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SECTION I: BASIC CONSIDERATIONS

I. Introduction

The following is an exposition of a method of finding solutions
of the Bloch1 equatlions for the case that the applied signal has a constant
'frequency and a stepwise consbant amplitude. It has the advantage that
formal solubtions are carried out in matrix notation, where one can keep equa~-
tions in reasonably neat form. Details are worked out anly at the end of a
calculation. Although it is probably true that no solutions can be found
by matrix methods that could not have been found without them; the saving
of labor due to the condensed notabtion makes a wider range of calculations
feasible. In addition, the mgbrices have geometrical meanings that can be
. followed intuitively, so that one does not lose sight of the physical meaning
of terms in the equations. In the analysis to follow we have in mind principally

the elucidation of echo phenomena2 resulting from applied pulses.

The Bloch equations will be taken in the form

M+M'__—.Tﬁ= Y x 1) (1)
in which we have assumed Tl = TZ' Choose a coordinate system rotating aboud
HO with velocity ew { = frequency of applied radio frequency). Then the time

derivative of any vector A in the laboratory system is

dA | 9A wWx A (2)

at 8t
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where the partial derivative is the rate of change as seen in the rotating

system. In the rotating system the equation of motion is therefore

I¥ M- XH
__+___2=Mx(fﬂo+w>+r(Mle) (3)

2t T

where H1 is a vecltor at right angles to HO)7 which is constant during' a pulse,
zero between pulses, In other words, Hl is the component of the applied

field rotating with the coordinate system. The component rotating in the

other direction is neglected.

11, Steady-state Solution

% = 0, and (3) is a linear algebraic

equation for M., If we write out the components it is readily solved by de-

For the steady state we have

terminants, and the result summarized by the following lemma. The solution

of M+ (B x ¥) = A, can be written in the two forms:

_A+BB-A)+AxB

1+ B°

M

(L)

=(AXB)+(AXB)XB+A
1+ B

Yage 2L



In our case,

A=2H
(5}
B=T(YH+ c)
so that the steédy-state pclarization is
2
(I xH )+ TEH (YH - cw) - YTHH
M=IHO+XT3’ 0 12 1o 02 [2201 (6)
1e1? [(FH - w)+ ¥ :{
which contains the usual expressions for the u- and v-modes.
TiI. General Formslism for Transient Solutions
The equation of motion has the form
IHO
\ 277
oM, M, B xu =4, with ' (7)
at T
B= ¥H+ w

which is a system of three coupled linear equations with constant coefficients
if the amplitude of the signal is unchanging. If M were a simple scalar this
would be easily soluble, and in fact would be so even if the "driving-force"
4 were ar arbitrary function of time. If all quantities are scalars and

@ = constant, the equation

oM,

M=A
ot (8
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has the solution

s Y A') at' (5)

However, if we interpret M and A as vectors and 4 as a matrix, (8) and (7)

actuglly are identical, if we take /6’ to be the matrix

1
7 -BZ By
1
Bz 0 _BX (10)
1
"By By T

Thus we are led to conjecture that (9) may be the correct solution of the
matrix équatioﬁ, provided the exponential of the matrix is interpreted as
the corresponding power series, and a short calculation shows that this is
actually the case. Therefore, we can give a rigorous solution of (7) in closed
form for the case B = const., provided we can evaluate the matrix exp( - /St).

[ The restriction B = constant can be removed if the values of /6 at different

times commute, leading to the need for evaluating exp( - j,ﬁ dt)_-[ .

This evaluation, although possible, is hard teo do for the particular
matrix (10), because its characteristic equation does not have any vanishing

terms. Fortunately, a change of variables in the original differential

Foce 4



equation leads to a simpler matrix. DSuppose we take as the dependent variable

the vector
v - uet/T (11)
Substitution into (7) leads %o .the differential equation
ELE W (12)
and we have eliminated the term in (1/I) at the expense of introducing a

time dependence in the right-hand side. Equation (12) has the form of (8),

in which the matrix g reduces to ‘

8] -B B
z v
/@ = B, 0 -B, (13
-B B 0
v X

instead of (10). It is now easy Lo evaluate exp(—ist) by making use of the

Cgyley-Hamilton theorenm according to which every mafrix satisfies its own

characteristic equation. This is

k =
CkA 0

Ve
O

det (- AJm)=

Pace 5



and in our case it reduces to

A%+ pPA =0
2 2 2 2 . : o .
where b~ = Bx + By * B, Thus, our matrix satisfies the relation
R~
/53 = (1)°5 (1h)

whence, by induction

pY = (10)? 2
(15)
5~(. 2,3 _ .k
A7 = (i)" g7 = (ib) £ s ete.
Therefore the power series
2,2 3.3
t )
e-ﬁt=1-f5t+is qi* t o, (16)

can be reduced, by repeated application of (14), to a linear combination of

B /32, and the unit matrix, Substitubing (15) into (16), we have

T LAt sin bt 1 - cos bt 2
&= F =1—T/6+—;2—/5 (17)

in which the power series for sin and cos have been recognized. As a check,

the relation %f (eu’Bt) S /Be“’Bt is easily verified,

“Pace ©



The formal problem of evaluating exp( - /@t) may be regarded as
solved by (17). However, in order to understand our later solutions physi-
cally it is necessary to examine the geometrical meaning of the various
matrices. Comparing {12) and {13}, it is seen that multiplying a vector by
/6 is equivalent to taking the cross-product with the vector B, Symbolically,
B = Bx. Therefore, as € —> 0, the matrix (1 - € &) represents an infi-
nitesimal rotation about the vector B, through an angle € |B] = € b, and the

exponential, which is the limit of an infinite number of repeated infinitesi-

mal robations:

&= AY < 1im (1- ep yb/e
€0

represents a robation sbout B through a finite angle bht = (A w 2, Qolz)l/zt9

where A\ @) = fHO - w. To see this matrix explicitly, we méy write out

(17), with the result

(w12+ A w? cos bt) b A\ co sin bt wlAw(l ~ cos bt)
o Pl 2‘—2 b /\ ¢y sin bt bg cos bb ba)l sin bt (18)
b
wl,Aw(l - cos bt) —‘bcu:L sin bt (Awg + w12 cos bt)

It is readily verified that this is an orthogonal matrix with determinant

+1, and so represents a rigid rotation.

‘PocE 7



Now, from (9)3 (12), (13) we can write down the solution

b
V(1) = &= B v(o) + o A=) BT gy

or, reburning to the polarization as our variable,

Wt) = e M(o) + A at' (19)

~(F 8% o jt R RPIC

O.
=
But since the vector A is a constant, it may as well be taken outside the

integral sign (but to the right because there is a matrix to its left), giving

the very simple formal solution
- - -
M(t) = A(%) Mo) + u(t) 4 (20)

where we have defined two new matrices,

(21)
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A is the product of the rotation matrix (18) already discussed
and an exponential damping factor exp(-t/T). Therefore A(t) operating on
any fixed vector results in a vector that rotates sbout <§' with angular
velocity b = l:( vH - cu)z + a)lg:l 1/2, at bthe same time shrinking in
magnitude so thab its tip describes a spiral on a cone, as illustrated in

Figure 1. This will be called the A ~cone,

FIGURE 1

The A -rone,
Locus of the tip of
the vector A{t)A
as { varies from
O to oo

Formal evaluation of m(t) by substituting (17) into (21) and
performing the time integration is tedious. For the lime being we can avoild
this by exhibiting /u(t) as a function of A(%t). This is possible because
of the fact that the usual formula for inbegration of the exponential function

applies to matrices as well as scalars, so that we have

5 1 1 1
-+ 8)b (5+41
j eT/é dtrz(}_+/ﬁ)-l 1-eT’ﬁ
0

L) = 7

, (22}
- (g gt [1- A(t)} - [h /\(t)} g+ £

Pace 7



In the last step we have noted that since A(t) and (% + /5)m1
are both functions of the same matrix (% + f3)s they must commute with

each other.

IV. Response to a Steady Signal Applied at Time Zero

Substituting the last form of (22) into (20), we have the solution

in a very convenient forms:
M(s) = Aly) [M(O)— (3 + p)"‘la} + (e B (23)

This represents the response occurring when the signal is turned on at time
t = 0, and left on for all time. The first term represents a transient that

dies out along the A-cone leaving the steady-state value
1 -1
M) = (F+ £)T A (2L)

As & check on the calculation thus far, we note that (24} should
agree with the steady-state solution already found directly in Egquation (6).
To verify this we need to evaluate the inverse of the matrix (% + /3), Since

it is only a 3 x 3 matrix, this is not too difficult to do by determinants;

The result is

Face 10



B, J B
BB+ — BB, -+
Xy T \X P
L 2 Bx
-— + B BB + = 2
=z T (25)
B 1
BB - - —§+B2
yZ T o Z
IHO ©
A= — 0 (26)
T

and we nobe that the coordinate system is so chosen that the applied magnebic

field Hl lies on the x—axis, meking By = 0, Combining these results, the

steady-state solution (24) reduces to

B B
%X Z
JCHOTz B,
(o0 = —25 = (o)
1+ bor@ T
1 2
= + B
T2 7

or, returning to the usual notation,

Pace |



z
ml( XHO -cw ) T

Q

Iglx(m) = TH
1

¥H T
M (o2) = XH (28)
7 e1s1? (7, - @) s TH T
) 1+(b’HO—a))2T2
K (o0) = XH
Z 04 4 7% [(a’HO.nw)2+ {EHIEJ

This agrees with Equation (6) and with Equation (57) of Reference 1 for the
case 1, - TZ" MX(OO) and My(oo) are respectively the u, or dispersion mode,

and the v, or absorpbtion mods,

The initial value of the transient term in (23) is just the departure
of the initial polarization from the steady-state value, and since Al%) is
a sort of matrix analogue of an exponential damping factor, the general form
of the solution is unexpectedly simple; in matrix notation it is exactly like

the formula for exponential build-up of voltage in a simple RC circuit,

We now work out the explicit expression for the transient term
A(t) [M(O) - M{oo) :! . This can be done algebraically using the expression
{(17) for A(t); or it may be reasoned out gecmetrically from the picture
of the A-cone in Figure 1. Putting [M(O) - M(oo):l =N for brevity, the

result in vector notation, is

TFace 1L



Ao = /0 §—L§§¥ll * {Mﬂ - §—£§églli} cos bt
b b
(29)

1
u'x B sin bt

The compubation of (29) is especially simple in the case where we
take the initial polarization as the quiescent state of equilibrium under

the action of the siteady poiarizing field HO:
¥(0) = XE_, (30)

for in this case the scalar product (B.M') vanishes, and the A-cone reduces
to a disc at right-aagles to B. (In general we have B.M(09) = ITHO New.)

The transient term then reduces to
-~ t
A M= T 3 M cos bt + M;BELE sin bt z (31)

Intermedi ate results needed in evaluation of (31) are

AR,
1

w s —2s -1 (32)
1+ por?

XH w.T
o

Cle

Pace \3



XH ¢ T
Mt x B = —2© B2T (33)

1+ borl

sin bt + BT cos b = (1 + b212)M2 sin(ut + @)
(3L)
cos bt + bT sin bt = (1 + 62212 cos(bt ¥ 6)
where tan 8 = bT, Combining these, we have for the transient
~ A wsin(bt + 8)

xHowlT e—t/T
A(tMr = NV -b cos(bt + 8) (35)

b(1 + b°T7)

., sin(bt + 8)

1

This expression is valid in the rotating coordinate system; in
the lsboratory system the A-cone is rotating about the z-axis with angular

velocity e, and so we have the further transformation to carry out:

(Aur), = (0(s) (Aur) (36)

rotating

where [1{%) is the matrix

Pase 14



cos cot + sin ot O

N(t) = ~ sin et cos awt 0 (37}

which represents a rotation about the z—axis through an angle wt. Thus,

the transient in the laboratory system is

1 =
(AMY) o
(38)
-\ ein{bt + B)cos b - b cos(bt + 8)sin wt
XH wlT e_t/T
2 55072 A wsin(bt + 8)sin @t - b cos(bt + 8)cos wit
(L + bT)™ .
cwy sin(bt + &)

Remembering that eo >> b, we see that the output signal, proportional to the
y-component of (38} can be described as a signal of frequency co whose ampli-
tude varies at the nutation frequency b, the ripples also dying out according
to exp(-t/T), To get our final expression for the signal amplitude as a func-
tion of time, we must convert the expression (28) for M{o0) to the laboratory
system with the /L matrix and then add the y~components of (38) and the re-

sulting vector. The steady-state solution in the laboratory system is

Tace 15



Luceo )| |y = (39)

wl AwT2 cos ewt + . T sin wt

1
)CHO 5
(%) [M(Cx’):[rot=——'—2-*§ —CdlAc;)T sin wt + o,)lT cos et
1+bT

(1 + A\ wr?)

Adding the y-components of (38) and (39) we find that the cutput signal is

IH T
[M(t)] b=—-9--§3-‘-2- [coswt—-AwT sin wt}
y oS lab g e .
(Lo)
AH . T
+ 02 32' 172 e_t/T [/_\.wsin(bt + @8)sin cot - b cos(bt + 8) cos th
b(1 + b°T)
In the case of resonance {Aw = 0) and powerful driving field
(wlT >> 1) this reduces to l
M = XH A e_t/T cos{eu,t + 8) cos wi {L41)
¥ ° T =

In this case, although the final ampiitude is small, the time required for

saturation to develop 1s many relaxation perieds.

Pace /6



V. General Formalism for Coherent Pulses

With the Solution (20) we can construct the response to a train of
pulses as follows (see Figure 2). Initially, the polarization has some ar-
bitrary value M(0). Then a pulse is turned on for a bime tl, At the end
pf the pulse, the polarization is given as M(tl) by {(20). For the next
period t2 between pulses, this value of M is used as the Initial condition,
and the Solution (20) gives M(tl + tz) = M(7 ), the polarization just at the
beginning of the second pulse. This value of initial pelarization is then
usea as the initial condition for the third period, giving the value of
M(t1 + 77 ) just at the end of the second pulse., This can be carried on
indefinitely, and cne sees that by repeated applicabtion of (20) we can get
the response to any signal whose frequency is constant and whose amplitude

varies as a step-function.

[A]

>

0 % ' .+ T ol

FIGURE 2

Train of Coherent Pulses

Pace 17



Clearly, however, if this process were carried out in such a direct
manner, the amount of labor involved would be enormous, and the resulis so
complicated that one could not understand them. In order to get the answer
at all, a more elegant method is needed. First let us work out from (20)
the relation between polarization at times separated by one repetition period
of the pulses. This will provide a difference equation which we might hope

to solve,

Let M = M(n T) be the polarization ab the start of the n'th pulse,
and Ml o= M{n T + tl) the polarization at the end of the n'th pulse., We
wish to eliminaﬁe M; ; and find Mn+1 directly in terms of Mn’ The subscript
1 denctes a function used during a pulse; 2 denotes the period between pulses.
The matrices A and/;t have different forms during and between pulses, be-
cause b and B have different values depending on whether the signal is on or

off. Thus, {20) leads to

M= Al(tl)han + /fl(tl)A

(L2)
M, = ,12(*1;2)15;l + /{2(1;2)@.
and eliminating M! , we have
In
Mo = Ap A u + (A 0+ Ak
(L3)

=0(Mn+Q

Yogr 18



The important thing is that the matrix
(tl+t2)

S S S e
o= A, - e/ﬁzz . Arb . T ()

and the vector

&£
i}

(A, + ok (4s)

are both independent of M, so we have a very simple linear difference equabicn.

The solution can be written down immediately:

Moo=t g +L—0q (L6)

where the first pulse is called the zerotth, and we see that the steady-state

condition, reached after a large number of pulses, is just

M_ = ——Q (h7)

for the polarization just at the beginning of a pulse. (Since all the

eigenvalues of o are less than unity, we have lim x™ = 0), Equation (46)
n— o0

gives one a good over-all picture of the situation. The quantity in brackets
is the departure of the initial polarization from its steady-state value, and

each succeeding pulse reduces this "error" by the same factor (.

TaceE 19



The Solution {L6) may be interpreted geometrically in a manner
analogous bo the picutre of the A-cone in Figure 1, According to Equation
(LL) the matrix o is the product of an exponential damping factor and the
two rotation matrices exp(mfﬁztg) and exp(-wﬁltl). Now since all rigid
rotations form a group, the product of any two robtabtions sbout different
axes is equivalent bo some rotation about a third axis. Therefore the matrix
&K is itself a /%~matrix; that is, it represenis a rigid rotation with accom-
panying exponential decrease of lengbh, and thus any power of & converls a
given vector into one lying on the surface of a cone, as In Figure 3. The
operabor o« converts the vector A into one whose tip is at the point indi-

cated. This is a discrete version of a ﬁ -COne.

FIGURE 3, The ¢{-cone

Thae 20



We note that any transient in the presence of coherent pulses has
the following property. If we lock at the polarization only at the same
instant in each revetition period, we see the difference between present
value and final value decaying to zero by discrete jumps along the oK ~cone,
At other times during the repetition period thes polarization does not lie on
the spiral curve connecting the polnts in Figure 3, but it describes a more

complicated path from one poind{ to the next,

Finally, we give the formal solution for pelarization at any time

during the repetition period. Using (20) we find,

During a pulse:
M(n T+ t) = Al(t)Mn + /(l(t)A , (b<ctg ty ) (48)
Between pulses:

M(n T + 12 t) = Az(t) Al(tl)mn
(L9)

RO RPN B I CE SR

If the train of pulses is stopped after the n'th, then the subseguent be-

havior is given by (L9) in which % is not bounded,

Pace 2



VI. Sieady State Under Action of Coherent Pulses

In this section we svaluate the steady-state polarizmation (L7)
which exists at the beginning of each pulse after a large number have been
applied. In order to express the vector Q of (L5) in terms of Jmown quan-

titles we use the relation

o) = [1 - A%) J G+ g0t

previously found in Bguation (22), Thus

Q= (A pg * Modh

]

[ A= A g+ A (L 2, (5 /ézrl} 4 (50)

Al = A) M (e0) + (1= A,) M (o)

Here we have recognized the vectors

i

(F+ g0 8

i, (o0)
(51)

]

Mz(w) (%*r pz)‘lA = XH_

Fase 22



as the steady-state values from (2li), which would be reached if the signal

were left on and off respectively {the latter being of course just the static
polarization produced by the magnet ), Ml(ciﬂ has been given explicitly in
Equations (27) and {28). We may now write the pulsed steady-state polarization

(L7) in the forms

(1= Ay | H(eo) -1 (e0) (52)

M, = Ml(oo) +

1<

Here use has been made of (50) and the identiity
— L AL A=l —2—(1- A
A A

With (52) the calculation of ¥ _, is reduced to the problem of

evaluating the matrix (L - c()“l = (1 - .Xelkl)ml,

ViT, ‘Spinor Representation of Rotations

Calculating the resuliant of several successive rotations using
the above (3 x 3} matrices is very tedious, and the results appear in a form
too complicated for easy inbterpretation. For such calculations it is a prac-
tical necessity to use the two-dimensiocnal representation of the rotation
group, also known as the Cayley-Klein parameters. To every direction of the
polarization vector M there corresponds a spiner ¥ , which is a vector in

a two-dimensional complex vector space; and to every rotation of M there

Paoe 23



corresponds a unitary transformation of this space. We use the usual notation
and conventions of the theory of particles of spin 1/2 in quantum mechanics,

Thus, denoting the spinor by

and the Pauli spin matrices

the direction of the spin axis is given by the unit vector n which satisfies
- >
(e &) ¥= ¥ (53)

or

= (k)

n_+ in_ -n ¥ @

Poce 24



Writing out the first row of (5k), we have

5”+ n_ - in e 1@5
t a2 T s oot -7 (55)
¢ 1 -n 2

where 8 and d) are the usual colatitude and azimuth angles of spherical

coordinates, i.e.,

sin 9 cos ¢

n =
X
ny = gin 9 sin gb (56)
n = cos 9
Z

Thus the direction of the spin axis depends only on the ratio of the components
of the spinor. Now the correspondence between ¥ and our polarization wector
M may be chosen, to a large extent, arbitrarily, In order to make the corres-
pondence with spin 1/2 quanbum mechanics as close as possible, we choose M

to have the direction of the unit vector n above, and normalize ¥ according

o

2. |$D|2=M (57)

(in quantum mechanics this quan®ity would be interpreted as the probability

density for finding the particle with either sign of spin}. Now
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M =Msinecos¢

x
My = M sin 8 sin gb (58)
M =Mcos &

7

But, from (55} and (57),

2 2 2({ 6 2
50.!_ = ‘(‘b_ cot (E)’ =1 - (ibm=
so thal we must take
d 2. K sin2 (-8;)
- 2
(59)
2 > (o
Y% =Ucos (-2—)
‘ i<t
Seme ambiguity in ¥ remeins; ¥, and ¥ m=v be changed to ¥ e 5

W gt , without affecting either (553 z= (59), corresponding to the

fact that in quantum mechanics the abscl=== oDhase of 5“ has no physical meaning.

We choose the phase angles so that

3

i

¥ = Ml/2 cos

4

rof®
®

(60)

NTS

woo- Ml/2 sin

rola®
©

%GE 26



and now only one ambiguity in the correspondence between ¥ and M remains;
the spinors ¥ and - ¥ both correspond to the same M, This last ambiguity
carnot be removed, as we will show presently. It arises fundamentally from
the topological properties of the rotation proup, and all representations

corresponding to half-odd integer spin are double-vaiued.

Now for any real number @ , consider the matrix exo(- i o éé«)ﬂ

zZ

defined by i%s power series., Jince 022 = 1, it is equal to
-1 crz% & & e 2 o
g = 1 cos ) -1 o, sin{-%5) = {(61)

2 i—%
0 e
Applying this matrix to the spinor {60), we get
. +&
172 g > 2
cos = e
e 22, ¢)-= s = e, g+ &) (62)
+
i
Ml/2 sin % e 2

Therefore, exp(- i o, &/2) represents a rotation about the z-axis through an

angle ; . Similarly, it may be shown that the matrix

robs

cos —% ~i sin
e X229 cos (—%) -1 o, sin (ﬁ-) = (&3)
~1 sin e cos i/
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represents a rotation about the x-axis through an angle 7 5 ete,

In general, the matrix

~ il - 1) sin% (6L)

rofd

represents a rotation thfough an angle 8 about an axis parallel to the unit
- - - W

vector n . (We see now why the ambiguity ¢ o cannolt be removed;

putting é, = 2 7 in (62) returns ¥ to its original direction, but it sends

¥ into - QD)V Now the most general rotation may be specified by three

Eulerian angles é', Q 5 4 :

o 7 - x 2 o 2 - (65)

where

0(=COS'% e

(66)

1]

/5 -~ 4 sin L e 2

2
To find the axis and magnitude of the resulting rotation, we need the law
of composition of robations, This is easily derived from (6h): The axis

and angle (n, @) of the resultant of the robation (nl’ i) followed by

.
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(n29 62)9 are determined by the relation

@ e il
e (o +n)=e 2(O'onz)e 2(0'=n1) (67)
or
8 8 e2 82 81 @1
coss - ilo - n) siny = cos— - ilo - n2) sin—3 Cos-5 - (oo nl) sin—3
82 e 9 8 62 8
= cos— cos—5 - 1 0~ o | my sin—g cos— * n, sin—3 cos— (68)
& S, o 7]
L L T2 R
- (nl . nz) sin—5 sin—5 - 1 07 - (n2 x nl) sin~3 sin-
where we have used the identity
(0"-nz)(o'unl)=n2=n1+lcr‘e(nzxnl), (69)
Bquating real and imaginary parts of {68) then gives the desired compesition
law. This can be writien compactly as follows., Represent a rotation through
an angle © about an axls determined by the unit vector T by a vector
¥ =T ban (8/2). Then the resultant of the rotation W, followed by w, is
w, Fw, t (W, X W)
W= 1 2 2 1 (70)

L= (wy o )
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This rule is applied twice to find the resultant of the three successive

rotations
] 1 i
. & = tan L -
W tan > 0 5 , tan 5 0 5 Wy tan 5 O K71)
1 0

and the final resuli is

Cwy t W, ot oW, F oW, X (wy =) | + w,y (wy » wo)
W_l 2 3 [2 1 3] 2 1. 3 (72)

i 1 o (Wl . W3)

from which the condifion for w Lo have no y-component (i.e., the resultant
axis of rotation lies in the X-2 plane) is seen to be W, = w3, or é; = ;,

Then the resultant vector (72) reduces to

sec ; tan :%

W= —= L 0 (73)

tan é

But the rotation during a pulse is given by the wvector

cos @ tan E%

W= 0 (7h)

sin @ tan E%
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Comparing (73}, (74), we get

tan Q = sin ¢ tan E%
(75)
sin :% = ¢o8 ¢ sin E%

and the Cayley-Klein parameters (66) which give the rotation during 2 pulse

are

caos 2 il L s BB L s sin ¢ sin BE
0( cos 5 e cos 5 i sin ¢ sin 5
(76)
I S . bb
/3 - isin 5= -1 cos ¢ sin =5

These relations are the same as Equationv(l3) of the following section,
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SECTION II:; THEORY QF SPIN ECHO

I. Introduction

Some of the most interesting solutions of Bloch‘sl equations are
those that have to do with spin echoes. OSpin echoes were first discovered
by Hahnz, whe in his original paper derived solutions for simple two- znd
three-pulse echoes using long notation. In this paper, we shall rederive
Hahn's original resuits using matrix methods and we will extend the results
to problems considerably more complicated than those handled in Hahn's ori-
ginal derivations. We shall also derive an approximate sclution for nuclear

induction in an amplitude~-modulated r-f field.

Qur purpose in carrying out these derivations and studying the
solutions is to see how we can use the spin echo analysis to predict all
the signals that may be expected out of a nuclear resonance probe in a very
inhomogeneous field. If one derifes solutions for the net polarization di-
rectly from Bloch's equations, it is then necessary to integrate over all
values of field /A w in order to obtain a solution which corresponds to
an observable signal., In the spin echo analysis, however, the integration
is done implicitly and we merely look for characteristic terms in the solution
which predict a signal. Our approach will be to expect that, in general,
polarizations corresponding to different values of AN\ w will at any instant
point in different directions in the xy-plane so that on the average they
cancel oub and produce no net signal., The exception to this rule which will

produce a signal is as follows: if the term corresponding to the polarization

Thee 33



iAW (b=t )
in the xy-plane contains a factor of the form e , we shall expect

a signal, or coherence as we shall sometimes call it, at time tl. We shall
find that this type of analysis is capable of predicting not only the times

at which signals occur, but can alsc give considerable information about the

amplitudes and shapes of signals.

To vegin with, let us assume thait the magnetic moments obey

Bloch's equations for the case Tl = T2 = T,

- - -
a M, , M7
—t =+ FH XN = o (1)
dadt T T

where H is the instantaneous vector sum of all magnetic fields achbing on
the nucleus. It is convenient, although not necessary in the rotation-
covariant formalism we are using to transfer to a rotating frame, rotating

with the angular velocity of the r-f field, In the rotating frame, Equation

(1) can be written as
> o
*BXM=Ts (2)

where B = ¥H - -

For simplicity we shall refer to B as the effective field, although it is

actually written in frequency units.
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The general solution of Equation (2) for r-f fields of fixed
frequency and variable amplitude has been derived by Section 13. The

solution during a steady step or pulse of r-f can be described by
= -5 /T - Bt 32 -t/T - 2%\ 73
B(e) - T e A v - T AN, (3)

where Ml is the polarization at the beginning of the pulse or step, M2 is
the steady state polarization that would be reached if the r-f were left at
its particular value indefinitely, and e—/ét is fhe precession matrix, This
precession matrix has been discussed in greater detail in I, and it

will merely be necessary at this point to descride it as a rotation matrix
describing a rotation about B with an angular velocity b = 5ﬁ| . Although a
rotation matrix is normally three-dimensional, we shall often find it conve-
nient to describe rotations in terms of operators on itwo-component spinors,

Consider a formalism in which we write

-
M=M o +M o +H o
x o e,

where the ¢ are ths Pauli spin operators for particles of spin one-half,

In such a notabion, the polarization vector M can be written as

i - (5)

Yaze 35



For simplicity, we shall hereafter denote M only by its subscripts, thus

Z X.- iy 7 K=

(6)

=N
[}]
n

+ 3 - -
x + iy z x, z .

A rotation of M can be described in terms of a unitary hermitsan matrix, Q

such that
¥' = Q M Q¥ , (7)

where Q% is the hermitean adjoint. In detail the matrix, Q, can be written

Q= (8)

where oK, &, ¥, and § are known as the Cayley-Klein parametersh. If on

the other hand, M is written as a simple three-component vector

M= - (9)
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then we can write
7 7
¥'=RY¥, (10)

where R is a 3 x 3 matrix, In terms of the Cayley-Klein parameters, we have

52 - rd 2 ¥4
R= | -p?  x° 2008 (11)
X ~X ¥ (x § + B5)

The set of Q's is isomorphic to the set of R's,
We shall describe the precessional motion in terms of the Cayley-
Klein parameters (see Figure 1). We define
b= [3]

(12)
lJH—Q)

JH

then Q = e’/ﬁt is described as
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o = cos bt _ i sin @ sin ot
2 2
A= ¥ = -1 cos ¢ sin E% (13)
bt .. . bt
5 =cos~—2—+1s:|_n¢51n—§ .

For positive Y the precession is clockwise when viewed from the front of

-
the vector B.

II. Simple Analysis

In order to show in a simple manner how our analysis will work, we
shall consider the simplest possible case, thal of two pulses followed by

an echo, The production of the echo can be understoed in four steps, as

follows:

1. The thermal equilibrium polarizaticn vector z is transformed

by the first pulse into a vector which can be described by xt+,

2. After the first pulse, x+ is transformed into x+ ehJ'ZSUJt.
3. The effect of the second pulse, in Hahn's experiments where all
moments are fairly near resonance, is to rotate the entire moment distribu-
tion about the x-axis, In this analysis, we shall accomplish the same thing
i Nwt

by transforming x+ (%) into x- (L) thus x+ e transforms into

~i.£kcgtl
po , and vice versa.

Fhce J§



i, At the end of the second pulse, the new x+ can be written as

_iAwtl _iAwtl iNwt
X ; after a time t this becomes (x—e Je which can

be written as x-e .

We see by this simple means thaﬁ we can predict the presence of
an echo at a time tl following the second pulse. We can obtain the ampli-
tude of the echo, neglecting relaxation and diffusion effects, directly from
the matrix elements of the transformations described in steps 1 through L.
Thus, looking at the R matrix in Equation (11), we see that the matrix element
for step 1 is (2 ¥ &), for step 2 it is unity since the transformation is
already described by the term eiAwt, for step 3 the matrix element is
-4 2, and for step L it is again unity. Thus, the amplitude of the echo is
proporfional to - 2 55/9 2. If both pulses are identical and if we consider

the nuclear moments very close to resonance so that Qb ~ (0, then

2 . . 2 bt
-2 584 %= sinbtsin® = (1h)
This is identical to the expression for the echo amplitude derived in a
relatively lsboriocus way by Hahn. However, our analysis is not only more
direct but can also be applied to any arbitrary value of D\ o as well as
for two arbitrary unequal pulses having different r-f amplitudes and lengths,

A more general equation for this echo amplitude will be given in Equation (22).
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ITI. General Analysis

A, Introduction

In this sesction we shall calculate the amplitudes and shapes of
signals in an idealized situation in which both Tl and T2 (if they are not
equal) are very long compared to the times required to do the experiments;
and in which self-diffusion effects are absent. For each instant of time
we mist solve the corresponding Equation (3):

M(t) = e—t/T e"/ft ﬁl + (1 - e—t/T e"ﬁt) -EZ . (3)

Tt is customery in treatments of spin echoz’5 to assume an initial polarization
‘ﬁ = M;E prior to the first pulse, and te solve only for the first term in (3),
ignorning the effect of MZU The neglect of this second term during the time
between pulses, when it corresponds to a recovery of initial polarization, is
justifiable only for long relaxation times; actually the recovery is quite
useful for the measurement of T;. Neglect of (1 - e“t/T e_fgt) M, during

a pulse is not so easily justified. In most spin echo experiments, however,
the r-f level, if left on continuously, would correspond to a high degree of
saturation; in such cases it can be shown that ﬁ; is either very small or is
nearly parallel to -g, so that the total effect of the term is small, It is
nevertheless clear that there are circumstances under which one cannot neglect

¥ . even for relatively short pulses and intense radio frequency.

23
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The conditions of our experiment are such that we need to calculate
only the term in ﬁi. Since we start out with only a z component of polariza-
tion and wish to know the component in the xy plane after a given elapsed
time, it is sufficient to calculate the corresponding matrix element,

(-2 g ) in (11), connecting z and (x - iy). [We could just as well use
its complex conjugate, {2 ¥ & ), comnecting z with ( x + iyi. It is neces-
sary to multiply together the matrices corresponding to the pulses and the
intervals between pulses, but rather than multiply 3 x 3 matrices 1t is far
simpler to multiply the corresponding 2 x 2 Q-matrices and then multiply
together the final oC and 4., Analysis will then consist of inspection of

the product ( - 2 oC8).

When the matrices are displayed it is fairly evident how one may
modify them to include the effects of relaxation and self-diffusion. These
effects have already been calculated in detail for two- and three—pulsé
systemsz’s, and it does not appear that their applications to meore complex
systems will produce mugh that is physically new or interesting. Exceptions

to this latter statement will be discussed qualitatively.

B, Evenits Following a Single Pulse

All events oécurring during the first pulse will be referred to
by subscript 1, those following the pulse by subscript 2 (Figure 2), The

Q matrix for the transformations involved is given by
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e ¢ 0 o A1
3
O e K]_ é-l

The X, A1, a’l, 51 ars defined in (13). In Equations (15) through (3L}
the time variable is denoted by a prime; unprimed t's are fixed or elapsed
times. As has been pointed oul earlier, we are interested in terms of the
form exp [iZSLQ)(t' - ti)] in the product of & and f? of the final matrix
Q. The product is

o s - 8 —iAwt'z
- po= - B e s (16)

and substitubing Bquation (13) we have

bt, A At
- 2K 4 = (sin 2 ¢ sin® —El + i cos P sin bt ) e 2

(17
In stadying (17), we first observe that the formula predicts a coherence
immediately after the end of the éulse, at t'2 = 0. This is usually known

as the free decay following the pulse, and has been observed by Torrey, Hahn

and others. We shall have more to say about the detailed shape of this free
decay later, In addition to the free decay, however, (17) also predicts a

small signal at a time following the pulse equal to the length of the pulse,

i.e., when ti2 = tl” To see why this is so, we ohserve that for very large
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values of‘[kcu , b is very nearly equal to AN . If we then substitute

: i Aw (b -ty
MNew for b in (17), we observe terms of the form e . This

coherence, which wie shall call an "edge echo" is of relatlvely small ampli-
tude and is produced only by the nuclear moments that are far from resonance.

An experimental example of edge echos is shown in Figure 3.

C. Events Following Secend Pulse

The Q matrix corresponding Lo all the transformaticns up to time

interval 4 is

e“h’ 0 74 A o 0 S £
3 3 1 1
Q= (18)
L’ 5 5 2 4 ’ &

° © 3 3 ¢ ® 1 1
—illéutz +iZ§cutu'
. - Y ' D

where e > is short for e 2 y o for e 2 , ete, (see

Figure L), The matrix element in R connecting initial state 2z and final
state x~ 15 again given by the produce - 2K 8 of the Q matrix (18). The

result is

2 -4 +2 20 -2 b w2 2l

2 X B = -2 0(16(3 g + /43 Ki e , 0<3/41 + 753‘51 & (19

Of the four terms in (19) one of them refers to times which are negative with

respect to the second pulse and which we shall disregard. The other twe
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represent coherences at thl= 0 (free decay of the second pulse), and at
tﬁ = t2 which is the simple two-pulse echo. Substitubing {13) into the

coefficient for the free decay we obtain for the free decay amplitude

(- 20@5)%,:0 = - (e 8y v gy 50 (200, £y, (20)

The amplitude of thes echo is given by

2
("2“/5)%42:"2 7141/ s (21)

which is identical to the result obtained in subsection II {Simple Analysis).
Substituting (13) into (21) we obtain the following expression for the echo

amplitude as a function of different pulse widiths and spacings, but egual

r-f amplitudes:

’ bt bt
-2 J&_él';%z - (%in 2 ¢ cos® ) ginZ —El sin® —éé
bt AN kt' t.) (22)
-1 [#3) -
- i c053 ¢ sin btl sin2 _51) e ke

This reduces to Equation (14) for the special case considered there.

In addition to the free decay and the echo fellowing the second
pulse, there is an "edge echo' following the second pulse and both preceding
and following the echo, These may be deduced by an examination of the cor

responding matrix elements. We will not discuss them further,

Pnee 44



D, Three Pulses with Unequal Spacing¥

We will assume initially that th > t2’ thus the two-pulse echo
has had time to occur before the onset of the third pulse (see Fipure L),
Corresponding to this situation, we can write a @ matrix which will be =a
product of six matrices corresponding to the six time intervals after the
third pulse. We shall not be concerned at the moment with the coefficients
of these matrix elements but shall look only at the exponents in the matrix
elements o(, #. Both & and & consist of four terms with the following

exponerntss

1 1 t t
o2 -4 <6 o2 + -6 oF2 -l -6 o+ +I -6

(23)

b 3 5

When we mulbiply these together to obtain (-2 c(/ﬁ) we obtain ten terms
correspondirg to the combinations of the terms in (23) taken two at a %ime.
Of these ten terms, two of them occur at té = § and represent the free decay
following the third pulse, Of the remaining eight terms, four must occur at
negative time té and four at positive time. We temporarily disregard those
at negative time and consider those at positive time, which predict echoes,
What are the coherences for which these terms in té are the echoes? Prior
to the third pulse, the only coherences are the free decay following each of
the first two pulses plus the echo. These coherences are reflected in in-
verted order in té at their appropriate times. They form the only pessible
two~pulse echoes which can occur in té; however, we have just found that
there must be four echoes instead of three in the time té following the third

# We shall neglect the edge echoes from here on.
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pulse, There is therefore one echo which cannot be explained in terms of
two pulses, This echo which occurs at té = t2 iz called by Hahn the "sti-
mulated echo", In terms of Hahn's vector diagram52 the moment distribution,
after fanning out during the time t2, is turned only 90°; the distribution
is then stacked in different positlions in the z direction which remain un-
changed during time th' After the third pplse the distribution is returned
to the xy plane, From the term (-2 o¢ 8) corresponding to the situation in

t
-1 A (t-t,)
Figure i, we find that the coefficient of e is

(-2 x,é)té_t; L S, Ay 8 e A (24)
For the special case in which ¢ = 0 and the three pulses are identical,
{2L) reduces to

3

(-2 oc,a)té=t2 = 1/2 sin” bt (25)

in agreement with the result calculated by Hahn,

&. Three Equally Spaced Pulses

Thé numbers of echoes and their amplitudes is also a function of
the positions of the pulses. In section D above we were careful to state
that the third pulse should occur after the simple echo following the first
two pulses. Obviously, if the third pulse occurs too soon, certain "echoes

of echoes" cannot cccur and the amplitudes and the nunbers of the echoes
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following the third pulses will be different. This has been briefly mentioned
by Hahnz. Here we will discuss an interesting special case, that of three
equally spaced pulses (t2 = th)' In this particular case, there will be

only two echoes following the third pulse and these echoes will be spaced so

as to continue the original pulse train.

The details of the calculabions are the same as in the preceding
cases, and we shall merely state the result for the coefficient of the echo
which cccurs at a time &, {or th) following the third pulse, i.e., the

first of the two echces. This coefficient is given by
2
("20(/5)%,&1;2 = -2 [2 ¥ 8y fy by per (X 8y v B 07) &5 556 } (26)

Although one would expect & phenomenon such as this to be complicated, a
description of what is happening in (26) is really quite simple. The first
term.we recognize from (2L) to be the formula for the three-pulse "stimulated"
echo, In the second term, the first section Qoildfl t Ay Ki) we fecegnize

- from (11) to be the matrix element in R which leaves the Z component unchanged;
the rest of this term is the formula for the two-pulse echo produced by the
sscond and third pulses. We thus get the rather amusing result that the echo
is merely the direct sum of two echbes, one of which is the stimulated echo
produced by the three pulses, the other is the two-pulse echo of the free
decay fdllowing the second pulse, One might think that such a direct sum of
echoes would be likely under certain conditions to give an amplitude greater

than the original polarization; however, an analysis of the cocefficients shows

that this is not soc.
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F. More Than Three Pulses

In his original article, Hahn2 pointed out the existence of
two—- and three-pulse echeoes. It was of interest in connection with this
project to find out if these were the only types of echoes that could be
produced, or 1f there were also echoes that could be understood only in
terms of four pulses, five pulses, or n pulses. In this discussion, we
shall not try to prove the existence of n-pulse echoes for any n bul we
shall investigabe the possibility that there exist four-pulse echoes,
which will imply that if such things exist there may alsc exist echoes thatl

could be formed only with n > L pulses.

We suppose that we apply four pulses spaced so that all echoes
which can be produced by any one set of pulses cccur before the next pulse
is applied (Figure h). The calculation proceeds in exactly the same way
as for the case of three unequally spaced pulses; 1t is somewhat laborious
and there is no point in showing the details. We will point ocut, however?
that the matrix elements cX/S each consist of eight terms which, taken two
at a time and combiniﬁg gimilar exponents, gives a total of 36 terms in the
product -2e( 8 . Of these 36 terms, four occur at té = O and represent the
free dscay following the fourth pulse. The remaining terms are symmetrically

vlocated about té = 0 giving 16 terms prior to the fourth pulse, which we
disregard, and 16 positive corresponding to echoes. Now if we look at all
possible combinations of coherences which can produce two- and three-pulse

echoes following the fourth pulse, we find on first count that there are

only 12 such echoes, DBefore going any further, let us return for a moment
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to the case of three unequally spaced pulses. We note that there must be
four cocherence terms for té < 0, symmetric about the third pulse with
respect to the four echoes in té. However, there are only three actual co-
herences in the time prior to the third pulse. The extra term, shown by a
dotted line in Figure L, is therefore a "virtual" echc that does not exist
until the third pulse is applied, but following the third pulse the nuclear

system behaves in every way as if the virtual echo had actually occurred.

If we include the virtual echo among the scurce of two- and
three-pulse echoes following the fourth pulse, we get a todal of 1h such

echoes. This still leaves two echoes unaccounted for, which must be four-

pulse or "super-stimulated" echoes.

The analysis can be extended readily to n pulses. If all pulse

20~
spacings are unequal, and if ¢ > E t, as before, then, following
2n-2 =5 k ?

the nth pulse there will be 22n-h echoes. Since the botal number of

211—6 ) +

coherences, real and virtual, due to the (n-1)st pulse is 2(2 1

2n=-5

the nth pulse must create {2 - 1) new virtual ccherences.

G. Sebs of Double Pulses

A special case of four pulses which is of particular interest
is that of a two-pulse spin-echo experiment repeated in a time :Z Tl’
so that the sample s%ill has some memory of the previous set of two pulses.
In this case one usually observes at least one additional echo, marked

S in Figure 5, following the primary echo. The origin of this echo is as
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follows: Pulse 3, Figure 5, creates a virtual echec, V, which is mathematicaily
similar %o the stimulated echo which would occur at the position occupied

by pulse L. Pulse L, however, transforms V into a two-pulse echo at S.

That this analysis is essentially correct can‘be seen by calculating the

matrix element for this echo. The calculation gives
- - - 5. f°
(-2 X )= - ¥ 8, By 5, 7355 6, . (27)

(the subscripts apply to Figure 5), which is a stimulated echo transformed

by another pulse,

As can be seen from its genesis, this secondary echo has many
properties in common with Hahn's stimulated echo. In particular, its am-
plitude is more nearly dependent on Tl than on T2 and is relatively immune
to self-diffusion effects. Experimentally, if the signal-to-noise is high,
this echo can often be seen even when the time between double pulses is

several times Tl.

In the vicinity of resonance, and for pulses of equal length and

amplitude, Equation (27) reduces to

(2 exf)y =2 sin’ bt sin’ 22 (28)

which has its maximum ab cos bt = (= %). If the experimental repetition rate

is fast enough, additional echoes can be seen following S which can be
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explained in terms of virtual echoes of 5 on pulse three, ete. In some
cases real echoes can be seen preceding the pulses as well as following

them bub these must be explained by the methods used in Subsection V (see

Figure 8).

IV. Coherence Detail

A, Introduction

In the original spin echo experiment52 performed in fields that

were only slightly inhomogeneous, it was shown thatb:

1. The spacing between second pulse and echo was approximately

the same as between 1st and second pulse.

2. The free decay was the Fourier transform of the moment

distribution in the magnebic field,
3, The echo was shaped like two free decays placed back to back.

In this section we shall consider a somewhat different case,
that of a magnetic fisld so inhomogenecus that the tofal inhomogenelty,
AN H,'is very much greater than the fregquency spectrum of the pulses.
We shell assume an "infinite flat-topped" distribution [TMO(ZS.Q)) =
constant for all A oo], and we shall calculate the exact location and the

shape of the free decay and the two-pulse echo.
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B. Free Decay

The shape of the free decay can be deduced from the malrix
element For this coherence (Equation 17). Before proceeding any further,
we may remark that only the component in the y direction, corresponding to
the imaginary part of the matrix element, is effective in preducing a sig-
nal. This result, which is true for all the phenomena considered in this
paper, follows from the fact that the two vectors for each value of |Z§ a)l
are at all times symmetrically locabed about the yz plane., We thus consider
the imaginary part of Equation (17}

bt
. ! . L2701 . 1
Im(-2 c(/ﬁ) = cos ¢ sin btl cm3[349t2 - s5in 2 ¢ sin” —5= 51n13¢ot2 (29)

The frequency spectrum of the free decay is determined in this case not by
_the field inhomogeneity, but by the r-f level. Thus for a given value of
5”Hlt1, a long pulse of weak radic freguency will have a long free decay

and a short pulse of strong radio frequency will have a short decay.

It is possible to write (29) as

Im( -2 0(,6) = cos Nt cos Awté + sin N wt sinAcdté (30)
where the maximum coherence presumably occurs ab té = t. A little algebra
gives
btl
tan A ewt = - sin ¢ tan — (31)
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From (31) we see that there is no one instant of time when all components

are exactly in phase. However, we can determine a time (prior to the end

of the pulse) when the free dscay, projected back to this time, would have
had its maximum value. If J’Hltl is small { £ 1) and we consider only

the components about resonance, we can approximate (31) vy

btl
Newt = - - sin ¢ (32)
and since sin ¢ = lﬁLOJ we have simply
L1
t’"_ztl (33)

so the free decay behaves as if il had started from the midpeint of the pulse,
When XHltl > 1, t is different for different groups of values of New,
with the result that the free decay may show considerable structure. An

example of such a free decay is shown in Figure 6,

C. Edge Echo

The edge echo, produced only by nuclei that are far from rescnance,
is contained primarily in the second term of Equation (29). In the vicinity

of-maximum.coherence the amplitude is approximately proportional to
///‘sinlkcu(tz - tl) d( A\ w). The shape of this signal is not the single

lobe usually asscciated with an echo. Instead, if detected by & phase-sensi-

tive detector, it reaches a maximum, goes sharply through zerc at té = t1,
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and goes through a maximum in the opposite direction. If the edge echo
is viewed only in absolute value, it appears as two maxima separated by
a sharp minimum. An example of this characteristic shape is shown in

Figure 3,

D, Two-~Pulse Icho

The two-pulse echo signal is given by the imaginary part of (22):

2 3 2 PPy \
Im{~2 J’é/ﬁ } = - cos ¢ sin btl sin — COSZXcu(th - t2)
bt bt
- sin 2 ¢ cos? ¢ sin® wgl sin’ "52 sin.[&ad(ti - t2)

This differs considerably from (29) and the echo is therefore noi the same
as two free decays placed back-to~back. The common factor 0032 ¢ in (30)
cuts down the high frequency terms in the echo, with the result that the
echo is 2 considerably rounded-off version of the original square pulse.

If we write (3L,) in the form cos[&cu(ti - t, - t) we again get {32) and

2

(33) as expressions for t. In other words, if we sweep the oscilloscope

with repetition rate T, where [ is the time between pulses, and if

Tty = Fhty
with the echo maximum exactly at the center of the pulse (see Figure 7).

For TH %

14, > 1, the echo shape can get quite complicated (Figure 6).
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V. Continmzous Pulse Trains

A, Introduction

In the previous sections, we discussed sclutions of Bloch's
equations which were applicable te spin eche for the case of a small or
at least finite number of pulses. In this and the following subsection
(V and VI) we will attempt to do the same thing for continuous trains of
pulses. We can assume that the pulse trains start at some initial time
t = 0 and then continue for a time very much Longer than the relaxation
time T of the substance sc that the sample has essentially forgotten when
the beginning of the pulse train occurred. In general, the same assumptions
held here as held in the previous sections with regard to equaiity of relaxa-
times and negligible self-diffusion, except that from now on we shall inciude
the relaxation effects explicitly in our equations. This is ﬁecessaryjlbe—
cause we will be working with infinite series which must converge and may

not do so unless we include the relaxation terms.

In what follows, we shall call the repetition time between
successive cycles of pulses (¢ and other definitions shall be as in pre-
ceding paragraphs. We shall, in general, assume that pulse widths are

short compared to T and that T is short compared to the relaxation time T,

B. Symmetry with Respect to Time Inversions

One of the most important properties of the nuclear system when

subjected to continuous pulse trains is the property of time symnetry,
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Consider the basic equation for the motion of the polarization

@ W ¥z

i i s i

— - K§XM=L (1)
dt T T

Suppose in Equatioﬁ (1) we make T large so that the relaxation term is small
compared with the other terms in the equation., We see that, in this case,
reversal of bthe sign of t is equivalent to a reversal of the sign of the
gyromagnetic ratio & . Thus, if we go backward in time, any solutions which
we obtain must also be solutions of Bloch's equations, except for the sign

of 5', which will make no difference in a system which does not detect phase*°
Now, if we have a driving function which is an even function of time, then
after the system has sebtled down to steady state, so that it has forgotten
the beginning of the train of pulses, it will make no difference to the system
whether we take time in the backward or forward direction since the driving
function is equivalent in each case. The symmetry argument then states that
except for 180 degree change in phase the solutions of our equations must

be symmetrical on both sides of the axis of time symmetry of the original
pulse train, ' Thus the system must not only produce free decays and edge
echoes following the pulses but must anticipate the pulses in exactly the

same way. 4if the driving function consisis of double pulses there will be
echoes preceding and foliowing the pulses. This property of anticipating

# This argument is similar to the symmetry property discussed in reference
(6). The argument shown there, valid for a weak, frequency modulated
r-f signal, requires no assumptions about the magnitude of Tl’ however,
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the driving function is shown in Figure 8. Actually, the signal shown in

this figure is not perfectly symmetrical cwing to self-diffusion effects.

G, Pnd of a Train of Single Pulses

Wé have just shown that the nuclear system, exposed to a train of
single pulses, will eventually set up a conflguration in which it will anti-
cipate the onset of the pulses. It is also of interest to see what will

happen if the pulse train is suddenly stopped.

The solution of Bloch's equations for a continuous brain of pulses
has been given in I. If subscript L applies to the pulse and 2 to the interval

between pulses, then the solution can be written as

M= (1 - ot I: (1 - /\l)M1 A (1 - A, J . (35)

The notation used in {35) is identical to that used in the derivations in I.
It is, unfortunately, not possible to add R-matrices by performing any sime
‘ple operabion on the corresponding Q-matrices. Calculation of (35) must
therefore be carried out with 3 x 3 matrices and becomes guite tedious,

The solubion can be written in the form

i/_\wtz -iAth -1\ ewt
e

M= f+ge +he 2/ aet (L -0oC) (36)

where f, g, h are polynominals in &, B {is Jl’ and e~ TVT, of

interest %o us is the effect of the denominator, which can be expanded in
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a power series as follows:

(37)
= T (1 ) e-?’/T) (0(12 Bty o ? e‘iA"”tz)
e 2>

n=1 (l - {"Cl 41 A 5’1}) (1 -2 {("(1 5,7 4 0’1})

From (36), (37) and Subsection IV D (showing that the center of an echo is
related to ¢ rather than tz) we see that the response of the nuclear system
is a series of echoes spaced apart a time ?‘, in essence trying Lo extend
the train of pulses. From (37) we see that the echoes decay exponentially

with a decay constant which is a function of ¥H but not of elapsed time

ltl’
and only indirectly of relaxation time, In other words, the decay takes

place in a certain number of pulse repetition lenpihs, rather than in a given

elapsed time. This is shown in Figure 9, which shows a decay which was in-

dependent of time even though 7" was varied by almost a factor of three,

VI. Semi-Linear Treatment of the Steady State Condition

It is well-known that the response of a nuclear rescnance system

to a "weak" r-f driving field, (z° le T, T, <<1l), is a simple linear
function of the radio frequency. The bulk of this paper, on the other hand,
is concerned with the nonlinear effscts that arise when the r-f field is

strong. In this section we shall iake an intermediate approach and derive
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an aperoximabte solution for the response of the nuclear system to a periodic,
moderately strong r-f driving functicn. The approximation to be taken 1is
that the z component of polarization is constant in time, although not
necessarily equal to the wesk r-f polarization, MO. Such a condition, in
which we neglect higher order nonlinear effects due to changes in MZ3 can

be approximated if the perieod of the driving function, ¢, is short compared
to T2 so that MZ cannot change by more than 10 per cent during the time .
If, in addition, the r-f sigial is only sirong enough so that a’Hltl £ 0.1
during a pulse, then the approximate solution will be valid at all times;

if the r-f signal is stronger the solution will be wvalid between pulses but

not during a pulse.

In the notation of Blochl and of Jacchsohn and,Wangnessé, Bloch's

eguations can be written

F=v+ iu
ar 1 . a
Lo+ iD= o
(38)
dM M XN
—Z = S KHl v
dt T
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The integral solution of these equations can be Written6 as

. B tEt
T = 1 !
uo=u ¢ [ ¥H, Vo at (39)
-
t | 4
F=- j FHY exp | - b - LB f Ney (") as” at’ (L0)
Z oo * t!

Here H,, v and MZ are all functions of time, We shall be considering the

case where Hl is amplitude modulated, but not frequency modulated, so that

Equation (L0) simplifies to

4 (-T]-'--iAco)(t—t')
F=- [ YEM, e 2 | at' (41)

=00

Let us return to Equation (39}, After steady state has been reached Hl and
v will both be periodic with peried T, We can then split the integral in

(39) into units each of duration 7. From the periodicity, we have

t={n+1) t-n7 v
t ~ /T -4 ?
I v oexp(- L T yat' = e /T2 f FH) v exp(~ S db
1 1
t—(n+2)r t=(n+1) 7

(L2)

Fac s LO



As a result, (39) can be written as an infinite series which, when summed,

gives us

- S
- 1 1 ! -
MZ_MO+1_e_—_WT— leve dt (}.}j}
=T
Now if 7 << Tl’ we can write
h H, v T
MZ = MO + —-—--:—:47;11— KH:L v ey
1 -e 1

where the bar indicates the average value of the product H1 v over a cycle,
Using the same approximation, we can simplify Equation (Lh) still further

and arrive at
MZ = MO + EHl v T1 (L5)

We shall observe later that the average quantity Hl v is always negative.

To solve Equation (L1}, let us first expand H1 in a Fourier series.
Let {(JL/2 7 ) = 1/7 be the repetition frequency of Hy and let us define..

A as the Fourier coefficient of Hl'
Tl

Bo- S et | (16)
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Let us now substitute (L6) into (L1), considering ¥ as constant, and integrate

termwise. We thus get

~

A ein.flt

F=_D’MZZ — (L7)
)43

— * iAo+ inn

(F+F*), vH =—12-(FH +F*Hl),

ae] Fod

Now taking v =

ilmn)lLt

e
-, > 2 T (18)
m n

+ 1 N\ + ine

FH

-

~3

ro

and similarly for F¥ Hl. Since the average value simply consists of the

zero frequency terms in (LB) we have

2

o A
vH =- % EM, j{:: T B Ao ) x (L9)
k T+1(Aw+kﬂ) = - { A w + kL))

2 T2

which can be written
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In Bquation (50), C is a function only of the driving field and is defined
by Bquation (L9). We can now substitute (50) into (L5), and obbain an

explicit expression for MZ as follows:

MO
¥ e (51)
1+ ¥T, C
1
We then substitute (51) into (L7} to get an explicit expression for the
polarization in the xy-plane wherein all terms are either constant or can
be derived from a knowledge of the driving function.
- XMO An elﬂﬂt
Fe—20 > = (52)
1+ 81 ¢C n o tilwtinn
2

Equation (52) is our semi-linear solution. The term in brackets
is the linear part; it is simply the response of a linear filter with
Lorentzian bandpass characteristics, for example, a resonani electric cir-
cuit or a nuclear resonance driven by weak r-f signal, The nonlinear effects
are conbained in C, If we specialize to a case where Hl(t) is an sven fung-

tion of bime we can simplify (49) to the following:

- > = 4
G = (53)
% S (Awr k)’
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Inspection of Equation (53) shows that C becomes appreciably large only if

A\ e is at or very close te a sideband of the driving radio frequency. Thus,
if AN w + x{L = 0, we have C == TzAkZ, ctherwise we have ¢ = 0, The
effect of Equation (53) on MZ and therefore also on F is that MZ P MO in

between sidebands; but at a sideband we have

MO
M o= ' (5k)
7 2 2 z2
1+ & Tl TZAk

Thus, in this approximation, the reséonse of the nuclear resonance %o an
amplitude-modulated r-f signal can be described as behaving like a saturable
Lorentzian filter, the amount of saturation obeying Bloch's slow-passage
equationsl for the Fourier components of Hl which are in the vicinity of

resonance.

If the sample is in an inhomogenecus magnetic field, then the
semilinear approximation predicts that a strong r-f signal will "purn holes™
in the net polarization at each sideband of the r-f signal. This is identiéal
to an effect described by Bloembergen, Purcell and Pound7 for slow-passage

(i.e., single frequency ) r—-f signal; the analysis presented here shows that

the same effect is produced by awmplitude-modulated r-f signal.

VII. Experimental Apparatus

Although the spin echo apparatus used in making the traces shown
in Figures 3, 6, 7-9 and in testing the theory generally was of fairly con-

ventional design, a few words will be said concerning the characteristics and
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performance of this particular instrument, The apparatus employed a ccherent
source of 30 megacycles, consisiing of a free-running crystal oscillator
whose outout was keyed after it had passed through several doubler and buffer
stages. The r-f pulses had a rise time of 10 microseconds and produced a
maximum field, 2H1 at the sample, of about 10 gauss., Both r—f inlensity and
pulse length were variable, The probe used crossed coilsS, The proton sam-
ple, sboub 25 cc in volume, was placed in a permanent magnet whose pole faces
were shimmed in such a way that the field inhomogeneity across the sample

was approximately 25 gauss, corresponding to a "bandwidth" of 100 ke. The
distribution of nuclel in this field was such that the polarization was
approximately constant over more than half of the total bandwidth, The band-
widths of the transmitter and receiver circuits were likewise about 100 kc.
Although the direct coupling between transmitter and receiver in a crossed-
coil probe tends o be frequency dependent, it was found possible tb reduce

the overall coupling to the point where the r-f pulses would not overload

the receiver amplifiers.

In a magnetic field as inhomogeneous as the one used here, the
effects of self-diffusion severly limit the ftime in which one can do echo
and pulse-train experiments. Experiments involving only a few pulses can
be done in ten milliseconds or less; for this a fairly viscous material,
such a glycerine or SAE-30 motor oil, is useful., Experiments involving
repeated pulses require longer times:; for these the best sample material is
a non-viscous ligquid in a fairly viscous emulsion. Most of the photographs

shown here were taken with a sample of water mixed in lanolin, of the type
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used in cosmetic—cream preparations. Even so, the lifetime for two-npulse
achoes before disappearance under self-diffusion effects was only about

60 milliseconds.
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FIGURE 1
DIAGRAM OF THE VECTORS M, B, AND THE PRECESSION CONE
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FIGURE 2

DIAGRAM FOR THE SINGLE PULSE PROBLEM



FIGURE 3

PULSE, FREE DECAY AND EDGE ECHO IN A TRAIN OF
SINGLE REPEATED PULSES
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FIGURE 4

DIAGRAM FOR PROBLEM OF FOUR UNEQUALLY SPACED PULSES
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FIGURE 5
DIAGRAM FOR PROBLEM OF SETS OF TWO PULSES



FIGURE 6

FREE DECAY, EDGE ECHO AND ECHO FOR H, t

1
SEVERAL TIMES 360°
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FIGURE 7

SUPERPOSITION OF FIRST PULSE, SECOND PULSE AND ECHO
SHOWING ECHO SHAPE AND POSITION OF ECHO MAXIMUM



FIGURE 8

CLOSELY REPEATED DOUBLE PULSE TRAIN SHOWING
SECONDARY ECHOES AND ONE ANTICIPATORY ECHO.
(THE TWO LARGEST PULSES ARE THE DRIVING PULSES.
THE OVERSHOOT FOLLOWING THE PULSES WAS CAUSED
BY AN AUDIO FILTER PRECEDING THE OSCILLOSCOPE.)



{(a) T = 1 millisecond

(b) T = 2.5 milliseconds

" FIGURE 9

EFFECTS AT END OF A PULSE TRAIN SHOWING TWO
DIFFERENT REPETITION RATES



