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LECTURE 1
Ttts a real pleasure to be here. I've heard jokes about Texas
for so many years that I'm very glad of the chance to come here and see
for myself just what the situation is, and 1 see that Texas is exactly
like California, especially the weather.
Let's start out by putting our motto on the board: "Probability
Theory is Nothing but Common Sense feduced to Calculation" (Laplace).
This is the motto and this is the exact summary of everything I'm going
to tell you in all these talks, so if you want a paraphrase, that's it.
Our main concern is with applications of probabllity theory,
put we're going to have to spend some time on foundations of probability
theory for a very simple reason. Before you can apply any theery to
any specific problem, you first have to make the decision that the
theory applies to the problem. It turns out that this is not always an
gasy decision to make. Professor Kac has emphasized several times, not
only in his lectures here but in other places, that the question of how
one introduces probability methods into physics at all is a matter that
is very important, very largely unsolved, and even more largely neglected.
In most of the problems in physics and engineering where you might think
of using probability theory, your decision as to whether use of probability
theory is really justified can-depend entirely on how you approach the
fundamentals of probability theory itself. In other words, what do we
mean by probability? Before we can discuss any application, we'll have
to make up our minds about that. My main purpose in these talks is to
show that, with a little different approach than the cne usually given

nowadays, we can extend the range of practical problems where probability
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tneory can te used, and in some known applications we can slmplify the
wathematies a Little bit.

Historical Hemarks

Befors going into details a few historical remarks might be of
interest, to show how it could happen that a person who is a rather
strange mixture of about two~-thirds theoretical physicist and one-third
electrical engineer could get really worried about the foundations of
probability theory. This is something which people like me are not
supposed to be interested in. The things that I'm going to talk about
here arose from my attempts, over a period of about ten years, to
understand what statistical mechanices is all awout and how it 1is rélated
te communication theory. Ten years ago I was very fortunate in being a
graduate student in Princeton, and I took a course in statistical
mechanics {rom Professor Eugene Wigner, who went very carefully into
various approaches to statistical mechanics and pointed out the unsclved
problems tnat still existed. I was impressed by the fact that everyone
Wii0 has written about the fundamentals has a very ready way of resclving
all the famous paradoxes that Professor Kac has talked about here, but
that no Lwo people have done thic. in the same way.

It was just during this yeasr that Shannon's papers announcing
the birth of information theory appeared. I discovered them accidentally
in the Frinceton library about the time 1 was thinking about statistical
mechanies. I tock these papers back to my roem and disappeared from the

face of the earth for about a week. When I finally came oﬁt, I ran
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through the halls of Princeton explaining to anybedy who would listen to
me (and a few who wouldn't) that this was the most important piece of work
done by any sclentist since the discovery of the Dirac equation. It's
almost impossible to describe the psychological effect of seeing our old
familiar expression for entropy derived in a completely new way, and then
applied with great success to problems of engineering which apparently
have no relation to thermodynamics. But all of the inequalities, which
ars usually associated with the second law of thermodynamics, turn out

to be statemcnis of the greatest practical usefulness in engineering
problems, It seemed to me that there must be something pretty important
that we could learn from this situation.

This feeling was shared by a large number of physicists and
there was quite a rush to exploit all these wonderful new things. But
then something went wrong. Quite a few papers appeared in the physics
journals inspired by Shannon's work, but there was a scarcity of new
results useful to physics. This caused a psychological reaction and
Information Theviry got & bad reputation among physicists.

I think the time has come now when physicists might find it
worthwhile to take . sober second look at Informaticon Theory and what it
can do for them. And with the benefit of accumulated hindsight to data;
Wwe can see what went wrong in those first few years. The first efforts
were based only on & mathematical analogy between statisiical mechanics
and communication theory, in which the appearance cf the same mathematical

expression was the dramatic thing. The essential link between them - the
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thing I want to try to show here - is not one of mathematics, but
scmething more sqbtle. Until you see what the link is, you can't expect
to get results cut of this situation. Now let's see why this is so.
It perhaps takes a moment of thought to see that the mere fact

that & mathematical expression like

2B ke B

shows up in two different fields, and that the same inequalities are
used in two different fields, doesn't in itself establish any connecticn

at all between the fields. Because after all,

X _
e cosd . JO (z)

are expressions that show up in every part of physics amd engineering.
Every place they show up, the sams equalities and the same inegqualities
turn out to be useful. MNobody interprets this as showing that there is
some deep profound c¢onnection between, say, bridge tuilding and meson
thecry. The reason for that is the urderlying ideas are entirely different.

Now the essential content of both statistical mechanics and
comminication theory, of course, does not lie in the equations; it lies
in the ideas that lead to those equations. And at first glance there
doesn't seem te be any relation at all between the kind of reasoning
that the physicists go through in statistical mechanics and the kind of
reasoning that Shannon went through. We might deseribe this by para-

phrasing a stetement of EKinstein's that I like very mich.” Seience is

¥ A, Einstein, "The Meaning of Relativity", {Princeton Univ., Press, 19L6];
pp 56-57.
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£:117 justified in findinz some relaticn between these fields onlv after

e ennality of metneraticel metnode nes teen reduced bo an equality of
I "

thne real nature of tne concenis.  You recéll thet EZinstein insisted on

exactly this point in connecilion with gravitetional and inertial mass.
It nad bteen known, for 200 years uefore Zinstelin was bprn, thet gravita-
tionel wass and inertial mass were experimentelly proportional to each
otner; by propsr cheice of units you can make tnem naserically equal.
Einstein refuced to accep’ tnis equelity &s & generel principle of physics
until ne could see insrtizl mass and gravitational mass as tne same
concept. He had vo pay & ratner nigh price Yo do this. Before he coulid
find a viewpoint from which ne saw them as special ceses of the same idea,
ne had to invent General Helativity.

This 18 a lesson which could be used ﬁith prefit in all parts
of sclence. We won't commit any serious error of methodology if we try
to follow Einstein's example im cur problem, because it's really a very
similar sort of thing. So the job as I saw it was not to try to invent
any new fancy mathematics. That would presumably come later if we were
guccesaful. The job was to try te find a viewpoint from which we could
ses that the reasoning behind communication theory and statistical mechanics
wag really the same. -

Thue Gibbs Model

Now to state the problem a little more specifically, I'd like to
go very briefly into the version of statistical mechanics that Gibbs gave

us, and try to show the sense in which my work is not only an attempt to
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generalize his theory, but also an attempt to make use of another lesscon
in methodology which he gave to science. Most of the discussions about
the foundations of statistical mechanics consist of Mr, A criticizing the
basic aséumptions of Mr, B and this process is always frultless and
inconclusive. It never leads to any useful results. However, there is
one person who has kept free of that, and his name is J. Willard Gibbs.
I think of all people who have written on statistical mechanics, he iz
the only person who has stayed above this kind of criticism. He did
this by a very clever trick, He zvoided critiecism of his asswmpltlons
vy not making any assumptions, asnd by peinting this ocut to the reader
in the introduction to nis beook. Gibtbs simply constructed models in
which he assignsd certain protabilities for certaln situations, and he
never made any attempt to say why ne chose those particular probabilities.
In the introduction to his book he tells us that the reason for this has
something to do with difficulties which the theory faced in his day, and,
in particuiar, he mentioned the fact that the experimental specific heat
of diatemic gases comes out only 5/6 of what he expected it to be on the
basis of his thecry. There are a few other difficulties. The paradox
sbout entropy of mixing, for example, and the fact that his theery failed
to predict the actual values of equilibrium constants and vaper pressures
until you added still more assumptions.

1 like teo think that there is another reason why (ibbs operated

this way. It was maybe even more compelling than the temporary difficulties,
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of course, all those difficulties we recognize today as signaling the
first clues to the guantunm theory. We 211 know that (ibbs was a very
shrewd old gentleman who was a master of science 28 it existed in his
day. I think he was aqually well a master of psychology. He realized
that the physics of his day and the probability thecry in his day didn't
provide any really convincing arguments to justify the probabllity
distribution of his canocnical ensemble. And yet, his work had shown
that it had all the formal properties which convinced him that it must
be right. It clearly was the best way of deseribing thermodynamics.
Suppese you were in a situatlon like that. which is the besi way to
proceed? I think Gibbas said to himself, "If I try 1o say a single word
to justify this canonical distribution, if ¥ try to invent any argumend
tc back it up, then almost everybody who reads this work will conclude,
quite irrationally, that the validity of statistical mechanics depends
on the validity of my arguments. But I know in my bones that this itheory
is right independently of any such arguments, because it has fommal
properties which make it superior to any other. So I will say as much
as possible about what 1 know, and as little as possible about what I
don't know. The real justification will have to come later". So he
simply introduced his cenenlical ensemble by entitling a chapter, (I
won't quote it exactly) "On the Distribution in Phase called Canonieal,
in whieh the Index of Probability is & Linear Function of Energy™, and
that was it., He goeé right on into the discussion.

So you can't say to Gibbs, "How do you know that this is the

right probability distribution?® He'd be perfectly justified by
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answering something like bhis: "I didn't say it was the right probability
distritutien, and I'm not sure the question has any meaning. I1'm simply
constructing a model for my own amusement. My caneonical probability
distribution is not derived from anything, it's not an assumption about
anything. It's a definition of which model I propose to study. After
this model 1s set up, we can compare its predictions with experimentel
facts and see how far this model is about to reproduce thermodynamic
properties of systems. If the model turns out to be successful, then
it will be worthwhile to consider whether, and in what Ssense, we might
consider it to be correct,"

I think that's a very clever attitude to take -~ it avoids so
much useless argumentation. It's a good example also of the methodology
we really have to use 1n all theoretical physics. If we had to be sure
we were right before starting a study, we would Jjust never be able to
do amything at all. We have to start out by arbitrarily inventing
gomething, some model, which we don't attempt to justify in terms of
anything deeper at the time, and see where it leads us. Every once in
8 whiie we find that we can dnvent a medel which has very great success
in reproducing observed properties, and whenever this happens we get
convinced that there must be some desper reason why this medel is correct.
Then we repeét the process. HWe try to invent another medel operating at
some deeper level, fram which we can deduce the features of our ¢ld model.
The exciting thing about this is that when we finally succeed, we always
find that the new model is much simpler than the old medel, but at the same

time 1s much more general.
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There are all sorts of examples of this in the history of
science which you all know about; for example, in electromagnetic theory,
the experimentalists had produced a large number of separate equations
and rules of thumb - the work of Coulomb, Ampere, Faraday, Henry, and so on,
And then these were all summed up and included in Maxwell's equations,
Maxwell's equations are much simpler than this series of models which they
repleced; but still they are more general, and predicted new phenomena |
which the experimentalists hadn't found.

Probably the best example of all is the tremendous complication
which spectroscopy got inte just before the discovery of the Schrédinger
equation., All the rules of thumb that were developed in predicting what
spectrum lines would oceur and which ones would not, and estimating where
they wouid be and so on. These rules of thunb were gquite successful, of
course. You could use them for practical predicticn. But then we have
the Schfﬁdihger esquation, which suddenly in a single differential equatien
Bays everything that all these rules ever said, and mach more.

How has the Gibbs model fared? We've had it for over 50 years
now., It has fared very well, except for these minor changes which have
something to do with quantum theory. Wé‘find that in every case where
you can work out the mathematics, the model has been successful in
reproducing observed properties of matier in the limiting case of
equilibrium thermodynamics. There are some equilibrium cases where the
mathemaetics 1s rather resistant to calculation, particularly the phenomenon

¢f condensation; and we don't really know whether the Gibbs model exhibits
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condensation in the sense of being able to prove it ﬁathematically. But
I don't think anyone doubts that the Gibbe model would be successful here
if we were just better mathematicians than we are. So for the sake of
the argument, let's just grant that the Gibbs model has turned out to be
completely successful in reproducing-all features of equilibrium
thermocdynamics.

Because of its success, naturally, attempts would be made to
Justify the Giﬂbs model in terms of something deeper. Unfortunately,
these atiempts do not seem to have been successful; at least I den't
think there is a single one of them which is sc considered by any clear
majority of the physicists who worry about these things. In particular,
they have doné very little to extend the Gibbs model to more general.
situations, as reasl advances always do.

It hasn't been easy to get rid of the idea that the ultiméte
justification of the Gibbs model st be found somehow in the laws of
physics. By this we mean particularly, say, the Sghfﬁdinger equation or
the Hamiltonlian equations of motion on a microsceopic level. For this
reason you have this enormous amount of work that has been expended en
"ergodic® approaches to statistical mechanics, in which we tried to prove
that the time average of some quantity for a single system would,’ in
consequence of the equations of motion, be equal to an averﬁge over the
Gibbs ensemhble.

I den't want to go into any criticism of past attempts to justify

the Gibbs model, because that would take a lot of time and would again be
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cone of those fruitless and inconclusive kinds of criticism which leads
nowhere. Bat I'd like to indicate why it seems to me that any appeal

to the laws of physics may miss the point. It is simply that the problem

is not to justify any statement about physica. The problem is to justify

a probability distribvution, and you can't deduce probability from ceriainty.
No matter how profound your mathematice is, if you hopé to come out
eventually with a probability distribution, then some place you have to

put in a probability distribution, and nothing in the equatlons of

motion fells you what distribution to put in. They can give you only
relations between probabilities, at different times.

One of our major objectives is to justify the Gibbs cancnical
probability distribution in terms of something more fundamental. The
only thing we could accomplish by applying the laws of physics is that
we could carry out transformations and express this same distiribution
in terms of some other parameters. But the distribution of Gibbs is
already as simple as any we could hope to get in this way, and afterwards
we would stiil be faced with exactly the same prohiem; to Justify some
probability distribution. It seems to me that if wc]re ever going to
justify the Gibbs model in any meaningful way, wa‘ll_haie to justify it
directly on its own merits, without considering the laws of physics at
all. In other words, the problem is to find a viewpoint from which we
can ses that the Gibbs model, and Shannon's model of a commanication

process, are special cases of a general method of reasoning.
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At this peint we're going to take what may seem like a rather
long detour, and study the general problem of plausible reasoning - also
known by the more highbrow, and more restrictive, name of inductive
reasoning (I'm not going to bother to distinguish.between these terma).
But 1f you'll bear with me, I think you'll find that we can give, not
quite rigorous theorems, but very pbwerful heuristic arguments, which
indicate what thie more general viewpoint is.

PLAUSIBLE REASONING

Suppose some dark night a peliceman walks down the street and
the placg is completely deserted apperently, but all of a sudden he hears
a burglar alarm and he looks across the street and sees a jewslry store
with a broken window, and there's a gentleman wearing a mask, carrying a
bag full of watches and diamond rinés, crawling out through the broken.
window. The policeman doesn't hesitate at all in deciding this gentleman
1s dishonest. But, of course, this was not a logical deduction from what
he saw, There may have been a perfectly innocent explanation for everything.
It might be, for example, that this gentleman was £he owner of the jewelry
store and he was coming home from a masquérade party, and didn't have the
key with him. He noticed that a passing truck had thrown a stone against
the window and had broken it, and he was merely protecting his own
property. You see, the conclusion which seems so easily made was certainly
net an example of logical deduction.

Now while we agree that the policeman's reasoning process was

not an example of loglcal deductien, we still will grant that it had
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certain degree of validity. The evidence didn't make the gentleman's
dishonesty certain, but it did make it extremely plausible. This is an
example of the kind of reasoning which we all have to use a hundred times
a day. We're always faced with situations where wé don't have enough
information to permit deductive reasoning, but still we have to decide
what to do. |

The formation of plausible conclusions is a very subtle process
and it's been discussed for centuries, and I don't {think anyone has ever
preduced an analysis of it which anyone else finds completely satisfactory.
These problems haven't been solved and they're certainly not going to be
solved in these talks; but I do hope that we'll be able to say a few new
things about them.

All discussions of these questions start out by giving examples
of the contrast between deductive reasoning and plausible reasoning. The

gyllogism is the standard example of deductive reasoning:

If A is true, then B is true

A is true

Therefore, B is true

This is the kind of reasoning we'd like to use all the time; but,
unfortunately, in almost all the situations we're confronted with we
don't have the right kind of information to allow this kind of reasoning.

We fall bacek on weaker forms:
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If A is true, then B is true

B is true

Therefore, Abecome& more plausible

The evidence doesn't prove that A is true, but verificatlion of one of its
consequences does give us more confidence inA.
Now the reasoning the policeman went through in our example was

not even of this type, It's best described by a still weaker form:
If A 1s true, then B becomes more plausible

B is true

Therefore, A becomes more plausible.

In spite of tﬁe apparent weakness of this argument, when stated abstractly
in terms of A and B, We recognize that the policeman's conclusion héd a
very strong convincing power. There's something which makes us believe
that in this particular case, his argument had almost the power of
deductive reasoning. This shows that the brain, in doing plausible
reasoning, not only decides whether something becomes more plausible or
less plausible, but it evaluates the degree of plgusibility in some way.
And it does it in some way that makes use of our past experience as well
a8 the specific data of the problem we're reasoning on. To illustrate,
for example, that the policeman was making use of the past experience of

Pelicemen in general, we have only to change that experience. Suppose
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that these events happened several times every night to every peliceman,
and in every case the gentleman turned out to be completely innocent.
Well, very soon policemen would learn to ignore such triviel things. This
shows that in our reasoning we depend very much on pazst experience to help
us in evaluating the degree of plausibility. This reasoning process goes
on unconsciously, almest instantaneously, and we conceal how complicated

it really 1is by calling it common sense,

Professor Polya has written three vooka® on plausible reasoning,
peinting out all sorts of very interesting examples, showing that there
are fairly definite rules by which we do plausible reasoning. Evidently;
the deductive reasening described above has the property that you can go
through arbitrarily long chains of reasoning of this type and the concluéiona
have just as much cgrtainty as the premises. Vith the other kinds of
reasoning, the reliability of the conclusion attemuates very fast if you
go through several stages. Polya showed that even a pure mathematician
actually uses these weaker kinds of reasoning most ¢f the time. Of course,

when he publishes a new theorem, he'll be very careful te invent an

argumenit which uses only the first kind of reasoning. But the process which
1ed him to the theorem in the first place almost always involves one of
the weaker forms.

Now the problem I'm concerned with ié this. Is it possible to

reduce this precess of plausible reasoning to quantitative terms? The

* g, Polya, "How to Solve It", (Princeton Univ. Press, 195; second paper-
bound edition by Doubleday Anchor Books, 1957); "Mathematics and
Plausible Reasoning”, Volumes I and II (Princeton Univ. Press, 195L).
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idea of inventing a "symbolic logic" for plausible reasening is extremely
old. Leibnitz speculated on such a "Characteristica Universalis" almost
200 years before Boole's "Laws of Thought" appsared. DBoole's book came
out in 1854, I believe, and gave us a symbelic lﬁgic fer deductive reasoning.

The theory ﬁf probability was eoriginally regarded as a symbolic
logic fer plausible reascning, and whgn Laplace's "Theorie Analytique"
came out in 1812, this was widely regarded as the long awalited "calculu§
of inductive reasoning", fully developed. Tlroughout almost all of the
19th century this was the prevailing view, expounded by such ﬁeople as
Laplace, de Morgan, Maxwell, Pgincaré, and many others. _And vet, in the
20th century we find that probability @heory has erupted into controversy,
almost all of this fruitless, inconclusive kind, in which one peraon
attacks the assumptions of another person;

This issue has been framed rather sharply by von Mises,* who
is really violent in denouncing any idea that probability theory has
anything to do with inductive reasoning. Helinsists that it is, inétead,
"the exact science of mass phenomena and repetitive events". On the
other hand, Jeffreys™ is equaliy vigorous in deneuncing the view of
von Mises, and insists that probability theory is exactly what Laplace
thought it wasj the "calculus of inductive reasoning®.

Well, which is it? 1 want to point out that it makes a hig

difference in applications. Physicse and engineering offer many problems

* K. von Mises, "Positivism, A Study in Human Understanding”, (G.
Braziller, Inc., N, Y., 1956); Chap. 14

** H, Jeffreys, "Theory of Probability", (Oxford, 1939)
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where use of probability theory is entirely 1egitimate cn one interpretatien,
and entirely meaningless on the other. Even in cases where both viewpoints
would allow the use of probability theory, your depision as to whieh
mathematicél problems are important and worth working on, which are only
#8cheinprobleme”, can still depend on which viewpoint you adopt.

Sooner or later, such an unsettled candition.in probability
theory couldn't fail to have pretty serious repercussions in theoretical
physics and engineering - both of which make more and more use of probability
methods. I hope to show in these talks that some of the outstanding
unsolved problems in both physics and communication tﬁeory have their origin
in this state of utter confusion which exists in the foundations of

probability theory.

Intreducing the Robot

Now the question of the process ﬁf ﬁlausihle reasoning that
actual human brains use is very charged with emotion and misﬁnderstanding,
to the extent that the only selution is to avold it., Also, it is so
complicated that we can make no preteﬁse of explaining all its mysteries;
and in any event we are not trying to explain all the abberations and
inconsistencies of humen brains. That'is_an interesting and important
subject, but it is not the subject we are studying here. We are trying
rather to understand some of the good features of humsn brains. In this
endeavor, we wWill feel that progress has been made if we are able to
eonstruct idealized mathematical models which reproduce some of those good

features; this is the methodology ef Gibbs,
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In order to direct attention to constructive things and away frem
controvérsial things which we can't answer at present, we will invent an
imaginary beast. His brain is to bte designed by us, so that he reasons
according to certain definite rules; The rules are suggested by properties
of human brains which we think exist, but by introducing the beast we
accomplish the following. You can't cbject to the theory on tﬁe grounds -
that we have falled to prove the “correciness" of the rules, whatever that
may mean. We are free to adeopt any rules we please., That's cur way of
defining which beast we are going to-study. After we've worked out the
properties of this beast, we can then compare ths results of his reasoning
process with the results of curs., If you find no resemblance between the
way the beast reasons and the way you reason, then you're free to decide
that the beast is_nothing_but an idle, useless toy., But if you find a
very strong resemblance, which makes 1t almost impossiblé to avold
concluding "I am this beast", then that will be an accompiishment of the
theory, not a premise. '

Now let's take a problem with maybe some science fictien overtones,
We've been aqsigned the job of designing the brain case of a robot. This
is supposed to be a very sophisticated robot. He doesn't just receive
ordera and carry them out. He also hag to have the ability to lsarn, he
has to be able to make Judgments on his own, he has to decide on the best
course of action even when we fail to give him full instruétiens. This
means that his brain has got to contain some kind of computing machine

which will carry out plausible reasoning whenever the information we give
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him is insufficient to pemmit deductive reasoning., This is a definite
engineering problem, What's the hest.way of designing his brain case?

Well, our robot is going to reason about propositions. We
denote varipus propositions by letters AJ B, C; and so on, and for the
time being we'll have to fequire that any propesitien we uée will have,
at least to the robot, an unambiguous meaning. It must also be of such
a "loglcal type" thaf it makes sense to say tha£ the proposition must be
either true or false. Of course, not all propositions are of that type
at &ll., Later on we'll see whether there are any possibilities of
relaxing that restriction. Now 1o each propositién the robet is going
to associate some plausibility, which represents hls degree of belief in
the truth of the prepesition, based on all the evidence we have given him
up to this time. 1In order that these plausibilities can be handled in
the circuits of his brain, they must be aSSOCiate& with some physical
quantity such as voltage or pulse duration or frequency, and so on,
however you want to design it. This means 'that there will be some kind
of association between plausibilities and real numbers. We'll just
assume that this will be done in such a wey that a greater plausibility
always corresponds to a greater number. It will be convénient to assume
a continuity property, which is hard to state precisely at this stage,
but to say it intuitively: an infinitesimally greater plausibility ought
to correspond only to an infinitesimally greater number. These assumptioens,
you see, are practically forced on .us by the requirement that the robotts

brain must operate by the carrying out of some definite physical proecess,
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New we wouldn't want this robot to behave in a way that's very
greatly different from human behavior, because that would make him very
hard to live with and nobody would want to keep such a robet in his home.
So, we'll want him to reason in a way that is a2t least qualitatively like
the way we.reason. For example, if he gets new information which increases
the plausibility of proposition;ﬁ but does not affect the plausibility of-
prbposition{s, this of course will always produce an increase, and not &
decrease, in the plausibility that both A and B are true. And it must’
produce a decrease, not an increase, in the plausibility thatlpxis false.
This qualitative requirement simply gives us the sense of direction in
which reasoning goes. Also, it would be nice if we could glve this rgbot
a very desirable property which we don't have; namely, that he always
reasons consistently. By consistently, I mean that he always comes toc the
same conclusion regardless of the order in which we give him the evidence.

All right, now I claim something which may seem startling. The
three conditions that we have imposed are:

1. association of plausibilities‘with real numbers

2, qualitative correspendence with human common sense

3. consistency |

These three requirements, I claim, uniquely determine the rules
according to which this robet must reason. There is only one set of
mathematical rules which satisfies all those conditions. Next, we will
turn te the job of working out these rules.

You know thai when a computing machine is asked to divide by

zero, itldGVEIOpB a psychosis ~ the poor machine tries its best, but just
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can't solve the problem. On some kinds ef desk calculators the only thing
you can do is to put the machine out of its misery by pulling the plug,

In the interest of being humane, we are no£ goling to ask our rohot to
underge the agony of reascning on the basis of mutually contradictc:;ry
propositions. Thus, wWe make no attempt to define (AlBC) when B and C are
mutually contradictory. Whenever such a symbdl appears, we will understand
that B and C are compatible propositions.

A Model For Inductive Reasoning

We have first te introduce some more notations of the usual
symbelic logic. By the product
(AB ),
we mean the propesition ™Both A and B are true". The expression
(A+B)
means "At least one of the propositions A R B is true". The
plausibility that the robot asscciates with proposition A could, in
general, depend on whether we told him that some ether preposition B is
true. And sc we indicate this by the symbol
(A} B)
I'11 call this the conditicnal plausibility of A s glven B .
Thus, for example 3
(A|BC)
I'11 read this as A given BC . It stands for the plausibility that

A is true, given that B anda C  are both true. Or,

(A+B |CD)

stands for the plausibility that at least one of the propesitions
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A and B is true, given that both C and [ are true, and so on.
Now we've decided that we're golng to sssociate greater plausibility with
greate.r nunbers, so |
(Alg) Yy (c|Dp)

says8 that glven B, A is more plausible than C s 3599“ D,

We now seek a consistent rule for obtaining the plausibility of
AB from the plausibilities af A end B separately., In particular,
let us find the plausibility ( AB \ C ). Now in order for ( AR ) to
be a true preposition, it is certainly necessary that B be true; thus,
the plausibility (E'3| C ) must be involved. In additien, if B 1is trué,
it is necessary that A should be true; so (AIBC) is needed. But if
B is false, then of course AB is false independently of anything sbout
A, s0 if we have (BlC ) and {A|BC ) we will not need (AIC )

It would tell us nothing absut { A ) that we didn't already have.

Similarly, (A |B } and (BlA) would not be necessary; what;eVer plausibility
A or E> might have in the absence of data c could net be relevant
to Judgments of a case in which we knmow from the start that C is true.
We could, of course, interchange A and B in the above
paragraph, so that knowledge of (A | C ) and (B' AC ) weuld alse suffice
to determine ( 13/:\ IC) = AE 'C ). The fact that we must ebtain
the same value for { AB |C.) no matter which procedure we choose will bé
one of our conditions ef consistency.
We can state this in a mere definite form. ( AB | C ) will
be some function of ( By | C ) oand of (A I BC ):
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(AB\C) = F[(E]C)j (AIBC)] | (1)

Now if the ressoning we went through here is not compl etely

obvious, let us examine some alternatives. We might suppese, feor example,

(A@]c)éf-‘[(zx c),(B\Cﬂ

might be a permissible form. Bul we can show easily that no relatien of

that

this form could satisfy the conditions that we've imposed on our robot.
A night be quite plausible given & , 3 might be quite plausible
given C , but A ang B together might be impossible. For example,
if I'm told that Mr. Jones lives in Dallas, it might be quite plausible
that his left eye is blue and it might be quite plausible that his right
eye is brown, but it's very implausible that boﬁh of those are true. We
weuld have no way of taking such influences into account if we tried te
use a formula of this kind. Our robot could not reason the way human
beings do, even qualitatively, with that kind eof function.

You might try further a relatien of this form:

(e|c) = [e1c), (ale), (812),(B1)

in which yeu try to take the above cases into account by allowing all four

of these simple plausibilities to determine (f\ES C ). But even here you
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can produce counter examples which show that a function of this form
could not reproduce plausible reasoning even qualitatively the way we
reason. |
Cn the other hand, I don't think you'll be able to produce any

situation where the equation -
(4B|c) = F[ (Alss), Bl @)

does not reproduce qualitatively the ﬁéy you would reason about the
gituation. If you can, then all I can say is that yogr'common sense 1s
qualitatively different from nmine.

Now let's start'imposing our cpnditions on the form of this
function and see 1f we can nail down what function it has to be. If
anything increases the plausibility ( (% |C ), then that must produce
only an increase, never a decrease, in the plausibility (AB | C .
Similarly, 1f anything increases (AIBC ), this must also prodﬁée an
increase, not & decreasa, in (AR IC.. }. The only case whers it would
not produce an increase 1s where the other independent variable happened
to represent impossibility; if we know that /\ is impossible given C
then, of course, the plausibility of B cbuld increass without affecting
(AB | C ). Also, the function F ()LJ ?) must be contimiocus; for
otherwise we could produce & situation where an arbitrarily small increase

in one of the plausibilities on the right side still results in the same
big increase in (A&IC).
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In sumnary, F( XY ) must be a continuous monotonic
increasing function of both X and %z « I will assume that it's &
differentiabls function. The derivatives camnot be negative, and thsy
can be gero only in the case where /\ES 1s impossible. HNow fof the
condition that it should be consistent.

Suppose that I try to find the plausibility (ABCID) that
three propositions would be true simultaneouviy. I can do this in two
different ways. If the rule is going to be consistent, we'we got to
get the same result for either order of carrying ouﬁ the operations. I'
can first say that B will be considered a single proposition, and

then apply our rule. Thié plausibility would then be
(reclp) = F [(Bcp), (AlRep)

and now in this plausibility of (BCl D ) we can again apply the rule

to give us

(BC D) =F {F [(cIv), (8[cD)] J@lscn)}

But we could equally well have said that AR  shall be
considered a single proposition at first. From this we can reason out in

the other order to obtain:
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(ABC|D) = F[(C|Dﬁ, (ABICDﬂ
=F {(ch)}F [_-(BICD)J (A!BCD)] .

S0 by deing it in the other order, we come out with a different expression.
If this rule is to represent & consistent way of reasoning, these two
expressions must always be the same. The condition that our robot will

reason consistently in this case takes the form of a functional "equation,
— | . 2
FlFeoy),E] = F |2, Flg,3) K

Conversely, if this functional equation is satisfied, then our original
rule is automatically consistent for all posaible ways of finding the
Joint plausibility of any number of propositions; (A BCRDE |F ),
for example. You can see that there are an enormous number of different
Wajs you can work this out by successive applications of Equation (1).
And you can show by induction that if the functional Equation (2) is
satisfied, then you're guaranteed to get the same answer for every possible
way of doiné it.

This functional equation 1s one which has quite & long history

in mathematics. The earliest reference to it that 1 know about-goes back
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to 1826, and is a paper by N. H. Abel in Crelles Journal. This was the
¢irst issue of Crelled Journal, and I think this was the first paper that
Abel wrote. He considered this functional equation as merely an amsing
exercise and found the general solution of it. The solution has been
rediscovered probably dozens of times since 1826. In particular, there
is a paper by J. Aczel¥. There is another article where this functional
squation is considered in some detail by R. T. Cox**, who first suggested
this approach to probability theory. Let me just quote the theorem that

Aczel gives. He says "let's let
7 =X 0 E}’
where
X oYy
represents any operation which maps & into the same interval with X

and Lé_ . In other words, if X 1s in the interval from J to b ’

and Lﬁ is in the interval from & to b , then this operation is one
which will always put Z . into the same interval."™ He gives a theorem

which is exactly backwards from the way we would want it for our application.
He considered a formula for the design of the most general sliide rule.

The general condition that # could be calculated without ambiguity on

a slide rule callibrated with numbers X and !g is, of course, that there

is some monotonic function -F(E) such that -S\('E) = -%()L) + ‘S'(‘é’) .

If this is true then you can make a slide rule which gives &£ in terms

of X and Yy - Aczel shows that a necessary and sufficient condition

for that is that the operation )LO‘EY must have the following propertiess

*Jean Aczel, "Sur les Opeérations définies pour nombres réels", Bull. Soc.
Math, Franc. 76, 59-6L {19L8) _
#¥#R. 7. Cox, Am. Jour. Physics 1k, 1-13, (19L6)
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| . .
1) It mast be monotonic: if X.> X , then )(’OH > X Q (# P
and similarly for Ld' .

2) It must be continuous: lim (xm-&) = (lim ¥ ) o (lim %’) ,

| 1) Tt must bs associatives (KCH& JoRr =X o0 ('3 oZ)

You see that these are precisely the cenditions that we have imposed on

cur function # = F (‘)(3‘-6/ Jo It had to be a monotonic, continuous
operation in order to agree qualitatively with common sense. The condition
that it should represent a consistent kind of reasoning was Jjust the
condition that it be associative. We conclude that the general relation

between X , Ié y ¥, lmplied by Z = F ()(Jlgr) must be expressible

intheformf:("ﬁ}zf)= §_1B(X)+ %(;)],or
feza- fox - fay.

Now, of course, we can write this equally well as & product,

P(i& ) = P(X,) P ((6/),
where F(X ) = exp [S, (X )] is still an arbitrary continuous monotonic

function.

S0 our rule for finding the plausibility of both A4 and B takes

the form

p (AB|C) - p(ABL) p (BO). o

The cordition that this shall represent reasoning qualitatively
like curs can tell us something more about this function . P (X)), For

example, let's imagine first that A is certain, given C + What
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would happen then? Well, if A is certain given C , then the
olausibility that both A and B are true must be just the plausibility

that B 1is truet

(AB’C) - (8[C).

And glso we would have

ABC) - (AfC),

because if A is already certain given C s the fact that we may &lso
have B given would not be relevant; it'a atill certain. To what is

our equation (3) reduced in this case? It then says

C),

p(BlC) - p(A]C) p (B

and this would have to hold no matter how plsusible or implaueible &
might be. So our function P('X,) has to have the property that certainty -

mist always be represented by Pa- 1.

Let's notice what happens _:Lf there 1s a degree of plausibility
for which ’P becomes either zero ar infinite, Say, for Iinstance, that
p (AIBC) becomes either zero or infinity for some particular case.
Then equation (3) says that the plausibility of B becomes irrelevant to
the plausibility 6f AR . This could be so only if A was i_mpossible,
given 8 and C + S0 we conclude that P (’XJ } must have another

property. It cannot become zero or infinite for any degres of plausibility

except lmpossibility,

Now suppose that A is impossible, given C . 'In this case,

the proposition AB is also impossible glven C $
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(aslc) - AfC) .

Also, if A is already impossible given C , then if we had bsen given

B also, A would still be impossible:
(ABO) = (AC).
In this case, our equation (3) reduces to

P (A

and again this equaticn would have io hold no matter what plausibility &

¢y - piBIC) p (AlC)

might have. Well, there are three possible values of F)_(}\I(: ) that
might safisfy this condition. It could be zero, plus infinity, or minus
infinity. But the cheice minus infinity we have to exclude because F)
is a continuous monotonic function which has to get up to plus one for
certainty. If it got down to minus infinity for impossibility, it would
have to cross zerc somewhere between, and we've just seen that F} cannot
become zero for any plausibility except impossibility if this rule is to
represent qualitatively the way we think. The choice minus infinity cen
be ruled out also by other arguments (for example, see what happens in (L)
if E3 also becomes impossible); but at present there's nothing to tell
us to choose zero rather than plus infinity; elther one is equally good.
A1l right, let's sum up what we know about F)( K ) so far,
It is a continuous monotonic function, It may be either inereasing or
decreasing, If it's an increasing function, it must range from zero for

impossibility up to one for certainty; if it's a decreasing function, it
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must range from one for certainty up to infinity for impossibility; The
way in which it varies between these limits, of course, our rule says
nothing at all about. |
Now there are still other conditions of consistency which these
rules would have to satisfy. Let me introduce ancther notstion. By a
small letter I'll mean the denial ‘of the big letter. In other words,
propesition @ stands for the proposition " X; is false". Conversely,
A stands for the proposition " o is false™. And because of the fact
that these are propositions of the type which_ mist be either true or
false, then We can conclude that the product aA is always false, and
the sum & + A~ will always be true. Now the plausibility of & |,
given some data & , depends in some reciprocal way on the plausibility
of /l H
(a{B) = SCA|B )Y . ©®

fividentiy, if this is going to agree with common sense, the function

ES( K ) must be some continuous monotonic decreasing function. But the
relation between propositions & and f& is a reciprocal onej it
doesn't matter which I choose 1o ca8ll a capital letter and which the small
letter. I can equally well say that plausibility of A given B is

equal to ;

(A|B) - S(a|B ) . (6)

It would have to be the same function. So & (X ) must satisfy a
function equation that when we apply it twice we get back to where we

started:



SIS(X)} - X . 7

New this elone is not enough to tell us much about this function. So now
I'd like to give you another argument. There's another condition which
would have to satisfy in order to represent a consistent way of reasoning

and for this we already have one rule of calculation worked out.

(ABlcy - pB|CHy palBO) ®

We'll call this Hule 1 from now on. We already know something about this
function P ( X ) and we can use that in the following argument, and juet

to save writing T will use this notation. We will understand that:

{_—AlB] AlB)

Then our fule 1 can be written in this form:

pelc] - lJialee] .

Now this argument that I gave on ES of the plauaibility mumbers

of course would apply equally well to the numbers FD + In other words, I
could put square hrackets in equations (S}, (6), (7), and everything I
said would still hold. There's the arbitrariness of a monotonic function

in all this. 8o let's suppose that ES has been defined that way. We

Slalac](Blc]

1/
S| i

can make this step,

48]
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through two applications of Rule 1. In the second equation, I've just

written 'P( J
of Rule 1. This loocks like a very strange thing to do. But notice that

BC) in a different way, which we get by application

the quantity we started with involved A and E in a symmetric way.
If T interchange A and B , I don't change it. Therefore, although
it doesn't look like it at all, this final expression must also be

symmetric in A and B « In other words,

Pl ] sl

[alc] B[c]

Now these two expressions would have to be equal to each other no matter

what propositions A s B , and C are. In particular, they would
have to be equal when the denial of B 'is the same as proposition "beih

A and D " are true; that is, when

b -AD )

B =a+d .

But in that particular case, equation (10) simplifies. If B haa this

Q 3?7 Well b is a statement that A is

maaning, then what is (bA
true and also that D is true. But this means that bA = A DA B

AD = b 3 the propositions ‘DA and l‘) are the same. Therefore,

[alc] = [blc] = S[slc] B



Likewise,aB - a(a-l—d) = A +.,5d == a

b8l = [slc]

Substituting these into (10}, we get a rather awful looking functional

I
o
>
2y

equation:

YEIOANENRN AN €D . )

) =455

Here is another functionsl egquation which has to be satisfled in order to

have a consistent set of rules for reasoning.
At this point, we will simply turn again to the paper by
N _
R. T. Cox , which solves this problem. He shows that the only twice
differentiable functlon which satisfies all of our conditions is
1/ |
™ wm

This means that our reciprocal relation beitween the proposition and ite

denial would then have to take the form

[al8]" + [als]" = 1

or, dropping the square bracket notation,

pm(als) + P Alg ={ . a2)

# R, T, Cox, Am. J. Phys. 1k, 1 (1946}.
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. can be any constant except zerc. I might say that I'm not entirely
aatisfied with the argument that we went through to get this; not becausa
I think it's wrong, but because I think it's teo long. The final result
we get 1s so simple that there muét be a simpler way of deriving 1t; btut
I haven't found it.

Now suppose that we make the possible choice that 13 S () is
golng to represent impossibility. In that case, we'll have tc choose /77
as a positive number, but notice that choosing different values of Y1\ 1is
really idle, because the orly condition on this function F} is that it
is a continuous monotonic functiocn which increases from zero to one as we
go from impossibility to certainty. . But if Fﬁ (X ) satisfies these
conditions, then P (X)) = {P (‘x,) ) 8lso satisfies them. So the
statement that we could use different values of YW\ doesn't give us any
freedom that we didn!t already have in ﬁhe fact that f}( %) was an
arbitrary monotenic function. This means-that if T choose to write

equation (12) in the form
(3/8) + p(A]B) =1 o

this is just as general,

Now on the other hand, we could represent impossibility by
F’ = 00 . In that case, we ﬁould have to choose WL negative. Once
again, to say that we can use different values of 77| wouldn't say anything
that wasn't already implied by the fact that F) wes an arbltrary monotonic

function which increased from one to infinity as we went from certainty teo
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impossibility. If you have one function which Satisfias that condltion,
then that function raised to the ynth poﬁer also satisfles that condition. SO

T could equally well write this reciprocal law in.thﬂ ibrﬁ

] 1

0GB p(4|B)

Now we could go through our entire theory of the design of this roboi's

brain with the choice of.F) = X to represent impossibility, and we

would not get stopped any place. Ewerything would go through Jjust fine,
We would end up with equations which donit look quite 3¢ familiar to you
as the ones that the other choice will give us. But notice that they're
not different theoriass, because if Fi( )O‘) 1; a posaible choice which

goes to plus infinity to representfimpossibility, then - N

— 1
p(x) = R (x)

is a function which represents impossibility by zero, and has all the

properties that we needed. &o regardless of which cheice I make by which
to represent impossibility, it makes the form of equations look different
but their content will be exactly the same. You can go from one to the
other simply by replacing all P's. by the reciprccals of the I:J;.S . So

if we agree not to use this choice of fJ = ¢ and always to.use the
choice TD a {J to represent impossibility, we're not throwing away any
posaibility of representation as far as content is concerned. We're just
removing & redundancy in how you could have stated the theory. Let us

agree, then, to use the choice:
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.Oé_pé_1 _,
(for impossibility) (for certainty)

You recognize, of course, that this equation (13}

p(alB) + p(alr) = i

plus our hule 1

pABlc) =p Bjc>p(A)5<:>

are actually the fundamental equations of probability theory. Everything
in probabllity theory follows from those by sufficiently complicated
arguments. We could take the equations we have as our fundamental
squations, but I prefer to take another, which_we deduce from these, as

our second fundamental equation. I'd like to get the formula for

p(arslc),

the plausibility that at ieast one of the propositions X\ or E5 would

be true given (: « Now thiz follows from the rules we already have.

Ve just apply (13) and Rule 1 over and over again:

P (atBlc) - 1-p(a£lc) |
-1~ p(a|bC)p (b )
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~1-[1~p(Albc)] p(blc)

- p(8]c) + p (4blc)
-p(8]c) « p(b]ac) p(ale)
p(Ble)+ plalc) [4-P(8|A‘-’)]. .

Finally, we get

P(A+B|C> = P(A’C)+ P(B’C) —~ ?(ABIC). (1)

At long last we come out with the above form, And it's this result that

I will taeke as our Rule 2.
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LECTURE 2
el ———a =
We can summarize what we have learned up to this point by writing

down our two fundamental rulest

w02 p(aB|C) = p(alec) p(Blc)
P(=li)p(lc)

Il

mas 2 P(A-}BIC) =P(AIC)+P(BIC)“P(ABIC) .

Rule 1, of course, involves ;\ and ES in a symmetric way and we could
have interchanged A  and {3  in all the argument leading up to this

and it wouldn't have affected anything. So we have the liberty of writing

it with /\ and 13 interchanged, as shown.

Arbitrariness and Prior Information

We've found so far the most general consistent rules by which
our robot can do piauslible reasoning, granted that he musi assoclate
plausibilities with real numbers in some way so that his brain can operate
by some definite physical process. The most general rules can be written
in the form of very familiar locking equations, in which i) is an arbitrary

monotonic function of these numbers which we call plausibility (and of
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course we have not said anything at all how we are going to define these
numbers). It might appeaf at this stage as if we have fourd an infinite
number of different poasible consistent rules by which our robot can do
plausible reasoning: corresponding to every different choice of a monotonic
function there'd be a different set of rules. This 1s not o, however,
because no matter which function we chose, the behavior of the robot would
be exactly the sams, The information we give the robot, it tumms out,
will determine the numericzal values of }3 » not the numerical values of
the-pléusibilities that we started with. Let's see that in the simplest
case. Suppose we have YL different propositions, /&1 3 ;lz."‘f‘ lx?l .
These propositions are to be mitually exclusive. Two of them could not be

true at the same time, so we could write an equation like thiﬂtl

g ﬁr, P (A %
Now suppose one of these propositions must be true on data E3 R
but dsta E5 gives the robot no reason to prefer any one to any other.

They're equally likely, to him, In that case, our last term of Rule 2

drops out and the sum of all these functions mst certainly be equal to one:

1 :iP A B
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If the propositions are all equally likely to the robot, they must all be
represented by the same plausibility, and therefore the only possibility

‘D(AA~ B) = ':;!{‘ ' (15)

You see no matter what function P(X) we had chosen, there would be
no way of getting around this result, which i8 called the "Principle of
Insﬁi‘ficient. Reason" in the literature. The information we gave the rdbot,
the statement that these propositions were mutually exclusive and exhaustive,
determines the numerical values of tha pIS « The robot's reasoning
process can bte carried out entirely in terms of manipulation of the numbers
P(x) , &8 our equatiohs show, and the robot!s final conclusions_ cpuld
be stated equally well in terms of ‘P instead of X0 . This means that
the quantities ')(, that we started with have faded completely out of the |
picture. They correspond to different pbssible ways that you could design
the circuits of his brain; tut no matier what function you chose, the
otservable behavior of the robot would be exactly the same. So rather
than sayix;g that p is an arbitrary monotonic function of the plausibilityl
X, , it looks like mayBe it's moxl-e to the point to say that the

plavsibility ‘X, is an arbitrary monotonic function of P . AB Boon as

We realize this, we see that there is actually only one consistent set of
rules by which this robot can do plausible reasoning.

From now on, instead of writing

p(AIR)
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I'm simply golng to leave off the ’P and write it

(A[B)

You can interpret this two ways. You can say I'm changing my notatlon,

since it's always the function 13 that we're concerned with, I'll simply
understsnd that it's always that function that is meant. Or you can say

that I've now adopted the convention that

Px)= X

by definition. It will make nc difference at all which way you interpret

this. QOur fundamental rules of reasoning take the form:

=2 (13]0) =(aJsSYBIC) = (BUNGBIC) s
Blo 2 (A+B|C>:(AIC)+(B’C> —(AB:’C)- (17)

. and from now on we'll call these quantities probabilities.

Now out of all the propositions that this rebot has to think
about, there is one which is always in his mind. By X I mean all of his
.:..-Paﬂt experience since the day he left the factory to the time he started
::_reaaoning on the problem he's thinking about now. That is always part of

the information which is available to him, and obviocusly it would not be
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congistent for him to throw away what he knew yesterday in reasoning about
‘his problems today. OSo for this robot there -is no such thing as an "absclute®
probability. All probabilities are conditional on )( at leaset. )( might
be irrelevant to some problem and in that case this postulate would be
unnecessary, but still harmless, If it's irrelevant, it will cancel out
mathematically. Any probabilities which are conditional on )( alon: we
will call a priori probabilities or prior probabilitles. If there is anf
additional evidence 1n addition to ){ s Which the robot is ﬁow reasening
on,.we will generally leave off the )( ; We'll understand that even

when we don't write ){ explicitly, it's always built into all expressionsi -

(Alg) = (alBx).

But in a prior probability, I'll always put in X explicitly:

(A]X).

Because of some strange things that have been thought about

a priori probablilities in the past, we have to carefully point oﬁf that it
would be a big mistake to think of )( &8 being some sort of hidden major
premise, that represents .some universally valid propositicn about nature,

or anything of that sort,. )( is simply whatever initial information the

robot had available up to the time we gave him his current problem. When

We consider applications, you can think also that >< stands for some set

of hypotheses whose consequences we want to find out.

BAYES® THIEOREM

By far the most impertant rule which this robot uses in his

everyday tasks is the one we get by dividing through the second equality
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of Rule 1 by, say, (ES|(§) i

(BlAC)
(elc)

(Alec) = (Al

This 1s called Bayes' theorem, or the principle of inverse probability.

You see 1t represents the process by which the robo£ learns from experience.
He starts out with the probability Of. ;\ s on the basis of evidence (1 F
he is given new evidence ES in addition, and this theorem tells how the
proebability of ;\ changes as a result of this new evidence. Bayéa'
theorem comes essentially from the fact that Rule 1 was symmetrié in
propositions ;\ and Es R which of course it had to be in order to be
consistent. To this robot it is quite clear that if he wants to make any
Judgments about the truth of proposition /\ » the way to do this is

to calculate the probability of A , based on all the evidence he has.

This will almost always mean that he will have to use Bayes' theorem.

Now lst's imagine we let thls robot examine some procedures that
are used in statistical inference. A4 very large part of statistical
inference is taken up with problems in which we are given certain evidence,
which is typically the result of some random experiment, and from this
evideﬁce we are supposed t¢ do the best job we can of estimating some unknown
parameter, or testing one hypothesis against another, or making some kind
of prediction as to what is likely to happen next? and 50 on. A1l of these

Teépresent plausible reasoning on the basis of new evidence; the evidence
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of the random experiment. Therefore, to ocur robot it's perfectly obvious
that all examples of parameter estimation and hypothesis testing must be
special cases of the application of Bayes' theorem. You éee, his brain
has been built so that this is the only peossible way he can reason. To
him the fact that all these processes must come from Bayes' theorem is
just as much a necessity of thought as the validity of a syllogism is to us.

Although this conclusiocn about Bayes' theorem 1s obviocus to cur |
robot; it has not been at 2ll obvious to human statisficians. They largely
regard Bayes' theorem 4s not having any logical basis except in the case
where every probability in it can be given a frequenqy interpretation. In
that case, Eayes' theorem can be interpreted as selecting out of an
original population of events some sub-population in which the frequency
of event ;\ might be different from the frequerncy that it has in the
population as a whole. But to the robot this is the only possible way of
reasoning regardless of whether you can give the probabilities a frequency
interpretation.

Since this is perhaps the crucial issue in the controversies about
probability theory, and the central point in most of the applications that
I want to talk about later, we bave got to meedt it squarely right now. So
let's ask the robot to make a strong, definite, and constructive statement
about it. Here's what he has to say:

"Consider any procedure in statistical inference in which we
reason about the effect of new information. If this procedure is fully

consistent and in full qualitative agreement with common sense, then it is
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necessarily exactly derivable from Bayes' theorem. Conversely, if it is
found to represent only some epproximation to Bayes; fheorem; then it
follows that

(1) It is either inconsistent or it does qualitative violence
to commen sense, or both;

(2) These shortcomings can be exhibited by producing special
cases; and

(3} Bayes! theorem will then represent a superior (and usually

simpler) way of handling the problem."

That is what the robot says. IWe've designed him in Just such a
way that it's the only thing he can say. It doesn't mean at a2ll that what
he says is right. We've got to put him to the test. For each particular
procedure, of course, this is a definite issue of fact, not a vague matter
of personal opinion. Either the robot is right or he's wrong in the above
statement, and it's in-gur power to find out whether he's right or wrong.
So we'll browse through the statistical literature, and every time we ses
an example ﬁhere the man says, "I'm not using Bayss' theorem", then we
can look at it a little more carefully and see whether what he actually
does can be derived from Bayes' theorem; and if not, whether we can
- exhibit the defects in his procedure.

Maximum Likelihood

The first example in Fisher's msthod of maximum likelihood.
This is & way of estimating an unknown parameter, and I'1l illustrate it
bty the problem of estimating the magnitude of a signal which is obscured

by noise. You might be interested in some quotations from Fisher's book;*

2y A. Fisher, "Statistical iethods For Research Workers" (1ith Edition,
Hafner, N. Y., 1990).
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On pagé 9, he refers to " --~ my personal conviction which I have sustalned
elsewhere, that the theor& of inverse probabiiity is founded upon an error,
and must be wholly rejected" (inverée probability and Bayes! tﬁeorem are
the same thing as far as we're concerned), And latsr on he says on page 20
that ‘maximum likelihood has no real connection with inverse probability".
Well, let's illustrate the method. OSuppose we have observed a voltage

just at one instant, which is the sum of an unknown signal plus an unknown

V.= 5 +N

Cur prior knowledge gbout the nature of the noise can be described by some

noise!

probability distribution.

W) dN = (N[X)dN

I've extended the notation a little hit here. I'm now indicating that

‘the same bracket symbols will be used for probability densities as for
probabilities. The 'distinction 1s elways determined by whether the
variables are continuous or diserete, soc I don't see any need to invent a
new notation for it. Now Iif we knew that the signal had a certain valge

ES s then the probability of observing the voltags \/ would, of course,

be the probability that the noise would have made up just the difference:

(V\SX)CJV =W (\/" S) CJV - (19)



~L7-
I'm going to be quite sloppy about putting in differentials of this sort.
They would always cancel out of equations anyway. Now let's write this

(V]sX) = Léys).

If we know the signal then thls is the probability that we would observe
the given voltage, HNHow in the problem, it's the voltage that's known and
the signal that's unknown. The maximum likelihood estimate of the signal
magnitude would then be the value of S which ren;iers this f_‘unction L.
an absolute maximum for the observed value of \/ $

oL

= ()
0d

Stated intuitively, the maximum likelihood estimate is the value according

to which the observed voltage would appear as the least remarkable coincidencs,
How would our robot go about handling this problem? To him the

way of reasoning about the unknown signal is, of course, to calculate the

probability that the signal has a certain amplitude, on the basis of all

the available evidence. In other words, the robot says we should calculate

| (SIVX) by Bayes' theorem: ( \ )
ViSX
(S‘X) (V‘X . _ o

L &S)
(b (VIX)

-

(S|vx)




S
So if we ask the robot what is the most probable value of the signal, he
will maximize not l_ but the product of L_ with the prior probability.
So you see that if the robot's prior infermation didn't give him any reason
to prefer one signal magnitude over another, then the robot's estimate
would be exactly equal to the maximum likelihcod estimate. If the robot
has prior information about the signal, then of course he may easily get
a very different value,

Now I think 1t's obvious not oniy to the robot, but also to us,
that if we do have any prier information about the signal, then it would
be screamingly inconsistent for us to refuse to take that information into
account in estimating the magnitude of the signal. You see, we could
describe the maximum likelihood estimate in another way as the value which

we obtain by throwing away all the prior information we had about the

signal, &nd basing our estimate only on our prior information about the
noise,

Suppese you went to & doctor and described your'symptoms, end
you wanted him to diagnose what was wrong. You tell him that when you
raise your left arm you feel a pain in your right side and a few things
like this, and the doctor is supposed to do some plausible reasoning to
figure out what could be causing 1t. Suppcse that after consultation had
been underway for some time you suddenly notice that the doctor is not
showing any interest in your previous medical history. You ask him,

"Well, aren't you going to look up my previous medical history?"  And
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suppose the doctor sald, "Why no, I must not look at your previous medical
history, because that would introduce a blas into my conclusions." What
would you say? You'd say that the man i1s crazy. He shouldn't be allowed
to practice medicine. To refuse to take the prior information you have
into account in plausible resasoning, is not & consistent way of doing things.
Now, of course, & human statistician who uses maximum likelihood has just
as much common sSense ag anybody else; and in & case where we do have a
significant amount of prior information, his common sense will always tell
him not to use the method of maxdmum likelihood. In practice, he ﬁill
avold the bad errors of reasoning by inventing a different method when a
different kind of problem comes up. In other words, he will use his prior
information to tell him how to formulate the problem, and he prefers to
formulate it so this information no longer appears explicitly in his
equations. The robot, however, doesn't need to invent a new theory for
every new kind of problem. To him, Bayes' theorem is always the only way
of doing it.

I don't want to go into more details now because this is close to
& problem which we are going to talk about & great deal later on, but for
the present we'll just note that the robot's prediction was correct. Except
in the case where 1t's clearly inconsistent, the method of maximum likeld-
hood is exactly derivable from Bayes' theorem, Mathematically, it isl
nothing but Bayes' theorem with uniform prior probability.

Sequential Testing

The second example of statements made about Bayes's theorem
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in the literature has been provided by Feller, On page 85 of his book" we
have the following quotation. He s8ys, YUnfortunately Bayes' rule has been
somswhat discredited by mestaphysical applications of the type described
above.”™ In routine practice, this kind of argument can be dangerous. A
guality control engineer is concerned with one particular machine and not
with an infinite population of machinees from which one was chosen at
random. He has been advised to use Bayes' rule on the grounds that it is
logically acceptable and corresponds to our way of thinking. Plato used
this type of argument to prove the existence of Atlaantis,:and philosophers
used it to prove the absurdity of Newton's mechanics. In our case it
overlooks the circumstance that the engineer desires success and that he
will do better by estimating and minimizing the sources of varicus types
of errors in predicting and guessing. The moderﬁ method of statistical
tests and estimation is less intuitive but more realistic. It may be not
only defended but also applied.®

Well, that gives us a pretty clear idea of one common attitude
toward Bayes' theorem, at least for problems of quality control. Now
what are the procedures referred to as the "modern.method'of statistical
tests?" I can't tell of courss from reading, but ever since the early
days of World War IT when he invented it, Wald's sequential testing
procedure*** has been generally considered the optimum one available,

optimum according to several different criteria.

. Feller, "An Introduction to Probability Theory and Its Appllcations,"
(Wiley, 1950).

¥The reference is to Laplace's 1aw of succession, about which we will have
a lot to say later on.

¥), Wald, "Sequential Analysis," (Wiley, 1947).
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Let's 11lustrate the problem by considering manufacture of some
small item. Suppose we take crystal diodes, One of the lmportant things
about a crystal dicde is the maximum inverse peak voltage it can stand
without damage. Clearly, the way to find out just how good our diodes are
is to test each one and rmeasure the voltage at which damage occurs. The
tfouble s that once we've done this the diode is ruined, sc we can't
test every one this way. We can test only some fraction of the batch and
we would not want to test a very large fraction, because that would run
the production cost up and our competitor would probably run us out of
business. So the problem of gquality control in this case is to find some
method of plausible reasoning which lets us do the bLest peossible job of
deciding whether we have a good batch or not, with the smallest number of
diodes ruined in testing. I think that most statisticians agree that
Wald's method is the optimum one in this sense of requiring on the average
fewer tests than any other. Wald, in a footnote in his book, says that
he conjectures that it's an optimum test in this sense but didn't succeed
in proving it. Wefll come back to that statement a little bit later.

Just for variety, instead of describing Wald's method first, let's go
first into the way the robot would handle this problem. To do this, let's
manipulate Bayes'! theorem a 1little bit in a manner suggested by I. J. Good.%

Instead of calculating the probability, it would be just as good
1f we'd calculate any monoténic function of the probability if we know

what function we've got. So, let's do a little rebuilding on Bayes! theorem.

¥ I. J. Good, "Probability and the Weighing of Evidence,” (C. Griffin & Co.,
* Ltd., London, 19%50).
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I'1]1 use E to stand for new evidence.

o ElAX)
(AEX) =(A]X) &)

Now we could have written Bayes' theorem for the probabllity that A is

false given the same evidence,

. (Elx)
(alEX)—(a X) G

and we can take the ratio of the two equations:

(Alex) QI (E|AX)

(alex)  G)(e ax )

In this case, one of our terms will drop out. This doesn't look like

any particular advantage, But the quantity that we have here, the ratilo
of the probability that A is true divided by the probability that it's

false, has a technical name. We call it the "odds" on proposition A .

So if I write the "odds of A glven E and X +" as the symbol

O(AIEX) _ (AEX)

(alex)
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then 1 can write Bayes' theorem in the following form:

0(a1e0) - 06 G-

The odds on A are equal to the prior odds multiplied by the ratio of

(21)

the protability that E would be seen if A was true, to the
probability that = would be oserved if A  was false. The odds are,
of course, a monotonic function of the probakility, so we could equally
well calculate these quantitics.

In some applicaticns it is even more convenient to take the
logarithm of the odds because of the fact that we can then add up terns.
The same reason the logarithm was invented in the first place. Now we
could take logarithms to any base we want. What I'm after here is same-
thing which is handy for numerical work, and the base 10 turns out to
be easier to use than the base & for that case. And so I'm going to

define & new function which I'11 call the evidence for A given E 1

e (AJEX) sﬂo@ (AlEX).

This is still a monotonic function of the probability. By using the base
10 and putting the factor 10 in front, we've now reached the condition
Where we're measuring evidence in decibels! Now what does Bayes! theorem

look like? The evidence for A ygiven E » 1s equal to the prior
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evidence plus the number of(Jl) provided by working out the probability

ratio in the second term below:

Q(AIE) = e@'x) 10 %0 ((EIIA) (22)

Now let's suppose that this new information that we got actually

consisted of several different propositions:

= .Ezi EE;LZE:B. s 6 s »

In thatl case, we could expand this a little more:

_ EIn), E. [EA) N
G(AIE)"E@X)HO mgsla) %O(Ezf&afm (23)

In a lot of cases, it turns out that the probability of EZ is not
influenced by knowledge of EE{ + For example, in the case where one
says tlechnlcally the probability is a chance; say the tossing of a coin,
where imowing the result of one toss (if you know the coin is honsst)
dossn't iﬁflucncc the probability you would assign for the next toss. In

case these several pleces of evidence are independent, the above equation

becomes 1

e(le) = e (ax) + «OZL»Z{ il@ e

Where the sum is over all extra pieces of information we get.
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Now it would be a good idea for us to get scme feeling for

numerical values here. S0, I'd like to draw a té.ble and a graph. We have
here three different ways we can measurs plausibility; evidende, odds, or
'probability; they!re all monotonic functions of each other. Zerb c“:) of
avidence corresponds to odds of 1 or to a probability of 1/2. Now every
electrical engineer knows that 3 Clb means a facteor of 2and 1C Clb '
is a factor of 10, and so if we just go up in steps of 3 db ) of 10,

why we can write down this table pretty fast,

. 0

0 | 1:1 - 1/2
3 oo - 2/3

6 Lz L/s
10 10:1 10/11
20 100:1 100,/101
3 100031 0.999
) 10423 0.9999

-e 70 1-p

Table 1
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You see here why giving evidence in c“.) is nice. When pr(lababi_'l.ities get
very close to one or very closs to zero, our intuition doesn't work very
well., Does the difference between the probability of 0.999 and 0.9999

mean & great deal to you? It certainly doesn't to me. But after living
with this" for & while, the difference between evidence of plus 30 db and
plus 40 C“’.‘) does mean something to me. It'e now in & scale which my mind
‘can comprehend. This is just another example of the Weber-Fechner law,

Now le_t's draw a graph showlng reascnably well the numerical values of
evidence versus probabllity. This graph is shown in Figure 1,

P

Figure 1.
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The graph is symmetric about the center. This is to give jusat some slight
feel for the way these things go. |

Now let's take specific example of quality control. I'l1
assume numbers which are not at all realistic in order to bring out some
points a little bit better. We have eleven automatic machines which
are turning out crystal diodes. This example corresponds to a very early_
stage in the development of crystal diodes, because ten of the machines
produce, one the average, one in six defective. The eleventh machine i=
even worse; it makes one in three defective. The output of each machine
is going to be collected in a box and stored in the warehouse. We choose
one of the boxes and we teat a few of the dicdes. Our job 1s to decide
whether we got a box from the bad machine or not; that is, whether welre
going to accept this batch or reject it. Now we're going to turn thia
job over to our robot ahd gsee how he handles it.

If we want to make judgments about whether we have the box of

defective diodes, the way to do this is to calculate the probabiliiy that

we have the box of defective diodes, on the tesis of all the evidence
available. Let's say the proposition }\ shall stand for the statement
"we chose the bad box". All right, what is the initial evidence for
proposition }5\ ? The only initial evidence is that there are eleven

machines and we don't know which one we goit, so by insufficient reason,
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Evidently, the only property of )( that's going to he relevant to this
problem is just this number, - 10 db. Any other kind of prior evidence
which led to the same initial probability assignment would give us exactly
the same mathematical problem from this point on. So, it isn't really
necessary to say we're talking onmly about a problem where there are eleven
machines, and so on. There might be only one machine, and the prior
evidence consists of our previous experience with it. My reason for
stating the problem in terms of eleven machines was just thaﬁ we haﬁe,,so
far, only one principle, insufficient reason, by which we can convert raw
information into numerical values of probability. I mention this here
only because of Feller's remark about a single machine. To ourlrobot,
it doesn’t make any difference how many machines there are; the only
thing that counts is the prior probaﬁility, however arrived at.

How from this box we take out a diode and test it to see whare
‘1t breaks down. Every time we pull out a bad one, what will that do to

the evidence? That will add to this the number

where (badlf; )} represents the probability of gettiﬁg a bad dicde, given
}; . Again "Insufficient Reason" tells us what these separate
probabilities are. If we have the box in which one in three are bad, the

probability will be 1/3, and if we had the box of good ones the probability
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would be 1/6. We assume that the number in the box 1# very large compared

to the number tested. 8o, every bad diode we find gives us

%
3 .
10 —?—"‘ = 10&'8/ Z = -+ 3 C”I)
16/ 10 |
b
of evidence for the proposition that we had a bad batch. Now suppose we

find a good dlode. We'll get evidence for A of

Good | A) *

10&813 l)—'lollug % = — 0.96 b

“~

10

but let's call it - 1 db. If wa have inspected N dlodes, of which we

found Nb bad ones and N% good ones, the evidence that we have the
bad batch will bse

e(A[E) =-10 + 3N, ~ Ng

Iou see how easy thils is to do once we've set up the machinery. For
example, if the first twelve we test show up five bad ones, then we'd end

up with



b0 =
e(ale)=-10+15-7 = -2db

or, from Figure 1; the probability of a bad batch is brought up to

(AlE) o 0.4 .

In order to get at lesast 20 db worth of evidence for proposition /\ 3
how many bad ones would we have to find in a certain sequence of testa?
Well, that's not a hard question to answer., If the number ofzbad ones

satisfied
N
N = 5 + -
b 4

then we have at least 20 db of evidence for the bad batch above where we

- 8tarted. Which shews that if we make enough tests, if just slightly more
than a quarter of the cnes tested turn out to be bad, that will give us

20 db of evidence that we have the bateh in which 1 in 3 are bad. Now

all we have here-ia the probability or plausibility or evidence, whatever
you wish to call it, of the proposition that we got the bad batch.
Eventually, we have to make a decision. We're going to accept it or we're
going to reject it. How are we going to do that? Well, evidently we have

to decide beforeshand that if the probability of proposition /\ reaches a
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certain level then we'll decide that }\ 1s true. If it gets down to
a certain value, then we'll decide that }\ is false. There's nothing in
probability theory which'can tell us where to put these threshold levels
at which we make our decision. This has tofbe based on our judgment as to
what are the consequences of making wrong decisions, and what ere the
costs of making further tests. For example, malking bﬁe kind of error'might_
be very much more serious than making the other kind of errer. That would
have an obvious effect on where we Place our threshold. So we have to
give the robot some instructions such as "if the evidence for }\ gats
greater than + 0 db, then we'll reject this batch., If it goes down as
low as - 15, then we'll accept it.®

Let's say that we'd set some thresho}d limits: we arbitrarily
decided that we will reject the bateh if the evidence reaches the upper
level, and we will accept it if the plausibility goes down to the lower
one. We start doing the teste, and every time we find a bad one the
evidence for the bad hateh goes up 3 db; every time we find a good one,
1t goes down 1 db. The tests terminate as scon as we get into either
.'the dccept. or reject region for the first time. This would be the way
Bur robot would do it if we told him to reject or accept on the basis

thet the posterior probability of proposition /x reaches a certain level,

We could describe this in terms of a "control chart", where we
_ﬂtart &%t -10 db at zero number of tests, and progress to the right,
Thia ip Bhown in Figure 2.
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Now, how does Wald do this? Wald does not mentlon Bayes' theorsm. But

e(ale) db

\XSEE\Z;?\\\\\\\*

Figure 2.

what he actually does is exactly the same, with the one characteristic

1difference which we find in all these comparisons. He always starts out

Tby throwing away his prior evidence. His graphs slways start out at O db.
| Wald's probability ratio test involves the calculation of

iexactly the last term of Equation (24}, This is the thing which he

3N
A. Wald, "Sequential Analysis", (Wiley, 19L7).
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conjectured represents an optimum procedure in the sense of requiring on
the average fewer tests than amy other, but he didn't succeed in proving it.
Anybody who is familiar with Wald's powers as a mathematician can well
imagine how much effort must 1ie behind that simple little remark in his
book. But how does this problem of procf look to our robot? Well, to the
robot this problem doesn't exist at all; it is only a "Scheinproblem.™
To him the fact that we have derived it from Bayes' theorem is already the
proof that it is the optimum way of proceeding bty any sensible criterion
of "optimum." Because to our robot, when you have calculated the probability
of proposition /i on the basis of all the available eviden@e, then you
have got everything about ;\ that is to be had from the evidence,
Obviocusly, you can't do better than this, and there is nothing more to be
said. ~

Does anyone incur any serious error by starting out with zero db?
You might think at first that this is bad in the sense that it is inconsistent
if we do have prior information and in principle this is right. But, of
course, in practice the person using the test still has his common sense,
and 1f he has prior information he will use that information in deciding
where to put the limits, There is nothing in probability theory which
which tells us where to put the limits, but there is something which tells
us which prior probability to assign. So we cannot remove all the
arbitrariness, kut we can remove some of it, by teking into account prior
probability. In practice, the statistician would use his ecommon sense to
@ove the limits up and down and thus take account of his prior knowledge,
Without ever having to admit that there is amy such thing as a "prior

probability."
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We ses that the robot's prediction has been borne ocut in one
more exampile. We are warned not to use Bayes! £haorem for quality-control
teste, because 1t was associated with some metaphysical nonsense 100 yearé
ago. But so was everything else in science. The simple fact is that the
nmost powerful known method of quality-control testing is nothing ut an
application of Bayes' theorsem with uniform prier probability.

Multiple Hypothesls Testing

Let's suppose something very remarkeble happens in this sequential
test. Ouppose we tested sixty diodes and every one turned out to be bad,
hAccording to our equations, that would give us 180 db of evidence for the
proposition that we had the bad batch. e(AlE) would end up at + 170 db,
which is a probability which differs from 1 by one part.in 1017. Now our
common sense rejects this conclusion. If you test 60 of them and you find.
that all 60 are bad, you are not willing to believe that you have a batch
in which only 1 of 3 are really bad., What is it that went wrong here?

Why doesn't our robot work in this case?

Qur robot is still immature. He is reasoning like a l-year-old
chiid does, We've probably all had experience in telking to l-year-old
children, They have enough vecabulary so that you can carry out quite
extended conversations with them; they ﬁnderstand the meanings of the
words, But the really remarkable thing aboui them is that you can say
the mﬁst ridiculous things and they'll accept it all with wide open eyes,
Open mouth, and it never occurs to them to question you. They will believs

anything you tell them. The information which our robot should have put
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into his brain cese was nct that we had either 1/3 bad or 1/6 bad. The
information he should have put in was that Mr. Jaynes sald we had either
1/3 bad or 1/6 bad, Those are entirely different propositions.

The robot should take into account the faect that the information

he had may not be perfectly reliable to begin with. There is always a
small chance that the whole set of initial data that we've fed into the
problem was all wrong. 1In every problem of plausible reasoning this

possibility exists. We could say that generally every situation of

actual practice is infinitely complicated. There are always an infinite

number of pessibilities, and if you start cut with dogmatic iniﬁial
statements which way that there are only two possibilities, then of course
you rusin't expect your equations to make sense in every case. So let's
see whether we can, in a rather ad hoc way, build this fact inte our robot
Just for this particular example.

Let's provide the robot with one more possible hypothesis. Let's
say proposition A neans as before that we have a box with 1/3 defective,
proposition 1% stands for the statement that we have & box with 1/6 bad.
We add a third proposition, [} , which will be the hypothesis that some-
thing went entirely wrong with the machine and it's turning out 99%
defective. Now, we have to adjust our prior probabllities to take this
hew possibility into account. I'm going to give hypoﬁhesia [) a prior
probability (Di){) of 10-6(-60(“3 ). I could write out X as a
verbal statement which would imply this, but I find that when I try to

Write & proposition as a verbal statement, there's always someone in the
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sudlence who manages to interpret it in a way which I didn't intend. I
seem Lo be unable to write verbal statements which are uwnambiguous.
However, I can tell you what proposition X is, with no ambiguity at
all for the purposes of this problem, simply by glving the probabilities
conditional on X, of all the propositions tilat we're going to use in this
proplém. In that way I don't state everything about X, I state everything
about X that 1s relevant to our particular problem. So suppose we start
out with these initial probabilities:

(A X) -1 (1-07

1

(B X) -2 (- | (25)

(D]X) -

A means "we have box which has 1/3 defectives"

where

means "we have box which has 1/6 defectives® (this one was
formerly called simply & )

D means "machine's putting out 99% defectivea".

The factors ( 1 - 10*6) are practically negligible, and for all practical
Purposes, we will start out with the initial values Of' evidence:
~10db  far A
+10db  for 8
- 605;“3 for [
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Let's be explicit and say that.proposition EE stands for the statement
that ¥ Y\ diodes were tested and every one was defective." Now, according
to Bayes' theorem the evidence for propesition D s glven E s 1s

equal to the prior evidence plus 10 times logarithm of this probability ratio:

<(O16) = e+ tolg - -

(In this problem, we're saying that these are the only three hypotheses

that are to be considered and, therefore, as far as this problenm is
concerned, the denial of D is equivalent to the statement that at least
one of the propositions A and [  must be true.} What are these

nunbers now?
| o)
(elpx) = 1900

1s the probability that the first )L are all bad, given that 99% of the
machine's output is bad, This is obtained by application of Rule 2 ang

then Rule 1. We:-also need the probability‘that the first YW} would all be
bad given that we had to have one of the first two hypotheseés. In this

cage, signified by proposition d s A and B are exclusive propositions
and ¢he 6f them must be true. The negative term in Rule 2 vanishes for

this case, then, and

".(Eldx = (EAldX + (EBId)(),
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(elox) = (EJAd)Ald) + (E[Bd)B]d).

The probabﬂify (ElAd) may be abbreviated, for the statement that A

is true implies that D is ralse in our problem the way we've set it
up. 4And so this d is really irrelevant in (E,Ac') . Likewise the

statement that [ 15 true also implies that D must be false, and so
) =(EIRYA) + (Ele)(eld).

If A is true, 1/3 of them are bad, The probability of expefience E
would be (1/3)™, if the total number in the box is very large compared to
WA, . And the probability of A glven D false is the same as

in our first problem, 1/11. If B is true, the probability of E

on that basis would be (1/6)", and the probability that B would be true
given D false is again the same as in our first time -through this

problem. So wWe have

™

1 1\ 10
Elo) = (5) 7 + () 71

Now if we put all these things together, we come out with this expression

for the evidence for proposition D :



- (DIE) = *60+10£oz

LN YR N BTy
11(‘%‘) Llvy 'Z;;‘) B

There are some good approximations we can make to this. If W, is larger

than 5, it's extremely accurate to reﬁlace the above byt
e<DIE) E-49,6+ 473 v -For‘ m>5 , (28)

And if Y\ is less than 3, there's another approximation which is pretty

good:
‘9(‘3'5) E-59.6 +7.73wm for m< 3. w2

Leﬁ'a get some picture of whet this looks like, We start out at minus & c_“g
for the proposition D . The first few bad ones we find each givesius
'about 7 3/k t:“'_b of evidence for the proposition, so it starts coming up

at a slope of 7.7 but then the slope drops, when W gets greater than

five, to L.7. This curve crosses the axis at 10 1/2 apd continues on up
forever at that same slope. So, ten consecutive bad dicdes would be

enough to raise this initially very improbable hypothesis up out of the

md, up 58 db » up to the place where the robot is ready to consider it

Very seriously,
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In the meantime, what is happening to our propositions A and E5
Well, X\ starts off at -10, B starts off at +10. The plausibility
of }\ starts going up 3:JE per defective diode just like it did in the
first problem. But after we've gotten too many bad diodes in a row, we'll
begin to doubt whether the evidence really supports proposition ;\ after
all; propositicn D is becoming a much easier way to explain what's
observed. So at a certain value of Y , the curve for A will stop
going up and turn arcund and go back down.

When T gave these talks at Stanford, I asked the audience to
make guesses and test your own plausible reasoning against our robot.before
you know the answer. Under these conditions, how many consecutive bad
diodes would you have to get before you will begin to be very troubled about
proposition /&_ , and change your mind about whether the evidence really
supports it? Do we have any volunteers? At Stanford I got only one answer,
and the answer was eight. The student who gave this is either a mathematical
genius or our robot in the flesh, because the turning point according to our
équations, to the nearest integer, is just eight. After WA diodes have
been tested, and all proved to be bad, the evidence for propositions }X

and [2 » and the approximate forms, are as follows:

e(AlE) = —10 + 10, )"
L En ey

4

-10 + 3 wm tor wm L 7 (30)

112

49,6~ 4.73m for m> B



-~ (31)

£9.6-7.33m for m> 14

These results are summarized in Figure 3., We can leamn duite a
bit about multiple hypothesis testing from studying it. The initial
straight line part represents the solution as we found it before we had
introduced this proposition [) » and both lines ﬂx and E3 would
be straight indefinitely on the first solution. When we have intréddced
D , Starting down here at minus 60 db » the plausibility of (O
will increase, with a change in slope between YN = 3 and Y1 = 4, and
it continues to increase linearly from then on. The change in plausibility
~ of propositions {3 and A starts off just the same as in the previous
problem; the effect of proposition [ does nob’appegrlunpil we have
reached the place where [) crosses ES . At that point, suddenly
the character of the ;\ curve changes. The /\ curve, instead of going
on up at this point (at¥Y¥i= 8) has reached its highest value of 10.} (ib .
Then, it tumrns around and comes back down. The E5 curve continues on
linearly until it reaches the place where A  and [0 have the same
plausibility, and at this point it has a change in slope.l From then on,

it falls off more rapidly.
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Number ol tests

——— e ——

30 4

€ Ssuodsey:

Figure
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Now what 15 going on here? When D has reached the Bamé
plausibility as B » that makea. 8 big effect on A « The changse in
plausibility of A due to one more test arises from the fact that we
are testing hypothesis A against two alternative hypotheses B and
D . But initially [ 1is so mch more plausible than [) , that for
all practical purposes, we are simply testing A against B . After
enough evidence has accumulated to bring the plausibility of D up to
the same level as B » then from that point on, A is essentially
being tested against D instead ofB. All of these changes in slope
can be interpreted in this way. Once we see this principle, we see the
same thing is going to be true Jno matter how many hypotheses we have. A
change in plausibility of any one hypothesis will always be approximately
the result of a test of this hypothesls against a single alternative.
The single alternative being that one of the remzining hypofhesea which
is most plausible at that time. Whenever the hypotheses are separa.ted
by about 10 db s Or more, t.h.en very acc:u.r'aat.cal;,rJ multiple hypothesis
testing reduces to several simultaneous repetitions of testing one
hypethegis against a single alternative. So, seeing this, youl can
construct curves of the sort shown in Figure 3 very rapidly without even
bothering to look at the equations, because what would happen in the two
hypothesis case is easily seen once and for all.

The rule for drawing these curves is exactly the one that
| electrical engineers use for drawing frequency response curves. They .

find that it is convenient to plot response in c“;) against the logarithm
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of frequency. In certain frequency reglons, you may have a flat response, then
one of the RC networks, perhaps in your amplifier, starts to cut off. Then
you know that the response will drop off, say 6c“3 per octave in a certain
frequency range. The place at which this drop starts is determined by
squations of the formwRC = 1, Maybe another network comes in, and after
that the response will go down 12 C[b per octave, and so on. The response
curve could be drawn as a number of straight 1_ine segments very eagily, as

shown in Figure L.

Response ,db ——

log f —

Figure 4.

The rule to round the curve off correctly is that imédiately under the
intersection of the two straight lines we're down 3 (_'_“j + This rule is

exact both in our case and in the filter case.
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Figure 3 shows an interesting thing. Suppose we had decided
to stop the teet and accept hypothesis }\_ if the evidence reached plus
10:“) . You see, it would reach plus lOc“:) after about six trials. If
we Stopped the testing at that point, then of course we would never see
the rest of this curve and see that it really starts going down. If we
had comtinued the testing beyond this point, then we would have changed
our mind again. At first glance this seems disconcerting, but notice that
it is inherent in all problems of hypothesis testing. If you stop the
‘test at any finite number of trials, then you can never be absolutely sure
that you have made the right decision. Tt 1s always possible that still
more tests would have led you to change your decision.

kvidently, we could extend this example in many different
directions. Introducing more "discerete! hypotheses would bé perfectly
straightforward, as we have seen. More interesting would be the introduction
of a continuous range of hypotheses, such as:

He = "The machine is putting out a fraction £ defective." Then
instead of a discrete prior probability distribution, oﬁr robot would
have a continuous diatributibn in O < f f; 1l, end by Bayes' theorem
he would calculate the posterior probabllity distribution of £, on the
basis of the observed samples, from which various decisions could be made.
St111 more interesting, arnd more realistic for actusl Auality-control
8ituations, would be to introduce the posaibility that f might vary with
time, and the robot's job is to make the best possible inferences abbut

Whether the machine 1s drifting out of adjustment, with the hope of
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correcting trouble before 1t became seriocus. 4 simple classification of
diddea as bad and good is not too realistic; there is actually a continuocus
gradation of quality, and by taking that into account we could refine these
methods, There might be several important properties in addition to the
maximum alloweble inverse voltage (for example, forward resistance, noise
temperature, rf impedance, low-level rectification efficiency, etc.), and we
might also have to control the quality with respect t¢ all these. There |
might be a great many different machine characteristics, instead of just Mg,
about which we need plausible inference.

You see that we could easily spend years on this problem. But
let me Just say that although the details can become arbitrarily complicated,
there is in principie no difficutly in making whatever generalizaﬁion you
need. It requires no new principles beyond what we have already given. In
the problem of detecting a drift in machine characteristics, you would want
10 compare our robot's procedure with the ones described by Shewhart.* Tou
would find that Shewhart's methods asre a pretty good approximation to what
our robot would do; in some of the cases involving a normal distribution
they are exactly the same. In statisticians! Jlanguage, the reason for
this is that the mean value and variance of a sample drawn from a normal
distribution are "sufficient statistics® for estimation of the mean and
variance of the parent distribution. Translated into our language: in

applying Bayes' theorem, the robot always finds that the mean and variance

¥ W. A, Shewhart, "Economic Control of Quality of Manufactured Products,
(van Nostrand, N. Y., 1931}
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of the sample are the only properties of the sample he needs in making
inferences about the machine. These cases are, incidentally, the dnly
ones where Shewhart felt that his procedures wers fully satisfactory.,

I don't want to go into this further now, becausa this is really
exactly the same problem as that of detecting a slgnal in noise, which we
will study later on. Also, it is exactly equivalent ﬁo the problem of
deciding from 4 set of astronomical observations whether there is some
unknown systematic effect, or whether discrepancies should be blamed on
errors of observation. Laplace was applying this theory 1% years ago in
Just that way - to help him decide which astronomical problems were worth
working on. This use of probability theory led him to some of the most
important discoveries in celestial mechanics.

Unfortuna;ely, the general field of quality contrel is still not
very highly developed or unified, and one reason for this is reluctance
to use Bayes' theorem the way Laplace did. But considerable progress is
being made currently. After fifty years of rejecting Laplace’s whole
conception of probability theory, statisticilans have recently rediscovered
some of his methods. They now call it "decision theory," and we will

consider it later.
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LEGTURE 3

Queer Uses for Bayes' Theorem

1. J, Good” has shown how we can use Bayes! theorem backwards
to measure ouf own strengths of belief about propositons. For example,
how strongly do you believe in extrasensory perception? Woat probabllity
would you assign to the proposition that Mr, Smith has perfect extra-
sensory perception? He can guess right every time which number you are
thinking of. Well now, to say zerc - that, of course, 1s dogmatic.
According to our theory, if you start out at - 00 db, this means that
you are never going to allow your mind to be changed by any amount of
evidence, and you don't really mean that. But where ig our strength of
belief in a proposition like this? Our brains work pretty much the way
thls robot works, but we have an intuitive feeling for plausibility only
when it's not too far from O db., We feel that something is more than likely
to be s0 or less than likely to be so. We get fairly définite feelings
about that. So the trick 1s to imagine an experiment. How much evidance
would it take to bring my state of belief up to the place where I wag
very worried about it? Not to the place where I believed it - that would
overshoot the mark, and again we'd lose our resolving power. How much
evidence would it take before you were very worried and seriously considering
the possibility of extrasenscry perception?

We take this man who says he has extragensory perception, and we

will write dosm some numbers from 1 to 10 on & plece of paper and agk him

¥ I. J. Good, "Probability and the Welghing of Evidence," (G, Griffin & Co.,
Lid., London, 1950) '
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to guess which numbers we've written down. We'll take the usual precautions
to make sure against other weys of finding out. All right, if he guesses
the first number correctly, of course we'll say "you're a very lucky
person, but I don't believe it." And if he guesses two numbers correctly,
we'll still say "you're a very lucky person, but I don't believe ft."
By the time he's guessed four numbers correctly - well, I still wouldn't
believe it. So my state of belief is certainly lower thap - L0 db. How
many numbers would he have to guess correcfly before you ﬁould really
seriously consider the hypothesis that he has exirasensory perception? In
my own case, I think somewhere around 10. My personal state of Belief is,
therefore, about - 100 db. You could talk me into a ¥ 10 change fairly
easily, and perhaps ! 20; but not rmuch more than that.
; It i1s interesting also to apply Bayes' theorem to various
situations in which we can’t really reduce it to numbers very well, but
gtill it shows automatically what kind of information would be relevant to
Eglp us do plausible reasoning. Suppose someone in New York City has
Eommitted & mrder, and you don't know at first who it is. Suppose there
:?e 10 million people in New York City. On the basis of no knowledge but
this @ (Guilty I)( ) = - 70 db is the plausibility that any particular _
TE?PSOH is the gullty one. How much positive evidence is necessary before
?B decide some man should be put away? Maybe + L0 db; although your first
Eﬁaction will be that that is not safe enough. I have my suspicions that
8ctual juries are not even that cauticus. So, if we took + L0 db Sﬁarting
?ﬁt from - 70, this means that in order to get conviction you would have

0 produce about 110 db worth of evidence in favor of the guilt of this
zlrticular person.
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Suppose now we learn that this person had a motive, What does

that do to the plausibility of his guilt? Well, Bayes' theorem says

X } (Motive'Guilty)
€(Guilty|Motive) = € (Guilty|X) + 10 108, ot ive [Not Ouilty) (32)

g - 70-10 Log (MotiveINot Guilty)

gince (MotiveIGuilty) 2z 1; 1.e., we consider it extremelf_unlikely that
the crime had no motive at all, Thus, the significance of learning that
the person had a motive depends almost entirely on the plausibiiity
(MotiveINot Guilty) that an innocent person would also have a motive,

This evidently agrees exactly with our common sense; if the deceased: were
kind and loved by &ll, hardly amyone would have had a motive to do him in.
Learning that, nevertheless, our suspect did have a motive, would then be |
very significant information. If the victim bad been an unsavory charactef,
who took great delight in all sorte of foul deeds, then a great many people
would have a motive, and learning that our suspect was one of them, is not
so significant. The point of this is that we don't really know what to
make of the information that our suspect had a motive, unless we also

know something about the character of the deceased, Bul how many members

of juries know that? '

Suppose that a very enlightened judge, with powers not given to

Judges under present law, had perceived this fact and, when testimony asbout

the motive was introduced, he directed hie assistants to obtain for the
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Jury the moat reliable data possible on the number of people in New York

City who had a motive. This number was N_. Then

N -

m
(MotiveINot Guilty) =  (humber of people in New York) (33)
and Equation (32) reduces to
e(Guilty]Motive) =~ 70 + 10 log (107/8) = - 10 log Ny« 0 (34

You see that the population of New York has cancelled out of_the equation;
as soon as we¢ know the number of people who had a motive, then it doesn't
matter any more how large the city was,

Well, you can go on this way for a long time, and I think you
will find it both enlightening and entertaining to do so. For example,
we now learn that the suspect had bought a gun the day before the crime.
Or that he was seen at the scens of the crime shortly before. If you have
ever been told not to trust Bayes' theorem, you should follow this example
& good deal further, and see how infallibly it tells you what information
would be relevant, what irrelevant, in plausitle reasoning. Even in
gituations where we would be quite unable to say what numerical values
should be used, it still reproduces qualitatively just'what your: common
8ense tells you.

Interpretation of Random Data From Particle Counters

Now I would like to consider some applications of Bayes' theorem,

and comparisons with maximum likelihood, which are lesa trivial mathematically,
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and also correspond pretty closely to problems actually encountered by
experimental physicists. Suppose we have a radiocactive scurce (say 0060,
for example), which 18 emitting particles of same sort (say the U -rays
from 0060); There is a counter through which some of these particles pass,
and from observing the number of counts registered, we want to infer as
much as we can about the number of particles which passed through the counter.

First, we have to define the efficiency of the counter, which |
I'1l denote by "a.!" By this I mean that each particle passing fhrough the
counter has independently the probability "a" of producing a count. The
line of reasoning by which we would determine "a" from measurements on
the counter requires principles of probability theory which we have not
yet discussed (although intuitively, of course, you have no trouble ai 2ll
in seeing how you would do it). For purposes of this example, we'll just
suppese that Ya" is a given number.

Now 1f we knew that n particles had passed through the counter,
the probability, on this evidence, of getting exactly ¢ counts, is obtained-
by repeated applications of.our Rule 1 and Rule 2, in a way that is given
in all the textbooks under the heading, "Bernoulli Trials.® The result is

the binomial distribution

T

(th) _ C ac (1“ a)n“c . , _ (39)

In practice, there is a question of resolving time; if the particles come

too close together we may not be able to see the counts as separate; But
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we'tll disregard those difficulties for this problem, and imagine that we
have infinitely good resolving time (or, what is really the same thing,
that the counting rate is so low that there is negligible probability of
this happening).

Now let's also introduce a quantity P which is the prebability,
in any one second, that any particular nucleus will emit a particle passing
through the counter. We're going to assume the number of nuclei N 30
large and the half-life so long, that we don't have to consider N as
a variable for thi'.s preblem. S0 there are N nuclei, each of which has
independently the probability F) of sending a particle through our
counter in any one secor}d. The quantity P is also, for present purposes,
just a given number, because we have not yet seen in terms of probabili'ty
theory, the line of reasconing by which ';Je could convert experimental
measurements on Co® into a numerical value of P (but again, you see
intuitively without any hesitation at all, that p i5 a way of describing
the half-life of the source). | |

Suppose we were given N and P ; what is the protability, on
this evidence, that in any one second exactly M, particles will pass
through the counter? Well, that's exactly the same mathématical problém

88 the above one, Bo of course it has the same answer:

NY n
(nINP) = 'nIP (4- P)N ‘ | .(36)

Rt in this case there's a good spproximation to the binomial distribution.

Because the number N is enormously large and P 13 enormously small,
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' In the limit when N-» 00, P> 0 , NP = S = const., a mathematical
argument which is gilven in every textbook shows that the bincmial distribu-
tion goes into the simpler Poisson distribution:
~
(n[Np)  (n]s)

and it will be handy for us to take this limit., The number S is

~s n .
_ € S L (37)

1!

essentially what the experimenter would call his "source strength,"

In &1l of these talks, I am not going to bother repsating
mathematical demonstrations which you can find in any one of a dozen text-
books, I think that most of them are old stuff to you. But if any of these
mathematical properties are new to you, let me just say that they are all
very elementary, and you can work them out for yourself in less time than
it would take to look them up.

Now we have enough "formalism" to start solving protlems. Suppose
we are not given the number of particles ‘v in the counter, but only the
source strength & . What is the probability, on this evidence, that we
will see exactly C counts in any one second? A hapdy trick, which almost
always works in problems of this sort, is to resolve the proposition Cs
into a set of mutually exclusive alternatives; then apply Rule 2, and then
Rule 1. 1In this case, the propositions ¢V for all Y\ form such a set,

30 We can write

(c|s) = é (enls) :;(CIY)S)(HIS) ‘ (36)
= 3 (enpls).
N=o
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Evidently, if we knew the number of particles in the counter, it wouwldn't

matter any more what & was, so (cl‘ns)a(clh) . Since we have worked

out both (C'H) and (‘n 'S) » we just have to substitute them in, and we get

| x Hec|[ 55 N
(c]s) = n__Fa) ||[ES
cln-c)l nl

n=C -

N~ S
- J

) E_2_’9“30 <© j [s(1-a)] :,esfsa) es(d-a)

¢! & (m-c)! C/
o ~$d < |

e (sa)
(C|S) = y ~ (39)
C

This is a Poisson distribution with mean value

) | |
c EZ:C(C'S) = Sa . (10)

C=¢

Well, our result is not at all surprising. We have the Poisson
distribution with a mean value which is the product_ of the source strength
times the efficiency of the counter. Without going through £he analysis,
of course, that's exactly the guess we would make; but I dgn't think it's
obvious that that would also be the result that you get from calculation.

You'd have to go through the calculstion to see it; at least, I would.
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In practice, the thing which is known is (, , and the thing
which is unknown would be Y\ ., If we knew the source strength S s
and also the number of counts ( , what would be the probability, on
that evidence, that there were exactly %Y\, particles passing through the
counter during that second? This is a problem which arises all the time in
physics laboratories, because we may be using the counter as a "monitor,"
and have 1t set up so that the particles, after going through the countef,
then initliate some other reaction which is the one we're really studying.
Not if the particles are Y -rays, I'm afraid, but with almost every
other kind of particles, this is an arrangement which has been used many
times. It is important to get the best possible estimates of W, ,
because that is one of the numbers we need in calculating the cross-section
of this other reaction. Well, this is exactly the sort of problem for
which Bayes! theorem was invented, so let's turn it over to our robot and

see how he handles it. The probability he needs is

(nles) =(nls) EC;IIZS))) = (%I(i{(;)m - ()

Again, everything we need for this calculation is on the board, so we just

have to substitute:

e nd a°(1-'a) -~
(nlcs) { ] }

n! ¢/ (n~c)f

&5 (sa)©
¢l | (42)

—

8—8(1-8) [S(‘j-a)]n‘- c
(n-c)!
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So ydu see the interesting thing is that we still have a Poisson
distribution, with parameter S(‘l- a) » but shifted upward by (, ;
because of course, vt could not be lesa than € . The mean value of this

distribution is

n?f :Zﬂ(ﬂltﬁ): C +S(1--a), (43)
N

All right, So what is the best guess the robot can make as to the number
of particles responsible for these (1, counts? In all problems of this
sort where you want to finzlly make a definite decision, you are going to
announce one number. These is a probability distribution which describes
the robot's state of knowledge as to the number of particles. The number
which he will publicly announce as his guess, of course, will'depend on
what are the consequences of being wrong. If we tell him to take as a
criterion that he should minimize the expected square of the error, it is
very well known that this leads to taking the mean value T. of the
dlstribution as his guess. If we ask him to state the one in which he
believes most strongly, then he will take the most probable value, But
the difference is negligible in this case, because in a Polsson distribu-
tion the most probable value always lies between U and (’F[ - 1) . So,
let!s suppose that the mean value is the one he is to announce.

At this point, a statistician pays a visit to our laboratory.

We invite him to give us his best estimate as to the number of particles.
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He will, of course, use maximum likelihood because his textbooks have told
him that, "From a thecretical point of view, the most important general
method of estimation so far known is the method of maximum likelihood.™
(Cramer, p. 498). His likelihood function is, in our notation, (Q"}’L) .

The value of Y\ which maximizes it is found, within one unit, from

(CITL) _ M (1- 3) = 4
o, (Chy_q) "~ ¢ )
C
n = @ ——
( )m'am ikelihood a (kL)

You may find the difference between these two estimates rather
startling, if we put in some numbers. Suppcse our counter has an efficiency
of 10 per cent; in other words, & = 0.1, and the source strength is S = 100
particles per second, so that the expected counting rate according to
Equation {40) 15 € = 10 counts per second. But in this particular second,
we got 15 counts. What should we conclude about the number of particles?
Well, probably the first answer one would give without thinking is that,
if the counter has an efficiency of 10 per cent, then in some sense each
count muat have been dus to about 10 particles; so if.there were 15 counts,
then there must have been about 1% particles. That is, as a matter of
fact, exactly what the maximum likelihood estimate (LL) would be in this
case. DBut what does the robot tell us? Well, he says the_ best estimate is
only
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n =15+ 100(1-0.1) =15 + 90 =105 .

More generally, we could write Equation (L3) this way:

if you see '{% more counts than you should have in one second, according
to the robot that is evidence for only ﬁi more particles, not IO'EL .

This example turned out to be quite surprising to some experimental
physicists engaged in work along these lines. Let's see if we can reconcile
it with our commen sense. If we have an average number.of counts of 10
per second with this counter, then we would guess, by rules well known, that
maybe a fluctuation in counting rate by something like the square root of
this, ¥ 3, would not be at all surprising even if the number of incoming
particles per second stayed strictly constant. On the other hand, if the
average rate of flow of particles is8 & = 100 per second, the fluctuation
in this rate which would not be surprising is about ? ’\/356—- 110, Bt
this corresponds to only ! 1 in the number of counts. 'So, you see that an
abnormally large number of counts 1s much essier to blame 6nto the counter
than the particles.

This shows that you cannot use a counter to measire fluctuations

in the rate of arrival of particles, unless the counter has a very high
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efficiency. If the efficlency is high, then you know that practically
every count corresponds to one particle, and you are reliably measuring
the fluctuations in team current. If the efficiency is low, fluctuations
in counting rate are much more likely to be due 4o ﬁhings happening in the
counter than to actual changes in the rate of arrival of particles.
What caused the difference between the Bayes and maximum likelihqbd

solutions? Tt's due to the fact that we had prior information contained in

this source strength & . The maxirmmm likelihood estiﬁate simply maximizes
the probability of getting C counts, given " particles, and maximizing
that gives you 130. In Bayes' solution, we will multiply this by the prior
probability, which represents our knowledge of the laws of radiocactivity,
before maximizing, and we'll get an entirely different value for the
estimate. Prior information can make a big change in the way we interpret
data in a random experiment.

Now, wWe really have to apologize to the statistician at this point;
what we dld was nol entirely fair to him. Because, of course; this number
\\S# does represent a substantial amount of quantitative information which
we didn't let him use. I think that as scon as this oomparison was out,
his common sense would lead him to agree readily enough that in this
problem the Bayes estimate was far superior to the maximum 11ikelihood
estimate, and he would not object to the use of Bayes"theorem. He would
say that in this case we did have a good prior probability distribution,

With an evident frequency interpretation (which we have not so far méntionﬂd),

S0 that Bayes' theorem is perfectly valid.
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But now I want to extend this problem a little bit, to a case
where there is no quantitative prior information, ut only one rather vague,
qualitative fact. We are now going to use Bayes' theorem in four problems
where the statistician'says categorically that Bayes' theorem is nonsense,
and again comparse its predictions with maxdmum likelihood.

Two observers, who have different amounts of prior information
about the source of the particles, are watching this cbunter. The source
is bidden in another room which they are not allowed to enter. Mr., A
has no knowledge at all about the source of the particles; for all he knows,
it might be an accelerating machine which is being turned on and off in
an arbitrary way, or the other room might be full of little men who run back
and forth, holding first one radioactive source, then another, up to the
exit window. Mr. B has one additional qualitative fact; he knows that the
source is @ radiocactive sample of long lifetime, in a fixed position. But
he does not know anything about its source strength (except, of course,
that 1t is not infinite because, after all, the laboratory is not being
vaporized by its presence. Mr. A also notes this fact.) They both know
that the counter efficiency is 10 per cent. Again, we want them to
estimate the number of particles passing through the counter, from
knowledge of the number of counts. We denote their prior information by

XA ) XB s respectively. |
All right, we commence the experiment. During the first second,
C1 = 10 counts are registered. What can A and B say about the nﬁmber

TL, of particles? Bayes' theorem for Mr, & reads,
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(Q'nf)(fa) _ (“JXA)(CJ“J
CHPN T & N

(e ) = (n)X,)

The denominator is just a normalizing constant, and could also be written,

)= 2o emnlx) -

But now we seem to be stuck, for what is (?11| ><}1) ? The only information
about 711 contained in A s that 711 is not large enocugh to
vaporize the laboratory. How can we assign prior probabilities on this kind
of evidence? This has been the point of controversy for a good long time,
for in any frequency theory of probability, we certainly have no tasis at
all for assigning the probabilities <%11|>QA)'

Now, of course, Mr. A is going to assign a uniform prior
probability here, and our statistician friend will object on the grounds
that this is a completely unwarranted assumption. He will say, "How do
you know that all values of 'TLﬁ are equally likely? They might not be
equalily likely at ail. You just don't know, and you have no basis for
appiying Bayes' theorem until you have found the corre;t prior probability
distribution.™ Note that this is not because our friend has any particular
dislike for a uniform distribution; for he would object just as stroﬁgly
(and in fact, I suspect, even more strongly) to any other prior probability
asgignment we might propose to use. It would always seem, to him, like an

unwarranted arbitrary assumption which would invalidate all our conclusions.
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I am belaboring this point because it lies at the heart of the
most persistently held misconception about the Laplace-Bayes theory.

Unless we understand clearly %hat we're doing when we assign a unform
prior probability, we're pgoing to be faced with tremendous conceptual
difficulties from here on, This is what Mr. 4 replies to the statistician:

"four objection shows that the word 'probability' has entirely
different meanings to you and me. When you say that I cannot apply Bayes'
theorem until I have determined the correct prior probability distritution,
you are implying that the event ?11 possesses some intrinsic 'absolute!
probability. I deny this. It seems to me that the only meaning of the
word 'probability’ which makes any sense at all, is simply the best
indication of the truth of a pfoposition, based on whatever evidencs we
have. To me, a probability assignment is not an assertion about experience,
real or potential, When I say, 'the probability of event E is p,' I am
not deseribing any property of the event. I am describing my state of
knowledge concerning the event.

"Now, evidently, each of us believes that the other is suffering
from a confusion of subject and object. But we can never settle this by
philosophical arguments about the meaning of words. The only real way of
Bettling the question, which of these conceptions of probability is best,
is to put them to the test in specific problems. You say that my uniform
prior probability assignment is foolish., If so, then it ought to lead to
8t least one foolish result. So I'm just going to <dignore your warning and
€0 ahead with my calculation. If I get a foolish result, then from studying
how it happened, I can learn something. But if I get a sensible result,

then maybe you are the one who can learn something.
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"According to Bgyes' theorem, I need to find the probability

asaignment (’]”11 XA) which represents my state of knowledge before I

observed that {, = 10 counts. At that time, ¥l, might have been 0, 1,

1
137, 2069, or 105 for all I knew. There was nothing in my prior knowledge
which would justify saying that any one of those was more likely than any
other, and assigning the same probability to all of th.em is simply my way
of stating that fact. ?’L1 might easily have been as large as 107, for
all I knew. But there is some upper limit N s for which I knew that
YL1 { N . Tor example, if TL‘I had been 101010, then not only the
laboratory, but our entire galaxy, would have been vaporized by the energy
in the beam. I could justify a considerably lower value of N than that,
and if it turns out to make a difference in my conclusions, I'll have to
think harder about just how low I could take it., But Eefore golng to all
that work, I'd better find out whether it does make any difference. So,

I'11 just take A
ﬁ 3 O..<..T11 <N

(n 1] )(A) = (18)

O, N£&n,

and see what Bayes' theorem gives me."
Well, Mr. A turns out to be lucky, for nicely enough, the 1/N

cancels out of Equations (1i6), (47), and we are left with



N ) s 05n <N
(CiIT11
(’m’CTXA) = ﬂ; 1 ? )
O y NEn,
S

ﬂ_) attains
f |

its maximum at VL= C/a (= 100, in this problem}. For T\ large

. ¢ \& 4 -an
compared to this, (CITL) falls off like Y (‘T-a) ~T e » Therefere,

We have noted, in fquation (Ll), that as a function of T , (C_‘

the sum in (L9) converges so rapidly that if N is as large as a few

hundred, there is no appreciable difference betwesen

N~1 %
(C’h) and Z (C]Tl) .

S0, unless the prior information could justify an upper limit N lower
than 200, the value of N turns out not to make any difference. The

sum 0 infinity is easily evaluated, and we pet the result

(nf’qXA): a(C‘,m): :1 acﬂﬂ(ﬂ-ajﬁr - ,  {(50)

1

S0, to Mr. A, the most probable value of 'H, is the same as the maximum-

likelihood estimate:
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(n“)most prob. = _g- = 100 (1)
A

while the mean value estimate is caleulated as follows:

Cov 1 M- Cy
1 ¢ “ZJ c/(n c.-1)/ 0 (1-8)

n,=C,
o 17y V= C,m 1
..——._ac;"”{(*!-a)(gﬂjz .. (1-3)
'H1:|C4+4 Q11- 4
The sum is equal to
o o ~C,~2 W
Z <m+f21+1 (h- a) Z( S“ g (1‘3)
m= o m NN 124
- -C,-2 {
= 1_(1"6) B ac1+2

and, finally, we get

_ - Co+ - |
(ﬂf)A e (e S 2 TS =109. (=

o a

Now, how about rr. B? Does his extra knowledge help him here?

He knows that there is some definite source strength & = . And, because
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the laboratory is not being vaporized, he knows that there is some upper

limit So . He will assign a uniform prior probability density for

O<S<So ,an;icobtain Sc
1
() = LaldE)ds =1 6ns)ds
o} o
S, - {53)
1 T e“'s
o ot
- g | s
0

Now if ?11 is appreciably less than So » the upper limit of
integration can for all practical purposes, be taken as infinity, and the

integral is just unity. So, we have

XEJ &= (S’XB) = —é—' = Cons-{;J ".{.‘ ﬂ4<< So ~(5L) |

(Tl"l'

In putting this into Bayes' theorem with C} = 10, the significant range

of values of '}’L1 will be of the order of 100, and unless So ts lower |
than about 200, we will have exactly the same situation as before; Mr. B's
extra knowledge didn't help him at all, and he comes out with exactly the

same distribution and the same estimatest

. (’anXg) = (n1|C1XA - a({:1 n1) , (55)
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Jeffreys* has proposed a different way of handling this prdblem.
He suggests that the proper way to express ignorance of a continuous variable.
known to be positive, 1s to assign uniform prior probability to its

logarithm:
1
= (56)
Glx) = B

0f course, you can't normalize fhis, but that doesn't stop you from using
it, I'll have to admit +that I have never been able to follow the argument
which Jeffreys advances in support of/this rule; but, in the spirit of

this problem, we can put it to the test and see what it gives. The

calculations are all very easy, and we find these results:
1 A I ) Cq ( ’ 3
= — = ——— = — . (1
<n1l>(1) . J(CJ)(J) 01 :(m "}XJ e “1)

This leads to the most probable and mean value estimates:

C,- 1+ A (58)

(n,) - = of

.1 inoﬁjlfr b. 2
=) . ¢S | :
(ﬂt% = 3 ‘oo, - 59)

The amusing thing emerges that Jeffreys' prior probability ruls just lowers

the most probable and mean value by 9 each, bringing the mean value right

¥ W, Jeffreys, "Theory of Probability," (Oxford, 1939); Chapter IIT.
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back to the maximum likelihood estimate! This comparison 1s valuable in
showing us how little difference there is numerically between the
consequences of different prior ﬁrobability assignments which are not
sharply peaked, and helps to put arguments about them into proper
perspective. We made a rather drastic éhange in the prior probabllities,
in a problem where there was really very little informatioﬁ contained in
the result of the randem experiment, and it still made less than.lO'per
cent difference in the result. In a more realistic probtlem where a random
experiment is repeated many times to give us a good deal more informatioﬁ,
 the difference would be very much smaller still. 3o, from a pragmatic
standpoint,'the arguments about prior probabilities usually gmount %o
quibbling cver pretty small peanuts. From the standpeint of principle,
however, they are very important and have to be thought about a great deal.

Now we are ready for the interesting part of this problem. For -
during the next second, we see &7 = 16 counts. What can Mr. 4 and Mr. B
now say about the numbers Y11 R 712‘ s of particles respoﬁsible-for _(1i ’
C:z 7 Well, Mr. & has no reason to expect any relation between what
happened in the two time intervals, and 8o to him the increase in Sounting
rate is evidence only of an increase in the beam intensity. His calculation
for the second time interval is exactly the same as before, and he will give
as the most probable value |

Ca, _

(nz)mos+ pro b. - _5_ = 160 (60)
_ /; ‘

and his mean value estimate is
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(ﬁz) = c,,+;-a =169 , (61)

Knowledge of CZ. doesn't help him to get any improved estimate of T'l_l s
which stays the same as before,

But now, Mr. B is in an entirely different position than Mr. ﬁ;
hie extra qualitative information auddenly becomes very irniaortan‘b. For
knowledge of C, ér?ables him to improve his previous estimte of M ) .

Bayes! theorem now gives

(.

f

| (Cz.,n.fcq Xa)
(ﬂ1lc1 XB) (Cﬂ"c‘4 Xa)

i (c l” Xs) (62)
-'”(“’ k) (cife.Xq)

Again, the denominator is Just a normalizing constant, which we can find

by summing the numerator. We see that the significant thing is
(C-z.,”,, XB) + Using our trick of resolving Cz into mutually

exclusive alternatives, this is

(.%‘nfxﬁ) Y\{XB)AS = (c,,

Q o

= (CZI s)(s‘n ) ds

sn,)(sln1)ds

(63)
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We have already found (CZ]S) in Equation (38), and ve need only

(sfn,) = Elxs ) (hjlx)) ﬂ"—{(ﬂ,fs), itn, &S 6

where we have used Equation (54). We have found (‘V\ ’S} in Equation (37),

B0 We have

- GIr- ' - Ca
(c ,hx )._. e 2(sa) " (| & ds = n+C, 3 s
e ZC"'/ | RG] Ca (‘I»h’:;;w‘wl_z

o | | . |

‘Now we just substitute (55) and (65) into (62), carry out an easy summation
to gat the denominator and the result is |

- lcz, «X) (‘za)cnq'ﬂ @1+Cz)/ (1 a) (;6).

o) (-aY 4+a)‘ "h-e) \ira

To find Mr. B's new most probable value of 11‘ » We set

('”ICCX) __:711"‘(:1. 1-d :__1

(r-1lccx)) m-c, 4+a 3
or, :
| S T 1-4a |

() nast e, = =+ (€= -¢,)

‘) " g: "_bl 3 ( 23 (67)
_ C4 +Cﬂ. + Q "'C&
Ra Z

127 .,
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His new mean-value estimate is also readily calculated, and 1is -équal to

. C -a -
(H1) e (Cz.“’ -1 ) =S |
B a - 24

Z
C,+C, +4 -3 + c, - Cg (68)
123 A
= 134. & .

You see that boih estimates are considersbly raised, and the difference
between most probable and mean value is only half what it was before.
Evidently, this agrees pretty well with common sense; because we see
intuitively without any calculatifon, that to Mr., B knowledge of both 01
and C g enables him to make a better guess about the source strength & .
If he could obtain the number of counts in a great many dlfferent seconds,
C_s , Caf s C’S + « + 5 he would be able to do better and better, and
eventually his estimates of particls numbers would be indistinguishable
fronm those we found from Equation (42), in which the source _Bt.rength was
considered known. This, of course, corresponds exactly to t.he. procedurs
an experlimental physicist would use; he would want to get é.s much data as
possible, use the entire run of data to estimate the source strength, then
use this best value for further predictions. I won't go through the details,

C1)5 (SICICJ: (S’Cﬂczca) 1ee

and it would turn out that as M — o0 , the distribution (S lc. o j
) 1 L1

but you can easily calculate the distributions (5

becomes sharper and sharper, the most probable and mean value estimates
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of & get closer and closer together, and in the limlt we would have just

a &-functions _
(s[c1 C .c_m) *_.'__._;._S<s-s’)

whers

S/ — (!l C1+Cz+" ta+Cm (
= ’ 69)
' W —=~ OO ma

If we want Mr. B's estimates for le‘ , then from symmetry we

Just interchange the subscripts 1 and 2 in the above equations. This gives

I

(nz)h’losﬂ Pro’b. 133 | 7o)
. B |

3
X
m '

I

1379.5 . (71)

There 1s still one feature missing in the compariscn of Mr, 4
and Mr., B in this problem. We would like to have some measure of the
degree of reliability which they attach to their estimates, especially in
view of the fact that thelr estimates are so different. Clearly, the best

way of doing this would be to draw the entire probability distributions

(n, C2¢, X,O = (“1 Cchxg)

and from this make statements of the form, "90 per cent of the posterior



«10L~

probability is concentrated in the interval o _,<_ 'ﬁ‘, 5 (3 -« AB wve
will see later in & different problem, the results of doing this would be
practically the same as those the statistician would get by an entirely
different .method » called the method of confidence intervals. But, for
present purpeses, we will be content to give the standard deviations of
the various distrimtibns we have found., An irequallty due toc Tchebycheff
then asserts that, if @~ 4s the standard deviation, then the amount P

of probability concentrated between the limits ('_}1-1 + t G") satisfies

P >[4 1) . (72)

This tells us nothing when t _4:_ 1 s but 1t tells us more and more as
incr_'eases beyond unity.

The variances O~ “ of all ths d;strib;tiona we have found are
readily calculated. In fact, the calculatlon of any moment of these

distributions is easily performed by making use of the general formula

m+ay d | 1 B (13)
v mx = (X s Jx|cq, o2
é " dX) (1x)2rt -

which we have already used in calculation of the mean value of (52). For
Mr. 4, and Mr. B, and the Jeffreys prior probability distribution, we find

the variances
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(71)

Var (WIC;,Q Xg) . @1 = HE:,O - az) (75)

a‘L (76)

and the variances for le' are found from symmetry.

This has been a rather long discussion, so let's summarize all
these results in a table. I'll give, for problem 1 and problem 2, the
most probable values of number of particles as found by Mr. A and Mr. B,

and also the {(mean value} } (stendard deviation).

Problem 1 Problem 2
Cl = 10
¢ = 10 co = 16
nl nl 1’12’
most prob. 100 100 + 160
mean ¥ s.d. 109 ¥ 31 109 * 31 169 * 18
_most prob. 100 127 133
mean * s.d. 109 * 31 | 131.5 ¥ 26 137.5 *+ 26
most prob, 91
mean ¥ s.d. 100 * 30
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From this table we see that Mr. B's extra information not only
has led him to change his estimates considerably from those of Mr. A,
but it has enabled him to make a substantial decrease in his probable
error. However, Mr. B could be helped a good deal more in his estimate
of Tl' by acquiring still more data Ca, C4 5 « + +» The standard
deviation of the distribution (L42) in which the source strength is' known
exactly, is only 8(1-8) =« 10.8 for & = 130; and Mr. B's standard
deviation for his estimate of TL1 would approach this value if we gave
him more and more data from other time intervals, such that his eatimate.
" of S approached 130. | |

Note that Mr. B's revised estimates in problem 2 still lie within
the range of reasonable error assigned by Mr. A. It would be rather
disconcerting if this were not the case, as it would then appear that
probability theory is giving Mr. A an unduly optimistic picture of the
reliability of his estimates. There is, however, no theorem which
guarantees this; for example, if the cwnt.ing rate had jumped to Cz_ = 80,
then Mr. B's revised estimate of ?14 would be far outside Mr. A's limits
of reasonable error. Bu£ in this case, Mr. B's common sense would lead him
to doubt the reliability of his initial information )(5 3 we would have
another example of a prdhﬂem where one of thoss alternative hypotheses down
at -100 db, which we don't even bother to formulate until they ars needed,
is resurrected by very unexpected new evidence.

Well, I said I was going to compare Bayes'! theorem with maxdmum
likelihood in this problem. But I have already doné that, for Mr. A's most

probable values were in all cases Just the same aB the maximum 1likelihood
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estimates. The statistician accepts Bayes'! theorem in the initial example
where the scurce strength was lmown. He rejects it in the problem where
the scurce strength was unknown, and says thatf "These problems cannot be
solved by any theorems of the calculus of probabilitles alone. Their
solution requires some additional principles besides the axioms cn which
the calculus of probabilities 1s based.™ The new principle which he
introduces is maximum llikelihood; he ends up doing exactly what he would
have done if he had stayed with Bayea‘ theorem. In order tc form some
idea of the degree of reliability of the estimate, he introduces still a
third principle, the confidence intervael. Our robot obtains all of these
results automatically, by application of a single principle which is
contained in the caleculus of probabilities, &s formlated by Laplace and
Bayes, |

There 1s a further point which should be made on these estimation
problems, For we have geen that the most probable value and the mean value
estimates are not the same in general., Which is best? I think this is
a matter £6r common sense to decide. The answer depends on the use to be
made of the theory, and on the form of the probability distribution. For
example, in Figure 5a we have a distribution for which the most probable
value iz not only & poorer estimate than the mean value, but is also very
unstable against small changes in the problem. Bat in Figure 5b we have a
case where the most probable value is extremely'likely t2 be the correct onsg,

while the mean value is known to be an impossible cne. Qenerally, if the

% A, Wald, "Notes on the Theory of otatistical Lstimation and of lesting
Hypotheses," (Mimeographed notes, Columbia University, 1941}
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distribution has a single peak, the mean value would seem preferable. At
at rate, any principle which denies us the choice between them cannot

posslbly be best in all cases.

4 Pn) | 4 P()

Figure 5.

1f you ask a statlstician about these things, one answer you
are likely to get is that the real jusﬁificaticn of maximum likelihood
1s not found in problems of this sort, but in its asymptotic prqpe;ties,
as we accumlate more and more random data, Bub, of course, in that
limit the various Mlaws of large numbers® guarantee that all these methods
approach the same thing. In any event, whatever desirable properties
maxdmm likelihood might have, asymptotic or otherwlse, are also enjoyed

by Bayes' theorem with uniform prior probability, because they are
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mathematically identical., But Bayes' theorem still has the advantage,
for the following reason. Stgtisticiana are well aware that the maximum-
1ikelihood estimate may be very poor in the small-sample oa#e, But these
are just the cages in which situations like that depicted in Figure 5a
arise. In the small sample case, the mean-velue estimate (i.e., the first
moment of the likelihood function) is often far superior to the maximum-
likellhood estimate.
l It seems to me that we have to conclude from this that there is
" no sound reason for ever introduecing the notion of maximum likelihood g a

separate principle. It is automatically contained in Bayes' theorem as a

special case, and whenever it is the appropriate method to use, Bayes'!

. theorem will tell us to use it. If we simply instruct our robot to handle
all problems of parameter estimation by Bayes! theorem,-hé will hever do
worse -than the statistician, he will ususlly do the same thing, but he will
sometimes do btetter. | |
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LECTURE FOUR

THE ENTROPY PRINCIPLE

1 would like to return to the job of designing this robot. We've
got part of his brain designed, and we have seen howlhe would reason in a
couple of simple problems, but he is still not a vefy efficient reasoning
méchine, because he has only one means by which he can translate raw
information into numerical values of probability; the principle of
insufficient reason. In fact, even in order to work through this last
example, we had to use principles to set up the problem, which we have
not covered yet. He can use insufficient reason if we can break the
situation up into mutually excluai;e, exhaustive possibilities in such a
way that no cone of them is preferred to any otber by the evidence he has.
But often he will have evidence that pives him some reason for preferring
one possibility to some other possibility. What do we do in this case?

Let's imagine a certain class of problems in which the information
we give the robet consists of average values of certain things. Suppose,
for example, we tell him that statistics were collected in a recent
earthquake and that out of 100 windows broken, there were 1,000 pleces
found, We will state this in the form: "the average window is broken
into 10 pieces." That is the way it would be reported. UOlven only that
information, what is the probability that a window would be bwoken into
exactly Y\ pieces? There is nothing in the theory so far that will
answer that question. Let's . ..gine some ﬁther problems where the same

s8ituation would arise. Here's a fairly elaborate one.
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Suppose I have 2 table which I cover with a black cloth, and
I have some dice, which I am going to toss onto this table, but for reasons
that will be clear in a minute, let's make these dice black with white
spots. I toss a die onto the black table. Above I have a camera, Every
time 1 toss it, I take a snapshot. The camera will record only the white
spots. Now I donlt change the film in between, so we end up with a
multiple exposure; uniform blackening of the film after we have done this
a few thousand times. From the density of the £1lm, we can infer the
average number of spots which were on top, but not the frequencies with
which various faces came up. Supposs that the average number of spots
on top turned out to be 4-1/2 instead of the 3-1/2 that we might expéct
from an honest die; What probability should our robot assign to the nth
face coming up? |

To give still another example of a problem where the information
available consists of average values, suppose that we have a string of
1,000 cars, bumper tc bumper. This is something which you apparently
don't have in Dallus, but we do have it in California, I assure you.
The 1,000!:cars,are packed bumper to bumper, and they occupy the full
length of say three miles, We know the total length of this string of
cars, and as they pass over an intersection, they go over a machine that
woighs each cne and totals the result, BSo we know the total length and
the totsl weight of the 1,000 cars. We can lock up statistics from the
manufacturers. We know how long the Ford is, how heavy it is; we know how

long a Cadillac is, and how heavy it is; and so on, for all the other brands.
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From knowledge only of the average length and the average weight of these
cars, what can we infer about the number of cars of each make that were in
the clusier? That is a problem where we have two average values given to
us.,

Now, & robot has no way at &ll of handling problems of this sort
for the time being. So let's think about how we would want him to behave
in this sitvation. We would not want him to jump to conclusions which
are not warranted by the evidence he has. He should always frankly admit
the full extent of his ignorance. We have seen that & uniform probability
assignment represents & state of mind completely noncommittal with regard
to all possibilities; it favors no one over any other, and thus leaves
the entire decision to subsequent infoarmation which the robot may receive.
The knowledge of average values does give the rohot some reascn for
preferring some possibilities to others, but we would 1.ika him to assign
& probability distribution which 1s, in sBome sense, as uniform as it can
get subject to the available information. The most conservative, non-
comnittal distribution is the ore which is as "spread out" as possibls.

It particular, the robot must not ignore any possibility - he must not
asgign zero probability to any situation unleas his information really
rules out that situation.

S0, the aim of avolding unwarranted conclusions leads us to ask
whether there is some reasonable numerical measure of how uniform a
probabillity distribution 1s, which the robot could maximize subject to
constraints which represent his avilable information. Let's approach

this in the way all problems are solved; the time-honored method of
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trial and error. We just have to invent §OMmE measures of uncertainty, and
put them to the test to see what they give us.

One measure.of how broad this diatribhtion is would be its
variance. It might make sense if we build into the robot the property
that whenever he is given Information about average values, he will assign
probabilitles in such a way that the varisnce is maximized subject to
that information. Bul consider the distribution of maximum varinnce.for
a giveq'ﬁii , if the values of M ars unlimited, as in the broken window
problem. Then the maximum variance solution would be Just the one where
wa assign a very large probability for no breakage at all, and an enormously
small probability for a window to be broken into billions and billions of
plecea. You can get an arbitrarily high varlence this way, while keeping
the average at 10. In the dice problem, the solution with maximum
variance would be to ssslgn all the probability to the one and the aix,
in such a way that you come out with the right average. So that,
evidéntly, is not the way we would want our robot to behave; if he used
the principle of maximum variance, he would be asaigning zero probabiltiy
to many cases which were not at all impossible on the_evidénca we gave him.

Minimum ;E:] f)?

Another kind of measure of how spread out a probabiltly distri-

bution is which has been used a great deal in statistics, is the sum of ‘the
s8quares of the probabilities assigned to each of the possibilities. The

distribution which minimizes this expression, subject to constraints
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represented by average values, might be a reasonable way for oﬁr robot

to behave. Let's see what sort of a solution this would lead to. I want

2k

™,

to make

a minimum, subject to the constraints that the sum of all 'Eﬂ shall be

unity, and the average over the distribution is YL . A formal solution

is obtained by writing

s [ZE-AZm -] =

2 (2R 7 -pse,

where >\ and M are Lagrange multipliers.
So TD will always be a linear function of TV

(77)

Now, /,L and I) ere found from

whare 7Yy, 1is the average value of YyY_ .
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Let's investigate this and actually draw the graph for s simple
version. Let's say that YW\, cen take on only the values 1, 2; and 3.

~ Then we easily find that the formal solution for minimum E “10 ie
Yo
™M

_ A _m
P=35-3
ﬁ-—*-—%- - (19)

k=72 35

1-0-‘— "‘_1r0
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3 %
| :
1:) |
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: a
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i 'm ————
P 2 Q

Figure .
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This showa that 'f? and 1% become hegative and we can't use the solution
in the regions where 13 is negative. 1In these regions let'u'sny we will
replace the negative values by zero and then edjust the other probabilities

to account for this action. If we do this the results are shown in Figure 7.

~T
FYe

-
o
™n
>
4

Figure 7.

A1l right, so that's what this criterion will give to us. Now,
is the robot behaving in a reasonable way if we built this behavior

pattern into him? This is certainly & big improvement over maximum
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variance, but he iz still; in certain ranges of 1§i assigning zero
probability to one of the possibilities, and there is nothing in the
evidence we gave him which sald one was impossible. So he is still Jumping
to conclusions which are not warranted by the evidence we give him. But
the idea behind it sti11 looks like a good ons, There should be some
consistent measure of the uniformity of a probability distribution which
we cen maximize, subject to constraints, and which will have the preperty
that it does not permit the robot to draw any conclusions unless those
conclusions are really warranted by the evidence he has,
Entropy

Well, at this stage we turn to probably the most important theorem
in Shannon's work on information theory. This is the theorem. If there .
exists a consistent measure of the “amount of uncertainﬁy“ represanted hy
8 probability distribution, there are certain conditions it will have to
satisfy. I am going to state them in a way which will remind you of the
arguments we gave in the first two lectures; in fact, this is really a
continuation of the besic development of probability theory. Here is the
line of reasoning:

(1) We 2ssume that some numerical measure Hn (E ,1’-’13 cee DP“)
exists; i.e., that it 18 possible to set up soms kind of
association between "amount of uncertainty" and real numbers,

(2) Ve assume a continuity property: F{il is a continuous function
of the PL . For otherwise an arbitrarily small change in the
probability distribution would still lead to the seme big change

in the amount of uncertainty.



(3) We require that this measure should correspond qualitatively to
common gense. This condition takes the form that in case the Fg

(
are all equal, the quantity

An) EHH(-%-J J“%_"

shall be a monotonle increasing function of Y| . This merely

establishes the "sense of direction.®
(1) We require that the measure HW’L be consistent. By this we
mean, as before, that if there are several different ways of

working cut its value, we've got to get the same answer for

every posaible wWay.

Previously, our conditions of consistency took the form of '
functional equations. Now we have instead a hierarchy of functional
equations relating the different H’IL to each other. Suppose the robot
perceives two alternatives, to which he assligns prebabilities ’P
q— w ] - }P « Then the "amount of uncertainty® represented hy this
distribution is Hz (’E ,q.) . But now the robot learns that the se?ond
alternative really consists of two possibilities, and he assigns
probabilities f’ , 13 to them, satisfying Fa * [-73 = q_ . His

new uncertainty H (T) ,T) 3'P3 ) me8t be the old value, plus the
A

additional uncertainty as to events 2 and 3, weighted accordiné to the

probability q. that this additional unecertainty will arise:
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In general, a function P{TL can be broken down in many different ways,
relating it to the lower order functions by a large number of equations
1like this.

Note that equation (80) says rather more than our previous
functional equations did. It says not only that the F%TL are consistent
in the aforementioned sense, but also that they are to be additive. So
this 1s really an additional assumption which we should have included in
our list. The most general eguation of consistency would be a functiﬁnal
equation which is satisfied by any monotonic iﬁcreasing function of P{TL s
but I don't know how to write it. I don't think that either this demonstra-
tion or the ones we gave in the first two lectures are anywhere near in
aatisfactory.form.yet. A good mathematician should be able td invent a
much simpler and more elegant way of proving these things; but for the time
being we'll have to get along on what we have. The best attitude, in my
opinion, is that at present the justification for this theory lies partly
in these consiatency arguments, partly in the fact that so many'different
lines of reasoning lead to the same conclusions, and partly in the fact

that it all works out so well in practice.
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At any rate, the next step is perfectly rigorous, because
Shannon did it, and I dldn't. He proves that the only function *{TL which

satisfies all the above requirements is

H(p--p) = =2 plgp. @
L=1

The only arbitrariness is that we have the option of taking the logerithm
to any base we please, Bince this corresponds only to a multiplicative

constant in }1?L . This quantity we will, of courss, call entropy from

now on. It is a new measure of how uniform a probabllity distribution is -
any change in the directlon of equalizing the different probabilities will
increase the entropy.

It would be a big mistake to try to read tooimuch philosophical
significance into this theorem., In particulér, the assoclation of the word
"information" with entropy expressions seems in retrospect quite unfortunate,
because it persiste in carrying the wrong connotations to so many people.
Shannon himself, .with really prophetic insight into the reception his work
would get, tried to play it down by pointing out immediétely after-atating
this theorem, that it was in no way mecessary for the theory to follow.

By this he meant that the inequalities which }‘{“f satisfies are already
quite sufficlent to justify its use; it does not really need the further
suppert of the above theorem. However, while granting that this is perfectly

true, I would like now to try to show that if we do accept the expression
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for entropy, very literally, as the correét expression for the "amount of
uncertainty” represented by a probasbility distribution, this will lead us
io a much more unified picture of probability theory in general. It will
enable us to see that both the principle of insufficient reason and the
frequency interpretation of probability are special cases of a single
principle, and that statistical mechanics amd comminication theory are
both instances of a single method of reasoning..

First, let's see how it would work out if we ask the robot to
agslgn probabilities in such a way that the entropy is maximized subject
to the availabie information,

We can use our Lagrange multiplier argument again to solve this

problem, i.e.,

|
E
a0
|
N0
=
{
=
O
a
i
<

Kow,

ohn _ _ P - (&
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8¢o our solution is
~A, —Am
=<

where %o = }.l + 4.

So the distribution which has maximum entropy, subject to a

(83)

glven average value, will alwaysrbe in exponential form, and we have to
fit t.hé constants 7\0 and l)\ by forcing this to agree with the fact
that the sum of the P's must bs one and that the average value must be
equal to the average that we assigned. Well, the mathemaﬁica that you
have to go through in order to do this is very Straightforwafd and comes

out very beautifully if you define a functilon
—Am
Z (N z-E e (51)

which we call the partition function. The equations which fix our Lagrange

‘multipliers are then
}\0 = M%Z(?\ (85)

and

ﬁ = — %%Z(A\a (86)
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Once again, let's put this to the test that we gave our others,
in this case, where Y1 can take on only three different values. We find

eagily that P{ (ﬂ?ﬁ) s /rj (ﬁ) s /P ('?ﬁ') are given in parametric
A 3

form by

exp (2-% )2

— _ 5 -g_::’l 2,3,
/Pﬁ '|+ZC<5&"?‘L’>\ 77
N .
L e,z+2,€%+3
m e*ry, @™ 4

In a more complicated problem we would just have to leave it in parametric
form; but in this particular case we can eliminate ;l mathematically,

leading to the explicit solution

ﬁ — % /\/4_3@;,1'_2)2 ~ 1 (87)
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These results are plotted in Figure 8, 1;_ i8 the arc of an ellipse
which comes in with unit slope at the ends,. ? end 193 are also
1

arce of elllpses, but slanted one way and the other.

Figure 8.
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Let's just notice that we have finally arrlved here at a solution which
meets the objections we had to the first two examples. The maximum entropy
distribution automatically has the property ‘h’w = () ' because the
logarithm has a singularity at zero which we could never get past. It has,,
furthermore, the property that it never allows the robot to assign zero
probability tco any possibility unless the evidence forces that probability
tc be zero. The only place where a probability geces to zerc is in the
limit where the average is exactly one or exactly three. But of course,
in that case, some probabilities did have to be 2ero., We see the comparison

between these two criterie is very interesting. The criterion that

S i

W

gives the same value and the same slope as the maximun entropy solution,
at the end peints and at the middle. It represents the best straight-
line, approximation you could have made to the maximum entropy solution.

(eneralizaticon

The maximum-entropy solution can be generalized in many ways.

Suppose we have a problem in which there are WA, different functions, i.e.,

:F ( i 1SS0S
X') where
LA SR EM

'where MU is the number of possible values )L can assume. The average

of J}ﬁ (X,) is known for each of the possible values of ﬁ s l.e.,
b
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<§P< (%) ) = Z RE (%), @

L=1

If we decide to build this entropy principle into our robot's brain, and
we ask hinm tb reason, given this information, he will find the set of }Efé
which has maximum entropy subject to all these constraints simultaneously.
Let's see what he'll come out with. We just have to introduce as many

Lagrange multipliers as thers are constraints imposed on the problem,

i 5O -0, D5 -
ALY =
= 2 [0 n gD A leilfs —o

: E)[f.L

L

and so from (82) our sclution is the fblloﬁing:
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Y W 8 7.7 PSR, WS A '
E — e f ) >\'l gm(x )

(89)

That's the form of the distribution, and we still have to find how he is
going to evaluate these constants, In the first place, the sum of all

probabilitias will have to be unity, i.e.,
-2 (% —= N,
{ - ZP B Z ‘S( 3 f (XL).

I will define a partition function as
i3
"7‘1'g )" =) % (X

W4

= pﬂ}z(}\‘l'/\h‘B (92)

The average value (88) of fﬁ is then

| Ao~ S~ =N d O
<3cﬁ(x;>> =p 2_:8 '&(X) A ‘ﬁ" % )5—&(%&))

(51)

Z(%f")‘m =

then (90) reduces to
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O i

What 1s the maximum value of the entropy that we get from this probability

or,

distribution? I am going to call entropy, S » the way physicists do,

instead of H s the way information theory pedple do:

S = foo T.i . (54

From (89) we find that
S - >\-::a-"%‘r<:£:1r>'f" e +>‘m<§m§ .9

Now consider the maxtmum attainable entropy as a function of the given mean

values of 5& 1 3

S — S 49 > L I T T % >
< ) ) < "
and let's see what the derivative of S is with respect to some particular

&)
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s _ 94 514 | o GAm
6 " aap St Ay Gt M

and, since 7\0 = QD% E we can expand this to

as | adeE o
o8y 7| O 5(&7 a<~L

+>\£.

But, by (93) the expression in brackets is identically equal to zero; so

We have simply

(96)

S
Now, suppose 3‘& centains some parameter O( in addition

to X ; what is the expectation value of the derivative over this

distribution?
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agﬁ Z; Bfﬁ(’xﬂ
TORY ﬁ —

o X

A=

"E 05150 M -k )

Now, this sum we have written is proportional to azﬁ% 80 that,

assuming that <  occurs only in ‘E‘f (’Xk) » We can write
L

?i‘i. :éhol/] dZ = — ﬁﬁg (97)
o/ _}\ﬁ a% | Aﬁaot

So, there's a large class of froblems which we can ask the robot to do,
which he can solve 1n raﬂhgr a wholesale way. He first evaluates this
partition function iE; s or better é?ill, log EE% . Then just
by differentiating that with respect to everything in sight,.he obtains
all sorts of predictions in the form of mean values. This is quite a neat
mathematicgl procedure, and, of course, you recognize what we have been
doing here. These equatlons are all just the standard eguations of
statistical mechanics, in a disembodied form with all the physics removed.
For example, we tell our robot that the energy of a system has

been measured, and there are many different quantum levels EE;L + This
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measurement of energy, let us say, gives us some sort of average value
<E,L> . If this is the only information we give him, then if he wants
to infer any other property of the system on the Easis of this knowledge,

we will build his brain so that he evaluates the partition function % »

z()) -2

A
The probablilities he will assign to the quantum states are _

—Ae—NE
/F}' — e .

A
Evidently, this is the Boltzmann distribution, and the robot will scon
discover that 7\ = ‘1‘ .

o7

More generally, in any problem where We have average values of

various physical quantities such as energy, volume, number of molecules
of various types, electric or magnetic moments, etc., we ask our robot
to do the best job he can of predicting the values of other physical
quantities. He will do it by maximizing the entropy, subject to all the
constraints we gave him. He will write down all the equations of
conventional statistical mechanics such as the distribution of the Merand
canonical ensemble," and various generalizations thereof. Our relations
(92), (93), (96}, and (97) will then acquire all sorts of physical content .
They will be the general laws of thermodynamics, giving pressure, stress,
chemical potentials, specific heats, and so on., With a little further
generalization, which we will look at later, this same process will yield

& general statistical mechanics of irreversible processes.
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Boltzmann'’s Approach to Maximum Entropy

Now this result is 3o important, because of the many applications
it opens up, that it's a good idea to see what we're doing in as many
different ways as we possibly can. I'd like to give one more line of
reasoning which we could have gone through which would lead us to writing
down these same equations.

Let's go back and consider the dice problem that we had at the
beginning. We have tossed this die on the black table many times and we
have the multiple exposure from which we can deduce the total nﬁmber of
spots Wwhich were on top during the entire experiment. There were PJ
tosses, and they ylelded a total of Eg spots. We are to do the best
Job we can of inferring the number of times the six was on top, and ths
-number of times the five was bn top, and so on, from nothing but this
information. |

We could break the situation down into all of the conceivable
events that could have happened. Let's say the first tess could have
given a 1, 2, 3, L, 5, or 6, which: ever one it was, and the second toss
could alsc have givena 1, 2, . . . . or 6. 4And eventually the nth toss
could have given any number from one to.six. There were, a riori; 6N
conceivable things which could have happened in the course of this
experiment. But the information which we have excludes some of those.

T will define N’M as the number of times 'W{ spots were up. The

information we have tells us the following,
=

ZNa= N,

W= 4
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the total number of tosses, and

ZG:‘WNT“ — S
m= 1

the total number of spots. Thisllast plece of inférmation excludes a
large number of possible sequences of events, but still leaves an énormous
number which are perfectly possible as far as we know., Evidently, this
amount of information not only doesn't show us which sequence of events
happened, it doesn't even tell us what the hJ?n/S are, So, if we have

!
to do the best job we can of guessing the bi S 5 then we must do

™
some plausible reascning, How many of the GS“" sequenceg would have

N
given me a particular set of PJMW S ? Well, that is a combinatorial problem
which we find solved on page 1 of every textbook on statistical mechanics;

namely,

N/

W
N N/

i

different ways.

Now, out of all the sets of hJﬂS which satisfy the two conditions we know
are satisfied, which could have been realized in the greatest number of
ways? The mathematical problem is to maximize this combinatoriel factor,
subject to these constraints representing our information. If we had to
guess the N’M{S on the basis of no information except this, then it p
certainly seems that a reasonable way to do it is to see which set of PJ.S
could have happened in the greatest possible number of ways.l_well, instead
of maximizing this combinatorial factor, of course, it is just as good if we

maximize any monotonic function of it; and mathematically
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because of Mr. 8tirling, it is easier to maximize the logarithm of it.

g = N oy =N + - (o) + 0 ()

Now, let us write -—N— 903 W y disrsgarding terms which tend to zero
as N—= 00O 1

-I-Z!-ﬂofaw = fﬁgN-‘l-%Z N"“Q’D%N@_N“‘

& Mmﬂ = )
= “‘Z N 8\'n | |
M= 4

So, we can state our problem this way. I want to maximize

(98), subject to constraints which I can write as

;‘ “t‘!m =/ , ZW -.%{_hl =m (9

where M\ = $ N is the average number of spots on top. Now, if I were

to write Nm/ N as /ﬁ\ s then I have formulated exactly the same
mathematical problem that Shanﬁon‘s theorem led us to, so we'll gat the
same answer (83). This i3 a method which has been used in physies since
the time of Boitzmaﬁn; but we have presented it here in terms of dice,

80 as to make it clear that the line of reasoning depends not at all on

the laws of physics.
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In statistical mechanics we are concerned with such things as
the distribution of energy among many molecules. Given PJ molacules,
with total energy' EE » what is the best guess we can make as to the
number oflmolecules in a particular energy level? The set of cccupation
nunbers PJL » Which maximizes log v«l under these constraints, is the
one we call the “mest probable" distribution. By that we really mean
nothing more than that it is the distritution which can be realized in
the greatest number of ways. I we try to go further and assert that
it is also the most likely to occur in mture, then we have gone beyond
what can be proved hy deductive reasoning. We have then done a piece of
plausible reasoning - a very excellent piece of plausible reasoning,
whose predictions are almost always in agreement with experiment.

I should point out that whén we maximize these multinomial

coefficients
N ./- (100}
N1 ./ L] * L] » - Né'/

if hJ is a large number, the maximum we get is enormously sharp. The

set of N‘:I S which can be realized in the greatest number of ways can
be realized in overwhelmingly the greatest number of ways. If f\J is
comparable to Avogadre's number, then for every way in which the rJh:fs
could be significantly different from the Boltzmann distribution, there's

something like 101020 ways in wnich they could agree with it.
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Notice also that PJ dropa out of the eguations in the limit
b1~4h(yo s 30 the resullt becomss independent of the size of the system. If.
we were consldering finite bJ and you wanted to take all these other
terms in the Stirling approximation into account, you would come out with
very slightly different results.

Now, let's try to see exactly how these iwo approaches are
related. Let's consider again the example of the dice tossing, The first
approach, via Shannon's theorem, and the secend, via the enumeration of
all possibilities in a long sequence of tossing, led to the same

mathematical probiem; but still there was a very fundamentsl difference

between them. In the first solution, maximization of entropy subject to
a given mathematical expectation of ¥yl , led us to assign probability
r%q | for the m'th face to come up in a single toss. In the second, our
result was the best plausible guess as to the frequency NM/N with
which the m'th face would come up in an indefinitely large number of
tosses. The only thing we have shown so far is that the probability at

a single trial is numerically equal to an estimate of frequency which is
"best"™ according to a certain criterion. OCan we find a single approach
which gives both of these results automatically?

Well, what is to prevent us from studying the problem of

tosses by direct application of insufficient reason and Bayes! theoremf
in hJ tosses, there are a priori 6N conceivable outcomes; and with ﬁo
other infomation, insufficient reason leads us to essign equal probabilities

(Oilx) = G”N to each of the, where () stands for the 1'th
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outcome, and i runs from 1 to 6N, Now we learn that in the N tosses,
there were a total of 3 spots on top. By Bayes! theorem, the probability

of agy particular outcome is now

afs0) = @ B0

(SIX)

Rut (éSl()E){) is unity 1if Oi is one of the outcomes with S5 spots, zero

otherwise. <Therefore, defining K(N,S) as the total number of cutcomes

leading to S spots, we have (0; | SX) = k-1 if 0y corresponds to S spots,

(oil SX)} = O ctherwise. The distribution (0;| SX) contains all the
information we have, and so from it we should be able to find both the
probability_'a‘ assigned to face YW at a single trial (say the first),
and the most likely frequency in a large number of trials. The nunber

K(N,S) is to be calculated from

| N 2
K(NJS)= N'N/ 1o

(N

where the sum is taken over all th‘ compatible with ($9). I won't bother

to go through this calculation, because you can find it in any statistical
mechanics textbook under the heading "Darwin-Fowler Method." . Let me just
point out the way in which it unifies the two other approaches.

The probability of the m'th face on the first toss is evidently
just the fraction of all the K(N,S) possibilities in which the first toss

gives the m'th face:
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_K(N-‘{:,S*'W.)
o = K (N,S )

For estimation of the ﬁJW\ » We might take either the most probable values

. (103)

or the mean values over the distribution ((}Llf;)g) . By now, you will not
be surprised if I tell you that in the limit bJ-%rt?O » the most probable
and mean values of‘éwhv/?i ) , and the expression (103), all approach our
maximum-entropy solution (83). The demonstration is elementary, and requires
nothing more than transcription of standard resulis of the Darwin-Fowler
method into our notation.

I have taken the trouble to derive, re-derive, and re-re-deriva

a simple and well-known_mathematical result, because in so doing we have

learned something about interpretation of probability theory that is

neither simple nor well-known. Virtually all of the modern literature on
probability is based on the view that, for some reason, a probability

is not respectable unless it is also a frequency. Decause of this, the
Laplace formulation of probability theory and the principle of ilnsufficient
reason are denounced as nonsense. PBut now we are beginning to see the
connection between probability and frequency. In one case (easily
generalized) we have seen that the probability which Laplace's thecry
assigns to an event at a single trial is numerically equal to the besi
estimate of freguency in a large number of trials. This equality, far

from being in conflict with the principles Lapléce gave us, is an elementary

consequence of those principles.
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There are, of course, many different connections between
probatility and frequency. Some of them we have sasen already, in the
quality-contrel testing and particle counter problems, as well as in the
maximum-entropy argument. But notice that we never had to stress them in
order to solve the problem. We will see this happening all the time;
whenever there is any relation between probability and frequency in a

problem, this relation will appear automatically, &s a consequence of the

theory, it never has to be introduced as a separate postulate.

We've seen in one example that you can interpret the principle
of maximum entropy as gi#ing us the probability assignment which is
"maximally noncommittal™ with regard to missing information; or equally
well as a slick way of carrying out this procesé of enumerating all of
the possibilities in a very large collection of evente, doing a combinatorial
analysis, and placing your bets on the situstion that can happen in ths
greatest number of ways, Now, this will work for any preblem in which we
use the principle of maximum entropy, and in which it makes sense to
imagine the experiment repeated a large number of times. You could always
make the appropriate generalization of our argument. But once having seen
that this process 1s always going to lead %o these same mathematical
results, then you don't have to go through this tediocus business of
enumeration and combinatorial analysis any more. You can simply maximize
the entropy and you know that this is the answer you would have got if you

had gone through the enumeration.
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You might, incldentally, be asmused to ses the-solution of our
broken window problem. If we have given that the mathematical expectation
of number of pieces is <1‘h> = 10, then the probability for a wiﬁdow to be
‘broken into TN pieces is

m
P =glig)
That, again, could be interpreted by analyzing a long sequence of window
breaking into every possible thing that could have happened, and this
result gives also the frequencies according to which the observed fact
could have happened in the greatest number of ways.

Now, of what possible use could a result like this maximum
entropy solutlon be fof the broken window problem? It certainly seenms
& rather idle thing to be assigning probabllities of this sort. What
could I do with thisfprohability distribution that would be of the least
use to anybody? Well, in the case of the broken windows, probably.
nothing. That was just to illustrate a point. The case of the application
of this to the prediction of thermodynamic properties, however, is not st
all trivial or useless. But &tlill, the theory has been developed in a -
way which makes 1t look very suspicious. We have given a very tiny
amount of information. To be sure, we found definlte mathematical rules -
which led us to a definite probability assignment. But, if that is its
only justification, what right heve we to expect that predictions made
from this maximum entropy distribution will have anything at all to do

with experimental facts?
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Why Does Statistical Mechanles Work?

I'm given, say, the average energy of a syﬁtem and there are
101020 gifferent quantum states in which the system ﬁight be. Just knowledge
of the average energy is certainly an extremely mimute plece of information
in a situation like this. And yet, I've got the job of predicting, just from
this information, what the pressure might be, what the chemical potentials
might be, what the intensity of magnetization might be; things of that
sort. Well, of course, we can calculate mean values from ouf maximum entiropy
distributions for these tniﬁgs, and it is an experimental fact thal they
give the ripght answers. But it certainly doesn't look, from anything we've
done 8o far, thaﬁ we have any right to expect it to give right answers.
There's such an enormous uncertainty that how could we possibly come out
with anything reliable from this? Well, now here's a trick. What is it that
we are interested in predicting in statistical mechanics? We are not
Interested in predicting every proPerhy of a system.

You go into the lab and perform an experiment, You observe some
effect that seems to happsn once, but you can't meke it repeat. You don't
write thls up and publish it. By common consent, this is not done. What
you saw of course was Just as much a legitimate phenomenon as any of the
other things. But we have made an earbitrary and unwritten agresment that
the subject matter of thermodynamics is restricted to the things which we
canlreproducao Nowy, this'is not & trivial step; this is an extremely big
restriction. We are rastricti.ng our attention to an extremely small fraction
of all phenomena which could happen. By phencmens which could happen, I

mean phenomena which are compatible with the known laws of physics.
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All sorts of behavior are allowed by the Schroedinger equation,
which we consider entirely possible. For example, all the air in this room
night suddenly more to the back half and leave me up here without anything
to breathe. There's nothing in the laws of physics which says that can't
happen. But, for some reason, ve consider that extremely improbable. And
it certainly would not be an experimentally reproducible thing. So, let's
look at it in this light; that we're not going to ask this theory to predict
evegzthiné that a system can do. It's obviocus that we couldn't possibly

expect it to do that. We're going to ask, is it possible that this theory

might predict experimentally reproducible phenomena? If it does that, it

will do &1l that we ever really ask of statistical mechanics,

Well, now, let's make it hard to believe that anything could ever
be experimentally reproducible. When we learn how to restore the plausibility,
we will understand why this theory works,

So, let's imagine any macroscopic experiment - from a nuclear
magnetic resonance measurement, to throwing a baseball. The initial
conditions of this experiment are hardly under our control at all, if you
look at it from the microscopic standpoint. Again, in typical size systems
that we work with in the laboratory, 1010%° is a pretty good statemsnt -of
the number of different initial quantum states in which the system might
be)as far as we know. This represenis the limit of our degree of contrel
over the initial conditions. The number 10102ID is a very large number;

I'11 write it another way,
10

10*°
10 =1 10
10 ’

10
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During the experiment we do various things to our system; we
push it and pull it; apply HF magnetic fields to it; and various things;
and well, you see how the system behaves.

How, the forces we apply to the system during the course of the
-experiment, alge, if you consider them from the atomic scale, will never
be repeated, even approximstely, no matter how many times you repeat the
experiment, because we never control the conditions of an experiment to
atomic precision. OSo, it's clear that no matter how many times we repeat
this experiment, we are never going 1o repeat the initial quantun state,
We're never going to repéat the forces epplied, even approximately. Well,
how could it ever happen thét the result is reproducible then? The
experimental fact is that it's easy to reach a degree of control over
conditions at which we see reproducible behavior for practically everything
on the macroscopic scale. How could it be that anything is ever reproducible?

It seems to me that there is only one answer to this. The fact
that a phenomenon can bs reproduced experimentslly shows that this phenomenon
mist be characteristic of each of the great majority of all these states,
when subjected to each of the great majority of all possible forces we might
have aﬁplied tﬁ it. I don't see any other way in which it could be
reproducible; S0, now, we begin to see the ray of light, why this theory
works, and why 1t is perfectly reliable for predicting thermodynamic
properties. The only thermodynamic properties we know about are the ones
which are chgracteristic of practically all the possible states. Naturally,

1f we have to predict such a propsrty, then we can do a very good job of
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predicting with.a very crude amount of initial information. For every way
in which the systeﬁ could behave in a strange manner there are billions
and billions of ways in which it could behaveiinﬂthe-way'we“arefuééd'to
seeing in the laboratory. Our lack of detailed information sbout the
state of the system corresponds exactly to, becsuse it is due to, our
lack of detailed control over experimental conditions. The only things
which we can predict reliably from the maximum entropy'diatribution are
things which would have been characteristic of practically all the states
to which we have assigned any appreciable amount of probability. For
any such property, the méan value calculated from the maxirmm entropy
distribution will, of course, be the actual value for practically all
possible sﬁates. Sc¢ in this way we can seé why it is that the class pf
phenomena we can predict from maximum entropy arguments and the class of
phenoﬁena which are experimentally reproducible, are exactly the same.
Let's look at that more carefully.

I would like now to consider briefly one of the arguments that
has been given in the past and is st1ll quite commonly seen in textbooks.
This is the argument: "The reason whylatgtistical mechanics works is that
what we measure experimentally is only a time average over time which is
long from an atomic point of view, and that given an ergodic hypothesis,
time averages and ensemble éverages.uould be the same." I'd just like to
point out samething which 1s not at all new. Even though you might suncceed
beyond your wildest dreams in pfoving these ergﬁdic properties (which, of

course, no one has succeeded in doing); i.e., even if You could prove
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rigorously and universally that ensemble averages were egual to time
averages for systems, you still would not have explained why ensemble
averages are equal to experimental values. Because the ergodic theorem
applies only for time averages over infinite length of time, and you have
to consider what is the lengﬁh of time over vwhich you have to average
before you can be sure that the average has approached its limiting value.
Let's angwer this in two different ways.

First, let's imagine we have a rather smallish crystal which
contains 10°1 muclei of spin 1/2. I'm going to consider only the states

of the nuclear spin system. There are
10

y 21 .7020 10 10
— O
2z =2" > 10 = 10"

different possible spin states for the system as a whole. Each spin

could be up or dowan. How rapidiy are transitions golng to be mde between
different states of the spin system? To get an idea of the sort of times
that are involved, let's say the spins interact with each other, tut there
are lattice vibrations in the crystal which modulate these terms, and,-
therefore, each spin sees a varying magnetib field due to the moving spins
around it and this can induce transitions where spins flip up or down.
Lattice vibrations have frequencies of the order of 10%¢ cycles per second
at room temperature. Let's assume that each spin;in the crystal has a

good chance of making its spin flip once every ecycle of the lattice

5
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vibration. In actual fact, the probability of the spin flipping is very
mich less than that. But, 1f we had thal case, then how many transitions
per second would we have to some new quantum state of the spin system? Weld
have 1021 nuclei, each making 1012 spin flips per second. There'd be about
1033 transitions per second to new quantum states, How long would it take
before the spin system had gone into each of the possible quantum states
with reasonable probability? Well, it would take something like the ratio
of the two numbers:

20 _
10(’10"5ﬁ) geconds.
Now, the geolegists and the astronomers tell-us that the age of the universe
is samething like 6X109 years, and this is not far f?om 1017 seconds.,

Well, this is a modern version of what the Ehrenfests pointed

out in 1911, and Bolizmann a few years before that. The time that it
would take to make any reasonably complete sampling of all the microscopic
conditions is simply fantastic for any system of the size on which we do
experiments, And s0, you could be sure the time averages approached the
ensemble averages only if the time averages were over these enormous times,
If you had to prove anything about time averages over shorter times than
that; then you would be forced to make special assumptions about "smoothness"
properties for the particular guantliies that you are going to predict.
But that, of course, is exactly what I did when I said that we are interested

in predicting cnly experimentally reproducible things.
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There is & second, even simpler, way of seeing this. For if a

system could come close to reaching all microscopic conditions during the
time in which measurements are made, the experimental results would always
correspond to equilibrium values. We would notleven know about irreversible
processes. The fact that we can measure the rate of an irreversible process
already shows that the time required for exploration of all microscopic
conditions must be much longer than the time required to make our measurements.

| This shows why, no matter how successful you were in solving the
-very difficull mathematical problems associated with ergodicity and metric
transitivity, it would nét have any relevanﬁe to statistical mechanics.
The problem is not to explain why ensemble averages are equal to time
averages; it is to expiain the much more restrictive condition that ensemble
averages are equal to experimental values., Once you have explained this,
then equality with time averages would appear, not as the reason for the
success of statistical mechanics, bubt as a trivial consequence of thét
success, in the special case of equilibrium conditions. We have seen, in
the condition of experimental reproducibility, the reason why ensemble
averages will still be equal to experimental values in non-equilibrium
conditions, where they are not equal to time averages.

Now this gives us a completely different conception of the role
of probability in statistical mechanics. We recognize that a probability
distribution over states (and here I use the term "state™ in the Gibbs, or
r‘ -space, sense) does not describe any property of the system, but

oniy a certain state of knowledge about that system. Then, of course, we
are not allowed to say that the success of statistical mechanics is due to

our having found the "correct" probability distribution; it is quite
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meaningless to say that one distribution is correct, another incorrect.
But as soon as we see that the only properties we are interested in
predicting are the ones which would have been characteristic of practicallj
all the possible states anyway, it follows that we don't really need to
use provability at all. We could just choose at random any one of the
possible initial states, solve the time-dependent Schrodinger equation
for i1t, and see what predictions we get. There would be an overwhelming
probability that we would get the right prediction for any experimentally
reprqducible phenomenon, whether reversible or irreversible in the
thermodynamic sense. An overwhelming probability, tut not quite certainty;
to try to predict the way the air behaves in this room, there's a very
small chance that you might be unlucky and choose the initiml state for
which the air does go to the back of the room. There will always be a
little danger of getting the wrong'answer if you do it that way. And,
in principle, the only thing which using a probability distribution does
for us is that it protects us against that danger. By averaging our
predictions over many possible states, we suppress this small minority
which would have given a different result. From the standpoint of
principle, it is pursly incidental that this alao.simplifies the mathematics
by about 1020 orders of magnitude. Now, we can get still more out of this.

Suppose we make predictions by the prineiple of maximum entropy.
We then perform the experiment and find that what we predicted was right.
Is there anything further we can conclude then? T don't think there is.
We made the best guess we could, andlwhat was glready strongly indicated by
the evidence turned out to be in fact true. Then there i1s nothing more to

be said,
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But suppose the predictions turned out to be wrong. Now, can you
make more conclusions? Well, of course you can. If statistical mechanics
fails to give the right answer, that is a situation which is much more
intereéting than if it works. Because then we can carry the reasoning a
step further.

Let me predict that a certain thing should happen. It is an
experimentally reproducible féct that this thing does not happen. In the
class ﬁf gtates to which I assigned high probability in my maxi mum entropy
distritution, the overwhelming majority would have given this predicted
tehavior. But experimentally, we know that the overwhelming majority of
gll states which are allowed by the experimental conditions, the true
"possible states," do not have this property. It follows that my

-enumeration of possible states was not right; there's something which is
keeping the system away from the great majority of all the states which I
thbught wera possible, There must be an enormous number of new possible
states that I didn't know about, or there must be new constraints on the
states that 1 did know about. In cther words, there's a new law of
physice. Perhaps a new "constant of the motion."

As soon as we see that statistical mechanics is not a "physical
theory," but only a method of plausible reasoning, we see the reasons for
its success, its range of validity, and the significence of its failures,
in an entirely different light. Any successes that the theory has make
itluseful in an engineering sense, as an instrument for prediction. But
any failures which we might find would be far more valuable to us, because

they would disclose new laws of physics. You can't lose either wayl
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The transition from classzical to quantum statistical mechanics
provided some very good examples of this, Classical statistical mechanics
made definite predictions that certain things should happen. It was found
to be an experimentally reproducible fact that these things did not happen.
Therefore, it feollows that the enumeration of possible states on which the
classical statistical mechanics was based was not correct. We change our
enumeration in these respects: we introduce discrete states; we recognize
that permutations of identical particles do not produce new physical
states; and, we introduce the natural unit of volume of phase épace 17.3
per particle. When we make these changes in our method of enumerating the
possibiiities, then it is found that we do get preaictibns in agreement
with experiment.

Tt doesn't follow from this that our emumeration is now correct.
There might be enormously great constraints on the p;ssible quantum states
which we haven't any inkling of yet. It might be that instead of 10102
states, there ars only 1 in 101019 ef those actually accessibls at all to
the system, because of new laws of physics we haven't discoversed yet,
The fact that our present statistical mechanics works'doesh't exclude that
possibility at all. Though we have no evidence for that possibility unt il
we find a case where 1t doesn't work,

Whenever we have a situation that is experimentally reproducible;
1.e., whenever macroscoplic information is sufficient to predict macrocscopic
phenomena, then it 1s always possible in principle to build a phenomeno-

logical theory which slde-steps all microscopic details and describes only
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relations between macroscopic things. Thermodynamics; &s we know it, is
one special case of that. Locked at this way, we see that there's every
reason to believe that an irreversible thermodynamics can be developed
which will be just as general and have Just as many nice formal properties
ag our present equilibrium thermcdynamics. During the past 10 years,
quite a bit of progress has been made along this lins, but we are still
very far from the goal. At present, we have the Onsager reciprocity
laws, the principle of minimum entropy preduction, and the fluctuation-
dissipation theorem, which are all related to each other in ways not yet
entirely clear. We know #ery_little about the range of validity of these
rules. However, the situation here looks so promising that, if I were to
pose as a prophet, I would say that the next 20 years will see developments
in this field comparable to those in the middle nineteenth century which

gave us our present equilibrium thermodynamics.
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LECTURE FIVE

THE A DISTRIBUTTON
| i

Memory Storage for Old Hobots

We have given our robot another principle by which he can convert
information into numerical values of probebilities, and he is now able to
solve lots of problems; but he still operates in a rather inefficient way
in one respect. When we given him new information and ask him to reason
about it, he has to go back into his memory (this proposition X that involves
everything that has ever happened to him). He must scan his entire memory
atorage reels for anything relevant to the problem before he can start
reasoning on it. As the robot gets older this gets to be a more and more
time-consuming process.

Now, human brains don't do this. We have some machinery built
into us which summarizes our past conclusions, and allows us to forget the
detalls which led us to those conclusions. We want to see whether it's
possible to give the robot a definite mechanism by which he can store
conclusions rather than isoclated facts.

Let me point out another thing, which we will see is closely related
te this problem. Suppose you have a penny and &ou are allowed to examine
it carefully, convince yourself that it's an honest coin, has a head and
tail, and center of gravity where it ought to be. Then, you're asked to
give the probability that this coin will come up heads on the first toss.
I'm sure you'll say 1/2, Now, suppose you are asked to assign a probability
to the proposition that there is intelligent 1ife on Mars. Well, I don't

know what your opinion is there, but on the basis of all the things that I
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have read about the subject, I would agaln say about 1/2 for the probability.
But, eveﬁ though I have assligned the same probability to them, I have a
very different state of knowledge about those propositions. To see that,
imagine what the effect of getting new information would be. Suppose we
tossed the coin five times and it comes up tails every time. You ask me
what's my probability for heads on the next throw; I'11 still say 1/2._ But
if you tell me cne more fact about Mars, I'm ready to change my probability
assignment completely. My state of belief has a great instability in the
case of Mars, but there's something which makes it very stable in the case
of the penmy.

Now, it seemed to me for & long time this was a fatal objection
to Laplace's form of probability theory. We need to associats with &
proposition not just a single number representing plausibility, but
two numbers; one representing the plausibility, and the other how stable
it is in the face of new evidence. And so, a kind of two-valued theory
would have to be developed before it would make any sense. A few years
ago, I even gave a talk at one of the Berkeley Statistical Symposiums,
expounding this viewpoint. This is, furthermore, just what Carnap* has
done; his continuum of inductive methods consists of a class of probability
functions(:A (h}e ) in which ;A is the "stability parameter®,

But now, I think that there's a mechanism by which we can show

that our present theory automatically contains all these things. So far,

¥ R. Carnap, "The Continuum of Inductive Methods," University of Chicago
Press, 1952.
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all the propogitions Wwe have asked the robot to think about are ones which
had to be either trus or false. Suppose We bring in new propositions
of a different type. It doesn't make sense to say the proposition 15
gither true or false, but still we are going to say the robol assigns
credibility to it. HNow, these propositions are sometimes hard to state
verbally, and I, at least, am never able to write a verbal statement that's
unambiguous. But you noticed bhefore that we can get around that very
nicely by recognizing that if I state all probabilities conditional on X
for a given problem, I've told you everything about X that's relevant to

the problem. OSo, I want to introduce a new proposition Ap, defined by
(A | AE p (101)
\ P

where E is any additional evidence. If I had to render Ap as a verhbal

i

statement, it would come out something like this:

A= '"Hegardless of anything else you may have been told, the
P probability of A is p.M

Now, Ap is a strange proposition, but if we allow the robot to
reason with proposition of this sort, Bayes' theorem guarantees that there's
nothing to prevent him from getting an Ap ﬁorked over onto the left side in
his probabilities: 6AP]E)' How, what are we doing here? We're talking
about the “probability of a probability." I defined Ap by wWriting an
equation. You ask me what it means, and I reply by writing more equations.

So let's write the equations; if X says nothing about A {actually, "nothing®

has a very precise meaning which we'll see later), then



(AP‘X): I, 0<pgt. (205)

This is a probability density, since p is continuously variable., If X

tells us nothing relevant to 4, then the distribution of maximum entropy
is the uniform one. As soon as we have this, we can use Bayes' theorem
to get the probability (density) of Ap, conditional on other things. In

particuliar,

ittt

AFIE F,X)( A) (E Ap) (106)

EX)  (Bfx)
(AlE) - (AAGE)dp.

The propositione &  are mutually exclusive and exhaustive (in fact, every
Ap flatly and dogmatically contradicts every other Aq), so we can do this,
We're just going to apply all of our mathematical ruies with total disregard
of the fact that Ap is a funny kind of a proposition. We believe that

these rules form a consistent way of manipulating propositions; their
application cannot lead to contradictions. (Of course, we haven't really
proved that they are consistent; we have proved only that if we associate
pleusibility with real numbers and require qualitative agreement with

common sense, any other rules would be inconsistent.) But consistency is
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a purely structural property of the rules, which could not depend on the
particular meaning you or I might attach to a proposition. 5o now we

can blew up the integrand of (107) by our Rule 1:
1

(MlEY = e feddp. o

But from the definition (10L) of Ap, the first factor is just p, and so
4

(A’ E) =\P (AFIE)dP‘ (105)

The probability which our robot asslgns to proposition 4 is Jjust

the first moment of the distribution of Ap. Therefore, the distribution

of Ap should contain an awful lot more information about the robot's state
of mind concerning 4, than just the probability of A, I think the
introduction of propositions of tiis sort solves both of the problems
mentioned, and also gives us a powerful analytical toecl for calculating
probabilities.

To see why, let’s first note some lemmas about relevance. <cuppose

this evidence E consists of twe parts; I = L E,, where E,; is relevant to

A and, given Ej, k, is not relevant:

(AIE) :(AfEaEQ = A‘E% _ (110)

By cayes! theorem, it follows that, given Ej, A must als¢ be irrelevant

to Ebj {for
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FElre) = (eJE, )(Aﬁg) =(B[E,)-

Let's call thls property "weak irrelevance." Now deoes this imply that

E, is irrelevant to AP? Evidently not, for (110} says only that the

first moments of (AFIEED and (AFIEaEb) are the same, DBut suppose that

for a given Ep, (110) holds independently of what E, might be; call this

"sirong irrelevance *  Then we have

(AIE) - PG\HE E)d{J P(AF!Ea)c[F (112)

If this is to hold for all AF|E)’ the integrands must be the same:

(A[’] Ea E;,) _ (ArlEa) | (113)

and from Bayes! theorem it follows as in (111) that ﬁp is irrelevant to

) -Gl)

Now, suppose our robot gets & new piece of evidence, F. How

Eb=

for all Ea'

does this change his state of knowledge about A7 ¥We could expand directly
by Bayes' thecrem, which we have done before, but let's use cur Ap this

time,



-158-
A

(A IEF> - ?(ApiEF)ch = O’F(AFIE)?:FI—AQ? AP* (115)

<

In this likelihood ratio, any part of E that is irrelevant to Ap can be

struck out. Because, by Bayes' theorem, it is equal to

—(EJFAPEG)
Fhes)  CE) EhE)] LA

Fle) (FlEa)"gEélilFEEa; |

where we have used (11h}. Now if E, still contains a part irrelevant to

Ap, We can repeat this process. Imagine this carried out as many times
as possible; the part Eyy of E that 1s left contains nothing at all that
is irrelevant to A . E; must then be some statement only about A. But

P .
then by the definition (104) of Ap, we see that Ap automatically cancels

out E;; in the numerator: (F’APEQ_&):(F AF). And so we have (115)
reduced to 1
1

MEF) = (e POER)

G .
The weak point in this argument is that I haven't proved that it is

possible to resolve E into a completely relevant part and completely
irrelevant-part. However, we'll see in a minute that in many important

applications it is possible. 8o, let's just say that the following results
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apply to the case where the prior information is "completely resolvable."
We don't know whether it is the most general case; but we do know that
it is not an empty one.

Now,ﬁ:

rid of., It's really just a normalizing factor, and we can eliminate 1t

Eag) is a troublesome thing which we would like to get

the way we did in Equation {21); by calculating the odds on A instead of

the probability. This is just

P JEN AN
O\_E_F_): 3 p/dp ZO@lEF)’ (118)

LA (VXTI

¢

The proposition E, which for this problem represents our prior evidence,

now appears only in the combination (Ar E) This means that the only

property of E which the robot needs in order to reascn about the effect

of new information is this distribution (AP E), BEverything that has ever

happened to him which is relevant to this proposition 4 may consist of
millicns and millions of isclated separate facts. Whenever he recelves
new information, he does not have to go back and search his entire memory
for every little detail of experience relevant to A, Everything he Inaeds

in order to reason about it is contdined summarized in this one function,

(Al-, E) So, for each proposition about which he is going to have to

reason, he can store & function like this:



~160-

(Aol

/P—--—-m—h-.

Whenever he receives new informetion, F, he will be well advised to

calculate (AF E), and for

the future stere only qulEF). This shows that in a machine which does

EE), and he then can erase his previous GAF

inductive reasoning, the memory storage problem is very much aimplef
than it is in a machine which does deductive reasoning, like this one
you have down at the end of the hall, This doesn't mean that the robot
1s able to throw away entirely all of his past experience, because
there's always a possibility that some new proposition will come up
which he has not had to reason about before. And whenever this happens,
then, of course, he will have to go back te his original archives and
search for every scrap of information he has relevant to this proposition.
With a little introspection, I think we would all agree that that's
exactly what goes on in our minds. If you are asked how plausible you
regard some propesition, you don't go back and recall all the details

of everything that you ever learned about this proposition. You recall
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your previous state of mind abou{ it. How manmy of us can still remember
the argument that first convinced us that
Cl ‘3'1 X
dx

Let's look once more at Equation (117). If the new information

— Cos X ?

. ¥ is to make any appreclable change in the probability of A, we can see

3

from this integral what has te happen.  If the distribution of (AP

wag already very sharply peaked at one particular value of p, then

(F

ps, if vwe are going to get any appreciable change in the probability. On

AF) wlll have to be even more sharply peaked at some other value of

the other hand, 1f the distribution (APIE) is a very broad ons, then,

of course, almost any small amount of slope in (F AP) can make & big
change in the probabllity which the roboit assigns to A, So, the
stability of the robot's state of mind is essentially the width of the
distribution (AHE)- I don't think there's any single number which
correctly describes fhis stability. On the other hand, whenever he has
accumulated enough evidence so that (AHE) is fairly well sharply peaked
at some value of p, then the variance oi‘ that distritution becomes a
pretty good measure of how stable his state of mi.nd is. The greater
amount of previcus information he has collected, the narrower his
Ap-distribution will be, and therefore the harder it will be for any new
evidence to change that state of mind.

How we can see the difference between the penny and lars. In the
case of the penny, my distribution (AE’IE)J based cn my prior knowledge, is

represented by a curve something like this,
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In the case of the question of intelligent 1life on Mers, my state of

knowledge is described by an (AP E) distribution something 1ike this,

qualitatively.
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The first moment is exactly the same in the two cases. So, I assign
probability 1/2 to either one; nevertheless, there's all the difference
in the world between my state of knowledge about those two propositions,
and this difference 1s represented in the distribution of (lelEi).

Now, incidentally, I might mention an amusing thing. While I
was working some of this out, a newspaper story showed up from which I
would like to read you a few sentences. This is from the Associated Press,
December 1L, 1957, entitled, "Brain Stockpiles Man's Most Inner Thoughts."
It starts out: "ZLverything you have ever thought, done, or said - a
complete record of every conscious moment - is logged in the comprehensive
computer of your brain. You will never be able to recall more ﬁhan the
tiniest fraction of it to memory, but you'll never lose it either. These are
the findings of Dr. Wilder Penfield, Director of the Montreal Neurclogical
Institute, and a leading neurosurgeon. The brain's ability to store
experiences, many lying below consciousness, has been recognized for some
time, but the extent of this function is recorded by Dr. Peﬁfield.“

Now there are seversl examples given, of experiments on patients
suffering from epilepsy. Stimulation of a definite location in the brain
recalled a definite experience from the past, which the patient had not
been previously able to ?ecall to memory. This has happened many times.
I'm sure you have all read_abbut these things. Here are the concluding
sentences of this article. Dr. Penfield now says, "This is not memory as
ve usually use the word, although it may have a relation to it. No man
can recall hy voluntary effort such a wealth of detail. A man may
learn a sony 50 he can sing it perfectly, but he cannot recall in detail

any one of the many times he hcard it. MHost things that a man is
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able to recall to memory are generalizatlons and summaries. If 1t were
not so, we might find ourselves confused by too great a richness of detail.®

Laplace's Law of Succession

Now, let's imagine that a random experiment 1s beilng performed.
From the results of the random experiment in the past, we want to do the
best job we can of predicting resulits in the future. To make the problem

a definite one, intreduce the propositions:

X = "We admit two prior hypotheses; A true, and A false.
There is no other prior evidence.™
an—‘_ "4 true n times in N trials in the past!

M= A true m times in M trials in the future!

A more precise statement of X is

Ay

What we agre after is (M

K)=1  0<p<H . (9

n Nn). First, note that by many repetitions of our

Rule 1 and Rule 2, in the same way that we found Ecquation (35), we have

the binomial distributions

(N“lAP) ) F%”P) _ J e
)= (Mler)

)it
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I might mention here that, although Ap sounds like an awfully
dogmatic and indefensible statement to us the way we've introduced it, this
is actually the way in which probability is introduced in slmost all
present textbooks. One postulates that an event possésses some 1ntrinsic,
"absolute" probabllity, whose numerical value we can never determine
exactly. Nevertheless, no one questions that such an Mabsolute®
probability exists. Cramé}%, for example, takeg it as his fundamentel
axiom, That is just as deogmatic a staiement as our Ap; and I think it
is, in fact, just our Ap. The equations you see in current textbooks are
all like the two I have just written; whenever p appears as a given humter,
there's an Ap hiding in the right-hand side of your probabllity symbols.

Mathematically, the only difference between what we're doing here
and what is dene in current textbooks is that we recpgnize the existence
of that right-hand side for all probabilities, and we are not afraid to
use Bayes' theorem to work any proposition whatsoever back and forth from
cne side &f our symbols to the other. T think that in refusing to make
free use of Bayes's theorem, modern writers are depriving themselves of
the moét powerful single principle in probability theory. When a problem
of statistical inference is studied long enough, sometimes for decades,
one is always forced eventually to & conclusion that could have been
derived in three lines from Bayes' theorem. We saw this in the guality-
control example, and we'll see several more examples presenply.

Now, we need to find the prior probability (NTJX) This is

XO, for our trick of resolving a proposition

already determined from (AP

* H, Cramgr, "Mathematical Methods of Statistics," (Princeton Press,

1946); p 15h.
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into mutually exclusive alternatives gives us
4 A

(anX)ZSNMX Jep = S o)) Jp = ()SF -0 dp,

D 2 0

4

The integral we have tec eveluate is of the form
4

| <
S}(r(‘i —Xf (JX = T (121)
X (r+ S-+1)!

which is known as an Eulerian integral of the first kind., Thus, we have

1
Vi1’ 0w &N
N X) = ;e

il
O 3 N<'Y\

l.e., just the uniform distribution of maximum entropy. (MMIX) is similarly

found. HNow we can turn {120) around by Bayes' theorem:

)= ) () — e ) o

and so finally the desired probability is
1 1

(M“IIN) S( “MP S (MMIA?N“)(MM“)JP@

Mm AFMT\): (Mw AP ‘

\by the definition of Ap, we have everything in

Since

the integrand on the board. Substituting into (124}, we have again an
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Eulerian integral, and our result is
n4v ) [ N+Mon g

(Mo M) =

N+M +1
M

This is a very old and well-known formula in probability theory, Let's

Yook at it first in the special case M = m = 1. It will then reduce to
the probability of A being true in the next trial, given that it had been

true n times in the previous N trials, The result is

(A N+ 4

N = ‘ (126)
N
This is Laplace's law of succession. It cccupies a supreme position in

N+ 2

probability theory; it has been easily the most misunderstood and
misapplied rule in the theory, from the time Laplace first gave it in
177Lk. In almost any book on probability you'll find this law mentioned
very briefly, mainly in order tﬁ warn the reader not to use it., But
welve got to take the trouble to urderstand it because in our design
of this robot, Laplace's iaw of succession is, next {o Bayes' theorem,
the second most important rule we have., It is a new rule for converting
raw information into numerical values of probabilities, and it gives us
one of the most important connections between probability and frequency.
Poor cld Laplace has been lampooned for penerations because he
illustrated the use of this rule by calculating the probability that the

sun will rise tomorrow, given that it has risen every day for the past
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5,000 years. One gets a rather large factor in favor of the sun rising
again tomorrow, of course. With no exceptions et all as far as I know,
modern writers on probability have considered this a pure absurdity.
Even Jeffreys and Carnap find fault with the law of succession.

I have to confess to you that I am unable to see anything at
all absurd about the law of succession. I recommend very sirongly that
you do a little literature searching, and read some of the objections
various writers have to it. I think you will see that in every case the
same thing has happened. First, Laplace was guoted out of context, and
secondly, in crder to demonsirate the absurdity of the law of succession,
the author applies 1t to a case where it was never intended to be applied,
because there is additional prior informatlon which was not taken into
account.

If you go back and read Laplace himself,% you will see that in
the very next sentence after this sunrise episode, he points out to the
reader that this is the probability based only on the information that
the event has occurred n times in N trials, and that our knowledge of
celestial mechanics represents a great deal of additional informaticn.

Of course, if you have additional information beyond the numbers n and N,
then you ought to take it into account. You are then considering a
different problem, the law of succession no longer applies, and you can
get an entirely different answer. This theory gives the results of
consistent plausible reasoning on the basie of the information which wes

put into it.

* P, &, Laplace, "4 Philosophical Essay on Probabilities," (Dover, 1951);
p 19.
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Let me give you just two examples, both famous, of the kind of
objections to the law of succession which yoﬁ find in the literature.
(1) Suppose the solidification of hydrogen to have been once accamplished.
According to the law of succession, the probability that it will sclidify
again if the experiment is repeated, is 2/3. This does not in the least
represent the state of belief of any scientist. (2) Consider the law of
succession in the case N = n = 0. It then says that any conjecture
without any verification has the probability 1/2. Thus there is
prob&biiity 1/2 that there are exactly 137 elephants on Mars, Also there
is probability 1/2 that there are 138 elephants on Mars, Therefore, it
is certain that there are at least 137 elephants on Mars. But the law
says also that there is probability 1/2 that there are no elephants on
Mars. The law ig self-contradictory! |

The trouble with example (1) is obviocus in view of our earlier
remarks. But let's look a little more closely at example (2). Wasn't
the law applied correctly here? 1 certainly can't claim that we had prior
information about elephants on Mars which was ignored, can I? #nd even
if I could, that still wouldn't account for the self-contradiction.
Evidently, if the law of succession is going to survive example (2), there
must be some very basic points about the use of probability theory which
we still have to learn.

Well, now, what do we mean when we saj that there's no evidence
for a proﬁosition? Tﬁe question 1s not ﬁhat you or I might mean colloquially

by such a statement. The question is, what does it mean to the robot?
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What does it mean in terms of probability theory?

The prior information we used in derivation of the law of
succession Was that the robot perceives only two possibilities: 4 true,
and A false. His entire "universe of discourse" consists of only two
propositions. In the case N = 0, we could solve the problem alsc by
direct application of insufficient reasen, and this will of course give
the same answer @Q[X) = %) that we got from the law of succession. DBut

just by noting this, we see what is wrong. Merely by admitting the

possibility of three different propesitions being true, instead of only

two, we have already specified prior information different from that used

in deriving the law of succession.

If the robot perceives 137 ways in which 4 could be false, and
only one way in which it could be true, then the prior probability of 4
is 1/138, not 1/2. So, we see that the example of the elephants on Mars
was a gross misapplication of the law of succession.

Moral: Probability theory, like any other mathematical theory,
cannot give us a_definite answer unless we ask it a definite question.
We should always start a problem with an explicit enumeration of the
different propositions we're going to consider. That is part of the
"boundary condlitions" which must be specified before we have a uniquely
defined mathematical problem. If you say, "I don't know what the possihie
propositions are," that is mathematically equivalent to saying, "I don't
know what problem I want to solve.! .

In this connection we have to remember that probability theory

never solves problems of actual practice, because all such problems are
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infinitely complicated. Ve solve only idealizations of the real problem,
and the solution 1s useful to the extent that the idealization was a
good cne. In the example of the sclidification of hydrogen, the prior
information vwhich our common sense uses so easily, is actually so
complicated that noboedy knows how to convert it into a prior probability
assignﬁent. I don't think there is any reason to doubt that probability
theory is, in principle, competent to deal with such problems; but we
have not yet learned how to translate them into mathematical language
without oversimplifying so much that the solution 13 useless.

Laplace's law of successlon provides a definite solution to a
definite problem. Lverybody denounces it as nonsense because it is not
also the solution to some other problem. The case where the problem can
be reasonably ldealized to one with only two hypotheses to be considered,
and no other prior informmation, 1s the only case where it applies. You
can, of course, generalize it to any number of hypotheses, and let me
Just give you the result of doing this.

There are K different hypotheses, i}l, Ao ..., AK} s, and no
other prior information, We perform a random experiment N times, ard
observe Al true ny times, AE true o times, etc. Of course, 2E}Yt; = N,
On the basis of this evidence, what is the probability that infthe next
" =2:jﬂ![ repetitions of the experiment, A; will be true exactly m; times?
By a(perfectly straightforward generalization of the derivation of (125),

ve find
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n1+m1) Ny + M,
‘ N+M+IK -1

M

In the case where we want just the probablility that Ay will be true on
the next trial, we need this formila with M = my =1, all other my = 0.

The result is the generalized law of succession:

N, + 1
(4,n 2N, K) = L (128)
{1 1 J N 4 K _

You see that In the case N = n, = 0, thils reduces to the answer provided
by insufficient reasen. In the case that K is a power of 2, this is the
same as a method of inductive reasoning proposed by Carnap in 1945, which
he denotes as ¢¥ (h,e) in his "Continuum of Inductive Methods.™

Now, use of the law of succession in cases where N is very small
is rather foolish, of course. HNot really wrong; just foolish. Because
if we have no prior evidence to help us in deciding between the hypotheses,
and we make such a small number of cobservations that we get practically
no evidence; well, that's Just not a very promising basis on which to do
plausible reasoning. We can't expect to get anything useful out of 1it.
We do, of course, get definite numerical values for the probabilities,
tut these values are very M"soft", i.e., very unstable, because the A
distributicen is still very broad for small N. Our common sense tells us

that the evidence N, for small N provides no reliable basis for further
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predictions, and we'll see in a minute that this conclusion alsc follows
a5 a consequence of the theory we're developing here,

The real reason for introducing the law of succession lies in
the cases where we do get a significant amount of information from the
random experiment; l.e., when N is a large number. In this case,
fortunately, we can pretty much forget about these fine points concerning
prior evidence. The particular initial asgignment (AFIX) will no longer
have much influence on the resqlts, for the same reason as in the
particle-counter problem. This remains true for the generalized case
where we have a K-dimensional initial assignment (APaPKIX) s uqiform
in the case that leads to (128). You see from (128) that as soon as the
number of observations is large compared to the number of hypotheses,
then the probability assigned to any particuler hypcthesis depends, for
811 practical purposes, only on what we have observed, rot on how many
prior hypctheses there were. If you contemplate this for ten seconds,

I think your common 8ense will tell you that the c¢riterion, N >> >> K,
is exactly the right one for this to be so,

Probabillity and Frequency

We are now in a position to say quite a bit more about
connections between probability and frequency, These are of two main
types: {a) given an observed frequency in a random experiment, 1o convert
this information into a probability assignment, and (b) given a probability
éssignment, to predict the frequency with which some condition will be

realized.
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The law of-succession gives us the solution to problem (a); 1t
we have observed whether A was true in a very large number of trials, and

the only knowledge we have about & is the result of this random experiment,

then the probabllity we should assign to A at the next trial becomes
practically equal tc the observed frequency. HNow, in fact, this is
exactly what people who define probability in terms of frequency do; one
postulates the existence of an unknown probabllity, whose numerical value
is to be found by performing random experiments. Of course, you must
perform a very large number of experiments. Then the observed frequency
of A is taken as the estimate of the probability. Even the +1 and +2 in
Laplace's formula turn up, in a sense, when the "freguentisi" refines
his methods by taking the center of a confidence interval.® So, I don't
see how even the most ardent advocate of the frequency theory of probability
can damn the law of succession without thereby damning his own procedure;
he is doing exactly what Laplace's law of succession tells him to do. To
define probability in terms of frequenﬁy'is equivalent to saying that the
law of succession is the only rule which can be used for converting
cbservational data into probabllity assignments.

Now let's consider problem {b); to reason from a probability to
a frequency. This is simply a problem of parameter estimation, not
different in principle from any other. Suppose that instead of asking

for the probability that A& will be true in the next trial, we wish to

c /
¥y, Cramer, "dathematical nethods of Statistics," (Princeton University

Press, 19L6); pp 909-52L. See especially equation (3L.2.5) at the 8L%
conf idence level, corresponding to A = 42 .
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infer something about the relative frequency of 4 in an indefinitely large
mumber of trials, on the basis of the evidence Ny. We nust take the limit
of Equation (125) as M -~ 02, m —w (0, in such a way that (m/M) —aef.

Introducing the proposition

&p = "The frequeney of A true in an indefinitely large number
of trials is f,H

we find in the limit that the probability denslty of Af, given Ny, is

+1)] " - (129)
(elth) - w!(‘?w—ﬂlt)’ AR

/ .
which is the same as our in (123}, with f numerically equal to p.
P " _ q

According to {129), the most probable frequency is equal to (n/N), the
observed frequency in the past. But we have noted before that in parameter
estimation the most protable value is usually a poorer estimate than the
mean value in the small sample case, where they can be appreciably

different. The mean value estimate of the frequency is

A
— (130)

— YH-’I .
‘g - ][(A ]N )c:}.g 3
N+
O
l.e., just the same as the value of O\[Nn) given by Laplace's law of

succession. Thus, we can interpret the rule in either way; the probability

which Laplace's theory assigns to A at a sinple trial is numerically equal
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to the estimate of frequency which minimizes the expected square of the
error. You see how nicely this corresponds with the relation between

probability and frequency which we found in the maximum-entropy argument.

Note also that the distribution GH,N“) is quite broad for small
N, confirming our expectation that no reliable predictions should be
possible dn this case. As a numerical example, if A has been observed

true cnce in two trials, then £ = (A'N“) = 1/2; but according to (129)

it is still an even bet that the true frequency f lies ocutside the interval
0,326 { £ € 0.67h. With no evidence at all (N-= n = 0), it would be an
even bet that f lies outside the interval 0.25 £ < 0.75. More generally,

the variance of (129) is

MM(A_;'N%):‘EE__?’L =5(1-§) (N+3) 7

s0 that the expected error in the estimate (130) decreases like N”%.
More detailed conclusions about the reliability of predictions, which
we could make from (129), are for all practical purposes identical with
those the statistician would make by the method of confience intervals.
All these results hold alsc for the generalized law of
succession., Taking the limit of (127) as M —& (o, (mi/M)——a- £y, e
find the joint probability distribution for A; to occur with frequency

fi to e

(g;..gk[nl...%jgiu.dgﬁ i, (N+ﬁ-1\fjc“1” o

’hﬁf...‘ﬂ/ 1

e
Jl ds . - .d{ﬁ
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where the df, are restricted by the condition ’-L-:'C‘fi = 0, The probability
that the frequency f; will be in the range df; is found by integrating (131)
over all values of f, ... fy compatible with fj > O, (fz+ ... #f)) = 1 - f,.
This can be carried out by application of Laplace transforms in a well-

known way, and the result is

(N+%“1)! Ty M4M+E—Z .
@!ﬂ rJ‘j = TRy }}1 (1—§’) d%ﬁ (132)

h
from which we find the most probable and mean value estimates of f. to be

1
n
(g) = t (133)
V- N+ R -2
ﬂ._ o

3y compare (128) (134)

R
i

N+

Another interesting result is found by taking the limite of

(120) as M —s o9, {m/i) —=~ f. We easily find

(%Mp) =6 (3& - IO) : (135)

Likewise, taking the limit of {123) as N—% 09 , we find

(AF‘A{) = & (‘P-’S‘) , (136)
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which follows also from (135) by application of Bayes' theorem. Therefore,

if B is any proposition, we have from our standard argument,

) (Tv )AF (137)

A

|
F)IAJI- {AF‘L\ JF R I/’« Ay AF’A& AF

.
o o

A

(5

In the last step we used the property (104} that Ap automatically

neufralizes any other statement about A. Thus, if f and p are numerically
equal, we have (84A (B!f ) p ﬂ and Af are equlvalent statements in

their implication for plausible reasoning.

To verify this equivalence in one case, note that in the 1imit

H-—= 00, {(n/i) = 1, ( W\ ) in Lquation (125) reduces to the binomial

distributicn th}ﬂp) as given by (120). The generalized formula (127),

in the cerresponding 1imit, goes into the well-known multinomial distribution.

This equivalence shows why it 1s so easy to confuse the notions
of probability amd frequency, and why in many problems ihis confusion does
no harm. Whenever the available informaticn consists of observed
frequencies in a large sample, Laplace's theory becomes mathematically
identical with the frequency theory. Most of the "classicalV problems of
statistics (life insurance, etc.) are of just this type; and as long as
one works only on such problems, all is well. The harm arises when we
censider more general problems.

Today, physics and engineering offer ﬂany important applications
for probaﬁility theory, in which there is an absolutely essential part

of the evidence which cannot be stated in terms of frequencies, and/or
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the quantities about which we need plausible inference have nothing to do
with frequencies. Ixamples are the statistical mechaniecs of irreversible
processes, and the theory of radar detection. The axiom (probability) =
(frequency), if applied consistently, would prevent us from using
probability theory in these problems.

This 1s, 1 think, the same thing that Professor Kac pointed out
here - that the question of how one can introduce probability methods into
physics involves great conceptual difficulties, These difficulties, I
suggest, are due conly to the attempt to interpret every probability as a
frequency., If we admit, with Laplace, that the notion of probability is
a respectable concept in its own right, then there is nothing mystericus
about a probability distribution in both position and velocity, even
though there is no M"lack of specification" over which we can averags. In
the “master egquation® approach to kinetic theory, it is meaningless to ask
whether or why nature prepares the factorized distributions which lead to
the Boltzmann equation., Nature does not prepare distributions, factorized
or otherwise; she prepares siates. There does not exist any 1:1 correspondence
between different probability distributions and different physical situaticns.

I don't think the present mysteries of kinetic theory are going
to be cleared up until workers in the field recognize this, and reformulate
the objectives of the theory. For example, the problem which is relevant
to physics is not to calculate the "true" contractéed distribution functions,
or to find what precise mathematical properties of the master probablility

function lead to the Boltzmann equation. It is to find what physical
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predictions are characteristic of "practically all” master probability
functions compatible with our macroscopic information. Experimentally
reproducible effects can invelve only such predictions, and as soon as
we learn how to extract them from the master probability function, then
it will make very little difference which particular function we use in
our calculations. |

Confirmation and Weight of Evidence

Now, I'd like to introduce a few new ideas which are suggested
by our calculations involving Ap. Vie caw that the stability of
probability assignuent in the face of new evideuce is essentially
determined by the width of the Ap distribution. If E is prior evidence

and F is nm;vidence, then P(APIF)(AFIE) dr
(;x_l[-:r-) - Lan(ArlEF) (JP — |
° (1| F) (g [E ) dp

We'll -uy that I is compatible with E, as far as A is concerned, it having

the new evidence, F, doesn't make any appreciate change in the probability

of A3 i.e.,
(Mer) 2= (Ale) |

The new evidence can make an enormous change in the distritution of Ap
witnout changing the first momcnt. It might sharpen iv up very much, or

broaden it. we could become either uaore certain or more uncertain about
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A, but if F doesn't change the center of gravity of the 4 distribution, we

P
stil]l end up assigning the same probability to A,

Now, the stronger property; the new eviaence F confirms the
previous probability assigmment, if F is compatible with it, and at the
same time, gives us more confidence in it. In other words, we exclude
one of these possibilities, and with new evidence F the Ap distribution
narrows. Suppose I consists of performing some random experiment and

observing the frequency with which 4 is true. In this case F = Nn, and

our previous result, e.g. (123), gives

1)l
(APINH) = ”}’[(N(‘\:—)ﬂ)’ (1

\——-‘/

(138)

= (cows'(‘a»&) QKP[ (P 51)2’

where

oz F(-%)
N

and £ = (n/N) is the observed frequency of A. The approximation is derived
by expanding log Om?lhhl) in a Taylor series about iis peak value, and is
valid when n » ) 1 and (N-n) > > 1. If these conditions are satisfled,
then (AF

observed frequency f i1s close to the prior probabillty O&hf), the new

fﬂn) is very nearly symmetric about its peak value. Then, if the
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evidence N, will not affect the first moment of the Ap distribution, but
will sharpen it up, and that will constitute a confirmation as I defined
it. This shows one more connection between probability and frequency.
I defined the "confirmation" of a probabllity assignment according to
entirely different ideas than are usually used to define it, I defined
it in a way that agrees with our intuitive notion of confirmstion of a
previous state of mind. But it turned ocut that the same experimental
evidence would constitute confirmation on either the frequency theory or
our theory.

Now, from this we can see another useful notion; which I'1ll
call weight of evidence.

Let's consider Ap, given two different pieces of evidence, E

and F.

(AP‘H‘> - (f.:t.“.r‘;"aﬁ"' an'{‘)(AF

E) (A F). (139

If the distributian(APlF) Wwas very much sharper than the distributicn
(hplE) then the product of the two would still have its peak at practically
the value determined by F. In this case, we would say that the evidence

F carries much greater 'weight" than the evidence E, If we have F, it
doesn't really matter much whether we take E into acecount or not. On the
other hand, if we don't have ¥, then whatever evidence L may represent

will be extrenely sipnificant, because it will represent the best we are
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able to do. So, acquiring one piece of evidence which carries a great
amount of weight can make it, for all practical purposes, unnecessary to
continue keeping track of other pieces of evidence which carry only a
small weight.

Of course, this 1s exactly the way our minds operate. When we
receive one very significant piece of evidence, we no longer pay so much
attention to vague evidence. In so doing, we are not being very
inconsistent, beceuse it wouldn't make much difference anyway. So, our
intuitive noticn of weight of evidence is bound up with the sharpness of
this Ap distribution. Lvidence concerning A that we consider very
sjignificant is not necessarily evidence that makes a big change in the
probability of A. It 1s evidence that makes a big change in this
distribution of Ap. Now seeing this, we can get a little more insight
into the principle of insufficient reason that we started with, and also
make contact between this theory and Carnap's methods of inductive
reasoning.

Before we can use insufficient reason to asslgn numerical values
of probabilities, there are two different conditions that have to be
satisfied: (1) we have to be able to anzlyze the situation into mutually
exclusive, exhaustive possibilities; (2) having done this, we must then
find that the available information gives us no reason to prefer any of
the possibilities tb any other. In practice, these conditions are hardly
ever met unless there's some evident element of symmetry in the problem.
But there are two entirely different ways in which condition 2 might be

satisfied. It might be satisfied as a result of ignorance, or it might
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be satisfied as a result of posltive knowledge about the situation.

To 1llustrate this, let's suppose that a person who is known
to be very dishonest is going to toss a coin and there are two people
watching him. Mr. 4 is alloﬁed to examine the coin. He has all the
facilities of the National Bureau of Standards at his disposal, He
performs thousands of experiments with scales and calipers and magneto-
meters and microscopes, X-rays, and neutron beams, and sc on., Finally,
he is convinced that the coin 1is perfectly honest. Mr. B 1s not allowed
to do this. All he knows is that a coin is being tossed by a shady
character. He suspects the coin‘is biased, but he has no idea in which
direction.

Condition 2 is satlsfied equally well for both of these
people. Each of them would start out by assigning probability one-half -
to each face. The same probability assignment can describe a condition
of complete ignorance or a condition of very great knowledge. Now, this
sort of situation has seemed paradoxical fer a long time. Vhy doesn't
Mr., A's extra knowledge make any difference? Well, of course, it does
make a difference. It makes a very important difference, but one that
doesn't show up until we start performing this random experiment. It
is not in the protability of 4, the difference is in the distribution of
Ap. |

Suppose the first toss 1s heads. To Mr. B, that constitutes
evidence that the coin is biased to favor heads. And so, on the next
toss, he would assign new probabilities to take that into zeccount. But
to Mr. A, the evidence that the coin 18 honest carries overwhelmingly
greater weipght than the evidence of one throw, and he'll continue to assign

a probability of 1/2,
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Well, now, you see what's going to happen, To Mr. B, every toss
of the coin represeunts new evidence about its blas. Every time it's
tossed, he will revise his assignments for the next toss; but after
several tosses his assignments will get more and more stable,-and in the
limit N —& 00 they will tend to the observed frequency of heads. To
observer A, the evidence of symmetry contihues. to carry greater weight
than the evidence of almost{ any number of throws, and he persists in
assigning probability 1/2. kEach has done consistent plausible reasoning
on the basis of the information available to him, and our theory accounts
for the behavior of each.

If you assumed that Mr. & had perfect knowledge of symmetry,
you might conclude that his Ap distiribution is a true g—function. In
that case, his mind could never be changed by any amount of new data
from the random experiment. Of course, that's a limiting case that's
never reached in practice. Not even the Bureau of Standards can give us
evidence that good.

Carnap's Inductive Methods

Carnap# gives an infinite family of possible "inductive methods",
by which one can convert prior information and frequency data into a
probability assignment and an estimate of frequencies for the future.
His principle is that the final probability'assignment(thhX) should be
a weighted average of the prior probability'éQIX) and the observed
frequency, £ = n/N. Assigning a weight N to the "empirical factor" f,
and an arbitrary weight A  to the Mlogical factor™ QQLX), leads to the

method which Carnap denotes by c A {h,e). Introduction of the Ap

% R, Carnap, “The Continuum of Inductive Methods," Univ. of Chicago
Press, 1952,
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distribution accounts for this in more detail; the theory developed here
includes all of Carnap's methods as special cases corresponding to
different prior distributions(ﬂFIX) » and leads us to re-interpret }\
as the weight of prior evidence. Thus, in the case of two hypotheses,
the Carnap :R -method is the one you can calculate from the prior

distribution (APIX) = (const.) - [p(l—p)] T, with 2r = A~2. The result is

(AfN},X) S ILA i) > 1 (140)

AN+ 2N (I\HZP) e

Greater A thus corresponds to a more sharply peaked 64? X) distribtion.
In our coin-tossing example, the gentlemen from the Bureau of
Standards reason according to a Carnap method with ;\ of the order of,
perhaps, thousands to millions; while Mr. B, with much less prior knowledge
about the coin, would use a ?\ of perhaps 5 or 6. (The case ?\ = 2, which
gives Laplace's law of succession, is much too broad to be realistic for
coln tossing; for Mr. B surely knows that the center of gravity of a coin
can't be moved by more than half its thickness from the geometrical center.)
From the second way I wrote Equation (1LO), you see that the
Carnap A ~method correspends to a weight of prior evidence which would
be given by (A-2) trials, in exactly half of which A was observed to be
true. Can we understand why the weighting of prior evidence is :& =
(nuiber of prior trials 4 2), while that af the new evidence N, is only
(number of new trials) = N? Well, lock at it this way, The appearance
of the (+2) is the robot's way of telling us thal,with prior knowledge, it

is possible for A to be either true or false, It is equivalent to knowledge
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that & has been true at least once, and false at least once. This 1s hardly
e derivation; but I think it makes excellent common sense.
Our theory alsc gives "inductive methods® for more general
prior distributions for which (ﬁlk)gé 1/2. For any of these we find, in
agreement with Carnap, that the probabllity assigned to A4 in a single
trial is numerically equal to the mean value estimate of the frequency of

A in a large number of triaie,
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NOTE: At this collequium, Professor Jaynes
delivered ten lectures on the subject of
protability. Circumstances beyond our
control prevented the transcription of the

entire lecture series.
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