™3(+,0), (3-18)

and the density matrix pf(t)e which describes the state of the field
only, is the projection4 of (3-18) onto the space of the field

variables:

(nlp (t)In®) =L (majp(t){mn’). (3-19)

The net change in the state of the field thus consists of a linear

transformation:

(Wpg(w)in) = )0 (nn’ |91k (klp (O [&4),  (3-20)
X, k*
oYX
pelr) = G 0. (0}, (3-21)

4This formalism is developed in more detail in the following paper;
E. T. Jaynes, Phys. Rev. 108, 171 (1957},

- 10 -~



(anf[G1kf) = ). (n|Ulnk) (n'e | Um0 o, , (3-22)
m,m? ,m”

where we have written for brevity

S (m]pl(O)lm’). {323}

The sums (3-22) are readily evaluated with use of (3~13), with the

result that thé only nenvanishing elements of G are

® 5 (3-24a)

(nnf1Glnn®) = One1 Znes1 %22 7 Cn Cnr 911
(nn’{Cln + 1,n7] = el anf+l Oy {3-24b}
(mn’[8ln,n’ + 1) =a bn%*l dgy (3-24c)
(an?[G]n,n’ - 1) = c_ bi, 9,5 (3~24d)
(nn?lGln - 1, n?}= bn cnf 91 {3-24e}
(nn'}Gin + 1,0’ + 1) =b b5 o (3-24F )
{(mn’|Gln - 1,07 = 1) = bn bnf S (3-24g)

These relations holid for all quantum numbers n if we understand that
e is not defined by {3-13), but by e, F exp(—iwot)n

To illustrate the use of this formalism, we discuss a few simple
problems using {3-24). Consider first the case where the field is
initially in its Jowest state; (Olpf{O)!O) = 1, all other elements
of pf(O) vanish. Then, according to (3-24), after a molecule with
initial density matrix ¢ has passed through, the field density

matrix has elements

2

(Olpf(r)|0) =la;|” oy, * 0y

(Olp (%) 1) = (1p(r)10)* = ¢ b.™ o (3-25)
2

(U (r)11) = b, 17 0y,

- 11 -



all other elements still vanishing. If the molecule was initially in
the lower state Ecll =1, Opg = C1g = 0], then nothing happens, and
the field remains in its ground state. If the molecule was initially

in the upper state, [022 =1, G6,, = U], we have a simple tran-

°11 T ‘12
gition preobability of Lb11' for the molscule to emit one photon in
passing through, If there was initially no coherence relation be-~
tween upper and lqwer states of the molecule, then 012 = 0, and pf
remains diagonal, no coherence between states n =0 and n = 1 can
be set up by the melecule unless there was some coherence initially
between upper and lower states of the molecule,

The expectation value of electric field aleng the axis of the

cavity, as obtained frem [2.20), is

= Tr( .2 ) :
GE> = Trlp,E) m E;; Joi+1 [En|pf|n + 1) + (n+ ilpf]nﬂ

I
i

|
=
[

2, I:: no+ 1 (n]pgfn + 1), (3-26)

This remains zerc as long as there is no coherence between adjacent
levels, even though the energy stored in the field may be large. In
the case (3-25), we obtain for <(ED,

2
s * _2a” sin Bt : ilowit/2 (
<E>>_ - Re(cobl 012) =T Re io), e ]g (3~27)

where $ is defined by (3-16) with n =1, and Q = (EZ - Ellﬁﬁ is
the natural line frequency of the molecule, If the cavity is so
tuned that its rescnant freguency w is equal te @, then AR = ¢,

and we obtain simply
s A at) : E im#] e
<E> = =F sin (?T Re jio), &, 13-28]

Remembering that «= 5 ¢ps, the term sin{at/fh) reaches its first

maximum in a quarter cycle, or about 1/2C second. This is the inter-
action time reguired for a meolecule to emit a photon, with probability

1, into a lossless cavity initially in its ground state. This shows

the great enhancement of spontaneous emission probability due to the
presence of the resonant cavity, for the same molecule in empty space
would emit with a matural line width {full width at half-maximum intensity)

of

- 12 -



ng 2
H 1077 sec=l
T~ sec {3-29)

i

fa'dh]
3he
which leads tc spontansous emission times of the order of momths at
the frequencies here considered,
If the molecule and field are in arbitrary initial stafes, the
general transformation of the field caused by passage of the molecule

is, from {3-24},

fl

(Hlpf(t)ln’) ll[ﬁn+l n’+l + llpf 0)In? + 11 + ¢ c {n[pfaO}in’ ]

% £ » .
1 “ V0 { s - ]
* O _fnﬂanﬂ(n * 1lpg(On + e b, {nlp (0} |n 11

- Yin? 1
+ 0y e Parsy (00NN + 1) + B ™ (n ~ 11p(0) [a)]

" = ’ ® o . q
+ 0,y (8180, (012 (0} I07) + BB, (n = 11p,(0) In - 1},
if the field density matrix lg initially diagonal,

(n[pf(OHn"B =p, 8 {3-31%

nnd’ &

the only nonvanishing components of pf{t} are

. 2 2 2 2
Y = ¢
(nipf(t)ln, 911 Ubnﬂl Prwr * |cn| pn‘J + 0 Danﬂi Pyt ibnl pnmﬂﬂ
{3-323
. ® " p:3 =
(nlpg(t)in + 1) = {n+ Lip(£) 1™ = oy [b jal ) )+ o bn onlr
{3.338)

which relations will ke used in the next section.

4, BUCCESSIVE SINGLE-MOLECULE INTERACTIONS
If several molecules pass through the cavity in succession, the
N’th entering as the {N~1}‘th leaves, all with the same initial state,

this generates a Markov chain,
p.(Hr) = GN p.(0) =G p (Nt - 7} {4-1)
f £ i The :

and particular interest attaches to the limiting form of Pe as N—w.

- 13 -



If the demsity matrices of field and meolecule are initially diagonal,

= = s = el
G159 = Oy = O, (ajp O} =p b, ,  (4-2)

then Pe remains diagonal for all time. In this case the entering

molecules can always be described by a fLemperature, defined by

-1
- = |
022 e} e e

x = sz - El}/kT = hQ/¥T, {4-3}
and, using (8-32), Eg. (4-1) reduces to
-1 2 2
o (i) = (5« D7 tla, 17+ lo 1550 (e - %)

|2
ntl

:

X
+ |b @ pmlmrwr)+|bJ pmeT“Tﬂ” (4-4)

From this, the limiting form of p may be found., Taking note of the
fact that Eanl2 + \bniz = |bn]2 + \cn|2 =1, we find that a necessary
and sufficient condition for a steady state, pn(NT) = Pﬂ(NT - 1) = Py v
is that the quantities

= _ 5
B =1b o - p) (4-5)

be independent of n. New [:n pn = 1, and so pﬁ—a«O as n-—+w.,
Consequently, Bn——->Og since !bnlz < 1, Thus Bn can be independent
of n only if Bn = O, and the only steady-state sclution is the

Boltemann distribution

(4-8)

for all n for which Ibnl2 # 0, TFrom (3-15) it is seen that bn
could vanish only for certain isolated special values of n.

Note that (4-6} is not a Boltzmann distribution with the same
temperature T "as that of the molecules, except in the case where
the cavity is tuned exactly to the natural line frequency., The tem-
perature of (4-8) is Tf = T/, This difference would never be sesn
in practice, for as soon as we detune the cavity appreciably the tran-
sition prcbability lbnl2 becomes extremely small, and the temperature

of the radiation would be determined by its interaction with the walls

- 14 =



of the cavity, here neglected. Nevertheless, in principle the difference
1g there, and we have an example of an interaction betwsen two systems
which maintains them at different temperatures. The origin of the
phenomenon lies in the fact that for interactions of finite duration
there is no sharp distinction between “real” and "virtual” transitions,
and, perhaps more to the point, our description of the state of the
molecules in ftems of a Temperature was not entirely justified, since
nothing was sald about their kinetic energy of translaticnal motion.
(It is this translational metion, of course, which supplies or absorbs
the excess energy so as to remove the above apparent violstion of energy
conservation. When a melecule enters or leaves the cavity, if passes
through a region of inhomogenecus field, and experiences a net force
which very slightly changes its velocity.)

In the "negative tamperature” case where the entering molecules

are more likeély to be in the upper state, o ,and x <0, The

22 7 %11
solution Bn = const. 1is still formally the only stationary one., But
it now representg an infinite amcunt of energy in the field and could
never be reached by any finite number of molecules passing through the
cavity. It is, of course, only our neglect of losses which leads To
such a result, and in practice the operating level quickly reaches a
steady value which can be predicted by adding a phencmenclogical

damping term to 5 in a well-known way.

As long as the density malrix o of the entering molecules is
diagenal, the density métrix of the field alone also remains diagonal:
the expectation value of electric field remains exactly zero in spite
of the fact that the number of photons present may be very large.

This situation raises certain questions regarding the relation between
quantum theory and classical theory. Uswally one supposes that the
condition for validity of classical electromagnetic theory is simply
that the number of photons in each field normal mode be large, and

that one may then identify the classical electromagnetic field with

the quantum-mechanical expectation value, However, here i3 an example
where in spite of the large photon numbers, no such interpretation is
possible, and the semiclassical theory of radiatiocon cculd net be applied

to describe such states,
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In almost every textbook one can find the statement that cquantum
theory always goes over into classical theory in the limit of large
quantum numbers {or, what is the same thing, in the limit h-—0)}.
This, however, may be misleading for the following reason. 1In the
limit of large guantum numbers, it 1s possible to construct welle
localized wave packets by coherent superposition of many stationary
states, and by a well-known theorem, the center of gravity of such a
packet then follows classical equations of motion. This means that,
with sufficiently large cquantum numbersg, classical béhavior is con-

tained in quantum theory as a special case, But for arbitrarily large

quantum numbers, it is still true that quantum theory allows the existence
of a great variety of possible states {such as stationary states, or
coherent superpositions representing very “broad” wave packets) whose
properties cannot even be described, much less accounted for, in
classical temms. So the mere excitaltion to large quantum numbers is
no guaranfee that a system will behave accordihg to the laws of classical
vhysics. One needs also some kind of restriction as to the type of
measurements which are to be made! for example that we will make only
such coarse observations that individual quantum effects could not
have been seen anyWay o

If the density matrix o of the entering molecules is not diagonal,
then according to {3-30) the density matrix of the field also develops
off—diagonal elements. Stated intuitively, the definite phase of the
dipole moment of the entering molecules “tells the field what phase to

&

have,” and results in a non-zero expectation value for E. This situa-
tion is an interesting one which could be realized experimentally (it is,
for example, closely related to the "Ramsey ifechnique” for obtaining
sharp rescnances). The steady-state distribution resulting from {3-30)
is a difficult but soluble problem, We will not give the details here’
because evidence will be presented later which indicates that in this
case the semiclassical theory should provide a fully reliable and more

efficient way of treating the problem.
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3., RELATICH TO 3EMICLASSICAL THEORY
One of the main objectives of this work has been to clarify the
relation between the predictions of quantum electrodynamics and the
semiclassical theory of maser cperaticn mentioned in the Introduction,
" To define more precisely what is meant by the semiclassical theory,
we write the basic equations of this approach. Here one considers
the electric field E(t) as classically describable {i.e., as a

definite, if unknown, function of time), and introduces a wave function

ylt) = altly, + blily, {5-1)

for the molecule alone, which develeps in time according to the

Schrgdinger equation

uy = (Hmolecule * hint}w, (5-2)
where
7y = .
{m‘Hﬁolecule!m ) Em bmm’ ’ (5-3)
(mIHint]mf) = mf -p ° E(t)In?} = - pu{l - 6mm,)E(t), (5-4)
Equation (5-2) then reduces to
ihd = Ela « pE{tib
. {5-5)
#h = ~ uE(tla + Eb

which describes the effect of the field on the molecule, To find the
effect of the molecule on the field, one calculates the expectation

value of dipole moment of the molecule from the solution of (5-5),

MiE) = u(t)) = ulab® + a™b), (5-6)

and assumes that the field satisfies the classical ecuation of moticn
which would result from interaction with a dipole of moment M{t).
This is obtained most easily from the Hamiltonian eguations of motion

by addition of the interaction enexgy

-M-E=+\/Eﬁapa3a(x)nm (5-7)
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to ® in (2-7), where x denotes the position of the molecule. The

classical equations of motion are now

b = AW _ qu
- - - = 7
a aqa a ‘a
(5-8)
IH
= =i = N/ s {
I3 Gpa Py * dn M Ea‘X}”

or, eliminating dg -

P+ m2 p = - V4ﬂ'm2 M E (%) {5-9)

a a“a a a "

Finally, assuming that only the single mode (2-18) is excited, the

electric field of this mode satisfies the differential equation

4ﬂw2

2
JlV

M, (5-10)

where we have again dropped the subscript a. If the cavity has a
finite {, due to wall losses and/or energy coupled out, this is taken
into account by adding a pheromenclogical term to (5-10), giving us
.. O 9 4m w2
E+—E+w E-= 3 M. (5-11)
Q Jl vV

By the “semiclassical theory” we mean the system of equations {5-5),
{5-6), (5-11). They may be given a slightly neater formal appearance
by eliminating the amplitudes a(t), b(t). The result is the non-

linear system of coupled equations

Felue vl E(t), (5-12a)
W =L HN, (5-12b)
L BTV 2 ;
1:.+-5t,+w E=3H, {(5-12¢)
where
21 an w2
K=—, §=—=—, (5-13)
il Jl v
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and

o 1, . 1 o2 2
W= Llal” v Blb [T - (B o+ 5) = 7 Relib” ~ laf’) (5-14)

is the expectation wvalue of energy of the molecule, referred to a
zero lying midway between the levels El ’ E2‘ In the form (5-12)
we have an apparently classical nonlinear system, all reference to
Touantum~mechanical” quantities having disappeared.

The first two of the eguations (5-12) admit a first integral,

2
Efﬁﬁ) ’ {5-15a)

(ﬁ)z + 92 MZ + KZ W2 = const. = ( 3

™

which is readily verified by eliminating E between tham, Ig. {5-15a!
is a highly disguised fom of the “principle of conservation of
probability,” |a|2 + ]bi2 = const. = 1. Similarly, the last two of
the equations (5=12) can be combined, in the case Q = w, to yield
the constant of the metion

(24 + o 2° 4 25(W - KE) = const, (5-15b)

which expresses the congervation of energy for the system,

tiow, what is the relationship between the system of equations (5-12)
and our earlier ones based on guantwn slectrodynamics? In order to
answer this, we note that Fgs. (5-12a) and {(5-12c} show a strong fommal
resemblance to a general operator ecuation of motion, which is obtained

by differentiating the relation i#F = [F,H]. The result is
PR ﬁ{,? [HRPJ:] = inH, F] (5-15)

which is exact Tor any operator F.

Returning to fthe guantum electrodynamics analysis, let us apply
this identity to the electric field operators F = E. The total
Hamiltonian I = (Hmol *Heioga ? Hint} has no explicit time dependence,
so the righthand side of (5-16) will vanish. To evaluate the double
commutetor, we note that Hint commutes with E buf not with [Hf.FEJa
while Hm commutes with both. Therefore

[Hg[H;,E]} - [Hf L, ] wr[z—xmjE Lo FE]] . (5-17)

These commitators are readily worked out, with the results

2 2
I:Hf [, ,,E]_] =7 w” L, (5-18)
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.2
[Hint  IE, ,,E]] = -t s . (5-19)

Therefore, a special case of (5~16} is the operator identity

[ X J 2
E+w E=8 Bop (5~20)

which is to be compared to {5~12¢). If we interpret (5-12c) as the
expectation value of (5-20), they are seen to be identical in the

limit Q —— @, provided that the expectation value of “op must be
defined, not in terms of a(t) and b(t) by means of {5-5), but as

the expectation value taken over the complete density matrix (mn|ptm’n®):

by o= Tripp ) = 2::' {mnjp lm n){mf|u_|m). (5-21)
< op o £ me op
With this change in interpretation, (5-12¢) is seen to be an exact con-
sequence of guantum electrodynamics.
Next we write out the identity (5-~16) for the case T = uopn This
time Hint commutes with “op . but not with [Hm v uopjg while Hf commut es
with both. Therefore,

[H”"EH"“op]] B [Hm ”[Hm "p’op]] * [Hint ”EHm ”Mop]]" (5-22)

Proceeding as before, a short calculation yvields the results

L2 2
[Hm JH pp,op]] =4 0w (5-23)
2 1
[Hint LH »Mop]]'h K* HE (5-24)
where we have defined an operator
He = H L (e +E) (5-25}
molecule 2 1 2 =
with matrix elements
F] 1 m
{(mn|H|m?n?) = -z—-ﬁ Q(-1) 6mm, 61’1:1" (5-26)

which is the energy of the molecule, referred to a zero lying midway
between its levels El v EZ . Comgining these relations, we find that

another special case of (5-16) is the operator identity
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) + 92 i

5 - - K¢ H'E (5-27)
op op

which is to be compared to (5-12a). This time, taking the expectation

value of {5=27)} does not yield (5-12a) in general, for in the semi~

classical equation the “driving force” term ‘appears as {HDE) , while
according to cuantum electredyramics it should be <H’E>', The differ-

ence between these quantities arises from the possibility, which exists

in quantum electrodynamics but not in the semiclassical theory, of
“correlated states.” When the states of field and molecule are uncorrelated,

the density matrix reduces to a direct product p = Py > Pe o O

{mn| pjm°n?} = (m}pmlm’){nzpf]n’). (5.28)

When (5-28) holds, it is easily shown that <H'E> = <HSHCE> ., But
if (5-28) does not hold, then in general <HYE) # (H'MXED. Before
exploring the size of this difference, we digress to consider some general

conseguences of correlated states.

6. CORRELATED STATES

To describe the situation in intuitive terms, the semiclassical
theory may be regarded as based on the assumpticn that the electric
field has, at any time, “in reality” a definite, if unknown, value.
Similarly, one imagines the molecule as being “in reality” in a definite
if unknown quantum state ¥ . However, gquantum electrodynamics allows
the possibility of states of the combined system {molecule + field},
which do not admit any such description. The stationary states (3-9)
are examples wherein the system {molecule + fieid) iz in a definite
pure state, but nevertheless one cannot ascribe any definite quantum
state to the molecule alone, or the field alone.

This situation arises in general whenever two different guantum-
mechanical systems interact, and forms the basis of one of Einstein’s
objections to gquantum theory. The famous Einstein~Podolsky-Kosen
paradox5 consists in the fact that when such correlated states exist,
one has the possibilify of predicting with certainty either one of
two noncommuting quantities of a system by making measurements which
do not involve any physical interaction with it. The molecular-bean

maser provides a particularly neat example of this. Suppose the

SA. Einstein, B, Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
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field is initially in its ground state and the molecule in its upper
state. When they start to interact at time t = O, the state of

{molecule + field) then becomes a linear combination

¥(t} = cos & ©+ eﬁiwlt + sin & §7 e—:‘mj;w1
! 1 *1 ‘ 1 *1 ¢

= alft)wz(ﬁo + bl(t)wl(,bl v

where the notation is the same as in Section 3. At time v , the
molecule leaves the cavity and continues on its way. But although
interaction hetween molecule and field ceases, there remains a com—
plate correlation between their states, for at later times than T,

molecule and field will stilil be jointly in the pure state

¥it) =g (th,0 + g lth 0, , (6-2)
where
P-iEz(t - 1)
g (t) = a, (1) exp|—— |, (6-3a)
O 1
) K
'-i{El + Aw){t - 1)
g, (t) = b (1) exp . {6-3b)
1 1 A

Now suppose we measure the energy of the mclecule by passing it through
an inhomogensous field like that in the focuser. If we find the mole-~
cule in the upper state, then according to {6-2) a “reduction of the
wave packet” occurs and the field is left in state @On If we find
the molecule in the lower state, on the ofher hand, then we know that
the field must be in state @1, Thus by measuring the energy of the
molecule, we can predict with certainty the result of a measurement

of the energy of the I[ield. We cannot, however, say anything at all
about the phase of the electric field, since this does not commute
with H_.

£

But instead of measuring the energy of the molecule, we could
decide to measure instead its dipole moment'ﬁu According tc guantum

mechanics, we must obtain one of the eigenvalues #+u of the operator popn

Now the eigenstates of uop , defined by “op>x+ = j‘uﬁé , are
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: ”W}_ . jf? {Bwmd ]

1
A
so that the wave function (5-2} can be writien egually well as

(tip glitﬁwl"

8]
i L V2o | - L J2

Suppose cuy measurement ait time tl gives the result {+yl. Then we

know that at this same instant the field must have been in the state

) (1) = =) (+ 3 1581
g, (] goitla@o + glum1f®1 p (55}

and thersefore, at any time t > v, the field is described by the pure

state

~iw{t - tl}

il = k £ { 3 - %
®+(tf gO{tlEQ * glﬁtl)(‘pl € 4 {6 7}

o]

From this, using the relations of Section 3, we [ind the expectaltion
value of electric field to be
2 . 'Lwt 3
29 iwlt

GE(D), = - 2 kelg (£ )a (£ e ]

o sin 281 J—
= e D Eos 26 {1 = zos 2PT} + 1 sin ZBT]
u L 1

i(mug}itl
e | @

- ) iw{t@tl} . 15-8)

For simplicity, let the cavity be tuned exactly on the natural line

frequency {w = Q) and checse the fime of interaction T so that
U y 7

481 = 11.  Then @i = /4, and {6~8) reduces to
g = m & i { }
@(t)}l+ =~ sin wlit - tl_?., (659}

If, con the other hand, measurement of uop at time tl yields
the result {-u}, then we know that the field mﬁstg at time by have

been in the state

9_(t)) = g (t)8, - g (£ 10, , (6-10]

4
ke
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and, repeating the above argument, we obtain instead

1

Bty =+ ﬁ sin o{t - t,}, t> T, (6-11)

1

The remarkable thing about (6-9} and {6-11) is that they still contain
tl-

the electric field to have any phase we please, except for an uncertainty

Merely by choosing the fime at which we measure p, we can “force”

of 180°1 The measurement of £ can, in principle, be carried out at a
time when the molecule is arbitrarily far from the cavity, so there can
be no question of any physical interaction which could influence the
field in the cavity.

This example allows us to see the Einstein-Podolsky-Rosen paradox
in a particulariy excruciating form. Clearly, once we have seen the
full implications of this situation, then we must give up the notion
that physical systems have ”real;” objective states which exist
independently of human knowledge, or else we must decide that quantum
theory is not valid when applied %o.such correlated states,

Modern physics is firmly commitfed fo the view that the test of a
theory is not whether it contradicts preconceived philoscphical notions,
but whether it contradicts experimental facts. However difficult this
situation may be conceptually, it will have no effect on guantum theory
unless it should prove peossible to reduce it to a question of experi-
mental fact, involving experiments which can actually be carried out
in the laboratory. |

Is there any possibility that the molecular-beam maser might
provide such a crucial test of guantum electrodynamics? This would
seem to be a guestion well worth studying. However, we have to note
the follewing. Direct approaches involving single-molecule measure-
ments, as visualized above, even if feasible in the laboratory,
probably would not have any bearing on these guestions. The reason
for this has been pointed cut many times by Bohr., The essential
thing will always be, not the mode of description furnished by guantum
theory, but its predictions as to cbservable effects, We have, it is
true, the choice of making definite predictions as to the energy of
the field or of being able fo say something about its phase. But these
are different experiments, requiring mutually exclusive experimental

arrangements.
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We could imagine an arrangement whereby after measuring energy

or moment of the first molecule, we send a secend molecule through
the cavity as a “probe” fo examine the state of the field left by
the first melecule. When the second molecule emerges, we can measure
its energy or moment, and gquantum theory will predict cerftain corre-
lations between the resulis of the two measurements, of the fomm,
"in a certain calculable fraction of those cases where the first
molecule yields a moment (+ul), we should find the second molecule to
have a moment {~u), ""° , etc.” If experiment should show a signifi-
cantly different degree of correlaticn, then of course we would have
something. But similar correlations would be expected on the basis
of almost any reasonable causal theory one might propose as an
alternative to cquantum electrodynamics, and it seems very unlikely
that any such experiment would result in a c¢lear~cut decision.,

A more promising kind of approach would appear teoc be based on
the result noted in Section 53 the semiclassical theory and guantum
electrodynamics predict different eguations of motion for a molecule
in the field. This difference, furthermore, arises just from the
possibility of those correlated states which cause the above conceptual
difficulties. Consequently, if one could find any experimental situa-
tion in which the difference between (H’E) and <HY <E> leads to
any observable difference in maser operation, this would constitute an
indirect, but very convincing, check on those aspects of guantum
theory which lead to the Einstein-Podolsky-Rosen paradox. In the next

section we look more clogely at this difference,

7. EQUATIONS OF MOTION
We have seen that the semiclassical thecry leads to the following
equation for describing the effect of the field on the state of a

molecule:

2

Meg®Me-r?ueE, (5-12a)

where M, W are the dipole moment and enexrgy of the molecule, E the
electric field, and X = 2p/. If the guantities M, W, E are

interpreted as expectation values, this is eguivalent to the eguation
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_3_2 W+ of = - X7 qa (&Y (7-1)
312 H wy =-K< . -

In guantum electrodynamics, the operator equation of motion (5-27) leads

instead to

a2

. 2
— B> O Uy = - Kz CH'ED . (7-2)
at
We now write out the right-hand sides of (7-1) and (7-2)} in terms of the
density matrix (mn|p|m?n?). From the relations of Sections 3 and 5, we

have

HD = -ész (=)" ® e 5nn,{m’n’|plmn),
m, T : '
mlani

v X

E [(2nf p|2n) - (injp|in)]; (7-3}
n .

= _a ,
<E> ﬁ { p’ [ﬁ 61’191'1’1'1 + \Jn + l 6n+lyn’]6m"} (mln Ip'mn)g
2

%% Re [:: Jn+ 1 {mn|p|m,n + 1); (7-4)

rl.lj

{H'E> {— hoa, (-)mémm,[_JH 6n,n’+l +Jn+1 6n+1,n‘]} (m’n’l plmn},

1l

-f\-ﬁ—g’- Re ; vn+1 l_izgnip|2,n + 1} - (1,npil,n + l)J .
(7=5)

It should be noted that a direct comparison of (7-1) and (7-2) is

not really justified] for the transition from (35-12a) to {7-1) is not.
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In a fully consistent semiclassical theory the variation of ¥, W, &,
would be determined from solving Egs, {5-12} instead of "borrowing”
the solutions of the quanfum electrodynamics problem as is implied
by (7-3) and (7-4). Therefore the following arguments cannot claim
full validity. It is apparent from the above equations, however, that
in general the difference between {7-1] and {7-2) could be very great.
For example, only diagonal elements of p contribute fo <ﬂ’> , while
fio diagonal elements contribute to (H'ED.

Because of thig, it is easy to invent special initial density
matrices [for example, the cone representing the field in the ground
state and an entering molecuie with 012 # 0} for which the effect of
correlations is decisive. We can have <{H'» (E> =0, but {H'ED 40
throughout the motion. However, these seem to represent idealized
cases which could hardly be set up experimentally. Realistic situations
are those where the magnitude of the field is well defermined on a
percentage basis, but with uncertainties still large compared to effects
of a single photorn for example, where all elements of (anp{m’n’}
cerresponding to n = lOBCi 103 are significantly large, other elements
being small. Under these conditions, however, the major contributions
to (B, <), and {H’E)> all come from the ssme range of guantum
mumbers, and unless there is some very fine~grained variation of elements
of p within this range {which would represent a far more detailed
state of information than we ever have in practice), it turns out that
the difference between <B?> <E> and <H’E> will be negligible.

Thus, although in principle the difference is there and this point
perhaps deserves further study, the writer has been unable to [ind any
voglistic situation in which it could become a question of experimental
fact, The results of the following section make the prospects appear
still more dubious, for we will see that the semiclassical theory
actually reproduces many of the features which one commonly supposes

can be found only with field guantization,

8. SOLUTIONS OF THE NONLINEAR SEMICLASSICAL EQUATIONS
In this section we look more closely at the system of eguations
(5-12) representing the semiclassical theory. It is convenient to

eliminate the constants K, S by the change of wvariables

- B =



x{t) = K B(t),
y(t) = K3 M(t), {8-1)
2(t) = K28 W(t),

whereupon the equatieons of motion reduce to
X+w x=1y, (8-2a)

¥+ 0 y=- gx, (8-2b)
2 = XY, (8-20)

and the conservation laws (5-15} become

o

2
(y)z + QZyH + zz = const., {8-3)

(X)2 + wz X2+ 2(z - Xy) = const. {8-4)

These guantities are not dimensionless, but involve only time. Their
numerical values will therefore depend on our unit of time. The constant
in (8-3} is

2

o’ o” 51 __ -8
—— | = 3.4 >< 107 sec . (8-5)
Eal 31 V .

Noting that (2.76 >< 106)8

unit of time as 0.36 microsecond (call it a subsecond), this constant

= 3.4 =< 10513 we see that if we choose our

becomes numerically equal to unity, and (8-3) becomes

(3}}2 + 92 y2 + z2 =1 subsec_s,, (8-5)

i,e,, the projection of the orbit onto the space of §, Qy, z always
lies on the unit sphere. There is no limitation imposed on numerical
values of the field x, but the amplitudes in typical maser operation

(n ,<wlO6 guanta) correspond to

21 2 4 -1 -3 -1
| x| £ — 5 = 3.3 > 10" sec ~ = 3 > 1C 7 subsec
il J; v
1

(8-7)
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Therefore, since |§l < 1, we see from (8-2c) that =z will always be
slowly varying: under the conditions of interest here, any appreciable
change in 2 can take place only in times of the-order of tens to
thousands of subseconds.

We thus have a very convenient time scale for our problem, for
the freguencies (w/2m), (Q/2n) are about lO4 cycles per subsecond,
and the flight time of a molecule through the cavity is of the order
of 1000 subseconds. On this time scale, the oscillations of field (x
and dipole moment (y)! are still very rapid, while secular changes due
to their interaction are very slow. DBecause of this clean separation
inte fast and slow changes, one might hope to get & fairly complete
understanding of the solutions of {8~2) in spite of their nonlinear
character.

The simplest approximate soluticn is the one wherein we ignore
the ftime variation of =, thereby converting the problem inte a linear
one, similar to the case of two coupled pendulums, The two normal
modes are found by assuming that =x and v have a comuon time factor

explivi); if =z = comnst., the Egs. (8-2a}, (8-2b) then reduce toc

w? - Vet -V ez =0, (88

or

2 2

N Sy %~\/(w2 iy Rt (8-9)

We see here a new feature, not present in the case of coupled pendulums:
if z > 0 and the cavity is luned so closely to the natural line fre-

quency that

2

[ ™ - oC 1< g Jz, {810}

the sguare root in (8-9) becomes imaginary) one of the normal modes
grows exponentially, the other decavs.

Now an oscillaticn of growing amplitude represents energy being
transferred from molecule fo field, and therefore we see that, con-

trary to what is usually supposed, the semiclassical theory does

lead t¢ a prediction of spontaneous emission. Since =z 1s just the

energy of the molecule, in unconventional units, we see that the con-

dition for existence of unstable growing oscillations is that the
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molecule’s wave function ¢ = atyy + bw2 mst contain more of the upper
state than the lower: ibl2 > {alzn

We work out some further details for the case that the cavity is
tuned exactly on the natural line frequency. w = L. Then {8-9} reduces

to
vii=w o+ 1 Vz, {8-11}
or, tc an extremely good approximation,

ivz
2w

v =Wt . (8~12)

If we start with the molecule nearly in the upper state, then gz =1 subsecm43

and the amplitude of the field varies like

N iwt
exXp 50 e

= exp(% eiwta (8-13)

where o is the interaction constant defined in Bg., (3-5). This is to
be compared to the result (3-28) describing spontaneous emigsion according
to gquantum electrodynamics. It ig seen that although the two apprroaches

lead to equations of different functional form, they predict exactly the

same characteristic time (Afq) for spontanecus emnission,

This appears to be cne of the most important results of the work
here reported, and it shows that the relation between cquantum electro-
dynamics and the semiclassical theory of radiation is of a quite different
tvpe than is wsually assumed. Physically, it means that when the molecule
has any dipole moment different from zero, the fields set up by this
dipole react back on the molecule and change its state in such a way
that energy is delivered to the field, as long as =z > 0. These linear
relations, of course, cannot hold indefinitely. From the conservation
law (8-8) it is clear that when the amplitude of the v oscillation
increases, the magnitude of =z must decrease, and this will eventually
put a stop te the emission process.

For a gualitative picture of the secular changes in the case w = Q,
we may consider the orbits in the (iﬁ wx) plane and in the {y, wy)

plane, as in Fig. l.

w 30 -



FiG. l.-=Closed orbits in the phase space of the x and v
oscillators. The dots indicate that the =z motion is 9C
ahead of the vy motion in phase.
- : . . N -6 . .
Noting that =xy 1s fvpically about 10 times smaller than 7z, the
conservation law (8~4) reduces, in almost all cases. to

e .2 z 2 fo g
(XEZ +wx b 2w = const., n8-14 !

s

which shows that when 2z increases, the orbit in the €§H wx) plane

must shrink, and vice versa. Similarly the conservation law {8-8! shows
that if |z]| increases,the y-orbit must shrink, and vice versa, There-
fore the direction of all secular changes is detemmined by the sign of

e

z and 2z ., In the equation =z = xy we can for all practical purposes

replace xy Dby its average xy over one cycle, since we are interested
in the trend of 2 over time scales of many cycles, rather than small

rapid fluctuaticons whose effect averages to zero over a oycle. Secular

changes in 2z thus depend only on the sign of x§n

Fow whenever the x motion is advanced in phase over the v motion,
we have ;§-> G, In this case, 2 will slowly increase, and the x-orbit
will shrink. The y-orbit will then grow if =z < 0, shrink if =z > Q.
If the ¥ moticn is advanced in phase over the x motion, all these
secular changes are reversed, Thus the situation may be summarized by
the orbit diagrams of Fig. 2. The situations depicted in the colwnn
labeiled =z > O are just the growing and shrinking normal modes of
g, (8-12).

Whenever the x-orbit is expanding, energy is being delivered from
the molecule to the field, and the necessary and sufficient condition

for this is that the vy motion be advanced in phase over the x melion.
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FIG. 2.--Secular changes in orbiis for the
four combinations of signs of xy and =.
Thus in order to understand the long-time course of events,
we must study the secular changes in relative phase of x arnd v,
To this end, introduce the slowly varying complex amplitude X, Y,
defined by

%+ dox = X(t) ¥, (8-15)
v+ iy = Y(t) &¥F, (8-16)

If we regard the above orbit diagrams aé complex planes, the quantities
depicted are just the complex numbers (8-15) and (8-18). Noting the

properties
()% + o® & = IxP, (8-17)
Yot x =X elwty (8~18)
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and similarly for Y, we can write the equations of motion (8-2) in

the form:

21w = Y - Y o1AWE (8~1%a)
2iw¥ = ~z[X - X e“lzw?]v (8-190)
Aiws = XV - XPy e xy LROT | gEgE i20t (8-19c)

Il

which are exact for the case w© 2. The conservation laws become
simply

T+ 22 =1, (8-20)

IX12-+ 2z = const. (8-21)

Now the quantities X, Y are slowly varying functions of time,
and agaln it is their average change over many cycles, rather than the
very small rapid fluctuation at freguency 2w, which interest us.
Therefore the oscillating terms in {8-19) may be dropped, since their
average over a ¢ycle is negligible compared to that of the "DC” terms,
The system of equations determining secular changes of both amplitude

and phase is therefore

210X = Y, (8~22a)
2i0Y = —zX, (8-22b)
Ligy = X7 - Xy, (8-22¢)

It is readily verified that the conservation laws (8-20), (8-21)
are exact consequences of (8-22)., Differentiating (8-22¢c} once more
are making use of the conservation laws, we can eliminate X and Y,

obtaining the equation

4&2 % - 3z2 + 2az + 1 =0, (8~23)
where 2a = IK12 + 2z 1is the constant of the motion (8-21), A first
integral of (8-23) is obtained immediatelys

Zﬁ(%2—~£-+ag-bz=cmwtu=cy (8-24)

which has the form of the Hamilton-Jacobi equation for motion of a

particle in a particular potential well. For any motion in which
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either of the points z =+ 1 1is accessible, we have ¢ = a. To see
this, note that if {z| = 1, we have ¥ =0 from (8-20), and hence
z = O, But then (8-24) reduces to & = ¢, For any such motion, the

cubic polynomial in (8-24) factors, and the solution is

d=z

& z{t)
wxfg-mL/CEO) VIl + 2}1 - z){a - z) u

The z-motion is therefore periodic, between turning-points represented

(8-25)

by singularities of the integrand. If a > 1, these turning-points
are at z =+ 1, while if a <1, they are at 2z = -1 and =z = a.
Noting that the condition for the total energy stored in the field to
be just Hw is that IXI2 = 4, we see from {8-21) that

=n ot 1 (8-26)

where n 1is the number of quanta in the field when the molecule is in
its upper state; therefore (n + 1)} is the nuﬁber when the molecule is
in its ground state. There is in this theory no restriction of n +to
integer values.‘ The smallest value which a can attain is represented
by gzerc energy in the field and the molecule in its ground state, or
(n+ 1) =0, (When n <O, this of course means that the total energy
is insufficient for the molecule to get into its upper state, and this
is the physical reason why the turning-point of the z-motion then
occurs at z = a).

The integral in (8-25) is one of the standard forms defining
elliptic functions. Using the standard notation sn(u,k}), the

solution for the case n >0 is

vn o+l

_1{[z(0) +1 1 } {
¢ F sn v 8-28)
2 Vn+l

is the initial phase of the motion. In the limit of large n, the

9 _at 1
z(t) = ~1 + 2 sn” |yn+ 11—+ Q, ——e— |, {8-27)
A

where

elliptic functions approach trigenometric functions, as is seen most
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easily directly from {8-25}, If a >> 1, then {8-23) reduces to

1

t 1 d/’ dz
o = sin
UJQG; J:; 1 - = va;

w1 B
z{t) + const.,

[« 4
() = sin(z R @) u (8-29)

The case a =1, n =0 is a special one, for the integrand of
{8-25) then develops a first-order pole at =z = 1. The solution {(8-27)
is still valid but it is no longer a pericdic solution, for snflu,l)
is qualitatively like tanh u; it apprcaches + 1 asymptotically as
u—>+ . This represents a case where Lthe energy in the field exactly
disappears just as the molecule gets into its upper state, and the

"

final stages of the solution {8~27}) then represent the “shrinking normal
mede” of (8-12), where X is 90° ahead of Y, (This phase relation is
in fact maintained throughout the part of the motion (8-27} in which =
increases? throughoul the decreasing part, X is 90° behind Y).

The point =z =1 is a metastable point of the orbit in this case,
for if we start out with exactly the initial conditions 2z =1, L = Y = C,
then nothing happens? all time derivatives remain zero, and the molecule
does not emit. However, if there is the slightest change in this
initial condition, the growing noxmal mode of {8~13) will be started up
funless the phase relation between X and Y happens to be exactly
the value for the pure shrinking mode), and eventually the energy of
the molecule spills out entirely into the field when we rsach the
lower turning point 2z = ~l. The molecule then reabsorbs the energy
Aw from the field, passing back to the metastable point =z = 1 accord-
ing to the solution (8-27}, but requiring an infinite time to do so.

The constant of integration ¢ in (8-24} is related to the
relative phase of the X and Y motions, and other values than ¢ = a,
as in (8-25), lead to more general solutions. To show this, note that

at =z =0, (8-22¢c) and (8=24) combined give

t? ()% = 20 = | I P = (X PIY P sin® 8(0), (8-30)
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where ©(z) is the relative phase of the X and Y motions, at a
time when 2z has the specified value. But in the case 2z = 0, the

conservation laws give JY‘Z =1, |X|2 = 2a, and therefcre

c = a sin2 &{0), (8-31}

For arbitrary relative phase angle &(0), the turning points of

the =z moticn are the two lowest roots of the eguation

3 2 .
z —-az ~z+c={gz - zl;(z - 22)(2 -zl = 0, (8-32)

or

(1 - zz)(a -~ 7) = a cos2 &0}, {8-33)

Let us order the roots so that =z

1 Then, if a > 1 and

< 2, X3

a 3°

¢ < a, we have the relations

~l <z <2< Ze, <l<a<zm

1 {8-34)

3 2

and z oscillates periodically between zy and Zg The molecule
never gets entirely in the ground state or entirely in the upper state.

The solution z{t) is a generalization of (8-=27):

7 - 7 Z, = 2, ol 2, ~ &
/_____;.zsn[f_g___@.,_wa /_a_._._l_l (5.35)
Zo = 2 2 A Zg =~ Zl

1 -

which again approaches a sinusoidal oscillation in the limit of many
quanta, a >> l.

For arbitrary values of gz, the relative phase of the X and Y
motions is given by combining (8~30} with {8-24) and the conservation

laws, with the result

{z - 2,0z = z2,)(z - 2,)
sinze(z) = 1 2 2 . (8-36)

(z + 1i(z = 1){z - a}

This reduces to the value &{z) = + 90° as previcusly noted, in the
case ¢ = a,

Te summarize the above resulis, a close analysis of the semiclassical
theory for a simple special case reveals many unexpected and remarkable

features. It is usuwally supposed that the semiclassical theory of
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radiation cannct account for spontaneous emission; indeed this belief
was historically one of the main reasons for introducing fleld guanti-
zation, However, we see that when we take into account simulianeously
both the effect of the molecule on the field and the effect of its
radiated field reacting back on the melecule, we are led to a nonlinear
gystem of coupled eguations whose zolutions are readily found, and
which exhibit almost all the properties usually associated with field
guantization.

In the above analvsis the semiclassical theory has been put to
a far more severe test than would be the case in practical maser
calculations, and it has met the test very well. Hven in the case of
field intensities corresponding to one or two guanta, the semiclassical
theory gives solutions reproducing almost guantiltatively everything
that ig found in the cuantum elecirodynamics analysis. The character-—
istilc times of interaction processes turn out just the same. The
"gquantum jumps” are still with us, but they now appear as perfectly
contimious processaes, where an inshablliity develops in the soluticn of
the nonlinear ecuations and an amount of energy 4y is more or less
rapidly transferred between molecule and field.

The semiclassical analvsis gives a very interesting description of
the process of spontancous emission. Consider a large number of molecules,
as nearly as possible in the upper state, In practice, we cannot prepare
them exacily in the upper state, but fthere will be a certain prchability
distribution of initial wvalues of amplitude for the growing normal
mode. A molecule with an initial value Y+{O}‘willf at time t, have
a Y amplitude of

s aty .
v,00) exp(E) = v (1) .

ES

Let us agree to say that when this reaches the value ¥, the molecule
is actively emitlting energy., The, no matler what the probability
distribution of initial wvalues, provided only that this distribution
is & continuous functicn in the neighberhood of the metastable state
z = 1, we find that the number of molecules emitting at time t is
porportional to exp{-20t/R}. Thus, the “law of radicactive decay,”

or "time~proportional transition probabilities” appears in this analysis
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as a simple consequence of the existence of metastable states. The
time ceonstant of the decay law is indeperndent of the method of prepara-~

tion of the molecules, and depends only on the interaction constant
with the electromagnetic field. The situation is exactly like that

of a large number of pencils nearly perfectly kalanced on their points.
The time required for any one pencil to fall over depends on how close
it was to vertical at time t = 0. If the probability distribution

of initial states is continuous in the neighborhood of this metastable
point, then we have a decay law with a time constant which depends
cnly on the laws of mechanics, not on the method of preparation of

initial states.

9, CONCLUSION

The above analysis 1s evidently no more than a very preliminary
survey of the relations hetween different theories which might be used
in studying the ulfimate limifations imposed by c¢uantum theory on the
noise figure and freguency stability of molecular beam maser amplifiers
and oscillators, The limitation to a single molecule in the cavity is
easily removed in the semiclassical theory, but with more difficulty
in the quantum electrodynamics analysis. For example, the energy
levels in the case of two molecules present invelve soluticn of a
general cubic equation, for three molecules we have a quartic equation,
ete. Analyses of the type gilven in Section 3, therefore, are quite
impractical in the case of a large number of molecules. However, the
following reasoning shows that there must be some as yet undiscovered
way of circumventing this complication.

Even though a complete theoretical discussion would reguire in
principle keeping track of perhaps lOlolo different rparameters, the
purpose of the theory is only to predict the values of three or four
guantities which are to be measured. Therefore, it must be that
the overwhelming majority of the microscopic parameters are irrelevant
to the particular predictions we are after. If this were not so, the
experimental measurements could not be reproducible, for when we
repeat an experiment, we surelv do not repeat all the details of lOlOlO
different parameters, In other words, a form of statistical mechanics
must be applicable, in which we calculate averages ever all possibkle

microsgopic conditions which conform to the knowledge we have of the
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gtate of the system. Any quantity which emerges from this treatment

with a very sharply peaked probability distribution must have practically
the same value for each of the possible microscopic states, and this
value can be predicted with confidence without having to go into micro-
goople detalls. Viewed in this way, the maser preoblem becomes one of

the thecry of irreversible statistical mechanics, and thls approach

is now belng pursued.

The unexpected success of the saniclassical theory, on the cother
hard, suggests that it may provide a much more efficient formalism for
handling such problems. The introduction of many molecules, cavity
losses, etc., is easily accomplished in this treatment, and the same
statistical considerations just mentioned apply equally well. There
seem to be excellent grounds for expecting that this extended semi-
classical theory wonld reproduce every feaiure of experimental
gignificance which could be found in the guantum electrodynamics
analysis.

The relationships demonstrated here between quanfun electro-
dynamics and the semiclassical theory of radiation evidently carry
implications far beyond the field of maser theory. Almost any example
of the interaction of matter and radiation would seem tco be tractable

by thesge metheds.
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