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Reflection Coefficient
Coefficient of Coupling
Attenuation constant of a transmissicon line

Phase-shift constant of a transmission line {Chap.3)

4
Applied frequency
Resonant frequency of a system
}"" - - »
-Eg_::; = Fractional freguency deviation from
o resonance.

Standing wave voltage ratio

SWR seen looking into an unlcaded cavity at resonance
SWR seen looking into a loaded cavity at resonance
SWR seen looking into a cavity off resonanhce
Unloaded @ of a cavity

Coupled § of a cavity

Loaded @ of a.cavity

Electrical length of a line or phase angle of a load
impedance.

Phase angle of the parallel combination of a load
impedance and a normalizing impedance.

Electrical length of line between a cavity and the
probe on a standing-wave detector.

2 QLS. = Detuning parameter relative to Qg
(ChapeS)

2 QCS = Detuning parameter relative to Q,



THEORY OF MICROWAVE COUPLING SYSTEMS

I. Introduction

At the present stage of the CRG development program it is
becoming clear that the work of the past year has resulted in a
numbper of useful by-products in addition to the main development
work. Valuable experience has been gained in many different
fields, and a considerable amount of fundamental original work
has been done which at present exists largely in the minds and
notebooks of a few personsg in the Combined Research Group. It
is, of course, highly desirable that this experience and informati
be made avallable to those who will be responsible for conducting
and judging the future tests on various units, and to workers
in related flelds.

One of the fields in which there is need for a more wide-
spread understanding is the theory of miecrowave coupling systems.
As tests on more and more RF units are conducted and reported,
it has been necessary to repeat the various theoretical
relationships in each such report, in order to convey the reasons
for and the significance of the various mearurements which are
made«. This is due to the non-existence of any general account of
this theory to which reference might be made. In order to correct
this situation and at the same time fill a need which has long
existed for an exposition of this theory for the use of those who
are not directly concerned with the design of microwave coupling
systems, but have occasion %o make them in the course of other
work, it is proposed here to present an account of the relation-
ships which follow from linear circuit theory, in the form which
hag been found most useful at microwave frequencies.

In the past few years the intensive work in microwaves
has resulted in the development of a new field of techniques. &
number of books have appeared treating the theory of transmission
lines and resconant cavities at microwave frecuencies, but there
is as yet no generally available account of the theory of the
equally necessary coupling systems which connect these components.
Techniques for the measurement and design of such systems are
well known by those who have had considerable experience with ther
and there are a number of general circuit theorems which have
special value as applied to coupling systems at microwave frequen=
cles, but which seem never to have been stated in ways which made
their general validity apparent. Fragments of a general theory
of microwave coupling systems have appeared in a large number of
technical reports, but they are usually stated with reference to
a special case, and often derlved from a highly artificial equive
alent circuit. &4 number of extremely general propoesitions have
been stated in this way, but with no hint that they apply beypnd
the specific case being considered;, so that it is only after a
perusal of a large number of such reports and considerable exercis
of physical intuition that one can accouire a clear picture of the
fields



There 1s probably no proposition in this paper which is
not well known to those who have had much experience with microwawv:
coupling systems and have had access to classified technical report
and such people may find 2 large part of the discussilon quite
trivial. That is because an effort has been made to work out in
some detall the answers to several questions which prove to be
stumbling~blocks to those who are in the process of learning about
microwave systems, and who often entertain grave doubts regarding
the validity of many standard measurement techniques, hecause
these have never been explained and justified in a general,
explicit way. In a field such as this; where there is a wide
variation of initiel understanding of the subject, the only safe
way of writing an exposition is to include a discussion of the
fundamentals upon which the later developments are based. In fact,
the necessary Ygroundwork" of initial concepts will occcupy ncarly
as much space as the actual study of coupling systems. However;
this discussion is concentrated in separate chepters which may
be omitted.

II. Fundamental Principles ]

Use of Impedances

In RF vork we are concerncd almost all of the time with
three types of components, namely resonsnt cavities, transmission
iines (including waveguides), and arrangements for coupling energy
between these systems. Of course, the distinction between these
types of components is not sharp, and it is often impossible to
say exactly where a cavity or line ends and a coupling system
begins. The properties of transmission lines and resonant cavities
are well known, as they have been treated in a number of excellent
recent books. It is the purpose of this discussion to develop
the relations which nmust hold in a linear coupling system regarded
as a four-terminal network connecting two lines, two cavities,
or a line and a cavity, and to point out how these relations may
be used to find values of circuit parameters, such as "Q" or
coefficient of coupling, in terms of measurements which can be
made with the most commonly available laboratory instruments.

Such measurements form the basis for any logical design or
development procedure.

The analysis will be carried out largely in terms of
impedance rclations rather than in terms of the more fundamental
viewpoint starting from Maxwell's equations and leading to
relations between electric and magnetic fields for thrce reasons:

1} The formal method of solution using Maxwell's equations

in boundary-value problems recuires very advanced
mathematics and usually yiclds deteiled solutions of
special cascs rather than the general relations sought
here, while these general relations are cxpressible in
terms of circuit and impedance concepts using much
simpler mathematics.

-



2) Laboratory measurement egquipment which has been developet
to date almost invariably measures impedances directly
rather than field intehsities.

3) Circuit and impedance concepts are familier to more
people than are relations between field components.

It is well known that impedance relations form a rigorous
basis for the analysis of transmission lines such as coaxial lines
and waveguides carrying a single wave type, and it is gquite
natural and common to represent a resonant cavity by a resonant
lumped-constant circuit, although many people are uncertain as to
how valid this representation is. Accordingly, it may bc well to
point out here that is has been shown by Hansen* that two quantitic
L and C may be defined in terms of integrals of the vector
potentials of the fields throughout the volume of a cavity of
arbitrary shape, such that the ordinary circuit equations for
the equivalent circuit involving L end C as inductance and capac-
itance are identical with the Lagrangian relations which insure
that Maxwell's equations are satisfied. A separate set of L and
C is defined in this way for each of thc modes of oscillation
of the cavity, except for a constant which adjusts the ratio
L/C according to the way the current in the resonator is defined
for each mode. The eguivalent circuit then consists of an
infinite number of lumped=-constant rescnant circuits, and since
the ordinary circuit equations for there determine a solution of
Maywell's equations which satisfies all the conditions imposed,
it follows from the uniqueness theorem that this equivalent
circuit is the complete one. This conclusion could also be
deduced from Foster's reactance theorem, as applied to a circuit
coupled into the cavity. The result is that a single lumped-
constant equivalent circult may be used with confidence as long
as we restrict ourselves to freguencies far from the resonant
points of other modes of oscillation.

*Hensen, W.W. "4 Type of Electrical Resonator,'" J.App. Phys., Vol
9, Nos. 10, (October, 1938) p. 654. _

Graphical Representation of Impedances

Probably the most useful mental toel available in RF work
is the device of representing impedances graphically. There are a
number of charts which have been used in this way, of which only
two, the rectangular plot and the "Smith* chart, have become
generally. used. The reason for the usefulncss of these methods
is that the human mind perceives geometrical relationships much
more readily than relationships expressed in the form of
mathematical ecuations. Once the correspondence between position
on some chart and & mathematical quantity has been estoblished,
one e¢nn let the eguations fade into the background and record
measurcments, do one's reasoning, and even derive new results in
terms of the geometry of the chart.



Any type of chart has, of course, an infinite number of geometrical
properties, and from each of these somc fact about networks and
impedances may be found. No matter how much experience one has
had with impedance charts, he can still learn new useful facts
about them at a rate 1imited only by his ambition.

Rectangular Impedance Charts

The rectangular impedance plot, in which the abscissa and
ordinate represent resistance and reactance, the resl and imaginar,
components of an impedance, is well known. Its chief unique
property is that if one interprets impedances as vectors on this
chart, the angle between a vector and the real axis is equal to
the electrical angle between w ltage and current in the correspond
ing impedance, and the length of the vector is equal to the ratio
of the magnitudes of the voltage and current. The result of
connecting impedances 1n series is eguivalent to vector addition
by the parallelogram law in a rectangular impedance chart<

Rectangular charts of admittance, the reciprocal of impedanc
are in general use for discussions involving elements connected in
parallel. The coordinates are the conductance G and susceptance
B, which for an element of impedance Z = R + JX are given by:

G = B =,
“RT® X2 , RZ ¥ X2 (1)

In this chart the roles of Voltage and current are inter-
changed and the operatlon of vector addition corresponds to
connecting clements in paraliel.

The Smith Chart

In rectangular charts the location of all physically

available impedances (those with a positive resistance component)

_is the right halif-plane. Since the area of this plane is infinite.
it is impossible to have a rectangular chart on which all possible
impedances may be represented. There is, however, a method of
mapping this half-plane onto a circle of finite size so that all
such impedances may be represented as points in the circle. This
is the Smith Chart,*which was described in the reference below as
a device for making transmission line calculations. It is
illustrated in Figure 1. Instruments based on this chart, and
called “"transmission line calculators" are commercially avallablce.
However, the associlation of this device exclusively with transmiss
ion line problems is unfortunate, as it apnlies only to a special
type of line, namely one having a characteristic impedance egual
to a pure resistance, and it is extremely useful in studying many
general types of networks that bear no rescmblance to transmission
lines. Accordingly, we shall develop the theory of this chart in
terms of a much simpler physical concept than the impedance
relations along a transmission line.

*P.H. Smith:hﬁiégﬁgaﬁics,Mf@nuary'1939.
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In Figure 2a 1s shown a resistance Ry connected in parallel
with an impedance 2 = R + jX. Regarding R, as fixed, we wish to
find how the resultant impedance Zp of the combination varies
with Z. It is apparent that if Z = 0, then ZP = 0, if Z = = Ry
then Zp = R,/2, 2nd if Z = 20, then Zp = Rg. If Z is a pure
reactance, Qp must lie somewhere on the largest circle in the
rectangular impedance plot of Figure 2b. In general, as R
varies keeping x constant, Zp movesé&long the clrcle given by:

Ro 2 R4
(Rp"o & o) = fg‘z (2)

wihille if X is varied for constant R, the locus of Zp is the
orthogonal set given by:

2 ) 4
(& -, 25489 % x_ R (3)
1 P o 2 {RFRe) ETﬁ?%;TE 3

4 few of these c¢circlcs are shown in Figure 2b. Notec that they
are identical in form and labeling with the coordinate circles
of the Smith Chart in Figure l. If any physiecally attainable
impedance is connected in parallel with a resistance R_, the
impedance of the combination will lie on or within a circle of
dilameter H,, tangent to the reactance axis at the origin. Since
corresponding to each possible value of 2 there is one and only
one value of 2., we see that the operation of placing a fixed
resistance R, Pn parallel with the variable impedance Z 1s
equivalent to mapping the infinite domain of Z onto g finite cirels
As remarked above, the center of this circle represents Z = Ro,
and we can therefore make the center represent any value of
resistance in which we are especially interested by choosing,

Ro equal to that value. We then say that the Smith Chart is
normalized with respect Tto Ros

The use of the Smith Chart in connection with general net-
works will be considered in Chapter III of this report, but it
will be expedient to discuss here the application to transmission
lincs, which is the basis of its present widesprecad use. 3
establish the connection with transmission lines, we note that:

_ Zp - 1=2=Ro = {7 (4)
p = z+%{oR v 2 Ro Z + RQ I

the quantity (Z-Ro)/(Z+Ro) is recognized as the reflection
coefficient fﬁat the end of a transmission line of characterlstlc
impedance Ro, when terminated in a load impedance Z.



The transformation from the quantity Zp/Ro to this reflection
coefficient is secen to consist of a change of scale by a factor
of two, and a translation of the origin one unit to the right.
This is illustratecd in Figure 3., and it is seen that the origin
from which the complex number s measured 1s the center of the
Smith Chart, while the points for which the absolute magnitude of
{fis unity constitute the periphery of the Chart. Therefore,

an alternative way of looking at a Smith Chart is to rcgard it as
a pleit of the reflection coefficient of a transmission line in the
circuliar rﬁglanfgf:; ; The convenicnce of the chart in
transimission lire problems then follows from the fact that 11‘!_.lII
is expressed in polar coordinates:

-l =

thenlrjhepends only on the standing wave ratio S = 88X in the
line, through the relations +

s e all (5)
I

and €@ is the distance in c¢lectrical degrees from the load to

the nearest voltage maximum. Thus the meesured values of

SWE and position of the standing waves are simply the polar coor-
dinates locating the load impedance on a Smith Chart. In a
transmission line with no leosses, the impedance seen at any point
locking toward the load is locatced on the Smith Chart by rotating
the point representing the load impedance thru an angle equal

to twice the electrical length of line between the load and the
point of measurement. As one moves along the line, the impedance
seen looking toward the load moves at a uniform rate along a
circlec of constant SWR, concentric with the outer circle.

g
=

L physical interprectation of position on the Smith Chart
in terms of voltage and current vectors may be based on the pro=
pertics of the reflection coefficient. If the line is analyzed
in tcrms of twe waves traveling in copposite directions, the ratio
at any point of the wvoltage vector in the reflected wave to the
voltage in the incident wave is by definition the reflection
coefficient at that point. If, as in Figure 4 we represent the
ineident voltage vector by unlty, the reflection coefficient
is equal to the reflcected voltage vector. The total voltage
on the ling at that point is the vector sum of these components,
and is representcd by a vector from the left edge of the chart
to the point representing the load impedance. The wvariation
of total voltage along the linc can then be visualized immediately
as thc tip of the voltage vector moves along a circle of
constant SWRe Sinmilarly, we may put the current in the ineldent
wave egual to unity, in which case the currcent vector in the
reflected wave is [*I’), since the direction of current flow
for a given wltage in a wave reverses when the direction of
propagation of the wave reverses. This is represented by a vector
equal and opposite to the reflected voltage vector, and the total

o "
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current is the vector sum of the current in the incident and
rcfleeted waves. It con easily be seen that as one moves

along the line, a voltage minimum occurs at the same point as a
currcent maxirum, and vice versa.

The coordinate cirecles drawn on the Smith Chart of Figure
1 are lines of constant resistance component or constant reactance
corpnomois in the impedance Z, or in the load impedance of

the Toragnission lines They may be repgarded as a2 distortion of the
straiphi Lines used as coordinates on o rectangular chart, such as
would anzir if 2 rectangular chart were drawn on a sheet of

raboar, 1. then stretched and warped until they were bent into
the Snlth Chart pattern. Mathematically, this transformation

is esllied a conforpal map, =nd it has the property that angles
between lines are proserved in going from one chart to the other.
Therefore, all tho coordinate circles in the Smith Chart

interseet at right angles, a2s do the stralght lines on a
rectzngular chart. 4 furthcr greperty that is of great importance
in reasoning with these charts is that circles are preserved;

that is, if the iscus of somc variablc impedance is a circle on
one chart, it is zlso a circle on thc other (a straight line being
of course, a special case of a eircle)¥® Therefore, if one can
find intuitively three facts about such an impedance locus

{such as two noints through which it must pass and the slope

of the tangent at cne of them) it 1s at once complctely determined
without the necessity of using any mathematics. In general,

the center of one cirele will net tmnsforn to the center of the
other circle, and the distribution of roints along the periphcry
will be altered in a transfornmation, but this seldom causes diff-
jeulty if one keeps a sufficient number of geometrical propcrties
of the charts in mind.

One fregquently has oeccasion to think of an impedance in
terms of atsolute magnitude and phase angle rather than resistance
and reactance, so it is well to know what the lines of constant
magnitude and constant phase look like on a Smith Chart. These
cireles are showvm in Figure 5. Note that they too always intersect
at right angless. Impedsnce charts on which these cirecles are
printcd as coordinates instead of the constant resistance and
reactonec lines, are ecalled "Hemisphere Charts®. It is clear
that thcy possazss the advantage of symmetry and more uniforn
spacing of thc coordinate cireles, which makes them proferred
tog the remular Smith Cherts in sone cascg, although they really
anount to the same thing.

#This is a property possessed by confornal transformations of a
special type, known as o linear fractlonal transfornations, of
which the above is an examples The general linear fractional

transformation between the complex numbers W and 2 is given byi

W =42 +B
CZ + D
where Ay, B, C and D are any conpleX nunbers.




The above cxplenations should serve as a working introduction to
the use of the Smith Chart, szlithough they naturally can only "scra.
tch the surface" o the subjcets. The properties described in this
secticn have been chosen because each of therm plays an essential
rolc in some later devclopnmnent. '

III: Propertics of o Genercl Linear Four-Teriinel Network

4s has been cxplained above, we shall regard any arbitrary
coupling system botwecn two units as a linear four-terminal networl
connected between then. The most general statcecments which we
can make about this network will then be truc for each of its
possible specific forms such as coupling loops, capacity probes,
irises, c¢tec. It will bc showvm that due to the fact that
distributed constant transnission lines are almost invariably
connected to a microwave counling system, thc distinction between
various arrangenents nearly disappears, and consists only in
a shift of a2 certain referencc point along the line.

The theory of gcneral four-terninal ncetworks has been treatoe
by a mumber of authors, perheps nost conprechensively by Guillemin¥
Since our intercst here is in the application to microwaves, our
analysis will differ somewhat from usual expositions, in order to-
keep results in an cppropriate form for graphical interpretations

It is customary in conventional nctwork analysis to focus
attention on the transfer properties ¢f the nctworks; that is,
given the input signal, to find the output signal. Transfer
propcrties are our fundamental interest in microwaves too, but
if a theory is to be useful, it must be concerned with cxperimenta-
11y measurablc gquantities, and we cennot usually be so direct at
the present stage of our technicues. However, impedances arc
quite easy to mcasurc at microwave frcquencies, so the logical
procedure is to develop. a theory in which the transfer
characteristics of a nctwork may be deduced frem its impedance
relationse. Thereforc we will study the propertics of a network
in terms of the input impedance as @ function of load impedancc,
and it will then turn out that the transfer properties nay be
obteined fror: impcedance rclations as neceded in a very sinple way.

In recent years therc has been a growing tendency to analyze
circuits in terms of admittanccs instend of 1Impedances. The rea=
son for this is oftcn artistic, although many cases exist in which
a saving of algebra is coffected. We will thercfore find it
cxpedient to prescnt both forms of analysis here, so that they
may be mixed indiscriminately in latcr applications. However,
¢ince it is quite confusing to cerry on twe devcloprients sirule
taneously, wc shall censider first cnly impcdance relations, and
then repeat the most importent formmlas in terms of adrmittrancess

* Guillermin, E.A. Communicaticon Networks, Vol. 2




Turning now to the general four~terminal network, Fig.
6 illustrates the current and voltage conventions. Linear circuit
thecry =zhows that regardless of whether its elements have lumped
or distributed parameters, and regardless of the complexity of
its incverconnections, the behavior of any four-terminal linear
network may be completely specified by three independent functions
of frequency. Accordingly, wherever the geometry of an RF system
becomes simple enough so that an impedance may be defined, this
impedance will depend on any other impedance in the system; regardegd
as a load impedance, through some relation involving three inde~-
pendent functions of frequency which, for a non-resonant intermed-
iate network and in a narrow frecuency range, become three constante
These parameters may be chosen in many different ways, the most
useful one for our purpose being the scheme of two open-circuit
driving-point impedances Zj;y and Z,,; and one mutual impedance 2q.,

connected by:

Eqi = 27714 = 2751
1 E1L 12-2
(6)

Ep = 29517 = 25515

A T-section network with parameters Z;4, 2,5, and Z,, is shown in

Fig. 7a+« This is the usual form in which a general network is
visualized, and it is one whose elements often correspond roughly
to elements physically nresent in RF components. Another form in
which the general network is often visualized is the transformer
shown in Fig. 7b« The usefulness of this arrangement as a mental
todl is limited by the fact that it can not be applied in the
useful practical cases where one of the driving-point impedances
becomes zero, or the coupling exceeds the amount corresponding to
K = 1.

It follows from equations (6) that if a load impedance 2o

is connected to terminals 2, the corresponding input impedance
seen at terminals 1 is:

7 2
21 = 211~ _Qélfr_TZ (7)
4o 2
This is the most general way in which one impedance can depend
on another impedance, and it is well to study this relation in

some detail. Mathematically, ecuation (7) expresses a functional
relationship between two complex quantities Z7 and Zp,

involving three arbitrary parameters. 23 is an analytic function

of Zp, which means that if the real and imaginary parts are given
by 21 = R] + jXi, 22 = Rp + jXo then the following useful

I o
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relations must hold:
=R, 2 X, FiR, o X,

i e s g e (8
C;HE = xz 7 ;X.E_ & v }
In the theory of functions of a complex variable, equations (8)
are xnown as the Cauchy=-Riemann differential equaticns, and they
constitute a necessarg and suffiecient condition that a unique
complex derivative 441 exists. Geometrieally, the operations

e

a2
performed on Z, in the rectangular complex plane to arrive at 21
are translatioﬁ, inversicn, change of secale with rotation, and
another translation. 8ince each of thcse opcrations is one
that preserves a cirele, it is evident that if the locus of Lo
is a eircle, that of Z; is also a circle. If the network is
lossless, its three parameters are pure reactances and the
rotation cannot occur, while the translations are in the vertical
direction onlys.

In order to visualize the relation between input impedance
and load impedance of a network graphically, it is convenient to
eliminate as many separate gquantities from eguation (7) as is
possible without losing generality. The standard way of doing
this is to normalize the input and load impedances with respect
to scme i~pedances defined by the network; in other words, to
think of impedance ratios rather than actual impedances. This
can be dene in several different ways, of which two are particular]
useful for microwave apnlicitions, for ressons which will appear
presently.

The mathematieally sinplest normalization scheme 12 to norma
ize the input and load impedances with respect to the correspondin
open=clircuit driving-point impedances le and 222. Rearranging
equation (7) in this way, we have!

gy, ®ar X (9
Zn L # (25 ™)
@22 )
where K2 = 5122 is the complex coefficient of cnuplinéi*
A2 “on
*If the network happens To be an ordinary transformer, thia . ;_

reduces to the familiar ceefficicnt of coupling given by K
2/11L2., However, in general K is complex and is not restricted

to absolute walues less than unity. For example, if the network

is a lossless transmission line, we have K = seec @, where @ is the

electriezl length of the line, and therefore KZ l.

o




The transformation between the normalized impedances is seen
to depend on only this one property of the network, instead of
three. When we are concerncd with lossless networks, it is
convenlent to narmalize with respect to the reactances x rather
than the impedancesjX. In this casec if we define:

11 1 X
. o= D2 . % (20)
2 X0 Xo 7 ﬁg;

we then haves

2 . ' 2
= "K r2 : E %—%
P gt 21 x
1 root(ltey) 2, 27T T T2 (D)

L

Equations (11) may be re-arranged in the following form:

(r, - K202 + (1 +x)%= (KH? (12)
e 2r, (2ry)

5 2 ° 5 2
X5 +1 - K¢ ] + ry = K ]

2i1-—xl§ 7 (1-x1)
These are the equations of two families of circles in the PorX 2
plane which are thc loci of load impedance for constant
input resistance and reactance respeetively. They are plotted
in Figurc 8. The circles of constant input resistance are tangent
to the x, axis at the point x.= ~1, while the circles of constant
input refetance are the orthofonal set. A4 little study of these
eircles will enable one to visualize quite clearly how the input
impedance varies with load impedance in a reactive network, in a
way which does not depend on whether the coefficient of coupling
is greater or less than unity.

The other method of normalization brings out an Interesting
connection with transmission lines, and is capable of very simple
geometrical interpretation on the Smith Chart. Unfortunately,
however, there is one useful class of network for which this
interpretation fails, and for which thc corrcsnonding geometry
is more complicatced. In this method we normalize with rcspect to
the image impedances of the networke. The image impedance at .
terminals 1 may be defined as the geometric mean of the impedances
scen looking into terminals 1 when terminals 2 are alternately oper
and short-circuited. In a symmetrical network the image impedance:
are equal to the iterative impedance, which is the impedance seen
looking into an infinite cascaded chain of similar networks.

12



In general however, an image impedance is the impedance looking
into an infinite chain of similar networks every other one cf
which is turned end for end so that terminals 2 of one network
are always connected to terminals 2 of the next network, cte.,
while for the iterative impedance the networks are all oriented
the same way, so that terminals 2 of one network feed terminals

1 of the next. For a transmission linc the image impedances,
iterative Impedances, and characteristic impedance are onc and
the sames. From equation (7) we find thesc image impedances to bet

7 o
ZI; = /Zu (Z.u" ‘%—f‘i } = Z.uﬁlc""f _"éf‘?‘
Zaa/ (13)

=

- o Lyi X S
ZI -l ’-ll “'/FEEN 21 7 = | = Zu'}“*h"

We then find that the formila relating the input impedance to the
load impedance may be written in the form:

21\ . [Z% +E:ic'5;-
11J ( \{

Z1 Z1

Z
p & +i2%2) Yl_-—z————.

If we compare equation (14) with thc well-known cxpression
for the input impedance to a section of transmission line of
characteristic inmpedance Zo, propagation censtant-y’, length §
and load impedance Z,, which is

(22 /Z V4 o h7h
Vi(Ze/ 2o ) Aurk 4 (15)

(14)

R
!y

{—-—-I i

Y LOJ'

we see that they are identical in form if we associate!

Tk 9 = _F,' T e (16)



so that a network with coefficient of coupling K behaves with
respect to its image impedances in the same way that a
transmission line of total propagation constant ¥4 = tank® -J1-K
behaves with respect to its characteristic impedance. The only
difference 1s that the two image impedances are not in general
equal, so that a genersl network corresponds to a transmission
line which has a different "characteristic impedance" at its two

ends e«

It wonld be possible to study equation (16) in detail for
the general case where K and o/ are conmplex, in order to establish
the connection between cocfficient of coupling and propagation
constant of the eguivalent transmission line for =1l possible
cases, but this is not necessarv because nearly all networks of
practical intercst fall into one of the following special types,
for which the analysis is greatly simplified:

(1) Rezctive Network Tightly Coupled.

The Impedances locking into 2 pair of terminals with
the opposite pair open and then short-circuited are pure
reactances of o§posite sign, so that the image immedances are purec
resistances. K~ is then real and greater than unity. From eguatic
(16) this means that the equivalent transmission line has a pure
imaginary propagation constant, and therefore hes no attecnuation,
but has phase shift corresponding to an electrical lengthw&fwhere
tanff =+K2~]. This network then corresponds to a section of
lossless transmission line, or to a filter in its passband.

(2) Reactive Network Loosely Coupled

The open and short-circuited input impedances are pure
reactances of the s%me sign, so that the image impedances are also
pure reactances. K€ is real and less than unity. Therefore,
the equivalent transmission line has no phase shift, but an
attenuation of x{ nepers, where tanh x4 = -/ I-K2. This corresponds
to a waveguide below cutoff, or a filter in its cutoff region.

(3) Resistive Network

The open and short-circuited input impecdances are pure
rgsistances, so that the image inpedances are also pure resistances
K¢ is real and less than unity, so that we again have attenuation
xjas in case (2) and no phase shift. This corresponds to a
resistance attenuator pad.

“1h-



(4) Symmetrical Network in which Attenuation is Due to
Resistances

The two image impedances are equal resistances so that
the analogy with a transmission line expressed by eguations (14)
and (15) is exact in cvery detail. K2 may have any value,
rcal or complex. This type of network is equivalent to two
simpler nctworks in cascade, of types (1) and (3) respectively.
To show that a network of type (4) mer be resolved into two
networks of types (1) and (3? we note that the quentity ¥ in
cquation (15) is a complex mumber 7% = o+ 7F where & is known
as the attenuation constant, and £ 1s the phase-shift constant.
If we expand the hyperbolic tangent in terms of « and & , we find
that cquation (15) may be split into two equations of similar
form by means of which we arrive at thec value of (z,/2,)in two steps

(22 (22/2.) 4 7 2o B4
ol 0 J(2:/2.) o B4

N

N

N

|

(1) (27/2,) + Lod. o] (17)
\Zot T [+ (220 la bk

Note that each step involves only one of the components of 7 »
The physical interpretation of equations (17) is that a general
transmission line with both attcnuation and phase shift is
equivalent to two lines of the same characteristic impedance
connected in cascade, one having phase shift equal to that of
the original line but no attenuation, thc other having attenuation
equal to that of the original line but no phase shift. The latter
network evidently corresponds to a resistance attenuator pad. In
addition, the orcecr in which these ideealized networks are
connected makes nc differcnces we could equally well have
connected the attenuator network to the load, and calculated the
input impedance to the lossless network.

N

The application of the Smith Chart to networks of types
(1) or (3) is very simple, and follows from the properties
already described. If we locate the load impedance_(Z2/212)
on a Smith Chart, as in Fig. 9a, the input impecdance ~(Z1/2I3)
to a network of type (1) is represented by a point rotated
clockwise through an angle

b =280 =24l VEFTT =2 e (5] (s

G



A1386

BELEE TN

iraed AT

PERGIIA RLE H3N

e

33 MIMEE

LY 377

amciAE

&

Tamwdm©d WoOd ¥ITTE

T

MLLIEAWITEEEH  GODMEEN

s AN I

SOwiD WO 3L Ly

-—

] L [0S AV Lodts 3L
SEypg i e o OO S LY e O
L3N SHL oL SMNOHSHTRIAACD
STOIDHID NOIAWANILLlwINGR
40 HIOWAKN 3HL 1Svs DEY
s535WI2 AL S@NOIY L WHOOD

PI=\
i

(2
FOMWATAW! LN Bl
ania oL '8 v aalvdel s 1IzZ|

—
=
7 IDNYAIdw A0 - ABOM LN (2) 323410

iz
=

\(

Ho= SN0

HHOMALEN IHL o NOo1Len
-3y 4P £ HOWE Aos 2 o
AOLIYH LNVLISMNOO W AR NAMGT ﬂ%u
QNP8 S ANTON FOMYOSAWI

gy = ®ASHM_LAN ()] 3d4L

MH
ﬁ IN..EGm,OUGJ
ez -

fZs o= (F pLSmmo
S ELDE3 CarTl NOES NS YR L
STZTISSOM W @l SAMNOdSSHEoD

(R)j-s07 2= ¢

Frony Ny Durl (2)
OfLwIoH S| Snpwd3IdN!
AnaN] = HAACH L3N (1) BIAL

SSRACMMLIN 4T S3AAL 3IAEL
40 sSAILHNAdTRA DMIWZCISHTAL ZDNWAIAdW)




Values of the effective electrical length A€ = .. (V&)

are plotted in Fig 10.

The behavior of a network of type (3) may be.found by
introducing the guantities

rjﬁ Z, Ly, Z; ~271,
’ z:*Z;’ ’ 8‘28+Z12 (19)

In the case of a transnmission line, these cuantities are called
reflection coefficients and, although the name is not quite so
applicable here vhere the two image impedances arc unequal; these
guantities still satisfy the same formal relaticns as the
reflection coefficients of a transmission line, and in particular
they are still the comrlex numbers which locate the corresponding
impedances con a Smith Chaft, neasured from its center as an origin.

If then we put tanh a = =K2, where a 1is the attenuation of the ~
network in nepers, we find equation (14) may be written in the
forms:
ik -2 R
[jj zle e (20)

so that the input "reflection coefficient" is cgual to the output
peflection coefficient" recuced in scale by a factor e-2a,

This is a factor of twe for each 3 db. atitenuation of the network,
as illustrated in Fig. 9 be.

L network of type (2) is rorc difficult to handle on
a Smith Chart than the other specisl cases; because its inage
impedances are pure imaginary. DNormalizing impedances with
respect to an imaginary impedance is undeesirable, not only
because cof the confusion that would rcsult from the interchange
of rcsistance and rcactance, but even more important,; some
physically realizable impedences lead to values of (ZZ/ZIQ) having
a negative real component, and these 1lie cutside the Smith Chart
unit circle. However, if impedances are nornalized with respect
to the absolute magnitude of the image impcdances, an interpret-
ation is still possible. This relationship will merely be stated
without proof, as it is not often usecd, the internretation of
Fig. 8 usually being simpler. If the normalized loacd impcdance

4y

APR
is located as at B in Fig} 3R, the input impedance
Zy,
1214

16—



lics on the circle ABC, and approaches elither 4 R; C, _whichever
represents 2I7, as the attenuation g = t a n h =~ VI-KZ is inc-
reased. In the case shown, the image impedance is inductive and
represented by A, so the input impedance is located at point D
The distance DB is determined by counting past the appropriate
number of equi-attenuation circles which are orthogonal to ADBE<
These families of circles taken together are similar to the
circles in the Hemisphere chart of Fig. 5, but rotated 90°. The
law by which the eguiattenuation circles arc spaced is the

same as the law by which constant SWR circles on a db. basis

arc spaced except for a factor of twoj that is, calling the horizo
tal diameter of the Smith Chart the "circle" of zero db '
attenuation, the 1 db egquiattenuation cirele is tangent to the

2 db SWR circle , ctc. .

Use of Admittances

In many problems the usc of adnmittances rather than
impedances lecads to simplifications in thc mathcmatles and the
physical picture, so we will consider briefly how the above
results may be applied to them. The fundamental equations for the
general network of Fig. 6 on an admittance basis mey be written
in the form:

Iy = Yll El - Y95 Ep

The admittances ¥Ymn arc rclated to the impedances Zrn by the
relationss

Z 2310 211
Y = 22 Y = ) Y =

The inverse relations giving the Zmn in terms of the Ymn are
jdentical in form. The most straightforward way of visualizing

a general network on admittance basis is the Pl-section of Fig.ll,
It is scen that Y77 is the admittence seen looking into terminals’
1 when terminals arc short-circuited; it is thercfore called a -
short=circuit Adriving-point admitfance, just as 2 1s called

an open=circuit driving-point impedance. If a loa% admittance

Y. is connected to terminals 2, the input admittancce to terminals
1 is given by

Y102

op t Y,

which is of the same form as the corresponding impedance equation .

{7) e

(23)

1= Ty
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From equations (22) it follows that the coefficient of counling
is given by equations of identical form in terms of either
admittances or impedances:

K22 128 o P1f
illygg 211 Zop (24)

Therofore if we merely substitute Y for Z in equations (9) and
(14), wc have the corresponding equations for the input admittances
relative to the driving-point or irage admittances. Since all

the network equations are of exactly the same form on an admittang
or an impedance basis, all of the graphical interpretations of ther
are equally applicable to admittances if we substitute conductance
for resistance, and susccptance for reactance. Any of the
equations in this section may be used as admittance equations whenr
ever it is convenient to do sos« A4 1list o the more important '
cquations on an acdmittance basis is included in Fig. 11.

IV% Coupling Systems &8 Four-Terminal Networks - Choice of
i an Equivalent Circuit.

When we come to apply the four~terminal network theory
to coupling systems, some cuestions rcgarding the equivalent circult
present themselves. There is no difficulty in deciding how to N
represent the equivalent circuit of the connection of a
transmission lire to a coupling network; we simply connect the
two terminals of the line to the corresponding ones of the coupling
network. In the connection to a resonant cavity, however, there -
is more than one way of drawing the equivalent circuit, and it is
not immediately obvious whether differcnt representations will
lead to fundamental differcnces in the whole analysis. For exanple
the sories and shunt connections of Fig 12 and the "tapped down"
connections of Fig 13 immediately suggest themselves, and although
in some ecases one of thesc schemes may correspond mere closely
than the others te the physical arrangenient of the parts, one
is likely to wonder if perhaps a single analysis would suffice
for all cases and if not what he 1s to do in cases vhere he cannot
decide which equivalent circuit to use. -

In order to avolid gotting lost in a mess of trivial
academic distinctions between these circuits, it is well to recall
the nrinciple stated in an earlier section of this report, that
a theory is not of much use unless 1t is mainly concerned with
experimentally measurable quantities. Since about thce only thing
we can readily measurce in these circuits is the input impedance
to the coupling network for various frequencies and adjustments,
we can make no rmeeningful distinction betwecn two coupling
arrangements which have identical input impedence functions. With
this in mind, let us exemine once more _.equation (7) which gives
the input inmpedance to a general nétworks
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Z1p2
17 Tt 25 | (7)

We sec that, as far as the input impedance is concerned, 222
and Z2 have no separate existencc, since it is only their sum
which affects the input impedance. Since Z22 has bheen considered
a nrroperty of the coupling network, while Z2 depends on the

- resonant cavity, this is simply a mathematical statement of the ob-
vious physical fact that it is never possible to draw a sharp '
dividing line between clements that prorerly belong to the
coupling nctwork and those that are part of the cavity, because
every coupling system necessarily perticipates in the resonant
action of the cavity to some extent. The nathcmatical statement
goes further, however, and tells us that we may freely transfer
elements between the coupling network and the cavity in our
equivalent circuit, because this changes only the way we draw
our circuits, and doces not affect the eguations.

With these principles in mind, we sce that we may
immediately eliminatc the "Tapped dowvm' cases of Fig. 13,
if we consider that the part of the inductance or capacitance
included between the terminals of the cournling network may just
as well be considercd to be part of that network, to which we
have as yet assigned no specific properties. 1If this is done,
both of the cases of Fig. 13 reduce to thc seri¢s conneccted
circuit of Fig. 12, and we have only to comparc the series anc
shunt arrangemcnts. These in turn may be shown to be equivalent ¥
by the same reasonings we mays by virtue of the generality of the
courling network, consider the inductances and then the
capacitances of the two representations to be part of that network,
lcaving us in cither case with nothing but a gecneral network with
a resistence load. One is inclined te object-at this point,
saying that we have gcneralized our cavity and problem out of
existcnce, but cach step is justified according to the above
principlcse

*Note that we are not saying that a given network may be connected
in s¢veral different ways to a resonant circuif with the same
behavior in cach case - that is obviously untrue. What is shown
is that we may rcgard any coupling schemc as reprcsented by

either a shunt or a series connecetion to the cavity if we choose
the parameters of the coupling svstem properly for cach casce

When this is done, any represenbtation leads to the same bchavioer
in terms of measurable r~roperties.



Perhaps it will help to offer a specific illustration of the way
this ecuivalence worksj; let us compare the actual equations for
the series and shunt circuits and verify directly that their be-
havior is the samee.

In the series case, the load impedance connected to the
network due to the cavity is given by

—

_ 1 L . t sy [ L2 g
= ! &a _ = e
22 RY F Je L * J“’C a tl * JQ wo & )J
where
9 1 a1 T
G = - - 2 eakdat -]—'s lﬁ
0o =TT ' TR TR &

If we assume Q@ >> 1, then the frequency range in which signifi-
cant impedance variations will occur i1s small; and we may use an

approximate formula:*

() = __8'_"0 = o e 2 & (25’)
o b2 Ay

where & is the fractional frequency deviation from «woy. The load
impedance may then be written as:

Zo = R' (1 + j2Q%) (26)

Assuming that the coupling network is composed of pure reactances,
we have:
Z11 = 3X11s 212 = Xi2s Zp2 = o2
so that the input impedance to the network is then:
x. 2
g = e 4 12
1731 7 5%, + R' (1 + j20%)

the measurements which we can make on the system are to detune the
cavity and note the input impedance; then follow its variation

R —"—————— L e R ik e

* This approximation is made here to save algebra and to intro-
duce a notation which will be used throughout the remainder
of this report. It does not affect the equivalence of different
circuits, which is the main result being sought,

P ()=



as we pass through resonance. When the cavity is detuned, the
term 205 becomes extremely large compared to all other quant-
ities in the expression

5
Xi2

JXoo + R' (1 + j2Q &)

so that this term vanishes in the limit of complete detuning.
The input impedance is then simply Z7 = jXj33. As the cavity is

tuned through resonance, which varies & in equation (27), the
input impedance varies along a circle as shown in Flg. 1l4.

In the shunt connected circuit, the load impedance of the
network due to the cavity is given bys

T j§Q£§ (28)

Z2=

where R'is the cavity shunt impedance, and the other symbols have
their usual meanings. The input impedance to the network is then:

e
21

R'! t29)
+ j2Q5

b &e

this expression appears to differ considerably from equation (27)
but let us study it more closely. In this case the input imped-
ance when the cavity is detuned (2Q& —3»==) is not JX11, but in-
stead has the value '

X 2
7

In order to bring out similarities between equations (27) and (29)
we should first rearrange (29) into a form where the expression
(30) corresponds to X311 in equation (27). We find that the
following equation results from this rearrangement:

27\ 2

X X

&y = Xll*g;‘-?*-)*‘ — 122 . (31)
22 Si%, + X2t (14 32qF )

te

R




Comparing this with equation (27), we see that they are ident-
ical in their variations with respect to & , the tuning of the
cavity. The imped-nce locus accordingly is exactly like that

of the series connzcted circuilt of Fig. 14. There is a certain
reactaince present vihen the,cavity is detuned; this is called X3
in one case and Xq; - X5 /X5, in the other, but that does not

mezn that the physinal reactances are different, for we choose
dirferent values of the arbitrary paramsters Xj1, X2, Xoos when
we change equivalernt circuits. As the cevity is tuned through
resonance, the impedance in hoth cases veries along a circle like
that in Fig. 14. The presence of (jXoo) in one formula and
(=jX55) in the other is not significant, as Xppis en arbitrary
reactance which can be of either sign.

The question of the exact resonant frecuency of the system
will not be discussed here, as we do not yet have in our possess-
ion all of the facts necessary for the most useful definition of
what we mean by & rescnant frecguency.

To sum up,; 1t has been demonstrated that, given a physical
davity with its counliiz system and the experimental data on the
input impedance to tne coupling system as a function of cavity
tuning, this evperimen®tal data can be accounted for on the basis
of a general four-teviinel network connected to the cavity hy
either the series ¢ the shunt equivalent ecircuit, and *tigvrefore
we ~ve at liberty tc¢ =hwose whichever rerresentation i1s most
convenient. Ineicentially, 1f we had anailyzed the chunt cease on
an adnittance tasie instead of with impedances; we would have
arrived at the desired result with far less algebra; and there-
fore the shunt reprcsentation would be preferred in problems
worked out on an zdmittance basis, whiile the series arrangement
is simpler when working with impedances.

There is one way, however, in wvhich the relation between
coupling network and cavity may be represented with a greater
economy of elements in the complete equivalent circuit, and
therefore in which the analysis recuires fewer quantities than
for other arrangements. The cavity has been represented by two
reactances + X and a resistance, and the coupling network con-
tains a parameter Xop which we have shown to be experimentally

indistinguishable from the cavity impedance. We can see from
equation (27) that if we combine Xpp and the cavity impedance

into a single impedance of the form R(1 + j2Q< ) the effect is
merely to shift slightly the zero-point of & , but this "detuning"
changes only our ecuations, and is not experimentally observable.
We now have to reapportion this combined impedance between the
coupling network and the cavity in whatever way leads to the
simplest ecuations in what follows. It will be found that the
most convenient method is simply to place the new X,, = X, the
reactance of one of the resonant elements of the cavity. 1In

~22-



2881V 21 IFANDIA

oQJ HW n w |;U N._. Hdo WH.‘_!
Dn.jl? = | 1 —em 1

P =EIHM
= ™ Om _ 200 -
(so=(+1)A = Qelqu- yolH]R = 2+ amlea = 2
ISt SOWNIWASL SSOIY [ONYAIIWI
.ulﬁ
d

LinJalls LNwNOSIA

R s3ru3s \%u

°m & ”_l.v@! =2 . ....Eﬂo
Iw . - qu-l Ulﬂ-.lﬂé G Il_lll ?

’ | SE3H A
soel+i _ olM.aﬂ :M..HVG?_ H.E...m,.vo??.mvnN
=) = (21) !

1S STIYNINGRL SSOETY TOoNwAIdAWI

1

2

1 A INTEID LNYNQSEE
12 waEvd A‘\Gu

—

O

—

-

28zl

S ZaANod

_v| ..... 1 <
= < SISANY
.m“” . Mgm IOMNYL LAY \\u
IGII.MV .,Uu.m_
Ch ﬂ| o ma? —o0
Il
X- _V ..... , I
e
= SisATNY
¥= Ty Mm.u. ESONTASdW! ﬁ,«.ﬁb
<
R l-\ b —— v
ko)
- =
SC = A S

QILLD3aNNOD

SHL wo= SLinDdiD LNZITvAINDI Ad3dN4dWIiS

———

T Zzanod
\*+=8D2
.\U.zﬂ
o \ /
.-vﬁ
0=
|- =822 .vh
ALIMNYD ANYNOSIAHE & Ol A3aNdNOoD

SEBOMISN W oL Zonwa=adwl andNl =0 ~NOollvrws



other words, the driving-peoint impedance segen looking from a
cavity into anv coupling network mav always be put egual to one

of the reactances X of the cavity eguivalent circuits The sug-
gested ways of representing the equivalent circuit of the con-
nection for problems on an impedance or admittance basis are shown
in figures 153 and 15b respectively. Thus, we have eliminated cone
of the quantities from our analysis without losing generality, by
the choice of an equivalent cireuit which involves only as many
elements as the system has iIndependent physical properties. The
advantages of this equivalent circuit will become guite evident

in later developments..

V. Impedance Relations in a Transmission Line Coupled
to a Cavity-Definition of Resonance in the Overall
System.

u— [ —

In this section we will consider some simplifications in
the analysis of coupling systems which become possible when en-
ergy 1s fed into a system through a distributed-constant trans-
mission line. The term "transmission line" is used here in the
broadest sensc, including all transmission systems in which an
imnedance may be meaningfully defined, such as two-wire lines,
coaxial lines; and waveguides in regions where only one wave type
exists. In all such systems there is more or less of an ambiguity
in deciding just where the boundary separating the transmission
line from the coupling svstem should be located. Because of the
generality of the coupling system, it may be considered to include
an arbitrary length of transmission line, and the parameters of
this overall coupling system will depend on how much line is in-
cluded. BSince our choice of a dividing line can obviously make
no difference in the physical behavior of the system, it 1s ap=-
parent that we should choose it where it will be most convenient
mathematically, without regard to the physical construction of
the system. This may be done as follows. When the cavity 1s
detuned, e have seen that the input impedance to a lossless
coupling system is a pure reactance. Now whatever the value of
this reactance, it will be transformed by the transmission line
so that at certain points secparated by a guarter wavelength it
will appear as alternately a short circuit and an infinite imped-
ance. At these points, as we might expect, the form of the
impedance variztion as the cavity is tuned through resonance 1s
particularly simple, and it will be convenlent to consider one
of them as the boundary between the transmission line and the
coupling nctwork. Which of these points 1s chosen will depend
on the individual problem.

It is assumed in this section that the coupling network
is not rescnantj that 1s, thet its paramcters vary only slowly
with freocuency, so that they may be consldered constant over
the narrow frecuency range in which the impcdance variations of
a high-Q cavity occur. The impedance developed along the trans-

-2 Yo



mission line will then depend only on the diffcrence between the
frecuency of measurcment and the resonhant frecuency of the
svstem, $o0 that the same re¢sonance curve is traversed by varying
the frecuency as by tuning the cavity. Experimentally 1t makes
little difference whether the frequency or the cavity tuning is
varied if the cavity Q is greater than about 50 and the network
is simple. However, in some siftuations, such as when a cavity is
very heavily loaded or when scveral wavelengths of line are be-
tween the cavity and the point at which impedances are measured,
this assumption becomes doubtful. In such cases corrections may
be applied to the data, in ways to be considered later.

If we use the series cireult of Fig. 15a for the connection
between coupling network and cavity, as explained in the precceding
section, the input impedance to the coupling system reduces tos

x. 2
12
R(1 + j2Q8 )

At a point where the impedance looking toward the detuned cavity
i8 a short circuit, we evidently have X197 = 0, so that the input
impedance 1is simply: -

X12

(32)

Z1 = j¥31 t

this is exactly the impedance of the parallel resonant Sircuit
of Fig 1l6a, with resonant shunt impedance egual to X1 sy at

a'frequency’!

- LA
E - Ll [*)

=

e

Therefore all impedance measurements made on the transmission
line are the same as if a lumped constant parallel resonant cir-
cuit were connected as a termination on the line at a point where
a short circuit occurs locking toward the detuned cavity. This
lumped~constant eircuit has, of course, the same @ as the cavity,
since Q for both is determined in terms of energy storage and
dissipation in the same system. It will be called a virtual
resonant e¢ircuit, by analogy with the virtual images used in
optics.

It is not quite correct to say that the virtual circuit
has the same resonant frecuency as the cavity, since the latter
has not vet been defined; in fact the question of the resonant
frequency of a cavity has been carefully avoided thus far. At
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first sight 1t might scem that there is no difficulty in finding
an intrinsic resonant frecuency for a cavity. If it is of simple
shane, then a resonant frecuency may be calculated from Maxwell's
equations, assuming smooth, unbroken walls and therefore no coupl-
ing system. If the shape is not simple, the calculation would be
impractical, but the principle would be unchanged. If then a
coupling system is added, one might be able to calculate a2 new
resonant frequeney according to some criterion of resonance, and
say that the difference represents the emount thet the cavity is
"detuned" by the coupling system. This detuning would, of course,
depend on the impedance connected to the other side of the coupl-
ing networks Thisg interpretation may be useful at low frecuencies,
or when the coupling is very loose, but when a microwave resonant
cavity 1s tightly coupled to some other circuit, the necessary
physical modifications in the cavity and the change in internal
field distributions. are so great that it can no longer be called
the same cavitys, In that case, the concept of an intrinsic reson-
ant frequency of the cavity beccomes meaningless, and we can only
talk about the resonant frogquency of the system as a whole.

However, we soon find that even this overall resonant free-
gucney is not very easy to define, unless we know precisely what
we mean by the term "resonance'. Accordingly, let us try to find
some condition upen which to bestow this name that is theoretical-
1y ressonable, cxpcrimentally useful, and mathcmatically unicues.
Our first guess at thig condition might be based on couation (32).
According to this equation, the impedance at any noint along the
trensmission line starts out at some reactance Xy when the

cavity 1s detuned, and moves along a cirecle as in Fig. 14 when the
tuning is wvaried. When the term & vanishes, the impedance has
traversed cxactly half of this circle, and the resistance compone
ent of the input impedance is a maximum. Therefore, it would
appear that a good definition of resonance is simply the condition
% = Qe The only difficulty with this idea is that the frequcney
so defined depends on what point along the transmission line the
impedance locus is observed, although this is not aspparent from
equation (32} To show this, consider a coupling system which

is so adjusted that the input impedance locus passes through Zg

at a particular frecuency, as shown in Fig. 17. Evidently if the
line is matched at one point it is alsc matched at all other
points, so that all impedance locil measurcd at various positions
along the 1line must pass through Zg at the same frequency. Fig.
17 shows two of these c¢circles; one of which is the impcdance

locus seen at the position of & short circuit when the cavity is
detuncds The condition e = 0 must obviously define two differcnt
frecuencles for the two impedonce circles. This should scrve to
emphosize the fact that & as used in cquation (32) is not a
physically inveriant gquantity, but mercly a convenlent lincar
frecuency scale thet involves one of the parameters of thc general
coupling network, and whose zero-point shifts with the length of
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line that is considered to be included in the coupling network.

There is, however, one unique property of the freguency
at which the line is matched in the above example; the power fead
into the cavity is a maximum at that frecuency, and this condition
is true for the impedance locus at any other point on the line, at
the frecguency where it passes through Z25. Moreover, this property
is universal even when the impedance does not pass through 24. The
freqguency at which the SWR looking toward the coupling system 1is =2
minirmm is a physical property of the system as a whole, and can
not depend on where we consider the boundary between transmission
line and coupling system to be located« In addition this frequency
has the following properties:

(1) It is the resonant frequency of the virtual paraliel
resonant circuit which we have imagined to be located at the posi~
tion of a voltege minimum locking toward the detuned cavity.

(2) It is the frcguency at which a charge rclecscd on the
inside walls of the cavity will oscillate until its energy is dis-
sipated, if the tronsmission lince is matched looking backwards from
the cavity. It is thus the "Natural frequency" of the system as
seen from the cavitys (This will be proven in the next section.)

{(3) It is the frequency ot which the position of the volt-
age ninimum on the transmission line loocking toward the cavity
has either returned to the position of the voltage minimum with
the cavity detuncd, or is exactly o quarter wavelength away from
this position depending on whether the tightness of coupling is
less or greater than the critical value which matches the lihe.

Note that this frequency is truly a property of the entire
systorn; its valuc depends on the parameters of the coupling systenm
and on the characteristic impcdence of the ftrensmission linc, as
well as on the adjustment of the cavity. It satisflcs the re-
quirements of ressoncbleness, uscfulness, and unicucnesss; whereas
it has becen shown that any attcompt to define & resonant frecuency
of the cavity alone lcads to serious logical difficultics. Thero-
fore, we shall never speak of the resonant frecuoency of a cavity,
but only of the rcsonant frecuency of the entire system. It may
scem that we have dcvotcd a disproportionate amount of discussion
to this metter which rcally amounts to only a fow negacycles dif#-
erence at the most, but it is a very subtle point which has caused
much confusion in thec past, and has resulted in nany unintelligible
statements and argurcentse.

We have seen that thc veriation of irmpedance along the trans-
mission linc as the system 1s tuned through rcsonancc is the sane
as if thc line were termineted in a parallel rcsonant lumped-
constant circuit at the position of a voltagec minimum looking
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toward the detuned cavity. In order to avoid repetition we
shall hereafter call this point the detuned short. t a point
& quarter-wavelength away from this position; the impsdance
variation is again simple, and may be found quite simply from
the well-known transforming property of a quarter-wavelength
line. This line transforns an impedance 2 into a new impedance

(252/2), so that the parallel resonant circuit with an impedance

REET N (34)
T+ 3206

where /¥ is the ratio of shunt impedance of the parallel resonant
circuit to 24, is transformed into an impedance

Zg
5?‘(1 + J206 ) (35)
which is recognized as the impedance of a series resonant cirecuit.
These relationships are illustrated in Fig. 18. The resonant fre-
guencies of these virtual circuits are the same and equal to the
resonant freguency of the svstem as defined above.

V1. Behavior of Coupling Svstems as seen from the Cavity;
Unloaded, Loaded, and Coupled Q

In the preceding section we have discussed the impedance
relations seen in an exfernal Transmission line looking toward a
resonant cavitys; we now reverse our viewpoint and consider the
conditions as seen looking out from the cavity into the coupling
network. In so doing we are turning our attention to guantities
most of which are not directly measurable, so that experimental
verification of the results must be done by devious means, and
therefore some further attention to the validity and rigor of the
equivalent circuits 1s in order.

The introduction of a coupling system into a cavity involves
a certain amount of perturbztion of the internal field distribu-
tions, which has two significant effectsy the resonant frequency
must be considered as belonging to the entire system and is in
general different from the rcsonant frequency of the cavity with-
out coupling, and the losses in the cavity are incrcased by the
amount of power fed out through the coupling system. As in the
preceding section, if we were to write dowm the exact formulas
for several eguivelent circuits we should soon become lost in a
maze of intricate ecuations which ovwe their intricacy to the
inclusion of many trivial higher crder effects the detection of
which is beyond our cyperimental technigues. An example of such
a trivial effect is the difference between the impecdance functions
of a parallel resonant circnit when the loss is represented first
by a large resistance in parallel with the reactances, then by a
small rrsistance in serics with the inductance. If wc work out
the impedance functions, we find that the impedance of the li;ter
is eoual to that of the former multiplied by a factor (1 - jﬁfgg-)
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where the quantities have their usual meanings. This factor
differs from unity by less than 1% in almost all practical cases,
and the difference usually amounts to about 0.1%. However, even
thig distinction is artifieial, as the resistance actually present
in microwave cavities is due to skin effect and wvaries as the
square root of the frequency, a fact which is not apparent from
the form of the impedance equations, and which leads to another
small uncertainty of comparable size. A standing-wave detector
of extremely good mechanlcal design might enable one to make
measurements of standing-wave ratio to.an absolute accuracy of
about 0.2 db, which means roughly 2% error in the value of an im-
pedance near Z, but due to imperfect connectors and mechanical
errors in probe position the probable error in measurements is
.usually several times this amount. Thus we are not concerned here
with effects of the order of 1% or less, but instead choose for
each type of clrcuit the impedance function that is mathematically
simplest for this degree of accuracy in practical cases. These
simplest functions are of the symmetrical forms (1 + j2Q< ) and

(1 + 32Q£) -1 ror series ang parallel resonant circuits respect~
ively; corresponding to the circuit connections of Fig. 16,

However, 1t remains to be demonstrated that the various
equivalent circuits which were shown to lead to identical results
as Tar as measurements of impedance in the transmission line look-
ing toward the cavity are concerned, also lead to identical re-
sults as seen from the cavity. "Identical' as used here means
that the resonant frequency as seen from the cavity is identical
with the resonant frequency defined in the preceding section,
and that the loading seen by the cavity is the same as would be
predicted by connecting the line to the wvirtual resonant circuits
of Figure 18. PFortunately, both of these results may be estab-
lished by very general reasoning that does not involve any
approximations of the type discussed above. We have defined the
resonant frequency of the system as the freguency at which the
SWR in the transmission line looking towasrd the cavity 1s a min-
imum; in other words, the freqguency at which the maximum power is
transferred between a matched signal generator and the lossy
element in the cavity. By the reciprocity theorem, this must
also be the freguency at which maximum power transfer takes place
In the other direction, from a generator inserted in series with
the lossy element to a matched load in the transmission line.

Now for either of the circuits of Fig. 15, the resonant freguency
would ordinarily be defined as the frequency at which the imped-
ance seen looking out from the terminals of the resistance of

the cavity is a pure resistance. But this is just another way

of stating the condition just mentioned for maximum power trans-
fer from cavity to load, which takes place when the reactances
cancel. Therefore the resonant freguency as seen from either
cavity or transmission line is fthe same.
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This result may also be gotten from still more general
reasoning involving the second law of thermodynamics instead of
the reciprocity theorem. It 1s well known that all resistive
elements generate noise due to thermal motion of the atoms and
electrons within theme The amount of this thermal agitation is
such that the available noise power from any resistance in a
bandwidth 2AF is equal to XT AF, where k is Boltzmann's constant*
and T is the absolute temnerzture. When the transmission line is
connected to an impedance containing a resistive component and
its other end coupled to a cavity at the same temperature, it is
necessary in order to preserve thermal equilibrium that the
fraction of the available noise power from the cavity that is
delivered to the transmission line termination be equal to the
fraction of the available noise from this terminating impedance
that is delivered to the cavity. Furthermore, by the principle
of detailed balancing, this must hold true for each individual
frecuency component, otherwise the insertion of a filter would
upset thermal couilibrium. The eguality of these fractions means
that the amount of loading of the cavity by the transmission line
is exactly squal to the amount of loading obtaincd by connecting
whatever impedance is seen lookimg back into the transmission line
from the virtual resorant circuits of Fig. 18 across their termin-
als,; since the pover transfer in the dircction from tronsmission
line to these virtual circuits was shown in the pnreceding scetion
to be identical with the powver transfer to the cavity, by virtue
of their identical impedance functions.

The above discussion has furnished us with a powerful
method of determining loading of a cavitys now that the validity
of the virtual rcsonant circuits of Fig. 18 has been established
for power flow in either direction, we may calculate loading or
detunlng due to the terminating impedance of the transmission
line by considering that the virtual cireuit is the cavity, to
whose terminals the transmission line is ceonnected. The virtuel
circuit at the detuned short is perallel resonant; and builds up
o shunt impedance R =.%Z, at rcsoncnce. The guantity ¥ may
be ealled the SWR at resonance, 1f it is kept in mind that when it
is less then unity, t-is SWR rmust be taken as (Emin/Emax) rathecr
than its reciprocal. We now define threc different values of ¢
which are useful in describing the systems
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¥ In prectical units, k = 137 X 10=23 watts pcr degree pcr cycle.
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In general the @ of any system may be defined by:

~ zﬂ_Energy stored in system = WX Energy stored
Q= Energy dissipated per cycle  power disgipated (36)

The three different values of Q are concerned with powcr dissipa=-
tion in different elements. They aret

H - = X Bnergy stored

Unloaded Q u Power dissipated in cavity walls (37)
X Energy stored (
Power dissipated in load

1

"Coupled Q" = Qe

- _ 2 X Energy stored
- "Loaded Q" = Qp = Py dissipated in both cavity and load
s

In terms of admittances at the detuned short, we have, when che
1ine is matched:?

=axC = &0 = 42 C
QU e ) Qc YO ’ QL m (38)

where C and G = 1/,7%Z, arc the capacitance and conductance of the
virtual resonant circuit and Y, = 1/Zg 1s the characteristic ad-
mittance of the line. The foliowing relations are then seen to
exist between the different G'ss

gB: y u=’9 C = €]
i 1+f:,%€,,.%z T+ 17 (39)

These relations are extremely useful,  as the quantity /7 is direct-
1y measurable with a standing-wave detector.

If the transmission 1line is not matched as seen looking back
from the coupling system, the loading of the cavity and the reson-
ant frecuency of the system as seen from the cavity will in general
be altered. If the transmission line places an admittance Gy + JBg

at the detuned short, this admittance is in parallel with the
virtual resconant cirecuit at that point, and we have for the values

of Qc and cavity detuning:

gc =48, 48 - .12 By . (40)
7L fo G G

Where Z\ F is the detuning in megacycles and F, is the resonant
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frequency when the line is matched. Note the particuleriy simple
form of equations (40). It is only at the pesition of this virt-
ual resonant elrcult that the loading and detuning ere so sepa=-
rated that one depends only on the lcad conductance and the other
only on the load susceptance. The general case wherc the load
inpedrnce is measured at an arbitrary point on the transmission
line is needed in the design of cecrtain componsnts and will be
considered later, dbut ve will first obtain one extremcly uscful
result from equations (40) as an illustration of their convenience
when 1t is passible to use them.

Let us assume that the trensmission line is not perfectly
matched, so that there 1s a SWR ecgual to 8 {(voltage ratio), and
fvrthcrrore thet the exact length of the line is unknown, so that
we do not know the actuval values of Gn and By but only that they
lie on a circle of constant SWR = S. "We wish to know the maximum
amount by which the resonant fregueney of the system ecan differ
from its value when the 1lihe 1is matchcede These conditions are
recognized as the case of an oscillator which is connected to an
imperfectly terminated feeder line, with resulting frecuency pulle:
ing. ©8ince according to eguation (40) the detuning depends only
on the susceptance placed across the virtuel resonant eircuit, we
necd To know the maximum value of susceptance that is reached on
the constant SWR circle. This is rcadily found to bhes

. Yo
By, 5 (S 1/5)
so that the mexirmum detuning is given by:

(5 - 1/5)

Y
= + Q - = +

s
2

where Qe = <« C/Y, is the coupled Q when the linc is matched.
This is a wecll-known formula for the frequency pulling in an os-
cillator which conforms to ccrtain conditions which neke the fre-
gquency of oscilletion equal to the rcesonant frequency of the
svsteame

The lews governing loading and detuning in the generzl case
where the point of mcasurement of load impedance docs not coincide
with a virtual rosonant circuit covld boe found from cquations (4)
and the lawes of impedonece trensformation along the line, but it
will he more instructive to go back to the general network equiv-
alent circuits of Fig. 15 and work out these relations from first
principles. Onc fcaturce of the cguivalent circuits of Fig. 15 is
that the coupled ¢ is given simply by the ratio of rcactrnce to
rcesistonce in the imnedonce scen leooking into the coupling network
from terminals 2. This is a conscyucnce of our wnlecing X22 = X in
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the equivalent circuit. If we use the series arrangement of Fig.
152, the impedance seen looking back into the coupling network
may be found from equation (11) by reversing the subscripts, since
our notation is symmetrical with respect to the two sets of fTerm-
inals. The resistive component of this impedance is given by:

2
R K¢ Ry/Xqq

A2z (Rp/X11)2 = (1 # Xg/X19)2

the coupled Q is then equal to X22/R, so thot we have the follow~
ing relation:

(P AL
BL_ (* " XIT/
K2 Qe = L F AL | (42)
X1l

This formuls negléects the  reactance coupled into the cavity by
the load in comparison to X22, an approximation which is justified
if this coupled reactance is such that the defuning relative to
the resonant frequency vhen ZL =2 ig small. If the coupled re=-

actence is such that this detuning is 1%, which is scveral times
greater than is ordinarily encountered in practice, then the error
in equation (42) is 2%, etc.

To find the amount of detuning, we usc egquation (I1) to
find the recactance seen locking inte the network:
X2 (1 + XL "}X
] X11 5 522
X = X ~(BE N2 + (1 . XL 2 (43)
o2 %11/ ( ¥ x11,)

The second term represcnts the coupled rcactance Xc¢, while X22

is the "normal" reactonce when terminals 1 of the network are
open-circuiteds Now detuning is evidently a rclative gquantitys
it is meaningless to ask how far the regonant frequency of the
system 1is altcred by detuning without reference to some frequency
which is considered its nominal value. The non=existence of any
unicue value of this standard frecueney in the present case is
due to the absence of any transmission line on which values of
standing-wave ratic might be measured. To put it diffcrently,
one nore quantity of the dimensions of an Impedance rust be
speeified before this stendard frequency..can be established.. In
the case of a transmission line connection this is the character-
istic impedance of the line; in gene al it may be as any arbitrary
impedance, and the standard frecuency is then the resonant fre-

~32=



quency when this impcdance is connected to terminals 1« The mathe
enatically simplest standard is obtained by setting this impedance
egual to infinity, in which case the impedance seen looking into
terminals 2 of the coupling network is simply jX22. The detuning
relative to this standard is then:

2
af o 1% (K (1 + *r/X11) (44)
To ng 2 (RL/X11)2 1+ /xll)2

Tris eguation bears a certain symmetrical reletion to equation (42),
ana is capable of a simple interpretation on a rectangular imped-
anc<e cnart, but from a practical standpoint it is net tho most
useful way of gsetting up a detuning standard. The practical use

of any theory consists of substituting certain experimental data
into its formulas and thereby calctulating other quantities which °*
are less easy to measure directly. The guantities which are most
casily measurable at microwave freguencies are impedances, and
these are determined with a standing-wave detector which has a
certain characteristic impedance. If we take the standard imped-
ance for any coupling system to be the characteristic impedance

of the device which we contemplate using experimentally for measure~
ments on that system, we will have a detuning standard from which
we can get useful results with the minimum amount of manipulation
of the data.

Let us first consider a special coupling system which has
X1l egual to Zg of the stending wave detector. For this network,
load impedances normalized with respect to X11 as in equation (44)
are ldentical with the same impedances nornaiized with respeet to
Zos wWhich 1s the way the experimental data is taken. In this case,
it is found from equation (43) that the detuning relative to the
standard resonant frequency defined by Zy 1s given by:

i .
Af K2 (1 + *1/20) } 1
t) T 7297 (T X7 o (45)

The graphical interpretation of cquations (42) and (45) can
be made most simply in terms of a Smith Chart normalized with re-
spect to Zq4 If values of load impedance are plotted on this
chart, llncs of constant Q¢ and constent detuning can be drawn,
from which these guantities can be rcad dlrectly. These lines
are shown in Fig. 19.% The linecs of constant K2Q¢ constitute a
family of circles tangent to the bottom of the chart, while lines

of constant . &£/K2 where & = arc the orthogonal
set. The effect of equation (44) rather th%n to define

detuning would have made the circle lebeled (é?/K = =0.25) which
extends to the point (ZL =73 the center from which detuning 1s
measured,with resultant leoss of symmetry in the chart.

...33-.
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We must now find a graphical method of interpreting our
equations for the general case where X11 is not equal to Zg.
The rules. for this case may be reasoned out as follcws: Connect
the standing-wave detocctor to the cavity through terrinals 1
of the coupling sys~em. When the cavity is detuned the inpedance
Jooking into the couviing system is a pure rcacverncs jZ11, which
is transformed by thc iine into 211 possible reactonces at various
ocher pointse In particuler there will be a point A, midway be=-
tween a voltage minimum and a voltage maxirum, at whica this re-
actance 1s equal vo Z, in magnitude; let us assume in order to, be
dcfinite that we have chosen a point where it is inductive(X11l = Zj)
1T we consider point A to be the boundary between the transmission -
line and a new coupling systen, it is evident that a plot of load
impedances scen at this point normalized with respcct to Z, is
identical with a plot of impedances normalized with respect to the
driving-point reactance Xll of the new network. Thcrefore, for

this particular choice of a boundary thc chart of Fig. 19 is again
applicable. Let us call the coefficient of coupling of this new
network Ko.

Now the values of Gc and detuning relative to Zo for any
load impedance seen at point A are physical properties of the
system which can not depend on where we considcr thc boundary be-
tween the transmission line and the coupling network to be locatede
Thereforce, if we rove this boundary back to its original position
B wherc the detuned reactance of the coupling network is X11 with-
out the prime, thc values of Qc and & for the load impedances seen
at this point must still be equal to their values obtained at the
point A. The load inmpedances scen at point B are simply the im-
pedances seen at point A, rotated on the Smith Chart in & clockwise
direction (since we are herc going awey from thc load) through an
angle cqual to twice the electrical length of line between A and B.
If the coupling and detuning are unchengcd, then the lines of 2
constant coupling and constant detuning for the lcad impedances at:
point B must have rotated along with the points representing the
impedances. In moving the boundary from A to B, we have gone
toward the cavity, and thercfore the point on the Smith chart
representing jX11 is located by rotating the point jXq7 = JZo
counter-clockwise through the same angle. Since in Figure 19 the
point of convergence of the constant coupling and detuning lines
was oyer the point on the Smith Chart representing the impedance
3X11'), it is seen that after the rotations, this point of con-
vergence is over the impcdance (-jX11), which gives us our law for
the orientation of the grid of constant coupling and detuning lines.

The value of coefficient of coupling associated with these
lines after the rotation is still K., however, so ve need to know
the relation between Ky and the coe%ficient of coupling K of the
network whose boundary is point B. This may be found from equa-
tion (42) by setting 2L = Zo. The couation then reduces to:
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Xil 4 Ze
K2 Qc = 25 797 (46)
at the point A wher~ Y11t = Z¢, we have
Ko2 Qc = 2

and as we move along the line §¢ remains constant, since it is
a physical property of the system that does not depend on our
choice of a boundary. We therefore find that:

= Ko2 ["X11 4 Zo 4

which is the desired law of transformation. A method of measur-
ing K2 for a network coupled to a cavity may be found from equa=
tion (44) which gives the detuning relative to the standard reson-
ant frequency defined by ZL = o« If we observe the resonant
frequency of the cavity through a second coupling system when the
one ,to be measured is alternately open and short-circuited at
terminals 1 (XL is <= and then zero? the coefficient of coupling
is seen to be:

Fo
where AF is the difference of the two resonant frequencies.

K

The rules for predicting cavity loading and detuning relative
to Zo may then be summed up as follows:

l. Measure X11 of the coupling system with a standing-wave
detector, and K2 as described above.

L 2 |
2. Caleulate XKo2 = 2XK 5 whepe K- = &iL
1 +& Zo

3« Place a transparent chart of the constant coupling and
detuning circles of figure 19 over the Smith chart on which load
impedances are plotted; with the centers aligned and the point of
convergence of these lines over the impedance (=jX11).

4, For any value of load impedance read off the corresponding
values of Ko2Qc and < /Ko2,

This procedure and its explanation may sound quite difficult,
for it is very hard to describe in words, but in practice it is
found to be very simple, and it is of great importance in designing
coupling systems such as crystel mixers where the crystal RF imped=~
ances may vary over a known range and it is desired to ascertain
what this will mean in terms of receiver performancee.
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VII. Resonant Cavity Filters

In the preceding sections we have developed the fundamental
laws which govern coupling systems, and have studied the behavior
of a coupling system between a line and a cavity in great detail.
We now make use of these fundamentals in studying a cavity which
contains two coupling systems, such as a TR cavity in a receiver,
whose function is to protect the receiver against strong signals
and to provide a certain amount of RF selectivity. The properties
of such a system that are of inferest to us here are the bandwidth
and Insertion loss as functions of the adjustment of the coupling
systems, and the method of determining these quantities experi-
mentally.

It will be necessary to adopt a new notation for some of
the relevant guantities in order to avoid duplication due to the
second coupling system. In the preceding sections, we have used
the convention that the terminals of the coupling network that
cormect to the transmission line or the load impedance 2re denoted
by the subscript 1, while terminals 2 were always on the cavity
gide. In this section we shall not hsve occasion to use quantities
such as X11, but will work with the more useful derived quantities
such as K2 and .. Therefore we shall use the subscript 1 to de-

note the input coupling system and 2 to represent the output
coupling system. The following gquantities may then be used:

Qy = Unloaded {Q of cavity

Qp1l = Coupled Q@ of input circuit
Qc2 = Coupled Q@ of output circuit
Q1 = Loaded @ of input circuit = Qy Qo1/(Qy + Qc1)
Qo = Loaded Q of output circuit = Q, QCE/(QU+ ch)
Qr1> = Total loaded Q@ due to losses in cavity, inpub circuit,
and output circuit.
21 = Qg/Qg] = SWR ot resonance looking into the input coupling
: system with the load disconnected from the
output circuit.
/v‘? = Qu/ QCE

¥l = SWR at resonance looking into the input counling system
with the load connected to the output circuit.

The conditiéns of the problem that are met in practice are
usually the followings given a cavity with a certain unloaded &,
a filter 1s to be made having a bgndwidth of AL megacycles between
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half-pover poinis. How should the coupling systems be adjusted to
attain this bandwidth with a minimum amount of insertion loss, and
what is this minimum possible 1nsertion loss? The bandwidth of
the system depends on the overall loaded Q, which is denoted here
by Qr1o while the insertion loss depends also on the particular

combination of Qs31 and Qep that is used to achieve this value of
Qri2.

The determination of ¥, in terms of the other parameters
depends on the physical reasoning that when the load is connected
to the output circuit of the cavity, the effect as seen by the in-
put circuit is the same as if the unloaded Q of the cavity were
decrcased to QL,+.* BSince the SWR at resonance looking into a

coupling system is proportional to the § of the cavity as seen from
the input circuit, we have for,i;

s Q12 - 1 QUsz !'\= __Z.'.‘Z..l_ﬁ
Eoh Qg1 ~ Qer \Qu ¥ Ofa 1, i (49

The quantitY‘Kﬁa has been defined simply as the ratio Qu/Qca' If

the outonut counling system feeds another matched transmission line;
then ﬁ?z is the SWR at resonance seen looking back from this trans-
mission line into the output coupling system when the input circuit
is disconnected, and it is exactly analagous to,é%f However, the
load is usually a crystal mixer and there is no int at which
such a SWR could exist. In that case/ and,/12 are correspond-
ing quantities only in the equations, since 5, still satisfies
the same relations as this hypothetical SWR. n the similar way
a quantity
, o,
Yo Lo
3 *&Vl

corresponding to 71 but not necessarily representing a SWR

hysically present, may be defined. Ordinarily /7 and ¥
%he only cuantlfle; *h{ch can be directly measured% 1 are

The total loaded @ may be focund by combining Gy, Qe1s and

Qepsy Since the Q for any part of the system is inversely propor-
tional to the losses in that vnsrt and the wvarious losses add
directly to give the total loss, the law of combination is found

to be:

e e e e e A e S e W e - i — S S S g S e S ne e S

*This assumes that direct coupling between the input and output
circuits may be neglected as far as its effect on input impedance
is concerned.
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R TR A T P (51)
Qriz 91 9 Qe

oI,
Qu = "I'/? 'f"-'ﬂ = ~§-..-.-:.L..-_.
1 Ty ,.'.‘(2 ‘/J)l(l ?i) (52)
Orio

The bandwidth is then equal to:
Fo

(53)
Q1o

AF =

If we compare this with equation (51) we see that the overall band-
width is simply the sum of the separate "partial bandwidths" due to
the individual sources of losse

The insertion loss of a cavity filter may be considered due
to tvo separate effects: First, the input impedance to the device
at resonance does not match the input transmission line if ¥ +- 1.
so that a portion of the incident power is reflected there. ™ *
Second, not all of the power that enters the cavity is delivered to
~the load since there is some loss in the cavity walls. From
standarc transmission line theory we find that the fraction of the
incident power that enters the cavity at resonance is:

Py _ 423 (54)
Po (1 +27)°

The cavity efficiency, defined as the ratio of power delivered to
the load to total power entering the cavity is, since the § of an
element is inversely proportional to the corresponding power loss:

Fall .
Pr, _ _ 1/ Q2 _ S G .29
P1 1/Qy + 1/Qep Q2 1+ 35 a1
The overall efficiency is the product of (54) and ' (55)
Pr 4279 1 - )
S P:L (T = )2 ( =T 2/1) - (56)
© 1 /51

Since all of the guantities in equation (56) are easily measurable
this affords us a convenient way of determining insertion loss of
a cavity filter. Ecuations (54) and (55) are plotted separately
in Figss 20 and 21l. It should be noted that although the quanti=-
ties /7 and 2> always refer to voltage ratios in ecuations, they
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are usually measured experimentally in db, and therefore they are
expresged in db on these graphs. When the SWR in db comes out
negative, this means that 3 « 1 in voltage, or Qro<Q.3. This

condition is detected experimentally by the fact that the position
of the voltage minimum at resonance is the same as its position
when the cavity is detuned, while for positive SWR in db (¥y =1)
the voltage minimum at resonance is a guarter wavelength away from
this position. A SWR of zerc db means that the input is matched’
at resonance.

We must now study the equations for insertion loss and band-
width to find the relation between input and output loading which
gives the minimum insertion loss for a given bandwidth. It 1is
seen from eguation (52) that the condition for constant bandwidth
is

/ﬂ l + "-— = Const., = Qu
1\ 21 Q1o

Solving this relation for 7 and substituting the value obtained
into ecuation (56}, we haVe.

Qle‘ Qrap

It is found by differentiation that the value offf?l leading to
the greatest efficiency for a given bandwidth is:

B1=3 O/ - (58)

This is the value to which ["1 should be experimentally adjusted,
The corresponding value of ¥ 1 is:

w - %u - G a1
+ Qu.+ U120 Lo ﬂ?l

It 1s seen that this is always less than unity, corresponding to
a negative value when expressed in db. When the output coupling
system has been adjusted to this value of 4, it is found from

equation (49) that the value of 4o is:

é?l
n§2 = i;{ -1 = ﬁ?l (60)

The coupling is therefore symmetrical betwveen input and output when
this optimum adjustment has been recached.

(59)
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The efficiency at the optimum adjustment may be found from
equations (57) and {58) to be:

—_

= Q12 Qy Q110 |
Bon = 2412 + 2Li2 o o £1
£t Qu [QL.'LE Qu (6L

This is the maximum possible efficiency for a cavity fiiter with
unloaded @ = Q, and a bandwidth Af = fO/Qle. In terms of /54,

this maximum efficiency is:

22, ¥ |
Epp = Ef;—§7§1 (62)

The following problem often arises in practice:  Given a
cavity with one of the coupling systems fixed. how should the
sccond coupling system be adjusted in order to minimize the
insertion loss, regardless of bandwidth? In case the output coupl-
ing is fixed, the distribution of vower between cavity losses and
load is fixed, sc the minimum insertion loss is obtained when we
have removed the reflection loss at the input, which means,}i’= 1.

For this case of matched input, we have the following relations:

Gy =14 5,

¥1=1 (63)

Bee= (1 - 1@1)

f

Bandwidth = £%f = 2/3:L ~Q
Qu

When the input coupling is fixed, we may find the ocutput
coupling adjustment which leads to maximum efficiency by differ-
entiating equation (56) with respect to 2’3, keeping /&1 constant.

The optimum value of ¥ is thus found to be:

>7= L1 (64)
ZF @,

When this adjustment has been reached we find the following rela-
tions to hold:
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o= 1+
»2° 1
4 2
Bpp = —ot— = =21 (65)

1431 1+y;

Bandwidth = & f = 2.3, %ﬁ = 2(1 +,31)‘%

VIII. Experimental Technigue for Q Measurements

In this chapter we shall arply the theory developed above
to the problem of measuring the values of Qu, Qc, and Qr when a
cavity is coupled to a line. Before studying the available methods,
however, we need to establish some conventions for representing the:
behavior of a standing-wave detector on a Smith Chart.

The voltage induced on the probe is, of course, proportional
to the total voltage across the line or waveguide at the point where
the probe is located. This total voltage is shown in the vector
diagram of Fig. 4. For a given incident wave, the voltage at any
position aleng the line is proportional to the vector from the zerq
impedance noint on the Smith Chart to the point representing the
load impedance seen at that position. As the probe .is moved along
the line, this impedance moves along a constant SWR circle, in a
clockwise direction as the probe moves away from the load. Since
the phase of the voltage induced on the rrobe 1is not ordinarily
measured or desired, the length of the vector representing the total
voltage on the line in Figure 4 is the only thing in which we are '
intercsted. The manner in which this length varies with probe
position may then be visualized by allowing the poiht representing
the load impedance to rotate as the probe is moved. However, it 1
evident that as far as the length of this line is concerned, it is
immaterial whether the point reprcsenting the load impedance rotates
in a clockwise direction or the point on the periphery of the Smith.
Chart to which the total voltare vector is drawn rotates an equal -
amount counter-clockwise. If we visualize the movement of the
probe as a movement of this point, we can keep the lmpedance plot
fixed, so that the impedances are always reprcsented as their
values measured at the same position, such as the position of a
virtual resonant circuit. This is illustrated in Figure 22, in
which the lines whose lengths are nroportional to the rrobe voits
age are shown for an arbitrary load impedance Z, for various probe
positions. The point on the periphery of the Smith Chert to which
this line is drawn will be called simply the probe position in )
what follows; this should cause no confusion, as it will be apparent
from the context whether we arc referring to probe position on the
Smith Chart or its physical position on the line. The rule for
locating the probe position on the Smith Chart is seen to be the

following:
] =
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The anguler position on the Smith Chart measured from the
ze€re impedance point at the extreme left, 15 ecqual to
twice The eisctrical length of line between the nrobe and
the refercnce point at which the load Impedance 1s meas-
ured, and the sensc 18 CLlOCKWise when Lhe propbe 18 on tihe
lecad side of this reference polnt.

The prohe position on the Smith Chart is the same whether
the point has rotated clockwise through an angle 28, or counter-
closckwise through an angle (360°-28), corresponding to the fact
that the voltage magnitude on the line repeats at intervals of a
half-wavelength. From diagrams like Fig. 22 one can visualize im-
mediately how the probe voltage varies with the probe position or
how the voltage induced on the probe at any position varies with
the load impedance as measured at any other position,. if the ampli-
tude of the incident wave in-the line is not changed by this change
in load impedance. (This requires that the generator be matched to
the standing wave detector when looking in the other direction.)
This configuration is therefore a most powerful mental tool for
rapidly predicting and interpreting nearly every type of data which
can be obtained by means of a standing-wave detector. Its ability
to correlate a large number of factors is a good example of the
amazing versatility of the Smith Chart, which makes it invaluable
for almost any kind of RF measurementse

Returning to the subject of § measurement technicues, there
are three different principles by neans of which this may be done
in terms of impedance measurements looking toward the cavity. In
ordinary cases these yield the same rcsults with varying degrees
of accuracy and ease, but there are some cases, such as when the
cavity is loaded on the other side by a rcsenant element or a non-
lincar element such &s a cryvstal mixer, when the results by these
technicues are not in agreement becaure they are based on slightly
different definitions of Q, which are not necesserily ccuivalent
in the casec of non-linear clements. Which technicue should be
used in any particuler case is a matter of individual judgment, and
depends on the use which is to be made of the dJata, the accuracy
required, the degree of previous knowledge about the coupling
system, and the exact type of cguipment available.

The first step in cach of these methods is Yo tune the systern
to resonance and detcrmine the relative values of Qu, Qc and Qp by
measuring /45 and anplying equations (39). Since this part of the
procedure is standard, we shall now describe it scparately, and
take up the different mcthods at the point where they deviateo

In Fig. 23 is shown a Smith Chart on which hrs been drawn
the locus of the impedance seen locking toward the cavity at the
position of the detuned short, as the system is tuned through
rcsonance. The virtual circuit at this point is parallel recsonant,
so thet it has zero impedance when it 1s detuned,: and. builds up a
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maximum shunt inpecdance Z =/3Zp at resonence. As the tuning is
varied, the impedance locus is a circle, which is shown in Fig. 23
as enclosing the center of the Smith Chart, corresponding to/3 > 1.
This condition, however, is not necessary for the method to apply.
Tt is seen that there are two ways of tuning the system to resocnance.
We may set the probe at the position of the virtual parallel reson-
ant circuit, indicated by point A on Fig. 23 and, with the signel
generator matched to the standing-wave detector, tune the system
for maximum probe voltage. It is apparent from the diagram that
the impedance when this condition obtains' is represented by point
B. Unless the cavity is very loosely coupled to the line (&F<< 1)
nowever, it is more accurate to move the probe a quarter-wavelength
to position C, ~nd tune for minimum probe pick-up. The minimum
thus obtained is guite sharp, as is apparent from Fig. 23 and the
principle that the probe voltage is proportional to the length of
the line on the Smith Chart betweeh the point C representing the
probe position and the point which moves along the impedance Jocus
as the tuning of the system varies. When the system has in this
way been brought to resonance, the stending-wave ratio in the
slotted line is measured, noting whether the voltage minimum is at
the position of the detuned short, or a quarter wavelength away
from this position. In the former case, the lmpedance locus does
not encircie the center of the Smith Chart, and we have

D E min
E max

while in the latter case the coupling is tighter so that the imped-
ance locus encircles the center of the chart, and we have:

(3= Erax
Emin

In any case, 8 1s given by the retio of probe voltage at the detuned
short to the voltage a guarter wavelength away. The relative values
of Qu, Qc¢, and Qr are then determined by equations (39), which are
repeated heres

Qu _ W, 8
G-l 8 g, /éfs*i:i=1+1/,/:? (66)

It is to be emphasized that the signal generator must be
matched to the standing wave detector in order that this procedure
should be valid. The rcason for this is that the lines on the
Smith Chart from the probe position to the impedance plot represent
the nrobe voltage relative to the amplitude of the incldent wave
in the line. It is necessary that the wave rcflected fron the
load be completely absorbed at the generator end of the standing
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wave detector in order to avoid multiple reflections which would
result in a series of waves of progressively decreasing amplitudes
all traveling toward the load, whose vector sum would form a new
incident wave of different amplitude from the original one. 1In an
extreme case where there is a large mismatch at both 1lcoad and gen-
erator, the standing-wave detector becomes self-rescnant for cer-
tain frecuencies, and very large values of probe voltage may result.

When we speak of tuning the gxftem through rescnance, it is

understcod that the quantitys =922 %20 45 being varied. It is

usually immaterial whether this 7o is done by changing the
signal generator frequency, or the resonant frequency <w, of the
system. If the parameters of the coupling system vary rapidly
with frequency, however, (due to partial resonance or because the
Lransmission line between cavity and probe is several wavelengths
long), it is preferable to vary <O, by tuning the cavity, as
errors due to the varying coupling sSystem are avoided.

The above procedure will determine only the relative values
of Qu, Qc, and Q3 one more piece of information is necessary in
order to find their actual values. The messurement of /2 deter-
mines the size of the circular impedance locus of Fig. 23, and we
mest now find how rapidly the impedance moves along this circle as
the tuning is varied. The general law by which points differing by
a constant frequency are spaced aleong this locus may be found very
simply from the basic property of the Smith Chart with which 1t was
introduced in Section II. As illustrated there in Flgs. 2 and 3
it was shown that a plot of an impedance Z on a Smith Chart normal-
ized with respect to a resistance R, is identical with a rectangular
plot of the impedance )

= ZRBo

obtained by connecting Ry in parallel with Z, the origin of the
rectangular coordinate system being the zero impedance point at the
extreme left of the Smith Chart. In the present case we have Ry = Z,

the characteristic impedance of the transmission line. We may ex~

press the impedance Z of the virtual parallel resonant circuit as

in equation (34} by:
13 Zg

1 + j2Que (68)

7=

the impedance Zp of the loaded circuit formed by connecting 7z, in
parallel with this .virtual circuit is then found to be, using
equation (66):

wll
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) o _ %oB/1 +R)
+

7z =
P2 +2y 1+ j2Q15

(69)

This is, of course, simply the impedance function of a parallel
resonant circuit with a Q equal to Q. Therefore a plot on the
Smith Chart of the load impedance of the virtual resonant cirecuit
involving Qu, is identical with a rectangular »lot of the impedance
of a rescnant circuit having the lcaded Q, and the law of spacing
of the points on this locus is given by:

tan g = - 2Q15 (70)

where ¥ is the phase angle of the impedance Zp, as shown in Fig.
24. TIn particular, the half power points of the locaded circuit are
given by @ = + 450, op:

2Qp& =+ 1 (71)

these points are shown in Fig. 24, and are directly above and below
the center of the impedance locus circle. Now that we have located
the half-power points of Gy on the Smith Chart, we see that if we
can find experimentally the difference A F between the signal fre-
quencies which bring the impedance to these positions, we have very
simnly:

Qp = fo/af (72)

and the values of Qu and Q¢ may then be found from equation {(66)
and the measu-ed value of £ .

It is at this noint that the three met-ods of § measurement
separate; there are three principles by which one can set the
frequency to the half-power points of @ and a number of variations
and refinements. They depend on observing the change in the posi-
tion of the veltare minimum, the change in the SWR, and the change
in the magnitude of the impedance Zp respectively, as a means of
determining position along the impedance locus. The vprocedures
are considered separately below.

1. The " A AN Method. - The experimental procedure for this
method was described oy Lawson¥ in an early Radiation Laboratory
report, but unfortunately a table of values to which the experi-
menter must refer in the course of the measurement was calculated

Ay W N R e B b B iy e i e L S T SRR MY W M e e A R W WR s e et it ey e e e e e el mm few T M E TR W B NN e v M e W ae e Ton e W g W e ==

*¥Ragd Lab Report #64-3, dated liay 18, 1942
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by Lawson from an incorrect formula which leads to large errors
unless the cavity is tightly coupled to the standing-wave detector.
As far as the writer is aware, the exact formula for this method
was first given by H. 4. Wheeler.

In this method one first measures 4 as exnlained above, and
from this value determines by means of a previously prepared graph
a distance A A through which the probe is to be moved avay from
position C of Figure 24. The probe is moved this amount in one
direction from point C, and the signal generator frequency changed
until the voltage "picked up" at the probe is a minimum. (It is
again necessary that the signal generator be matched to the line.)
This frequency is noted, the probe moved the same distance A A the
other side of point C, and the frequency again adjusted so as to
minimize the nrobe pickup. The difference between these freguenciec
is the bandwidth Af from which Q1 is calculated using equation (72).,

The graphical interpretation of this procedure is shown in
Fig. 25. The points where the probe must be located in order that
the nrobe plckup is a minimum at the half-power points of Qr as

the freguency is varied, are evidently points D and E, directly
above and below the center of the impedance locus c¢ircle. If the
number of electrical degrees between these points and point C is 8,
the angle on the Smith Chart between them is 26, as shown. We may
find from Fig. 25 the formula relating Arto 2 as follows. If
the reflection coefficient at resonance (point B) is called [,

we have from the geometry of the system, since the radius of tﬁe
Smith Chart is unity:

cos 20 = -29—2'—1 (73)

From equation (5) we have the relation:

-

)‘T_ -]
o~ (7t 1

substituting this value of [ into couation (73} and reducing by
means of various trigonometric identities, the rcesult is:

tan & = "“'1/1 + 2/ (74)

This is the exact forrmula given by Wheeler. Values of @ vs/3 are
plotted in Fig. 26. The angle & is rclated to the nhysical dis-
tance A X through vwhich the »robve is roved by the cquation

__A®
= = (75)

Note that coguation (74) gives the probe position for which the
probe pickup is a minimum at the half-power noints of Q1 as the
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tuning parameter & is varied; this is not the same as the probe
position at which the pickup is a minimum as the probe pesition

is varied when the system is kept tuned to the half-power points
of Qr,s Confusion on this point is cuite common, even with
people who have used this method almest daily over long periods of
time. The difference between these positions is shown in Fig. 25.
The correct nrobe position according to the exnerimental procedure
described is at Dy, while the position of the veltage minimuam on
the line is slightly to the left, at point F. The table of values
of 4 Mgiven by Lawson in the above reference locates the probe at
position F, resulting in an error that becomes serious when 3 is
less than about 6 db.

Since the half-power points of Q are located in this method

by tuning to rather sharp minima, the errors introduced by a small
amount of generator mismatch, by variation of generator output with
frequency, and by resonance in the probe circuit are guite small
and can usually be neglected in praetical cases. However, the
error due to the fact tThat the electrical length of line between
cavity and probe varies with frecuency is often not negligibie,

At the higher microwave frecuencies it is difficult to aveid having
several wavelengths of line present, so that the vosition of a de-
tuned short shifts rapidly as the freqguency is varied. Now the
prove position given by eccuation (74) is relative to this detuned
short (although for convenience the electrical angle is measured
from the "detuned open", a quarter-wavelength from the detuned
short} so that when this point shifts, the probe should be shifted
the same amount in order that the exnerimental nrocedure described
should locate the true half-power points of Q. But a knowledge

of the amount to shift the »robe to take this into account would
imply that Q1 was alrcady known, so that this can not in general

be done. However, a formula for the [irst-order correction to

the data obtained neglecting this shift can he derived as follows:

Referring fo figure 2%, the probe position is no longer
fixed at D or E as one tunes to the half-power points of Qi by
changing the frequency (since the impedance chart always refers to
impedances seen at the shifting detuned short), but instead moves
in 2 direction opposite to the direction of motien of the point on
the impedance locus, so that the nrobe pickup reaches a minimum -
before the half-pover points of Q are reached, a2nd the § wvalues
arrived at are too high. If the number of wavelengths of line be-
tween cevity and nrobe is N, the electrical length is W = 27N,
and the shift of wvrobe position for a fractional frecuency change
< is d% = 277N <. At half-power points of Qp we have 2Qp < = * 1,

ay¥ =+ TrN/Qr. Assuming that, te a first approximation, the probe
pickup “will be a minimum when the impedance point is the same dis-
tance from the point (2Q %5 = -1) that thc »robe pesition is from

point D, we have, since the radius of the Smith Chart is unity and
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d¥ 1s expressed in radians:
| -
|d[j|= dp = i:N/QL (76)

where ldfihs the absolute magnitude of the change in refleciion
coefficient frem the half-power point (2§75 = -1). In order to
find the frequency error represented by tﬁls displacement, we need
to know thc value of the derivative:s

|__al
evaluated at the half-povwer point. We may find [Tas a function of
(2Qp, &) by substituting Zp from equation (69} into equation (4).

The resuiting expression is differentiated, the absolute value
taken, and the condition (2Qy <) = -1 imposed, giving the result:

e 2@""‘)‘dﬂ = 571 +6) (77)

We then find the frequency error to be given by:

el aa e

a(2Qrs) = IETQ%”EST‘ 9 3 (78)

this 1is equal to the percentage error in Qr» SO we have:

(Apparent Qy) . [l - N1 +ﬁ)/QL!9]

H

(True Qy)

or

I

{True Q) (Apparent Q1) ~-TNN(1 + 1/&) (79)

this formula mayv be used to correct for the effects of a long llnef
1t is seen that the per cent error due to a line of given length
increases rapidly with tightness of counling (lower Q1)s so that

when one counles more tightly to a cavity in the belief that the
resulting sharper minima of probe veoltage mean greater accuracy,
he may be defeating his own purpose if this correction is not
taken into account. Experience indicates that with this method
the Qu oF a cavaily may be measured with greatest accuracy and re=
producivility when the coupling to the standing-wave detecctor is
such that /3 lies betwcen 10 and 20 db. For tighter coupling the
bandwidth over which the signal generator must be tuned is so wide
that crrors due to variations in the coupling system as well as
the linec length become appreciable, and for loose coupling the
probe voltage minima are too broad to loccate accurately.
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2+« The Standing-Wave Rctio lMethod and Varistions. -

In this method, described by Lawson and McCrenry¥, position
along the circular impedance locus is determined by neocsuring stands
ing-wave ratio. As a function of frcquency, the SWR hes a minimum
volue cqual to /5 at resonance, and the rate at which the SWR rises
cach side of resonance constitutes the additional piece of inform-
ation necessary to determine the Q's. The theorcetical way in which
this SWR riscs with detuning may be found by substitu’iing the value
of Z,, from eguation (69) into eccuation (4), which travsforms Z, to
the Treflection coefficient [« Taking the absolute value of this

reflection coefficient, we have:

IPi“T%ﬁ“\j&+2ﬁ(°'¢2~1)/(d2 +1) +/5 2 (76)

where & = 2Q; & is the detuning parameter.

the standing-wave ratio corresponding to this reflection coeffic-
ient is thens

a1 #1P
T 77

If we expand this cxpression by substituting equation (76)
and solve for & ; we have!

(1+8) & =246 = /(7= BIED -1/ (78)

This equation gives the detuning parameter as a function of 7% and
, the meosured values of 8¥WR. If £ is meesurcd with a wavemeter,
we can then caleulate §,, from eguation (78) . :

Although a measurcment of Q based on eguation (78) is a
relatively simple procedure, it should be noted that the accuracy
so attained is limited by the accuracy with which it is possible
to sct the system to resonance, since knowledge of & involves a
knowledge of the resonant frequency. In order to keep the total
error small, the detuning should be sueh that =.>1. A more
accurate procedure is to measure several values of 4 and the cor=
responding values of 77, taken on both sides of resonance. It is
found from eguations (76} and (77) that at the half-powcr points
of Qr( e = & 1), the SWR reduces tot

e e e o it . e o S 7R T e M P P e e ol A i T S e e EW R T MW O T v R r— e et S Al e e = e

*Rad. Lab Report #:64-6, YMcosurcment of the Q-Value of a T-R Box'",
dated July 13, 1%42.



, 1+3+ V1+22
L 1ss-viioe

(79)

If the measured values of ?? are nlotted versus frequency and g
smooth curve drawn through the points, the frequencies where this
curve reaches the SWR given by equation (79) are the half-power
points of Q « This eliminates the error due to uncertainty as to

the exact resonant freguency.

The above method has been described several times in the
literature; but is quite tedious, and therefore is not very
practical when a large number of determinations must be made. It
has been found that some increase in the convenience of the method
can be achieved by working in terms of Q, rather than Qr. If
equation (76) is written in terms of the detuning parameter relative

to Qes
€= 2QeS= A (1 +/5)/53 (80)

then the magnitude of the rcflection coefficient is given by:

tz‘._ »’3252 + (2= 12 (81)
IP; T sege 2
< ¥ (g% 1)

at the half-power points of Qg5 we have & = + 1, which reduces

(81) to a very simple form. The resulting SWR is then found as
before, from equation (77); to be:

=1+ 284252 Y1 -84 252 (82)
i
"\/1 +2@3+2R2%2 N1-245+275°2

which at first glance secms to be far more conplicated than equa-
tion (79) and more cumbersomc¢ to use. Its advantage, however,

lies in the fact that in practical cases /5 is usually of the order
of 3 to 10 (voltage ratio) and the series expansion of (82) in
powers of 1/45 converges very rapidly. The first few terms of this
series are found to be: :

. 1 1 - -
S = + + =5 + + 6800608 @ 8
lo 2 /3 23 8;’5‘3 512({; (83)

It is seen that even when B = 5, the second term is only 1% of the.
first one, so that ve need use only the first term for/2> 5. The’
resulting simplification is evidenty we do not need to compute
values of 7. from the exact equation: and do not nced.any previously
prepared graph or table of values. We simply find the amount of -
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detuning on either side of resonance which doubles the SWR¥, and
these are the half-power points of Q, «

For purposes of comparison, the first few terms of the series
expansion of eguation (79) are found to be

)’.r' :2}‘*“2'1'-‘3_”' 1 - l +qou ooooooo 84
LT Ee 25 2R T B (84)

the asymptote is here {(2/¥ + 2), which is more complicated than the
2~ of (83), especially when dealing with values of SWR measured
in db, and in addition, the approach to this asymptcte is less
rapid than for the other series, since the term in 1/ is here
three times as large. Therefore the error incurred by using the
first two terms of (84) is about three times the error resulting
from using only the first term of (83). The first two terms of (83)
are accurate to 1% down to about 45 = 1.7 (4.6.db). _

Incidentally, if we work out the formula for the SWR at the
half-power points of Q, we get exactly equation (82) with .G re-
nlaced by 1/-5 . The series (83) in powers of 1//3 then becomes a
series with the same coefficients, in powers of .5 . Therefore,
if the cavity is very loosely coupled to khe line ( <3<«<l) the fre-
quencies where the SWR is 6é db greater than at resonance are the
half-power points of Q, so that this method may be applied with
equal ease for very loose or very tight coupling.

3. The "3 db Down" Method. -~ This method, due to Jaynes,
is a modification of the "brute force'" method sometimes used, which
consists of installing two coupling loops in the cavity and measur-
ing the bandwidth between half-power points of the resulting filter.
Aside from the obviously undesirable mechanical features of this -
tprute-force” method, the correct apportioning of the measured
bandwidth between Q_ and the values of Q; for the two loops would
involve a number of additional measurements which are almost invar=
iably neglected.** Since the input impedance to a single coupling-
system contains all the necessary information. lack of & standing-
wave detector would seem to be the only good reason for using the
brute-force method.

v o e e oy oy vu = rm T m e i e e A B W o M e AL ey e e g el e ST M b A e e ke TR M S A e ek R e e i s s o = e ms e R

* Since SWR Is usually measured directly in db, this means that one

would find the two frequencies when the SWR 1s 6 db greater than

** It ig, of course, generally realized that in the limit of very
loose coupling the measured bandwidth approaches the value due to
to Qu alone, but it is rerely that anyone using the brute force
m2.hod has any idea of the exbent to which this is true in any
specific case., In addition it is not generally realized that the
two couplings must approach zero independently; it is not enough
that the insertion loss be increased merely by decoupling at one
end .
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The concept of the virtual parallel-resonant circuit seen
looking into a coupling system enables us to apply essentially the
same principle to a cavity without cutting two holes in it. The
virtual resonant circuit is coupled to the matched signal generator
by a direct connection, and the probe when located at the detuned
short (which is the position of this virtual circuit) serves as the
second coupling system. The amount of loading due to the signal
generator connection is already known from the measurement of 5,
and the effect of the probe can easily be made negligible by hav-
ing 3C to 4C 4db of prohe isolation. Because of the loading at the
input to the virtual resonant circuit, its bandwidth will be that
correspending to Qr. The way the probe voltage varies with fre-

guency can be seen from Fig. 23. With the probe at point A, it
follows from the geometry of a circle that the voltage induced on
the probe at the half-power points of Q; is less than the maximum
value at resonance by a factor 2 , which 1s 3 db. Since the
probe usually feeds a sguare-law detector, the procedure for find-
ing Qp is simply to set the probe at the detuned short, tune to
resonance, and f£ind the frequencies at which the output of the
square-law detector is roduced to half of the maximum value. This
method, when it can be used, is far simpler than the first twoj it
requires no computation from special formulas, no previously pre=~
pared graphs, no plotting of experimental points, and its operation
is exactly the same regardless of the value of B, whereas the
convenience and accuracy cf the other methods vary considerably
~with + However, it requires very high quality measurement equip-
ment in order to equal the accuracy attainable with rather crude
equipment by the other methods, as the effects of generator mis-
match, varlation of generator output with frequency, and probe
resonance are not masked by sharp minima. In general, this method
will save a considerable amount of time if the accuracy required is
- not greater than about 15%.

Experimental Confirmation

We may put the above theory on solid ground by studying
some actual experimental data taken on the input impedance to the
coupling system of a rescnant cavity. This data will verify the
theoretical result that the impedance locus is a cirele, and will
indicate directly how accurately the half-power points of @ may

be located. In Fig. 27#are shown the values of input impedance
measured at the detuned short with a carefully adjusted standing-~
wave detector, at several different frequencies. Actual wvalues

of frequency arec omitted for sccurity reasons. The type of coupl-
ing system was a rather indefinable combination of loop and iris
coupling, and the cavity was from a receiver preselector. The SWR
~loocking back toward the gencrator was 0.8 db, so that the amplitude
- of the second wave traveling toward the load was less than 5% of
the amplitude of the backward-traveling wave.
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It is seen that the experimental points lie very nearly

on the circle determined by the origin and the locad impedance at
resonance, but they tend to fall inside this circle at high stand~
ing wave ratios, due to losses in the transmission line and to a
superimposed rotation as the detuned short shifts with frequency.
The half-power points of Qy are located by geometrical construct-
ion, and the points found %y method (1) are indicated. It is seen
that the preceding theory is an accurate description of what takes
place in a coupling system, and that method (1) is capable of high
accuracy. The values of Quy obtained by the three different methods

were as follows: :

"o X" methog 822
SWR method 791
"3 db down® method 768

The data for the "AAM method were corrected for the length of line
(1.5 wavelengths) between cavity and probe. The true value of Qy
was prcbably between 791 and 822, making the error in the first two
methods about 2 to 4%, while the error in the "3 db down" method wes
probably 4 to 7%. ‘
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