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I. INTRODUCTION

The purpose of this contract was to Investigate thecretically
a number of aspects and possibilities of non-metallic land mine detection.

The work was divided into three main tasks:

l., Extensions of the statistical theory of anomaly suppression as
started in Fort Belvoir Contract No. DA-44-009 eng-795 at Stanford
University (this task has been completed and a final report has been

submitted).

2. Investigation of possible microwave mine detectors (this task

has been completed and a final report has been submitted).

3. Consideration of the problem of mine detection from the
standpoint of information theory and data processing (the present report

is the final one on task 3).

In 1951, when work on the mine detection problem started at
Stanford University, it was generally believed that mine detection was
basically an electromagnetic problem. The work accordingly was directed
first toward calculation and measurement of field strengths and amplitudes
of target signals. These problems are so¢ difficult that anyone starting
on them is protected for a long time from realizing the following fact:
Even if we had at hand complete quantitative answers to all electromagnetic
questions, this in itself would not tell us how to design a good mine
detector, Furthermore, since even the simplest configurations that
could be imagined for antennas still lead to hepeless boundary-value
problems, one is led to a somewhat different conception of the place of
ezlectromagnetic theory in the mine detector program. By means of

electromagnetic theory one can learn:

1. The physical mechanism by which a detector finds mines.
2. The significant things that should be measured {not calculated!)

when testing a system.
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Beyond these factors (which may be regarded as answered for
most systems presently contemplated by the chﬁn theorem), electromagnetic
thecry can help us in a qualitative sense, as a guide to intuition. The
potentially most useful application of electromagnetic theory, although
it has not been productive in the past, is in connection with the
synthesis problem, the formulation of which is one of the main objects

of this report,

Consider now the two very important questions, approximately

inverse to each other:

1, What is the proper way of interpreting experimental data so as
to reduce it to some kind of statement about expected behavior in the

field?

2., In the electromagnetic problem of antenna design, what is the

desired characteristic toward which we should work?

These questicons have nothing to do with electromagnetic theory,
but until they are answered, nc amount of electromagnetic theory can
raise the level of development work above that of random trial-and-ervor.
The reason for this is that the mine detector situation is at best
marginal, so that the statistical aspect assumes an importance greater
than in any other detection problem. For example, a study of statistical
factors can lead to appreciable improvements in the reliability of radar;
nevertheless, radar was practical and useful even before its statistical
aspect was clearly recognized. In non-metallic land mine detection, the
development of any practical system at all will require full expleoitation
of statistical knowledge. There is at present no guarantee that even

this will actually result in a practical mine detector.
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Suppose now that, with the benefit of all the hindsight
accumulated thus far, we go back to the beginning and reconsider the
whele mine detector problem. The first thing we notice is that in
order to detect an object, the detector must be able to place an appreciable
amount of energy in the region occupied by the ebject. Energy placed
in other regions, while not necessarily harmful to detection, cannot
contribute anything to the desired signal., Therefore, we build a
gsystem in such a way that as much energy as possible is placed in the
ground at the expected depth of a mine and try it out. We now discover
that although we get satisfactory signals from mines, we obtain equally
large ones from random inhomogeneities in the soil, which prevent us
from recognizing the mine signals. It is at this point that the problem
becomes basically one of statistics rather than electromagnetic thecry.
Until encugh has been learned about the statistics of the problem to
give at least provisional answers to the two questions above, we cannot
even state what the electromagnetic problem is, and there is no sense of
direction to guide further development work. In what follows, we give
such provisional answers, and state a definite electromagnetic synthesis
problem whose solution would contribute much to the mine~detection art.
No claim is made about this criterion being the ultimate one, since
much remains to be done in the statistical part of the problem; however,
it appears unlikely that it can be appreciably changed in the future
unless experiments should demonstrate that soll statistics are far

from gaussian.
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IT. SUMMARY OF PREVIOUS THEOQORY OF ANOMALY SUPPRESSION

A, Formal Relations

The following is a condensed summary of the most important
equations arising in the theory of anomaly suppression as developed
under Centract No., DA-44-009 eng-795 at Stanford, and somewhat extended
in task 1 of this contract, Although fhe purpose of task 3 is to
supplant the earlier theory by a more fundamental one, the original
theory retains an impertant place. In many cases the new theory reduces,
as far as final results and design criteria are concerned, to the
previcus relations with a new interpretation. Thus most of the work

done previocusly remains applicable.

We operate with several functions:

f(x) = antenna function = (E1°E2),
g(x) = ground function = € around <¥zground:>

E;mine - <%:ground >>inside'a mine
h{x) = mine function =

0 elsewhere

¥ (x,x') = ground covariance function= (Lg(x) g*(x')t> .

In terms of these functions, the ratio of |peak signall® to

mean square anomaly signal is

|2

7} - |,(h(x) f{x) dx (2-1)

[£x0) Y(xox"y £2(x") dx dx’

and the antenna design problem is that c¢f choosing £(x) so as to

make this as large as possible, Writing

p(x) = Jy(x,x') £x(x') dx’
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we have,; from the Schwarz inequality:

12

. 2y ; . ,
| hGo) G0 dx] H hte) ol Nﬁf(x) p(x) dx
g -
e th( )| —%;% di ) PG dx

or

97

with equality if and only if h{x) = K p(x), where K is some constant,

Thus the maximum possible value of 7) is attained if f{x) satisfies the

integral equation

h¥(x) = j £(x") Y(x',x) dx’

the solution of which was called the "unconditional optimum' antenna
p

function in the previous work.

These relations may also be stated in terms of the fourier

transformgs of the criginal functions. Let

h(x) = [ H(k) e ¥¥a

£(x) = %; J F(k) e %%y

Y(x,x"') = J ‘G(k)fz LR (X% g

where |G(k)l2 is the spectral density of g(x). Then

o e roo al?
37 f1Fra) | ?le) | ax

and z? is maximized by the choice
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F(k) = KT (2-5)
IG(k)‘z

whereupon i? becomes

2
7 =JJ_L’“IZ dk . (2-6)
max (k) |

B. Practical Constraints and the Improvement Factor

In practice the integral (2-6) will diverge, indicating an .
infinite signal~to~anomaly ratic. This arises physically because the Sﬁfﬂ‘J
mimverfmrewben 15 assumed to have sharp edges, so that [H(k)l2 goes
down only like (l/k)z while fG(k)|2 may decrease this rapidly, or even
more raplidly, at large k. The resulting f{x), however, then has
singularities (such as the derivative of a c{-function) and this
condition is not physically realizable. In practice we cannct produce
"wiggles" in £(x) of arbitrarily short wavelength; F(k) must be zero
cutside a certain range (-K < k < K) of wave-numbers for any physically
realizable antenna. At frequencies such that the mine is largely in
the antenng radiation field, rather than the induction field, the maximum

possible wave-number K is determined by the frequency:

K = EW_C_.E._ AC = 4m (2-7)
g

the factor 2 arising because, in f{x) = (El nEZ), the phase factor
~ g
exXp Li % x] appears in both El and EZ" Since hg is the wavelength in the

ground, we have roughly

30 (2-8)

where & is the frequency in kmc.

Because of these practical considerations,; the limits of

integration in (2-4) and (2-6) must be taken as (+ K) or the appropriate
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generalization te 2 and 3 dimensions, and (2~5) must be understood as

holding only within this range. We can now define a figure of merit

[2}/%)max] which tells how far a given antenna function F(k) is from
the best that could be attained within the same range of wave-numbers.

We prefer to consider its reciprocal, the improvement factor

I[F&ﬂ - [ max (2-9)

7)

which shows how much the signal-to-anomaly ratic could be improved if

one could obtain the correct design (2-5). For general mine and ground
functions this is rather complicated, but we wish to point out a practical
case where it gsimplifies greatly. Suppose we wish to find very small
mines in scil of short correlation distance. Then within the restricted
range of wave-numbers (-K< k <K) accessible to our antenna, |H(k)| and
‘G(k)iz are practically constant. In this case the improvement factor
reduces to

2
£ dk - £[F(k)| dk

I[F(k)1 = ‘ £ P (k) dk|2

(2-10)

_ g}

(F(k) | 2

where the bar denotes an average over the region R of accessible wave=
numbers. The factor I[F(k)] now depends only on the shape of the function
F(k). If F(k) is constant within R, then I[F(k)] = 1 and we are already at
the optimum condition. Any variations in F(k), whether of magnitude

or phase, within R, will increase I[F(k)]. As a numerical example,

n
consider a one-dimensional model with F(k} = 1 -‘ % ‘ ,|kl < X,
Working out the integrals, we find
+2
1 [F@o] = 1¢n) = %%IT (2-11)
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This case is tabulated and sketched in Figure 2«1, Note that, although

variations in F(k) are penalized, the improvement factor actually varies
surprisingly little for different shapes,
Somewhat greater variations are found for the function
R
F(k) = | 1 - El ,|kj< K. Here one finds

2
I{n) = iﬂ. (2-12)

2n+l

The curves for this case are given in Flgure 2-2,
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1.0 =
I = 1.00
0.84 X
\1.11
1.20
F(k)
% 0.2 0.4 0.5 0.8 1.0
k
F(k) = 1 - |k |"
n I(r) |
o 1.00
4 1.11
2 1.20
1 1.33
0.5 | 1.50
0.25 | 1.67
FIGURE 2-1
FAMILY OF CURVES F(k) = 1 -[k|", [k|>2, WITH

CORRESPONDING IMPROVEMENT FACTORS I(n)
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F(k)

n I(n)
0 1,00
.25 | 1L.04
0.50 1.12
1.00 | 1.33
2.0 1.80
4,0 2.78
8.0 4,76
FIGURE 2-2

FAMILY OF CURVES F(k) = |1 - k[",|k| <1, WITH
CORRESPONDING IMPROVEMENT FACTORS I(n)
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If F(k) oscillates, very large values of I[F(k)] may result,

since oscillations reduce F much more than they do F2° For example, if

F(k) = e ; [kl <K (2-13)

we find I involves the Fresnel integrale (real and imaginary parts of

the Cornu spiral), and for Ka > 1, a fair approximation is

I ¥ 2x%a’ (2-14)
As another example, take
F(k) = sin l_(._ZEi.}{_l_ﬂi‘ , lkl < K (2-15)
i
Now we find 5
I(n) = & (2n41)? (2-16)

The last two examples are important in showing that failure
to control the phase of F(k), even though its amplitude is quite uniform,
can reduce reiiabllity very drastically. In fact, from all the above
numerical examples we may draw a qualitative conclusion that in the
antenna design problem as considered in the previous theory, control
of phase is more important than control of amplitude. This conclusion
is not altered by consideration of the more general case where H(k),
IG(k)!2 vary appreciably within the range of wave-numbers "seen" by the
antenna, although the optimum phase of F(k) is not necessarily a constant

as in the above examples.

The importance of these considerations fcr the present study

lies in the following result, obtained in Section VI below:

Let [F(k)| # 0 almost everywhere in the range (-K< k<K).

Then g data-processing computer can be built which will restore the full
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improvement factor I [F(k)J and give the same signal-to-anomaly ratio

as if the antenna function were the unconditicnal optimum (2-3) within

this range. ©No linear operation on the signal can do better than this.

The implications of this result for the antenna design problem

are considered in Section VL.
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I11. SUMMARY OF EXISTING THEORY OF SIGNAL DETECTION AND EXTRACTION

The following is a summary of some elementary aspects of the
existing statistical theory of reception., It is essentially a distillation
of the literature, leaning especially heavily on the recent summary
of Van Meter and Middletonsl and a paper by R. C. Davis.2 It contains
no new results, although there.are some simplifications in arguments and
notation, as well as differences in interpretation. We are here concerned
with exposition of concepts and principles, in a way that arrives as
quickly as possible at the important results of the theory. In order
te do this, mathematical rigor is dispensed with entirely; for that

one must go back to the original papers.
A. Definitions

Notation: Let A,B,C,D,.... stand for various propesitions,

such as 'a mine is present', ''the observed signal is §," etc., Then

(AlB) = Conditional probability of A, given B.

(ABiCD) = Joint conditional probability of A and B, given
Cand D, . . . ete.

For our purposes, everything follows from the single

fundamental rule of calculaticen,
(AB[C) = (a|BC) (B|C) = (B|AC) (A|c) (3-1)

If the propositions B, C are not mutually contradictory, this may be
rearranged to give the rule of learning by experience, called Bayes'
Theorem:

“ G = W wm = om

1 Van Meter, D. and Middleton, D., "™odern Statistical Approaches to
Reception in Communication Thecry", Trans. I.R.E.,, Professional
Group on Information Theory (PGIT-4, Sept. 1954)

2 Davis, R.C., J. A. P. 25, 76 (1954)
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(also) = (almy L1AB) - (a]c) B.40) (3-2)

of which the last expression follows from the symmetry of (A|BC) in B

and C. Equation (3-2) shows how the probability of an event changes as
a result of acquiring new informaticon. It forms the cornerstone of our
theory, when used to tell us the preobability of the presence of a mine

on the basis of the observed signal.

Summing (3=1) over B, we obtain the chain rule

(alcy = > (alBe) (Blc) . (3-3)
B

Now let

il

prior knowledge, of any kind

signal

= noise (anomaly signal)

V(S,N) = observed voltage

f

o < =2 o

decision about the nature of the signal.

We adopt the view that there is no such thing as an "absolute”
or "correct" probability; all probabilities are conditional on X at least,
and X may vary with different observers or different situations. This is
simply a recognition of the fact that all probabilities are, in the

last analysis, expressions of human ignorance.

The purpose of probability theory is to aid us in forming
plausible conclusions in situations where we do not have enough
information to arrive at certain conclusions; as Laplace put it,
probability theory is ''common-sense reduced to calculation.'" It is
important to avoid any impression that X is some kind of universally
valid propesition about nature; it is simply whatever initial information
we have at our disposal for attacking the problem. If X happens to be
irrelevant to estimation of some quantity Y, then this attitude is

unnecessary but harmless. Alternatively, we can equally well regaxrd X as

Page 17 of 64
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a set of hypotheses whose consequences we wish to investigate, so that
all equations may be read, "If X were true, then ----", It makes no
difference in the formal theory. We often suppress X for brevity, with
the understanding that even when it does not appear explicitly it is

still "built into" all bracket symbols.

Any probabilities conditional on X alene are called a priori

probabilities. Thus, we have

(SlX) = a-priori probability of the particular signal §

(N|X) = W(N) = a=priori probability of the particular
sample of noise N,

In a linear system, V = S$+N, and
(V|$X) = W(v-8$) (3-4)

The reader may be disturbed by the absence of density functions,
dS's, dN's, etc., which might be expected in case of continuously variable
S,N. Note, however, that our equations are homogeneous in these quantities,
go they cancel out anyway. By'E:A we mean ordinary summation if A is

discrete, integration with appropriate density functions if A is continuous.

A decision rule (D|V) represents the preocess of drawing

inferences about the signal from the observed voitage V. If it is
always made in a definite way, then (DIV) has only the values 0, 1

for any D and V; however, we may also have a randomized decision rule
according to which (D|V) is a true probability distribution. The
essence of any decision rule which can be buiit into automatic equipment
is that the decision must be made on the basis of V alone; V is, by
definition, the quantity which contains all the information actually
used (in addition to the everspresent X) inm arriving at the decision.

Thus for all ¥, we have

(olvy = (o|vy) (3-5)

Page 18 of 64
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An equivalent statement iz that D depends on any quantity Y only through

the intermediate influence of ¥ on V:

({Y) = 2_(ojv) (v|v (3-6)
V

B. Sufficiency and Information

Equation (3=5) has interesting consequences; suppose we
wish to judge the correctness of the proposition ¥ on the basis of

knowledge of V and D. From (3-1)

(glvp) = (djvey (vjw)
and, using (3+-5), this reduces to
(Yjvp) = (¥|v). (3-7)

Thus, if V is known, knowledge of D is redundant and cannot help us
in estimating any other quantity. The reverse is not true, however; we

could equally well use (3-1) in another way:

(x|vp) (v|p) = (¥|D) (V|¥D)
Combining this with (3-7), there results the
Theorem - Let D be a possible decision, given V. Then

(V|D) # 0, and
(Y]v) = (¥|D) if and only if (V|D) = (V|YD). (3-8)

In words: Knowledge of D is as good as knowledge of V for estimating

Y if and only if Y is irrelevant for the estimation of V given D. Stated
,rofan’{"':"‘ §

differently, in the 'environment' produced by knowledge of D, the

Y and V appear to be independent random quantities, that is,

(yvip) = (¥|D) (v|D). (3-9)
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In this case, D is said to be a sufficient statistic for estimating Y.

Evidently a decision rule which makes D a sufficient statistic for
estimating the signal 5 is in some sense superior to one without this
property. However, such a rule does not necessarily exist; equation (3-9)
is a very restrictive condition, since it must be satisfied for all values

of Y, V, and all D for which {D|V) # O.

The concept of sufficiency is closely related to that of
information. The definition of sufficiency could equally well be stated
as: D 1s a sufficient statistic for estimating Y if it ceontains all the
information about Y which V contains. Since D is determined from v, if
it is not a sufficient statistic it necessarily contains less information
about ¥ than does V. In this statement, the term "information'" was used
in & loose, intuitive sense; does it remain valid if we adopt Shannon's
measure of information? The entropy, ar degree of uncertainty, represented
by a probability distribution (Pi) is, according to Shannon,3 the
expectation value of the "surprisal log (lfPi), Thus, the entropy of

Y with a specific value of D given is

Hy (1) = - 2_(¥|D) log (¥|D) (3-10)
Y
and its average over all values of D is

H(Y) = 2 (p[x) Hy (1) . (3-11)
If u

H (v -

HC(Y)<:HD\Y, (3-12)
we say that C contains, on the average, more information about Y than

does D. HNote, however, that it may be otherwise for specific values of C

and D.

3 These notions are discussed further in Section IV below, where a
derivation of Shannon's Theorem is given.
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Acquisition of & new informaticn can never increase H; let D,V,Y

be, for the moment, any three quantities and form the expression

]

> (DV[X) {¥Y|DV) log (Y|DV)

H, (Y) - H. (Y)
v v VY

3

2 (9% (¥{v) log (¥]V)
VY

> ovlx) (Y|pv) log [3519!1}
— (Y[v)

by

> v [y - @lvy ] =0 (3-13)
VY

Here we have used the fact that log X & (ﬁ - %j) s With equality
if and only if X = 1. Thus, HDV(Y) E HV(Y)’ with equality if and only
1f equation (3-7) holds for all D,V,Y for which (DV|X) # 0. Since (3-13)
holds regardless of the meaning of D and V, we can equally well conclude

that for all D,V,Y,
— > T _—
Hy (1) 2 Hy, (0 £ H, (D)

Now letting D,V,Y resume their original meanings, we have in consequence

of (3-7) HV = HDV’ so that
— < =
Hy(Y) = Hy (1) (3-14)

with equality if and only if equation (2-9) holds. Thus, if by "information"
we mean minus the average entropy of Y over the a-priori distribution of D,
zero information loss in going from V to D is equivalent to sufficiency

of D for estimating Y. Note that inequalities of the form (3-13) hold

only for the averages E, not for the H. Accuisition of a specific piece of
information {that an event previously considered improbable had in fact
occurred) may in some cases increase the entropy of Y. However, we expect
this to happen only rarely, and on the average the entropy can only be

lowered by additional information. These considerations show that the
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term "information” is not altogether a happy choice for entropy
expressions; in spite of the entropy increase, the situation just
described could hardly be called one of less information, but rather one

of less certainty.

C. Loss Functicons and Criteria of Optimum Performance

In order to say that one decision rule is better than another,
we need some specific criterion of what we want our detection system to
accomplish. The criterion will vary with the application, and obviously
ne single decision rule can be best for all purposes. A very general type

of criterion is obtained by assigning a loss function L(D,S) which

represents our judgment of how serious it is to make decision D when
signal S is in fact present. In case there are only two possible signals,
SO_= 0 (i.e., nc signal), and Sl # 0, and consequently two decisions,

DOs Dl’ there are two types of error: the false alarm A = {Dl, SO]

and the false rest R = { Do’ Sl } » In some applications one type of
error might be much more serious than another: Suppose that a false rest
is considered ten times as serious as is a false alarm, while a correct
decision of either type represents mno '"loss': we could then take

L(Do’ SO) = @, L(D09 Sl) = 10, L(Dl, SO) =1, L(Dl, Sl) = 0,

Whenever the possible signals and the possible decisions form
discrete sets, the loss function becomes a loss matrix: In the above

example,

]

L. .
11

The loss matrix plays approximately the same role in detection theory
4
as does the payoff matrix in game theory. A player in a game may adopt

- m m B L owm

4 Blackwell, D., and Girschick, M,A., Theory of Games and Statistical
Decisions, Wiley and Sons, Inc., New York (1954)
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that strategy which maximizesz his expected gain; correspondigly, we

may adopt that decision rule which minimizes the expected leoss.

Instead of arbitrarily assigning a certain loss L(D,S) to

each pogsible type cof error, we may consider information loss by the

assignment L{(D,S) = = log (SlD)° A decision rule which minimizes
information loss is one which makes the decision D in some sense as

close as possible to a sufficient statistic for estimation of the signal.
The information loss criterion is difficult to apply, because the function

L(D,S) depends on the decision rule,

The conditional loss L{S) is the average loss incurred when

the specific signal S is present:
L(S) = > L(D,S) (D|S) (3-15)
D

which may in turn be expressed in terms of the decision rule and the

properties of the noise by using (3«6). The average loss is the expected

value of this over all possible signals:

> =2 us) 5% . (3-16)
S

Two different criteria of optimum performance now suggest themselves:

1. The Minimax Critericn

For a given decision rule (_D|V)s consider the conditional
loss L{8) for all possible signals, and let [L(S)} max be the maximum
value attained by L{S). We seek that decision rule which makes [L(S)] nax
as small as possible. This criterion ¢oncentrates attention on the
worst possible case regardless of the probability of occurrence of that
case, and is thus in a sense thé most conservative one. If the worst
possible case is extremely unlikely to arise, one would probably call it

too conservative, It has, however, the practical advantage that it does
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not invelve the a-priori probabilities of the signals (SiX), and so can
be applied when no information is available on which to base such a

probability assignment.

2. The Baves Criterion

We seek the decision rule for which the average loss </L>> is
minimized. In order to apply this, a distribution (8|X) must be available.
In Section IV below we describe methods for obtaining such a-priori

distributions.

¥ % ok k¥

Other criteria have been proposed. Siegert's '"Ideal Observer!
minimizes the total probability of error regardless of type, but this
is evidently a special case of the Bayes criterion in which each type
of error is assigned the same loss. In case there are only two possible
signals, the Neyman-Pearson criterion may be applied. Here one fixes the
probability of one type of error at some small value E,, and then minimizes
the probability of the other type of error subject to this constraint.
This also is a special case of the Bayes criterion, where we find, not an
absolute minimum, but a constrained minimum of <ﬁ;> . As shown below,
the minimax criterion may be regarded as a supplemented version of the
Bayes;_fﬁaiuiig in which we choose the worst possible (S|X) after having
found the Bayes sclution for given (S!X)n

Substituting in succession equations {3~15), (3-6), and (3-3)

into (3-16), we obtain for the average loss

{Ly=2 [ZL(DSSJ <v5|x>] (0] v) (3-17)
DV S

If L(D,S) is a definite function independent of (DiV)3 there is no
function (DlV) for which rhis expression is statiocnary in the sense
of calculus of variations. We then minimize <:L:> merely by choosing

for each possible V that decision Dliv) for which
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K(D;,V) = 2_L(D;, ) (V8|0 (3-18)
S

is a minimum; that is, we adopt the decision rule

(p|v) = S(D-Dl) . (3-19)

In general, there will be only one such Dl’ and the best decisien rule
is non~random. However, in case of 'degeneracy", K(DI,U) = K(DZ,V), any

randomized rule of the form
(D|V) = a §(D-D;) + b &(D=D,) , atb = 1 (3«20)

is just as good. This degeneracy occurs at "threshold" values of V

where we change from one decision to another.

D. A Discrete Example

Consider the case already mentioned where there are two

possibilities, S0 = 0, S1 # 0, and a loss matrix

Loo  Lor o 1,
L., = =
1] Lig Iy L o

where La and Lr are the losses incurred by a false alarm and false rest,

respectively. Then

K(Dy,V) = La(vsl|x)
(3-2D)
R(D,,V) = Lr(VSD|X)

and the decision rule that minimizes <L> is
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(V51|X> L
choose D, if ——=we > —
1 (Vs [%) 7 T_
(VSI‘K) La .
; choose DO if (VTP—(-)- > T (3+22)
i 0 r
i choose either at random in case of equality
L

. 7
If the a-priori probabilities of signal and no signal are

R -

S B

. .

S0 =9, (5,10 =q=1-p (3-23)

respectively, we have (VSllX) = (V]Sl) (SI]X) ﬁ(V[Sl), etc., and the

decision rule beccmes

(Vlsl) qLa

.
T > Tl ete. (3-24)

choose D1 if
7

The left-hand side of (?-2&) is called a likelihood ratioc. It depends only
on the statistical properties of the noise, and is the quantity which
should be computed by the optimum receiver according to the Bayes criterion.
The same quantity is the essential one regardless of the assumed loss
function and regardless of the probability of occurrence of the signal;
these affect only the threshold of detection. Furthermcre, if the
receiver merely computes this likelihood ratio and delivers it at the
ocutput without making any decision, it provides us with all the information
we need to make optimum decisions in the Bayes sense. WNote particularly
the generality of this result, which is one of the most important ones
for ocur applications; no assumptions are needed as to the type of

signal, linearity of the system, or statistical properties of the noise.

We now work out, for purposes of illustration, the decision
rules and their degree of reliability, for several of the above criteria.
To make the problem as simple as possible? .f,magine a linear system in

which the voltage is observed at a single instant, and we are to decide
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whether a signal, which can have only amplitude S is present in noise,

1!
which is gaussian with mean square value <N2>:

. | 2 7
W(N) = exp L- —_— (A-25)

h/?«ﬂ <N2> Z <N2>_

The likelihood ratio in (?L24) then becomes

0 27

(v 5, W(V-5,) | 2VS -5, 7
= = exp | ——mai (3-26)
(V]S WiV) Lz <N2> 7

and since this is a meonotonic function of V, the decision rule can be

written as

Dl 7
choose when V ? v (3-27)
DO b
with
v qL 7
2 =l g ! =2 ) 4%y (3-28)
H[“““““ 2s pL b
2 r
2 &%)
in which
51
5 = is the signal-to-noise ratio,  and
N2 &P
v = is the normalized voltage.

v
=
N’z <<§2:>
Now we find for the probability of a false rest:

¥y

(RIZ) = (0,8,/ 0 = p %;(D0|v> (lsp =p | dvu-s)
oo 7

1 (£-29)
=3 P 1+ erf (vbws)] s

_______ e e

X The factorJ=§= in this definiticn is perhaps unusuwal, but it makes

the following eguatioms especlally simple.
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and for a false alarm,
X0

7
alx) = (s %) =q 2_@,]v) (v|s,) =« {- v W(V) (§-30)
170 v 1 0
Vb
=1
=754 [lw erf Vi ]
Here erf(X) is the error function
X
2 /
erf(X) ¥ —2= } eV (3-31)
JT
0
tabulated in Pierce. For X>2, a good approximation is
-x2 7
le erf(X) +~ £ (}'32)

X Jn
As a mumerical example, if Lr = 10 La’ g = 10p, these expressions

5 1 7
(A|X) = lO(RlX) =97 1- erf(:% %) ($-33)

The probability of a false alarm is less than 3 x 10-33 and of a3 false rest

reduce to

less than 3 x 10-4, for s » 4,

Let us see what the minimax criterion would give in this

problem. The conditional losses are

L(Sy) = L, %;(D1|V) (VISO) =L [ (Dllv) W(V) av 2
(3-3%)
L(Sl) =L % (DOJV) (V]Sl} =L, J (DOIV) W(v~sl) dv

Writing £(V) = (D11V) =1 - (DO|V), the only restriction on
f(V) is 0 ¢ £(V) £ 1. Since La’ Lrg and W(V) are all positive, a change

W om om e

X af Pierce, B.O., A Short Table of Integrals, Ginn and Co. (1929)
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o £{V) in the neighborhood of any given peint V will always increase one
of the quantities Q£L34) and decrease the other, Thus when the maximum
L(5) has been made as small as possible, we will certainly have
L(SOJ = L(Sl), and the problem is thus to minimize L(SO) subject to this
constraint, Suppose that for some particular (S!X) the Bayes solution
happened to give L(SO) = L(Sl)a Then this particular sclution must
be identical with the minimax solution, for with the above constraint,
<fZL:> = [;(Si]maxs and if the Bayes solution minimizes <<L;> with
respect to all admissible variations cgf(V) in the decision rule, it
& fortiori minimizes it with respect to the smaller class of variations
which keep L(SO) = L(Sl)‘ Therefore our optimum decision rule will have

the same form as before: There is some threshold Vm such that

0, V<V /
£(v) = (F-36)
1, ¥>v_

Any change in v from the value which makes L(SO) = L(Sl) necessarily
increases one or the other of these quantities. The equation determining

Vv is therefore
m o

v

m

L, { W(V) dV = L_ [ W(V-S)) dv
v -

m

or, in terms of normalized quantities,

7

La [1 - erf vm:} = Lr [1 + erf (vm - s)] (ﬁ-3?)

7 7
Note that (ﬂwSO), (3~31) give the conditional probagilities cof false rest

and false alarm for any decision rule of the type (3-36), regardless of
7
whether the threshold was determined from (p-28) or not; for the arbitrary

threshold VO

®ls)) = (v<vyls)) = [1 + erf (vg - s)] 7

(3-38).

M= R

(Alsg) = (V> [8) =5 |1 - erf WJ]
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7

From {}-28) we see that there is always a particular ratio
(p/q) which makes the Bayes threshold V, equal to the minimax threshold
Vma For values of {p/q} other than this worst value, the Bayes criterion
glves a lower average loss than does the minimax, although one of the

conditional losses L(SO), L(Sl) will be greater than the minimax value.

These relations and several previous remarks are illustrated
geometrically in Figure }-1, in which we plot the conditional losses
L(SO), L(Sl) and the average loss <:L:> as functions of the threshocld Vg
for the case La = E—Lr, p=q= ? « The minimax threshold is at the
common crossing-point of these curveg, while the Bayes threshold occurs
at the lowest point of the <ﬁ£> curve. One sees how the Bayes threshold
moves as the ratio (p/q) is varied, and in particular that the value of
(p/a) which makes vy =V also leads to the maximum value of the <<}:> min
obtained by the Bayes criterion. Thus we could also define a "maximin™
criterion; first find the Bayes decision rule which gives minimum <:L:>
for a given (S]X), then vary the a-priori probabilities (S5{X) until the
maximum value of <jL:>'min is attained. This 13 the worst possible (in
the Bayes sense) a-priori probability, and the design thus obtained is

identical with the one resulting from the minimax criterion.

;~ The Neyman-Pearscn criterion is easily discussed in this example:
Suppose the conditional probability of a false alarm (Dllso) is held fixed
at some small value € , and we wish to minimize the conditional probability
(D0|Sl) of a false rest, subject to this constraint. Now the Bayes

criterion minimizes the average loss

QLD = et gfs)) + aL, @5

with respect to any admissible variation & (D|V) in the decision rule.
In particular, therefore, it minimizes it with respect to the smaller
class of variations which hold (Dl|SO) constant at the value finally

obtained., Thus it minimizes (Dolsl) with respect to these variations
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<L> = pL(Slj + qL(SO)

FIGURE 3-1

CONDITIONAL AND AVERAGE LOSSES AS FUNCTIONS
OF THE DETECTION THRESHOLD V. THE L(S;) CURVE
IS SYMMETRIC ABOUT THE POINT | 5, 1/2 Lr}
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and solves the Neyman-Pearson problem; we need only choose the particular
value of the ratio (qLa/er) which results in the assumed value of €

according to equations (;-28), (3-30)3 and our previously found solution

in the desired one.

-
We find for the Neyman-Pearson thresheld, from (ﬂ-38)

. 7

Vp = eTE T (1-2€) ($-39)
and the conditional probability of detection is

(Dljsl) =1 - EDO|Sl) .

(3-40)
= % l 1 % erf [s = erf l(l ~ 2€& ﬂ}

This is plotted in Figure D~2 as a function of s, for several values of €.
From it we see that if £ = 10’3, a detection probability of 99 per cent or

better is attained for s> 4.

E. Gaussian Noise

It is important to note that these numerical examples depend
critically on our assumption of gaussian noise. If the noise if not
gaussian, the actual situation may be either more or less favorable than
indicated by the above relations, It is well known that in one sense
gaussian noise is the worst possible kind; because of its maximum entropy
properties, gaussian noise can obscure a weak signal more completely than
can any other noise of the same average power., On the other hand, gaussian
noise is a very favorable kind from which to extract a fairly strong

signal, because the probability that the noise will exceed a few times

1/2
; 2
the RMS value ‘<h :) becomes vanishingly small. Consequently, the
probability of making an incorrect decision on the presence or absence

of a signal goes to zero very rapidly as the signal strength is increased.
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The high reliability of operation found above for s > 4 would not be

found for noise possessing a probability distribution with wider '"tails'.

The type of noise distribution to be expected in any particular
case depends, of course, on the physical mechanism which gives rise to the
noise, When the noise is the resultant of a large number of small,
independent effects, the central limit theorem of probability theory tells

us that it will be gaussian regardless of the nature of the individual

sources. émr1he—ap?%éeat*on—tcﬂnfnz—deteeeo;s,_;he—aﬂﬁm&%y—aégaa%—éﬁ—&-

save—otfosused=beam-sySteme—wi-th—very snait—itomtrated—aroan However,

Soaqrits
it may be that the variations in individualAfagisas are themselves

gaussian, in which case no appeal to the central limit theorem is needed.
Whether or not this is the case, in the absence of any information to

M E

the contrary, it is best to assume a gaussiankdistribution,ﬂéannnn.&y

3|I'flC!Y z’w% 1 CL;P}-(.}' 6.

For rvtasoems
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g. B STATISTICAL INFERENCE BASED ON INFORMATION THEORY
-—-"""-—_

A. Philosophical Digression
A }arge porfiom vf 5/451-512"'.") inferenct | and m p‘arﬂlcuiar 5/2*6

froblem of  Jedectrom o f ;x}",l; v mpiie, 15 ome Tetteaity—ie—oad
AOE reasoning from observed effects to prebable causes. Historically,
this type of problem is one of the oldest in probability theory, and for hzar?y
two centuries it was considered solved by the application of Bayes'
Thecrem (équaticnmgééggg , also called the principle of inverse probability.
Here one has a certain a-priori probability (A1X) representing our
judgment as to the truth of propesition A, and this judgment is altered

by acquisition of new information B, according teo the equation

SB&AXE

TR (4-1)

(A|BX) = (A]X)

In recent years, the situation has become obscured by rise of the
positivist philosophy, according to which any probability is considered
meaningless unless it can be measured numerically by observation of
frequency ratios in a random experiment. The probability of an event

is thus considered to be an objective property of that event, which
exists independently of human knowledge. Concurrently with this, the
notion of a-priori probabilities has become a béte-noire to be avolded

at all costs, except in the case that the information X consists of the
result of a random experiment in which (&1X) was measured. In the latter
case, equation @ﬁ-l) ig tolerated, the additional information B being

interpreted as selecting out cf the original population of events a
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certain sub-class, in which the frequency of event A may be different

from its value in the population as a whole. Evidently this is not the
ra Ry

case in the problem of signal detection, and ﬂaik-mndern statisticians

would not consider equation (é-l} as applicable.

To most people the natural way of approaching the detection
problem would be to ask for a receiver which computes the probability that
a signal is present, and either delivers this probability at the output,
or else makes a decision that the signal iz present (that is, sounds
an alarm) whenever the probability exceeds a certain preassigned level,

To such a program our hypothetical modern statistician would say, "This
does not make sense; it is meaningless to speak of the probability that
a signal is present because the signal is not a random variable; either
it is there or it is not." He would then attack the problem in a quite

different (and more complicated) way, for example, by introduction of
2 ; . Howerer, in 5e dewg he weuld deprive hwmgele of
wcorponting prier nforenfi inls (i Problem, and e have alrexdy scew how groat)
fra'nr in formatiom Cam  gFfect Lhe '“f‘r,r{i‘frﬂ“ of d1l3.
In retaining equation (&-1) as the fundamental relation of

.n;.?‘ way o/

detection theory we are rejecting the modern positivist views as to the
nature of probability, and returning to thoze of Laplace., In our theory,
the probability of an event is a formal means of expressing our expectation
that the event will or did occur, and is not necessarily derived from
any random experiment. In this subjective interpretation we recognize
that probability theory and statistical inference are merely tools to

aid us in forming plausible conclusions, on the basis of whatever
information is available. Thus we regard s-priori probabilities, however
arrived at, as perfectly respectable. The theorvy must, of course, break
down when the available infermation is not sufficient to operate with,
but that is as it should be.

In applying our theory, one of the first problems that confronts
us 1s that of translating the initial information, which may be of very
diverse nature, into an assignment of a-priori probabilities. This is

the problem of "r'ﬂwﬂéf-; Chermomefers " dicwssed «n Chagter 4. As T"h"l"ll'}"

wo fed, b s
Page 36 of 64
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not an easy problem, and from a psychologicai point of view it ig probably
safe to conclude that the difficulty of finding any uniqgue assignments in
cases where very little information is available i3 the real reason why
the principle of inverse probability haz fallen into disrepute in recent
years. The theory has suffered from lack of any constructive principle
which would give us 2 reason for preferring one probability assignment to
another in cases where both agree equally well with the available
information. We wish to show that, to a large extent, this principle

has been supplied by the development of information theory. The application
of the information principle is particularly simple and elegant when the
initial information consists of average values of certain quantities, and

we now turn to the problem of inference in this special case.

B, The Information Principle

The quantity x is capable of taking on the discrete values X,
(i =1,2,-++,n), We are not given the corresponding probabilities Py

all we know is the expectacion value ¢f the function £(x):

ey = 3 by £(x)) @-2)
1

On the basis of this information, what can be =aid about the expected
value of the function g{x)? At first glance, the problem seems insoluble
because the given information is insufficient tec determine the probabilities

p; - Equation (6-2) and the normalizaiion zeondition
2.p; =1 é-3)
i

give only two relations; it would require specification cf (n-2) more

conditions before the quantities necessary for calculation of <:g(xi>

could be found.
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In assigning the probabilities p, we wish to make full use of
whatever information ig given., but in order to avoid any bias in our
judgments we must be careful not to assume anything that is not given,

The great advance provided by information theory lies in the discovery

that there is a unique, unambiguous criterion for the amount of information
contalned in a discrefe probability discribucion, which ggress with our
intuitive notions that a sharply peaked distribution represents more
information than a broad one, and satisfies all other conditions which

make it reasonable. It furns out to be somewhat more natural mathematically
to consider uncertainty, or lack of information. At the 2nd of this

section we sketch Shamnon's proof that the quantity which increases with
increasing uncertainty and is additive for independent sources of

uncertainty ia

log p. (6-4)

where K is a positive constant. 8Since this is just the expression found
for entropy in statistical mechanics, it will be cailed the entropy of the
probability distribution P, henceforth we shall consider the terms "entropy"

and "uncertainty' as synonymous.

It is now evident how to sclve our problem; in making estimates
we must use that probability distribution which has maximum entropy subject

to the given informarion. This is the only unbiased assignment we can make;
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o use any other would amount *o arbitrary assumption of information which
by hypothesis we do not have. From this pcint on, the problem is elementary;
we have to maximize (ém&) subject to the consrraints of equation (6-2) and
(6-3). The solution ig, in fact, to be found in any texitbook on statistical

mechanics; by the method of Lagrangian muliipliers we have
,z: 1 . ) ) 1
° - [Pi tog py * apy * oy £lxy) | =0

from which

iog Py + & + af {xi} =0

or,

11

~hepfix, )
P, = : 6-5)
The constants )\, 1 are determined by substiiuting into (6-2) and (6;3)¢

The results may be written as

(e = - 7?; log Z{p)

A

b-5)

1 = Z(u) e”
whera
-nf(x,)
2(p) = 2_e -7
i

will be called the partition funetion.

This may be generalized to any number of functions f(x): Given

the averages

<ifr(x):> = E; pf i) o o= (1,2 ..., m b-8)

form the partition function

4.

A chey P Y T xp = | A, EL 0%, + . Foa £ ( (b~
Kls 9 ,f‘vm' % exp |r_'\,1f“ xlj + I 1- ﬁ.mtmvxi)] ‘.6 9)

Then the maximum-entropy probability distritution is given by
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p, = exp - [;\O LRSI N ISR SV fm(xi)] (b-10)

in which the constants are determined from

<:fr{xi> = = _3%: log 2 (6*11)
A = log 2 6-12)

The entropy of the distribution (ﬁwlﬁ) “hen reduces rto

CEited > + oo +a (£ (0 (6-13)

m

where the constant K in (6-&; has been =et equal to unity. The variance

of the distribution of fr(x) ig found *o be

2

2 2 2 d
2t = (5D - <fr> 5 (log 2) . b-14)
.
r
More generally, all central moments of order 2 or higher are obtained in

this way:; for example,

<<fk - <fk>>m Gfr < (ELS )n > - :zkm j:rn (log Z)

(6*15)

In addition to its dependence on x, the function fk may confain other
parameters Qs and it is easily verified that the maximum-sntropy estimates

of the derivatives are given by

1

£
k G) ' k) 7
<9 ai =317 Ta: {log Z} 3 \5'16)

etc.

The principle of maximum entropy may be regarded zs an extension

of the principle of insufficient reason (%o which it reduces in case no
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information is given except enumeration of the possibilities xi)9 with the
following essential difference. The maximum~entropy distribution may be
asserted for the positive reason that it is uniguely determined as the

cne which is maximally nen-committal with regard to missing information,
insread of the essentially negative one that there was no reason to

think ctherwise. Thus the concept of information supplies the missing
criterion of choice which Lapiace needed to remove the apparent arbitrariness
of the principle of insufficient reason, and in addition it shows precisely
how this principle is to be modified in case there are reasons for

"thinking otherwise."

VAN —

of maximum-entropy inference iz identica: in mathematical form with the

It will be apparent from the abeve equations thaz the theory

tules of calculation provided by statistical mechanice. Specifically,

let the energy levels of a system be
Ei {aly Qy s voo )

where the external parameters G, may include the volume, strain tensor,
applied electric or magnetic fields, number of molecules of each type, etc.
Then if we know only the average enmergy <(E > , the maximum-entropy
probabilities of the levels Ei are given by a special case of (6-10), which
we recognize as the Boltzmann discribution, and such quantities as pressure,
chemical potentials, etc.,, are given by special cases of 05-16), Thus, we
can regard statistical mechanice, not as a physical theory, but as an

example of statistical inference based on the information principle.

C., Shannon's Thecrem

Evidently the crucial point of %his theory of inference is
the demonstration that the expresszion {6@4) actually represents a
reasonable measure of information. We give here a condensed version of

Shannon's proof of this fundamental result.
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The variabie x can assume the discrete values (X5 ous xn),
Qur partial understanding of the proceszses which determine the valiue of x
can be represented by sssigning corresponding probabiiities (plg seos pn)°
We ask, with Shannon, whether it iz pozszible Z¢ find any quancvity H{pl..o pn)
which measures in a unique way the amcunt of infermation {or, what amounts
to the same thing, the amount of uncertainty) in this probability distribution.
It might at first seem very difficult to specify conditions for such a
measure which would ensure both unijuenesz and consistency, To say nothing
of usefulness. Accordingly, it is a remarksble fact thar the most |
elementary conditions of consistency, amounting really to only one
composition law, already determine the function H{pl o pn) vo within a

constant factor. The three conditions are:
1. H is a continuous function of the P, -

2. If all values of p, are equal, the quantity A{n) = H{1l/n, ... 1/n)

ie a monetonic, increazing functicon of n,.

3, The composition law applies, Inzead of giving the probabilities
of the events (xl ou xn) directly, we might group the first k of them
together as a single event, and give its probability W, = (pl + ... F pk).
Then the next m possibilities are assigned the fotal probability
Wy = (p][(_*_:L + ...+ Pk+m)’ etc. When this much has bzen specified, the
amount of uncertain*y as toc the composite events 1is H(w1 ven wr)o Then
we give the conditional probabilities {p1/W1§ ceas pk/wl) of the ultimate
events (xlo,n xk) knowing thart the first composite event had occurred,
the conditional probabilities for the second composite event, and so on.
We arrive ultimately at the same state of knowledge as if the ipl,,, pn)
had been given directly. Therefore, if our information measure is to be
consistent, we must obtain the same ulrzimate uncertainty no matter how
the choices were broken down in this way., Thus, we must have

H(pq--- pn} = H{w.

Rk wr) + ¥, H(pl/wlﬂ ey

’k (&-17)

Ty AP M s P /W0 Y e
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The weighting factor W, appears in the second cerm because rhe additional
uncertainty H(plfw13 ooy pkfwl} is encountered only with probability w

For example, H(1/2, 1/2, 1/6) = H{1/2, 1/2) + % H(2/3, 1/3),

1

From conditicn (1), it is sufficient to determine H for all rational values

n,
RO Y
pi E: ni

with n, integers. But then condition {3) impiies rhat H is determined
already from the symmetrical quantities A(nj. For we can regard a choice
of cne of the alternatives {xl s X_) A8 3 firsc :tep in the choice of

one of

equally likely alternatives, the gecond step of which is also a choice
between n, equally likely alternatives, Ag an example, with n = 3, we
might choose {nla D,y n,) = {3, &, 2}, For this case the composition

law tecomes

3 4 2™ X - 4 S 2 e
H<§ i g o g/l "-'6’3{.5’;‘ ’?'"E'Af..‘{-‘} f‘@' ALZ; = A9
In general, it gould be wrixten
7 s N 7 K - ‘( \e i A
H‘*-p1°°" pn) * Zi?i A‘.nix’ A'-. Xi nil \.é 18)

Particularly, we could choose all wvaluss of n equal +o m, whereupon

(éhlS) reduces to
A(my + Aln) = A7mn) 4-19)
Evidently this is solved by setting

Alny = K log n {4-20)
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~—
Cnonn bas stown that (6230 (5 on Faet dhe aaly salefion of ().

where, by cendition {2}, K >0,

}\Substituting (émZO) into {_6°18)s we
have the desired result,

7 ; o 7 .
H{py-..p ) = K log \:E:niﬁ K E: Dy log ny

(§-21)
- K p. log p, .

S o, log v,
In gquantum statistical mechanics, “his szame expression is

obtained for entropy by certain combinatorial arguments associated with
an ensemble of N systems,

the essential mathematical fact being the
identity

—

i N!
lim = log L. —— T T ;}=f= :{:p‘ log p.. (6-22)
Nevoo N LNpl). ngZ,. oue aan). i i

With Shannon's thecorem, however, the expression (6~21) not only acgquires
a new significance, but it can '"'stand on its own feet' as the appropriate

information measure without recourse to any ensemble or limiting process.
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It is customary to distinguish between an aurocorrelation function,
where one averages over all translations, and a covariance function,
in which the average is taken 1instead over some ensemble of different
functions at a2 given peint. If there actually exisgts any definite
ensemble, these averages may well be differenr. The existence of an
ensemble implies that one has some way of enumerating the different,
mutually exclusive poszibilities in & way independent of the study of
a single function ga(x)j and some criterion by which a weighting is

mes t
assigned to each possibiiity. Now in amy appiicaticnsof scvatistics to

a physical "random" function, there is no such ensemble; we have cne and
only one physical situation and the consideration of other situations
than the one in fact existing cculd not pogsibly have any bearing on the

problem.
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If in spite of this we continue to use the notion of an
ensemble, we have to recognize the following: The only source of
information which is available for zetting up an ensemble is the single
function g(x). By the probability P of & particular function g%f%(x)_ﬂH
defined in a region R, we could mean only “he average freauency, oveff

some much larger region, with which a configuration locally, like By

e |

appears in the single function g(x). The use of an ensemble i3 a great

convenience mathematically, since the average of some funcrional ”;‘hf;}
F [g(x)} can then be written in a way that appears to avoid difficult ) ;yégcw}
mathematical questions in the limiting process \i-
X
CF> = lim 5 g F gl | dx (§-3)
=X

of the direct calculation. However, the important point we wish to make

here is that the difficulty ies in no sense avoided by using the ensemble; '

- /
K )

in the ensemble. These probabilities must now, of course, be recognized as

it is merely pushed back into the problem of determining the Py and g

entirely subjective quantities expressing the fact that in any given run
of data we do not know in advance which particular local sample of the

function g(x} will be present,.

It is apparent from the foregoing that in our problem the
dﬁffiaﬁﬁ}on between an autocorrelation function and a covariance function
isﬁéntirely artificial; they are necessarily *he same function. We will
use an ensemble-type notation because it is easy tc handle and makes the
equations look simpler. We must frankly recognize that nothing is really
gained thereby; 1f there were any real difficulties about the existence
of limits of the type (843)3 those difficulties would =till be with us
but merely hidden from view by a trick of noration. In practice no such

;éifficulties can exist, becauge we have only a finite sample of the

function g(x) to operate with; rthus (J&}) does not correctly deseribe

the process actually used to find averages. The quantity X does not tend
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somt
to infinity, but represents the size ofﬁ}hﬁ finite inrsrval over which

we have measured g(x). This is, furthermore, never as Large as the entire
domain of existence of g{x'. ocherwise we would have no need of statistical
methods at all. If g{x) were measured over itz entire domain of existence,
it would make no senze to call it & random funcsion. The practical use

of a statistical appreoach is %o enable us vo infer certain things about
g{x) in regions where it hae not besn measured, on the basis of measured
values of gi{x) in some smaller region. Thus. the correct interpretation

of (Shi) is not the mathematical passage t¢ a limiZ; the notation is merely
a crude way of indicating that we do not want to commit ourselves to any
particular value of X, but that, crher rthings being equal, we should prefer
to use the larges< possible value of X in our calculations. It would be

a3 good idea to invent scme new notation specifically for this purpose.

N . 4 _3iis D emmm = e ——eoewusw -_"v“-vuw,ffgg; quantities
] in FTnAVR ] ] . . _
gA(x}9 E‘(x) are Qg*&BB¥QE3 complex=vaiued, simee we—egmmeasure—both

. This

reminds us of a problem not conszidered here. but worth srtudying: Suppose

we measure only the amplitude, only rhe phase, or only the real component,

iy fqngl-»v- %.{“1 - ]

of the asatempe—veliage. Which of rhese contains the most information
Sl&.“‘l\

about theA--nﬁﬂand how much reliability of detection 1s lost through

etc.,

failure to measure the entire complex function?
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The stacvistical preoperties of g‘gx} would be rather awkward
to state in terms of the probabilities of certain particular functions

By !(x)g or the probabilities of variouz values a% various pointe.

undry Fonlly 1w tcgrzbl't (Frfh C_ohter\:f!{-*‘d" of EneVRX I4
Since it is aheznrznnuus funczion, howeveryhlts statistical properties
J@t of

can be described in terms of a denumerableﬁnumber random
variables as follows: Let @n(x) be a compiete set of ortheonormal functions
in the region Rf and
expand

g lx) = D g @& (x) . (§-2)

] L °on

The coefficients g, are now the random variables. We can choosze the

@ so that the g wedboe# are uncorreiarsd;
| £ I

(e e > = S -5

B
n
where the brackets <: > stzand for averages over the "ensembie". The
covariance function then becomes
Vpeox) = (gln) g=ix) ) = % (B8, S 9,00 8 % ix")
'S ix’ -
Gn.xx' {Jnﬁ”,x ) ((P 6)

n AL

which we recognize as ¢he bilinear form of a Green's function, so that

Gn and hn are the eigenfunctions and eigenvalues of the integral equation

@(x) = a S;F;{qu'} {x'"y dx! &N

This equation leaves an arbitrary concetant (that is, independent of x)

ivn | . .
phase factor e in each Gnn Since the gn are complex we write

8, * &, + ibn {3-8)
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and choose Bn g0 thart a and bn are uncorreiated:

<anbn> =0 §-9

This amounts to a rotation of coordinates so the concentration ellipse

of &, is aligned with the real and imaginary axes. UWNow define

[

<an2 > 'Anz 3 <bn2 > - an 1

(8-10)

=3
=}
L—

Then u_, v are real, uncorrelaczed random variatles with variance unity.
n-n TMolse i

1f the gl wna-e- gaugsian, they srs therefore independent rawdem

variables with probability distributions

]
=

{ = -
\un) dun ) du

) @&-11)

b=
o |

CLAP‘}“‘ w2 U.s'dl”}’

According to the principles of M,\mm
hnewledgemwe have no raticnal basis for using any distribucion other )
than gaussian., If experiments ghould demonstrate that setual soid Che “‘f""} norsc
stawioeies—are far from gaussian, then new possibilities would be opened

up in which different types of filters than those found here would give

greater reliability of detection than we wiil obtain. 7The new filters

would, however, be non-linear and undoubtedly more difficult to realize.

nois €
We write ;hehgﬁeeﬂé-function as

Byl " > (Au + iB v ) @ (x) $-12)

1
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with probability distribution P f_gl.fx}:l , which iz a symbolic shorthand
expression for (ﬂ-ll}q Alszo there may or may not be 3 signal

centered at position L

hg() = ¥ £(xx.) (§-13)

where M is a real amplitude so defined that

IIs(xJ 2 ax =1 (§-14)
R

We expand s(x) also in the crcthogonal functions ﬂn(x}:

s(x-x_) = 2_[a s '(x,) + iB_S_"(x ) | ¥ (x) (§-15)
n
recedart

We wish to find the pdetasprocessingeemputer which enables us to make the

vaime ¢f Te -
best peossible inferences about the.ﬁ&n::a:l:i:m—o-f-m.m More specifically,
-Aﬂr.'lwﬂﬂ
given thehmmm g({x) ar—thé—smienna—tETMinals over a certain
|
region R, we wish to test the hypothesia that ahi.’a.u with parameters M, xm

is in R against the hypothesis that naﬂﬁaﬂ is in R. The Lc:hservad voltaga
ie alse €reanded o {le Funciiomg @, 17)"

~1&
Q(x) = 2 [Aa ‘ +iB g "] (x) (#-4%)

The theory of Sectiﬂnﬁ#E makes it clear that regardless of the particular
criterion of optimum performance we adopt, we are going to find that

the fundamental quantity needed is the likelihood ratio

P Ijq‘-hi{l‘!,xﬂ}_]

P 4] (§8-17)

L{H,xaj =
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_ sronal
Probabiliity that qt{x) would te observed if aﬂmi-n of amplitude M
were present at position X

[ Probability that qA{x} would be observed if no meme were present]
v Sf?-u]

From (§-11), we obtain

} | - P
108 L(sto) = %1 Z qniz + qnu?— - anl. - M Snt ixoj ! . ann - M Snu(xo)il 2
i n B )
2
=M alx)) - = B{x) (§-18)
where
aix) = Z%L[ﬁb’ s.'fx) +a "5 " (x)] (§-19)
{ 2 2
B(x,) = Eii\E“!(x°§] s [s )] (§-20)

As a function of M, L(Maxo} reaches a maximum given by
log L___(x 3 = 53 (§-21)

when

s;}ﬂ'&]
We define the total likelihood thac aAﬁéln is at X0 regardless of M, by

2 x) . (§-22)

: = ) = :
L(xo) g L(H’xo’ M B(xo} max " o

Equations {(£-19) and (§-20) are cast inte a more unified form if we

define a function

B
n n

5 "z S "{x
_ n_ "ol ., m "o . 0 -
b s = %[—————“ i —————1 g _(x) (8-23)

|
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which might be called the "vreconstitutasd siegnal'. It is a filtered
version of s(x), in which parts of s{x) that are likely to be highly
contaminated with noise are suppressed, while parts that are unlikely

to be so affected are amplified. In terms of @{xoax) we find

a{xo) = Re’fﬁ*(xosx) a{x) dx (§-24)
B(xo} = Refﬁﬁ{xoj}{) S{x-xc) dx (§-25)
Yiolts € 2nd shape o f S‘;fh‘) ?

For giv&nﬁgna-nd.properties,A

@(xox) and Sixo} are determined cnce and for ail,

The function
B(xo) provides a measure of the mean-square noise level, weighted
according to how much a particular noise pattern resembles the signal
s{x-xo), If s{x) very much resembles Gp{x)9 then noise which also
resembles Gn(x} is very serious. but noiss resembling some other @m(x) does
not hurt so much because it can be filtered out without losing much

of the signal.

The above relations were deveioped in the most gsneral way
of the "ensemble" language. They are greatly simplified if now we
make use of the facrt that ?;ix,x') is Rtsié;;;g};utocorrelation function;
therefore by definiticn 1% can depend oniy on {x-x'). This determines

the nature of the Gn{x}; for {8-6; +hen impiies that

-/

d . & [ H
dx" [@n{xﬁc") Gn?[_x-_'_xu)J. =0
and this can be true only if the @q are plane waves:

ik x

]

@

el

{const.) & 1 dimension

i 'Lcnux (§-26)

@ = fconst.' e 2 dimsnsions
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Now the probability distribution of g(x) must be the same at all
pesitions; that is, g{(x) is a '"stationary" random functiomn [}n view of the
above discussion of ensembles, this is necessary by definition; otherwise
we would have no basis for setting up any probability distribution at

all for g(xkj. But a translation Gn(x)——a-ﬁn(x+x”) merely shifts the
phase of Gn, therefore of 8, Thus the random variable (gneign),

9n E'(En;z”), must have exactly the same probability distribution as

does g and so we must have

The reconstituted signal is now

_ s
dix 0 = Bix-x) = 30 & B_(xex)) (§-28)
i n

where

[42]
nf

sn' (0) + iSn"(O) (£-29)

so that 6(xo) no longer depends on ko but is the appropriate mean-square

nolse level,

The most important fact for intuitive understanding of this

theory,

is the observation that in censequence
of the simplification (§~28), the ''reconstituted signal" (which is the
weighting function for the linear filter whose output is a(xO)) itself

satisfies an integral equation:

25%(x) = j P (x') Y(x',x) dx' (§-30)
f
R
This is readily verified by substituting (§+6) and (§-28) into {(§-30).
Define a function

£ (g) =

A

% §* (%)
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then we have

,}-0 HERE ha“!‘-‘(x) = f‘(x') \.;m(x'B x) dx’ (§-31)

_____‘_-""-_-—n—-_
which is identical with (2-2) except for the subscript "a". It seems

astonishing at first that the problem ¢f the computer which maximizes
the probability of detection and the problem of the antenna response
function which maximizes signal-to-anomaly ratio should turn out to have
identical soclutions (note that they are not the same in the more general

treatment where An # Bn), but consider the following two statements:

1. The computed likeiihood of the presence of a mine has a sharp

peak at X much higher than in surrounding regions.

2. The signal due to a mine has a sharp peak at X, that rises

far above the background ncise,

On second thought, one sees that these statements are not
really very different, and it is quite plausible that engineering
designs of receivers, based only on the attempt to increase the signal-
to-noise ratio, actually come fairly close to the best design that
gophisticated statistical analysis can give. Once again, however, it
must be emphasized that the simplicity of the final results of the statistical
theory depends entirely on the assumption of gaussian statistics; for
non-gaussian statistics much more complicated, non-linear filters would

be found.

Once the basic identity of these problems is recognized, we
can adopt a global view and consider the antenna design problem and
the data~processing problem simulfzaneously; this is done in the next

section.
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VI. A GLOBAL VIEW OF THE PROBLEM

In the work on Fort Belvoir Contract No. DA=44-009 eng=-795 at

Stanford University, a solution was found to the following problem:

Problem A - For a given mine and given statistical properties
of the soil, find the antenna function which maximizes the signal=to-

anomaly ratio as seen at the antenna terminals.
In task 3 of the present contract, we have solved a different problem:

Problem B - For a given mine, given soil statistics, and
given antenna function, find the best way of processing the received

data so as to achieve the maximum reliability of detection.

The surprising fact emerged that, in the case of gaussian soil
statistics, the solutions to these problems were mathematically identical.
The meaning of this is seen most clearly in terms of the fourier transforms
of the various functions. For convenience, we list here the needed

functions and their fourier transforms:

function fourier transform

Mine function h(x) H(k)
Ground autocorrelation function V(%) ‘G(k)‘z
Antenna function f(x) F(k)
Mine function as seen at

antenna terminals ha(x) Ha(k) = H(k) F(k)
Anomaly autocorrelation function 9 2 2

as seen at antenna terminals Bf(x) ’Ga(k)‘ = IG(k)‘ |F(k)|
Weight function of filter in *

computer fa(x) =1/2M @ (x) Fa(k)

(6-1)

Now, just as the solution of the integral equation (2-2) for

the optimum antenna function assumes the form (2-5),
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O (6-2)
opt: ‘G(k)‘

the solution of the integral equation (5-3) for the optimum

welght function of the data=-processing computer is

F (k) = H*a(k) - H*(k) Fh(k) (6-3)
T fewlf e ]? [raol?
But chis reduces to
F (k) F(k) = THfLElE . (6-4)
6(k) |

Thus 1f F(k) were actually equal to the "unconditional optimum" (6-2),
the solution of the computer problem would reduce to Fa(k) = 1, or

fa(x) = A(x); that is, no computer is needed. If the antenna function is
not the unconditional optimum, then (6~4) shows that the computer acts

as a "corrective filter" to restore at the computer output exactly the
same signal that would have appeared at the antenna terminals, had the
antenna been the unconditional optimum. Viewed in this way, the computer
problem assumes the more familiar form of construction of a filter with

prescribed amplitude and phase characteristics,

In the usual theory of filters in the time domain one cannot
prescribe the amplitude and phase responses independently; they are
connected by certain physical realizability conditions (the Bode relations)
which ensure that no signal can appear at the output before it arrives
at the input. The output at time t must depend only on the input at
times prier to t. In the present case, however, there is nc such
restriction on physical realizability since the independent variable

is position rather than time. Both the antenna and the computer can

Ty H

see" forward as well as backward. This greatly simplifies the theory,
for it means that, whatever finite amplitude and phase may be specified

for Fa(k) by (6-4), it is always possible in principle to construct a
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computer which will accomplish this. However, in regions where F(k) = 0,
the filter receives no input to work with, and the value of Fa(k) is
irrelevant, so long as its magnitude is not great enough to introduce
noise (true thermal or shot noigse, as distinguished from anomalies) in
the computer output.

For 2 Computer
More generally, the practical fH-bwx design criterionA&s:

In all regions of k-space where the available signal F(k) H(k) is above

the thermal noise level, Fa(k) should be chosen to satisfy (6-4). In

other regions Fa(k) is irrelevant to detection and may as well be taken

ag zero. Since we have seen in Section II above (equation 2-7) that
F(k) will be different from zero in only a finite range of k-values,
this will be true alse of the optimum Fa(k). Thus the optimum computer
response will never involve singular functions such as derivatives of

5-functions, but will always be well-behaved.

We are now in a position to state the final conclusions of
this study of data-processing computers. They are essentiaglly all

contained in (6<4), which is the fundamental result of this work,

a. If one decides that a computer is not going to be used,
then the antenna design criterion remains the same as that found in the
Stanford reports; the antenna response function that maximizes signal-
to-anomaly ratioc at its terminals also maximizes the reliability of
detection. Of several antennas, the best one is the one for which the
expression (2-4) is a maximum. Here the integration is taken over the
region R of ke-space for which H(k) F{k) is measurably large. Thus two
things are desirable: the region R should be as large as possible, and
within this region the antenna function should come as close as possible

to satisfying (6-2).
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b. If one decides that a computer is going to be used, the
antenna design criterion is considerably changed. The phase of F(k)
now has no importance, since the computer can always straighten it out
agalin. For the same reason, variations in the magnitude of F{k)
are unimportant as long as this magnitude is not too small. The only
important thing is the gize of the region R of k-space within which
F(k) H(k) is sufficiently large to override thermal noise. Of several
antennas, the one for which \F(k)lz is large over the greatest range
of wave-numbers will provide the computer with the greatest amount of

information, and lead to the best detection.

c. For any antenna which delivers g signal F(k) H{k) above
thermal noise in a certain region R of k-space, it is possible to build
a computer which corrects phase and amplitude, and resynthesizes the
same signal and the same signal~to-anomaly ratio as would be produced by
the unconditicnal optimum antenna operating in the same region R. Thus

the full improvement factor of Section II can be restored by a computer.

d. In the case of gaussian soil statistics, it is impossible

to build a computer which does better than the computer of c.

e. If typical soil correlaticn functions were known, it
would be possible, merely from laboratory measurements of the antenna
function F(k), to predict in advance both the signal-to=-anomaly ratio
obtainable with the "bare" antenna, and alsc the amount of improvement

which is pessible with a computer.

f. An antenna for which F(k) maintains essentially constant
phase over the region R can never be helped very much by a computer,

This is demonstrated by the numerical values in Figures 2-1 and 2-2.
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VII, AN EXPERIMENTAL EXAMPLE

In Figures 6-1 and 6-2 we give some fourier transforms of
antenna functions obtained by Mr. R. E. Gang on a microwave antenna
(3.4 kmc) developed at Varian Assoclates., In these measurements the
antenna patterns were obtained by moving the anfenna past a small probe
antenna, which fed a square~iaw crystal detector, the output of which
was recorded. This did not give the true antenna function f(x) = (E1=E2),

but, 1if one considers using a single~dish system for which E, = EZ’ only

1
the magnitude !f(x)l was obtained, WNevertheless, the results are of
interest because they represent the only available measurements of this
sort, and because other existing mine detectors also give only magnitudes;
thus if one were tc consider adding a computer to existing mine detectors,
this example is a realistic one. The fourier transform of if(x)| was

obtained numerically, with an estimated accuracy of about 5 per cent of

the maximum value,

From these measurements several conclusions can be obtained.
First, consider the maximum wave-number X to be expected in F(k)

according to equation (2-7)., It has the value

2 dn x 3.4 % 109
kK=o 7 10
3 x 10

= 1.42 cm © (7-1)

The maximum value found in the measurements was K = 0.7 cmal for the
plain antenna, and K = 0.4 cmml for the antenna when equipped with a
metallic sheet in the ground plane, in which an 8=inch diameter aperture
was cut, Thus, the range of wave~numbers actually attained is about
one-half of the maximum theoretically possible, or in two-dimensicnal
k~gspace, the region R has only about one=quarter of the area possible,
Thus for detection of very small mines, a considerably higher efficiency

antenna 1s thecretically pessible at this frequency.
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Measurements made 4 inches
beyond ground plane (focal

point in ground plane)

30 20 10 0

Distance from Center of Beam {cm)

Fourier Transform

1.0 0.8 0.6 0.4 0.2 o

bIy .
K=", » in ecm

A

FIGURE 6-1
ANTENNA PATTERN THROUGH 8-INCH
DIAMETER APERTURE IN GROUND PLANE
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Measurements made 28 inches from rear

of reflector (focal point was 24 inches from

reflector)

| ] [
40 30 20 10 0

Distance from Center of Beam {cm)

Fourier Transform

1 | | | ; | |
L4 1.2 1.0 0.8 N\0.6 /0.4 0.2 0

K = %ﬁ s A in cm
FIGURE 6-2

ANTENNA PATTERN FROM 24-INCH
DIAMETER PARABOLIC REFLECTOR
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It is seen that the effect of the ground plane with aperture
was to cut off the "side lobes" of the antenna pattern. As long as one
looks only at the pattern f(x) and thinks in terms of a small illuminated
area, the aperture sheet appears to be very beneficial. However, when
one looks at the fourier transforms F(k), it is apparent that cutting
off the side-lobes reduces the range of available wave-numbers by
almost 50 per cent; therefore if one were to use a computer with this
antenna, it would be better to eliminate the ground-plane sheet. The
side-lobes, although weak and spread out, contain "high-frequency"
components that deliver useful information to the computer. This gives
a good example of how radically the antenna design requirements are

changed by the possibility of using a computer.

Continuing with interpretation of these measurements, we note
that if one is forced to use a ground plane with the antenna, a computer
cannot give much improvement; comparing with Figures 2-1 and 2-2, we
note that the improvement factor for the antenna with aperture plane is
only about 1.3. Therefore, the most that a computer could do is to
increase the signal-to-anomaly ratio by about 1 db. What this means in
reliability of detection depends, of course, on what the signal-to-
anomaly ratio was before adding the computer. However, it could not
amount to much. On the other hand, a computer used on the antenna
without aperture plane would give a very substantial improcvement in

performance,
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VIII. CONCLUSIONS AND RECOMMENDATIONS

With the completion of this work, the theory of mine
detection appears to have reached a "plateau” from which little further
progress can be made until certain experimental results are obtained.
We now have a theory which relates the properties of wmine, soil, antenna,
and computer, and shows how all these factors affect the reliability of
detection. Nevertheless, because of lack of experimental data it is

impossible at the present time to answer two crucial questions:

a. How close are present mine detectors to the best that

could ever be made?

b. Is the expected improvement from a computer sufficiently

great to justify a computer development program?

For further progress in the mine detection field it is
imperative that we cobtain experimental values of the scil function
lG(k)‘z and the antenna function F(k) for wvarious soils and various
antennas now in use. In this connection we may note that the answer to
question (a) above involves very difficult measurements for which new
techniques will have to be developed. On the other hand, the answer
to questicn (b) is relatively easy to obtain from apparatus and methods
already in use, for the theory of the optimum computer can be developed
entirely in terms of the quantities Ha(k), ‘Ga(k)lz measurable directly
at the antenna terminals, as in Section V above, no reference to the
ultimate quantities H(k), F(k), ‘G(k)lz being necessary. The quantity
ha(x) is just the "ideal marble-block mine signal", while E;(x) is

cbtainable from statistical analysis of responses over unmined soil.

There is one direction,; however, in which further theoretical
work involving only electromagnetic theory, instead of statistics, could
help to advance the mine-detection art even without new experiments. This

concerns the new antenna design requirements found for an antenna which

Page 63 of 64



YARIAN ASSOCIATES A

LIl Hznsaa Wag Faw o Zaltarmg

is to be followed by a computer. The problem might be stated in the

form of two more questions:

c. What are the ultimate restrictions imposed by electro-
; ; 12
magnetic theory on the range R of wave-numbers over which ‘F(k)‘ can

be large, for an antenna operating at a single frequency?

d. How does one design an antenna so as to achieve the

maximum size of the region R?

From the reasoning of Section II above, it may be conjectured
that the answer to question (¢) is that the maximum R is a circle of

radius K = 4x/A. Question {d) remains entirely unexplored.

Page 64 of 64



