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SUMMARY

A problem of decision making in the face of
uncertainty is formul ated and solved by using the notion
of entropy as a criterion for setting up prior probability
assignments. Therresulting mathematical formalism is
identical with that given by Gibbs for Statistical Mechanics,
here appl ied in an entirely different context. This use of
probability theory (similar to that of Laplace) would, on
the usual viewpoint of statisticians, give rise to many
objections and conceptual difficultles. We therefore give
a brief survey of statistics, showing how recent
developments have vindicated the original methods and
viewpoint of Laplace, and made them available for
treatment of problems which in most recent textbooks

are considered to be outside the field of probability
theory.

163
Offprints From .
Proceedings Of The First Symposium On Engineering,
Edited By Bogdnnoff and Kozin
Published By John Wiley & Sons, inc., 1963

etc.,



164 E. T. JAYNES

The title of this talk is quite ambiguous, In the
first place, there is no common agreement as to the

1

meaning of "Information Theory.'" What area of activity
does it define? In the published literature we can find z11
kinds of answers to this, ranging from the narrowest
possible view that-"Information Theory'' is synonymous
with '""Communication Theory'" to definitions so broad and
vague that they seem to include all human activity.
Taking a stand somewhere between these extremes,

I will use the term ''Information Theory'

as standing for
any application of probability theory in which we make use
of the notion of entropy as a measure of "amount of
uncertainty. ' I won't try to say just how much of
probability theory is thereby staked out, because Informa-
tion Theory, so defined, is a rapidly growing field.

Entropy is, in a sense, inherent in probability
theory, independently of the work of Boltzmann, Gibbs,
Szilard, von Neumann, and Shannon. For example, if
we write Bayes' theorem in the logarithm-of-odds form
[1] which has become popular in recent years (due to
Wald's introduction [2] of the probability-ratic test in
sequential analysis), we find that the expressions result-
ing are really conditional entropies. What is new in the
past decade is merely the recognition of a situation that
has always existed.

The notion of entropy is assuming an ever-increasing
importance in statistics generzally. Although new results
obtained by its use are to date rather modest, it has turned
out to have great value as a unifying principle by which
we can see old results in a new light. This has been
shown particularly by S. Kullback [3], who demonstrates
that many of the procedures which had been developed by
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statisticians in a more or less ad hoc way for treatment of
special problems, have a simple interpretation in terms
of Information Theory. This new insight enables him to
generalize old methods and in some cases (particularly
the  Chi-squared test) to improve them

At the same time, some of the famous parédoxes and
controversies about interpretation (the subjective-objective
nature of probability, etc,) which have plagued probability
theory for two centuries,  tend to disappear when we
adopt the viewpoint suggested by Information Theory. It
is, in my view, an open question whether "Information
Theory, " as defined here, may eventually become
synonymous with '"Probability Theory."

Another ambiguous thing in my title is the word
"new.' Is this meant in the strong sense that the
application itself is new; i. e, the problem could not have
been treated at all without Information Theory ? Or in the
weak sense that what is new is merely the recognition
that Information Theory has something relevant to say
about the problem ? In spite of many attempts, I have not
been able to imagine any problem which can be solved by
using Information Theory, which would be absolutely
impossible to solve without it. Information Theory has
only emphasized the truth in Laplace’'s famous remark,
"Probability Theory is nothing but Common Sense Reduced
to Calculation.”" If we have enough common sense, we may
find that we don't need any mathematical theory to tell us
what to do. Indeed, the various methods of statistical
inference were developed in the past in just that way;
each of them is a mathematical model chosen so that it
reproduces a small part of what we call common sense.

1

So, we have to understand "new'' in the weak sense; the
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criterion is not whether information theory is necessary,
but only whether it is helpful.

The engineer is continually faced with the problem of
making decisions in the face of uncertainty. I.et us define
his job broadly, and perhaps facetiously, as the planning
of gadgets or procedures which are to work predictably and
are to be in some 'way useful. Obviouély, a certain area
of knowledge, about the laws of physics and about the ways
of people, is essential to him. But an egually essential
part of his problem is the inevitable state of ignorance
in which he must work. He does not know in advance
exaétly what quality of materials will be used, how
faithfully his designs will be reduced to practice, whether
the ultimate user wiil actually use the gadget in the way
he has visualized. If his brainchild should fail, he
never knows in advance exactly what the consequences of
that failure will be (although he can often make & pretty
good guess!) Nevertheless, his job is to do the best he
can; to make the best possible use of his positive
knowledge in such a way as to minimize, in some sense,
the possible bad effects of his ignorance.

It is obvious enough that failure to take into account
all the available knowledge relevant to a problem could be
diastrous. Perhaps the main point I want to make in this
talk is the converse; failure to recognize frankly the full
extent of our ignorance, and to take this ignorance
explicitly inte accouni, can be just as diastrous. More
specifically, I want to show you a mathematical model of
the reasoning of a person who is trying to be fair, trying
to avoid prejudice and remain noncommittal when he does
not know; in other words, trying to avoid drawing

conclusions which are not warranted by the available
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evidence. This model may, ‘I hope, prove useful in
engineering problems of a certain intermediate degree of
cozﬁplexity, which we can describe loosely by saying that
the problem is sufficiently complicated so that our unaided
common sense fails us, but at the same time is sufficiently
simple so that the situation can be described by a manage-
able amount of mathematics,

To fix ideas more clearly, let us look for a moment
at a specific, and not too unrealistic, decision problem
which might arise. Mr. A is in charge of a Widget
factory, which proudly advertises that it can make
delivery in 24 hours on any size order. This, of course,
is not really true, and Mr. A's job is to protect, as best
he can, the Advertising Manager's reputation for veracity.
This means that each morning he must decide whether the
day's run of 200 Widgets will be painted red, yellow, or
green. (For complex technological reasons, not relevant
to the present problem, only one color can be produced
per day). We follow his problem of decision making
through several stages of increasing knowledge.
§'_t__a_g§:_1_ When he arrives at work, Mr. A's positive
knowledge is that he has in stock 100 red Widgets, 150
yellow, and 50 green. His ignorance lies in the fact that
he does not know how many orders for each type will
come in during the day. Clearly, iIn this state of ignorance,
Mr. A will attach the highest significance to any tiny scrap
of information about orders likely to come in today; and
if no such scraps are to be had, we do not envy Mr. A his
job. Still, if a decision has to be made on no more
information than this, his common sense will probably
tell him that he had better build up that stock of green

widgets.
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Stage 2 Mr. A learns that, averaged over the past year,
average daily orders have been for 50 red Widgets, 100
yellow, and 10 green. He will, I think, immediately
decide to make yellow ones today, and probably red ones
tomorrow.

Stage 3 But now Mr. A (who is evidently new on this job)
learns that the average individual order is for 75 Widgets

if the customer wants red ones, while users of yellow
widgets order on the average only 10 at a time, and the
average order for green is 20. This new information does
not change the expected daily demand; but if Mr. A is very
Shre-wd, I think he may change his mind again, and decide
to make red Widgets today and almost certainly yellow
ones tomorrow.

Stage 4 Finally, Mr. A gets a phone call, telling him that
an emergency order for 40 green widgets is on its way by
special messenger. Up to this point, Mr. A's decision
problem has been so simple that he needed no mathematics,
only ordinary common sense, to solve it. DBut now, I think
he is in a position where some mathematics might be
welcome. Let us summarize the various stages of this

problem in a table:

R | ¥ G | Decision i
1 In stock 100 150 50 G
2 Avhj_Daily Order Total 50 100 10 l Y
3 Av. Individual Order 75 10 20 R
4 Specific Order | | 40 ?
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Mr. A has a fair chance of getting through today without
trouble. But, no matter what decision he makes today,
he is likely to be in trouble tomorrow., Suddenly, he
realizes that this job is not as simple as it seemed. In
order to think through his problem completely, he must
not plan only for today - each morning his décision should
be based on what is, at that time, the best estimate he
can make of orders for the entire future.

Now it is not obvious how, or even whether,
probability theory can be applied to this kind of problem.
It is, in faect, so far from obvicus that in the late 1940's
a general theory of decision making in the face of
uncertainty was developed, largely by Wald[4], which in
its initial stages had no apparent connection with
probability theory. I would like to give you a very brief
account of some of the ideas it involved.

We begin by imagining (i.e. enumerating) a set of
possible unknown "states of Nature, " 81, 82, .. QN’
whose number might be finite or infinite. In Mr. A's

problem these correspond to the different possible orders

which might come in as far as he knows. If we consider
first the 'truncated' problem (already noted as too
simplified to be realistic) where decisions are made on a
day-to-day basis with no thought of tomorrow, then to
each state of nature there corresponds an ordered triple
of non-negative integers 6= {n,, N, n3} giving
respectively the total orders for red, yellow and green
Widgets that will come in today. We have in this case
an infinite, but discrete, set of Bj. Of course, the Qj
might also form a continuum,

Already at this stage we can see a feature which has

not been emphasized in the literature, but which is quite
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important for the viewpoint I want :0 develop. In
enumerating the different states of nature, we are not
describing any objective (measurable) property of nature -
for, in fact, one and only one of them will be realized.
The enumeration is only a means of describing our state

of ignorance. It is meaningless to ask whether one

particular enumeration is "correct" without first asking,
"what is the prior information that is being described
by the set of 8.?" Two observers with different
amounts of prior information may enumerate the QJ.
differently without either being inconsistent. The rules
of this game are simply that each observer must do the
best he can on the basis of the information he has. At
this stage, these remarks may seem trite; but bear with
me.

The next step in our theory is to make a similar
enumeration of the possible decisions {Dl D, .. Dk}
that might be made. In Mr. A's truncated problem there

are only three possible decisions:

D, = "make red widgets today"
D, = "make yellow widgets today"
D; = "make green widgets today"

Again, the enumeration of the Di is a means of describing
our knowledg« as to what kinds of actions are feasible;
it is idle to consider any decision which we know in
advance corresponds to an impossible course of action.
There is another reason why a particular decision
might be eliminated: even though D, is easy to carry out,
we might know in advance that it would lead to intolerable
consequences. An automobile driver can make a sharp
left turn at any time; but his common sense usually tells

him not to. Here we see two more poinjzs: (1) there is a
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.continuous gradation - the consequences of an action

might be serious without being absolutely intolerable,

and (2) the consequences of an action ( = decision) will in
general depend on what is the true state of nature - a sharp
left turn does not always lead to diaster.

This suggests the third concept we need - the loss
function L‘(Di’ Oj), which is a set of numbers representing
our judgement as 1o the "loss’ incurred by making
decision Di if GJ should turn out to be the true state of -
nature, If the Di and E;ij are both discrete, this becomes a
loss matrix Lij‘ In Mr. A's truncated problem Lij has
three rows, but an infinite number of columns.

Quite a bit can be done with just the Bj, Di’ Lij' and
there is a rather extensive literature dealing with criteria
for making decisions with no more than this. The material
we need for our purposes has been summarized in a very
readable and entertaining form by Luce and Raiffa [5] and
more recently in the elementary textbook of Chernoff and
Moses [ 6 ]. The minimax criterion is this: for each Di
find the maximum possible loss M, = max, (Lij): then
choose that Di for which Mi is a minirmum. The minimax
criterion would be a reasonable one if we regard nature as
an intelligent adversary who foresees our decision and
deliberately chooses the state of nature so as to cause us
the maximum frustration. In the theory of some games,
this is not a completely unrealistic way of describing the
situation, and consequently minimax Strategies are of
fundamental importance in game theory [ 5]. But in the
decision problems of the sclentist or engineer the minimax
criterion is that of the long-faced pessimist who concen-
trates all his attention on the worst possible thing that

could happen, and thereby fails to take advantage of the
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favorable possibilities.

FEqually unreasonable for us is the opposite extreme
of the starry-eyed optimist who uses this "minimin'" cri-
terion: for each Di find the minimum possible loss
m, = minj (ﬂij) and choose the Di that makes m; a
minimum.

Evidently, a reasonable decision criterion for the
scientist and engineer is, in some senée, intermediate
between minimax and minimin. Many other criteria have
been suggested which go by the names of maximin utility
(Wald), @ - optimism-pessimism (Hurwicz), minimax
regret (Savage), insufficient reason (Laplace), etc. The
usual procedure, as described in detail by Luce and
Raiffa [5], has been to analyze any proposed criterion to

see whether it satisfies about a dozen qualitative common-

sense conditions such as (1) Transitivity: if Dl is

preferred to DZ’ and D2 preferred to D3, then Dl must

be preferred to D,, and (2) Strong Domination: if for all
states of nature Bj we have I_Jij < ij then Di should
always be preferred {o Dk' This analysis, although
straightforward, can become tedious. I will not follow it
any further, because the final result is that there is only
one class of decision criteria which passes all the tests,
and this class is obtained more easily by a different line
of reasoning.

What is it that makes a decision process difficult?

Well, if we knew which state of nature was the correct

one, there would be no problem at all; if 6 3 is the true
state of nature, then the best decision Di is the one which

renders L13 a minimum. In other words, once the loss

function has been specified, our uncertainty as to the best

decision arises solely from our uncertainty as to the state
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of nature. Whether the decision minimizing L13 is or is not
best depends entirely on this: How sirongly do you believe
that 83 is the true state of nature? How plausiblé is 83?
To a physicist or engineer it seems like a very
small step - really only a rephrasing of the question - to
ask next, "What is the probability P, that 93 is the true
state of nature?' Not so to the statistician of the dominant
school of thought, which Savage [ 7] has labeled
"objectivist. " To the objectivist, the word ''probability' is

synomous with, "long-run relative frequency in some

random experiment.'" But then, it is meaningless to speak
of the probability of 83, because the state of nature is not
a ""random variable.' Thus, if we adhere consistently to

the frequency definition of probability, we will have to
conclude that probability theory cannot be applied to the
decision problem, at least not in this direct way.

It was just this kind of reasoning which led statisti-
cians, in the early part of this century, to relegéte
problems of parameter estimation and hypothesis testing
(which are really decision problems and as such are
included in our general formulation) to a new field,
Statistical Inference, which was regarded as distinct from
probability theory, |

' LAPLACE'S THEORY

Laplace had a different conception of probability
theory. To him, it was not merely a set of rules for
calculating frequencies - it was also the "calculus of

' It was an extension of logic to the

inductive reasoning. '
intermediate cases where propositions are neither proved
or disproved, but the evidence affects their plausibility -
a quantitative rendering of what our common sense

perceives qualitatively.
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More precisely, by '"Laplace's theory' I mean the
following. Denote various propositions by letters, A, B,
C, etc., and read AB as the proposition "both A and B are
true, " A as "A is false.'" The symbol (AlB), which is a’
real number in the interval [0, 1], stands for "the probabi-
lity of A, given B." These symbols are manipulated as
follows:

(ABIC) = (AIBC)YB!C) (1)

(AIB) + (AIB) =1 (2)

All relations of probability theory can be derived by
repeated application of the se two fundamental rules. In
particular, {rom the fact that the left-hand side of (1) is

symmetric in A and B, we obtain Bayes' theorem:

(A BC) = (A1C) L%%%}— (3)

which represents the learning process, since it shows how
the prior probability (AiC) is changed to the posterior
probability (A| BC) as a result of acquiring new information
B.

According to Laplace, it is legitimate to assign
probabilities to any clearly stated proposition, and the
above rules generate an idealized mathematical model of
the process of plausible reasoning carried out by human
brains. Recently, Polya{ 8] has demonstrated the
complete qualitative correspondence between these rules
and human common sense. It is easily seen that they
include deductive logic as a special case,

In addition to the above rules, Laplace needed for

applications (1) a principle by which initial probabilities
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are set up in starting a problem, and (2) a principle for
converting final probabilities into a definite decision. Both
of these were supplied in the early 18th century by James
and Daniel Bernoulli respectively, and used by Laplace:
(1) Imagine an initial state of knowledge X where we
have enumerated a set of mutually exclusive and exhaus-
tive possible propositions (Al-—- An) about Wflich a
decision has to be made, but have not yet incorporated any
other evidence. At this stage we assign equal probabilities
(Ail X) = n~ ! to the A,. This is the "principle of
insufficient reason. "
| (2) Assign the "utility, " Uij of making decision A,
if Aj should turn out to be true, and make that decision

Ai which maximizes the expected utility

n
<U> = ji:l Uy (Ajl EX) (4)
over the posterior probabilities (Ajl EX), where E is any
additional evidence about the Aj.- This is Daniel
Bernoulli's principle of "moral expectation, "

Now, this looks very much like a prescription for
solving our decision problem (with only minor changes,
such as recognition that the set of possible decisions
is not necessarily in 1:1 correspondence with the set of
possible states of nature). Laplace used these rules from
about 1774, in decision problems of astronomy; given a
set of astronomical observations, decide whether discre-
pancies indicate a new systematic effect worth working on,
or whether they are merely experimental errors. This
early use of decision theory led him to some of the most

important discoveries in celestial mechanics.
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OBJECTIVIST STATISTICS

For several decades, it has been fashionable to
discredit Laplace's methods and to deny that probability
theory has anything to do with inductive reasoning. One
can find this attitude in almost all books on probability and
statistics written in this century. Indeed, the whole
program of Statistical Inference had the explicitly stated
aim of avoiding the supposed mistakes of Laplace, by
developing entirely new approaches. For parameter
estimation many criteria were proposed, and the
method of maximum likelihood assumed a position of
central importance. This, however, is mathematically
identical with application of Bayes' theorem, with the
unif-orm prior probability assigned by insufficient reason;
then choosing that alternative with the greatest posterior
probability., Thus it is included in the above Laplace rules
as the decision criterion corresponding to a utility
function Uij = 6(Ai, Aj); we care only about the chances of
being right, and if we are wrong we don't care how wrong
we are. (This characterization of maximum likelihood,
incidentally, tells us exactly under what circumstances it
is the appropriate method to use; i. e, target shooting)}.

One of the major advances in statistical practice in
recent years has been the introduction of Wald's sequential
method for quality-control testing. In the original 1947
exposition [ 2], there is no mention of Bayes' theorem,
and in 1950 Feller { 9] issued a stern warning against the
use of Bayes' theorem in quality-controltesting, on just
the grounds noted above; the state of nature {(here the
condition of a particular machine) is not ''random."” But
in that same year, I. J. Good[ 1] showed that Wald's

sequential procedure is also mathematically identical with
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the application of Bayes' theorem with uniform prior
pro‘ﬁabilities, then deciding that an hypothesis is true if its
posterior probability reaches a certain preassigned level,
This is just the way Laplace was handling hypothesis
testing problems in the 18th century. The qnly difference
is that Wald's method amounts to calculating a monotonic
function of the posterior probability, £(P) = log[ P/(1-P)],
instead of P.

Recently, I gave a lectiure on sequential testing at a
well-known University, and afterward I was approached
by a student in a rather dazed condition. It turned out
that he was a graduate student in Statistics, and was
taking a course in sequential analysis., His instructor had
repeatedly warned against the use of the thoroughly
discredited methods of Laplace and Bayes, and was
enthusiastic about this wonderful new approcach that had
finally solved the problem. To the st.udent, it was a
shattering experience to see that the methods he was
taught to use were identical with the methods he had been
taught not to use!

How about the modern formulation { 4, 6] of decision
theory? Here one defines a class of "admissible" decision
rules which consists, in simple terms, of all those any
sane person would ever consider using; a strategy is
admissible if no other exists which is better for all states
of nature. After rather long mathematical arguments, we
find the following. If we agree that we will not include
in our enumeration any state of nature which is known in
advance to be impossible, then the class of admissible
decision rules is identical with the class that can be found

by carrying out the following steps:
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(A) Assign a-priori probabilities pj = (Qj! X)
to the states of nature BJ. .
(B) Digest any subsequent information E,, E,
etc. about the Qj by repeated application
of Bayes' theorem, resulting in the
posterior probabilities P = (6,1 XE Ey=--).
(C) Make that decision which minimizes the

expected loss

<L >i = Z Liij . (5)
J

But, you see, these are precisely the rules Laplace was

advocating and using 180 years ago, and which a generation

of statisticians has been taught are nonsense!

Different admissible decision rulse correspond to
different assignments of prior probabilities and loss
functions. Actually, however,. it is only their product
kij = Lijpj that enters into the final decision, as we see
if we substitute (3) into (5):

(E,E,.. .fejx)

<L > = ? L;(051X) (€5, . [X)
(E]6.X)
_J
f‘ Ay TETST (6)

Recognition of this is important for several reasons. In
the first place, it shows that every admissible decision
rule is identical with one arising from Bayes' theorem
with uniform prior probabilities; as far as the mathematics
is concerned, we can postulate uniform prior probabilities,

and characterize the decision rules entirely by the loss
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functions. Conceptually, however, I think we would all
reject this possibility - the prior probabilities do play
an important part, and we should keep the freedom to
insert prior information in a manner independent of the
value judgments implied in a loss function. More
important is this, Statisticians of the "obje;:tivist” school
of thought are so concerned about arbitrariness in prior
probability assignments that they are unwilling to
introduce them at all, unless they are also known
frequencies., Mathematically, it is trivial to see that
refusal to use prior probabilities at all is equivalent to
assignment of uniform prior probabilities, But from

Eqn. (6) we see a more illuminating fact: If the final

i

probability assignment we make, it is going to depend just

as strongly on which particular ioss function we use. If

one worries about arbitrariness in the prior probabilities,
then in order to be consistent, he should worry just as
much about arbitrariness in the loss furiction.

We can sum up the foregoing in this way. In spite
of a diametrically opposed viewpoint as fo the nature of
probability, the net result of advances in statistics over
the past 40 years is that the statisticlan has finally
returned to the original mathematical procedures of
L.aplace, from whence he started.

This trend becomes understandable when we
recognize the following. Although the results are usually
stated as a prediction of what would happen ""on the
average, " or "in the long run, " every application of
probability theory or statistical inference to a specific
situation is simply a problem of plausible reasoning.

The trouble was that we were unwilling to accept Laplace's
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interpretations of Eqné. (1) and (2) as rules for carrying out
plausible reasoning. But suppose now that Laplace was right
after all, and Eqns. (1) and (2) are in fact the only consist-
ent set of quantitative rules for plausible reasoning. Then,
independently of any p'hilo'sophy of interpretation, by the
time the procedures of statistical infefence had been made
fully consistent, one would be forced to re-discover
Liaplace's methods., As soon as this situation was recogniz-
ed, the distinction between probability theory and statistical
inference would collapse,

Evidently, it becomes important to understand injust
what sense probability theory may be said to be a ''calculus”
of plausible reasoning.' The following result will be devel-
oped more fully elsewhere [ 10]. If there exists a satisfac-
tory mathematical model of the process of plausible reason-
ing described by Polya [8], it seems reasonable to require
of it three conditions: (A) representation of plausibilities by
real numbers, (B) qualitative cbrrespondence with common
sense, (C) consistency. In an important contribution, Cox
[11] has shown how the conditions of consistency of such a
model may be stated in the form of functional equations,
whose general solutions can be found. By a slight exten-
sion of this analysis, it can be shown that the three condi-
tions above lead uniquely to Egns, (1) and (2),

We conclude that the principies of plausible reasoning
given to us by Laplace could be evaded only by developing a
"lattice theory'" in which condition (A) was abandoned. How-
ever, no such attempt is made in current statistical prac-
tice, Although many new concepts have been introduced,
such as likelihood, efficiency, confidence level, signifi-
cance level, etc., all of these are attempts to represent de-
grees of plausibility by real numbers.
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Now, the objectivist viewpoint leads one to consider
mathematical problems of such magnitude that the situation
could be uncovered only by the herculean efforts of Abraham
Wald, Laplace’sviewpointleads to the same final results by
arguments so short and elementary that they can be under-
stood by anyone familiar with high-school algebra. In the
face of this, does it really make sense to continue saying
that Laplace'’s viewpoint was naive and should be avoided?
I think it is clear that a return to Laplace's viewpoint would
bring about a great simplification and unification of this
field, The greatest advantages would be in pedagogy--in a
one-year undergraduate course we would give a young sci-
entist or engineer the basis of all statistical practice, in a
form which he could apply at once to his own problems,

The "objectivist' is anxious that his assertions shall
be limited to objective statements of fact; hence the
emphasis on frequencies rather than '"subjective' state
of ignorance, It is the first stage of sophistication to
want to do this., But there is a second stage of sophistica-
tion in which we realize that any such aim is doomed to
failure., For, the only thing about which Ican ever speak

with certainty is not what is ''really' true, but only what

is my state of knowledge. Thus the Laplace viewpoint,

far from being naive, is the only one which fully expresses
the natural limitations on our search for objectivity, In
Laplace's theory a probability assignm.ent is "subjective"
in the sense that it describes a state of knowledge, rather
than any measurable property of the physical world; but it
is completely "objective' in the sense that it is independent
of the perscnality of the user, Two observers, given the
same set of propositions to reason about and the same

prior evidence about them, must assign the same probabil-
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ities to them.

In this connection it is important to notice that,
given two propositions A and B, the probability (AIB) has
no definite numerical value. Egns. (1) and (2) determine
only relations between different probabilities, and thus do
not tell us whether our proposed probability assignments
are '"correct, " but only whether they are mutually
consistent. This corresponds exactly to the situation in
deductive logic, where a syllogism does not tell us
whether our assignment of truth-values is correct, but
only whether it is consistent. A numerical value can be
assigned to (Al B) only after we have enumerated the
possible alternatives, if A should be false. In other words,

"or "hypothesis space’’

we must define our ""sample space, '
{ Al‘ . An} . This is as necessary in Laplace's theory as
in the objectivist approach. As has been shown elsewhere
[ 10 ], one large class of objections to Laplace's viewpoint
which one finds in the recent statistical literature can be
traced to the author's failure to realize this,
BACK TO INFORMATION THEORY

Laplace's statistical practice was limited by the
fact that he had only one principle, insufficient reason, to
set up prior probability assignments. He was not handi-
capped by this, because in his problems calculation soon
showed the evidence for or against some hypothesis to be
so overwhelming that it made very little difference which
prior probability (and correspondingly, which loss
function) he used. In refining the application to problems
like that of Mr. A, where the evidence is not so clear, we
have to be more careful about these questions.

Actually, there are very few problems where the

prior information is really of the form required by
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insufficient reason - there is always some sort of vague
prior knowledge which renders some possibilities more
likely than others. What this means is that we need more
principles, extensions of insufficient reason, if we are to
treat a wide variety of problems in a fully consistent way.
Every new such principle we can find will open up a

new class of applications for probability theory.

I would like to suggest here that the notion of entropy
provides one such extension of insufficient reason. It was
necessary to take this long detour into statistics generally,
because in the usual "objectivist'' viewpoint, neither the
principle of insufficient reason nor the principle that I
want to advocate here would make any sense, If we insist
that a probability assignment must stand for a positive
assertion about relative frequencies, then there can be no
justification for the principle of insufficient reason; the
fact that I know nothing about the various possibilities is
- not enough to make them occur equally often!

It is only in terms of Laplace's viewpoint - that a
probability distribution is notprimarily an assertion
about relative frequencies (although we do not deny that the
probabilities may, in some cases, be numerically equal to
relative frequencies), but is rather a means of describing
a certain state of ignorance, that the principle makes
sense, It is essential for my purposes, that we accept
this change in interpretation, and I have tried to show that
this would alsc be desirable in other parts of statistics.

Please forgive me if I seem to be belaboring this
point; but for several decades the statistical literature has
been filled with objections to Laplace's use of insufficient
reason, which arise from the author's failure to realize

that for Liaplace a probability assignment was not an
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assertion about frequencies. Connections between
probability and frequency exist in many forms, analyzed in
detail elsewhere{ 10 ]. In Laplace's theory, they have
nothing to do with the definition of probability. On the
contrary, all such connections are deducible as mathema-
tical consequences of probability theory, interpreted as

a ''calculus of inductive reasoning." . For example,
prediction of the frequency with which some event will
happen "in the long run" is, in Laplace's theory, simply
a problem of parameter estimation, not different in
principle from any other. One must calculate the
probability p(f)df that the frequency f will lie in the range
df, whereupon the (mean +* standard deviation) of this
distribution will provide what is in most cases a satis~
factory estimate of frequency, and a statement about the
reliability of the estimate. The results are for all
practical purposes identical with what the objectivist
statistician would obtain by the method of confidence
intervals, which he interprets as giving an estimate

of the unknown "true' probability.

In a large class of problems, which includes the
case of independent repetitions of a random experiment,
the mean value estimate of the frequency of some event
is found to be numerically equal to the probability
assigned to that event at a2 single trial; but the reliabilitv
of the prediction depends very much on other details.
Indeed, if we insist that the probability is the frequency,
we leave ourselves no way of describing the fine details
of our state of knowledge, which determine the reliability
of the prediction. This remark has an important bearing
on the problems of phase transitions and turbulence in

statistical mechanics [ 10 ],
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Much of what I have said about the principle of
insufficient reason applies also to the notion of entropy.

However useful the mathematical expression

= pi log pi

may be, the concept of entropy is still foreign to the
objectivist viewpoint in statistics. Terms such as
"information' or "amount of uncertainty' really have no
place in his scheme of things, and entropy remains an
unwelcome stranger,

It is only in terms of the Laplace viewpoint of
probability that the notion of entropy assumes a natural
position. Here the formulation as given to us by Laplace
has long suffered from a lack of just such a quantity. Our
criterion for determining prior probability assignments is,
intuitively, just that the prior probabilities should
describe our positive knowledge, but should not assume
anything beyond that. In other words, prior probabilities

should be those with the maximum entropy consistent with

our prior knowledge.

The expression for entropy has long been used in
statistical mechanics, and the statement that ''the entropy
of a system is a measure of our degree of ignorance as
to its true state'' can be traced back to Boltzmann. Ever
since then this ""subjective'' interpretation of entropy has
had its advocates among the physicists; but it has been
either ignored, or else briefly mentioned and immediately
rejected, in every textbook on statistical mechanics ever
written. Thus it has never had the status of being the
"official viewpoint." In spite of the well-known work by

Szilard pointing out connections between entropy and
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information, most workers in statistical mechanics have
remained reluctant to assign any such meaning to entropy,
and so it was left for Shannon to show, in a context
completely removed from thermodynamics, that the same
expression has just the mathematicafproperties needed to
make it a reasonable measure of "amount of ignorance. "

I don't believe there is any really rigorous argument
that proves that one must use this expression, rather than
some other. At least, at present there is no way we could
convince a person, who did not want to believe it, that
this particular mathematical expression is singled out from
all others to play this role. However, we have by now an
abundance of heuristic arguments all leading to this
conclusion. In this respect we are in exactly the position
of Archimedes who found, about 500 B. C., by an
ingenious mechanical argument, a formula for the volume
of a sphere: V = 47:1‘3/3. Archimedes recognized that his
argument was not rigorous, but it was sufficiently convin-
cing that his formula was generally adopted. Actually, it
was not until about 1800 years later that a rigorous
derivation was given, by Leibniz. I believe we are now
in an exactly similar intermediate state, where we know
the answer but have not yet found a rigorous proof that it
is the answer. Whether such proof will be found tomorrow
or a thousand years from now, I do not know; but for the
present I propose to go ahead and use what we have.

- All right, let us now get down to specific and
constructive things. In stage 2 of Mr. A's decision
problem, he was able to enumerate the different possible
orders which might come in during the day, and he also
knew the average daily order for each type of widget. In

this state of knowledge, he cannot use insufficient reason
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to assign probabilities, because the knowledge of average
values does give him some reason for preferring some pos-
sibilities to others, If he is to avoild jumping to unwarrant-
ed conclusions, he should assign probabilities to today's
possible orders which incorporate this knowledge of aver-
age values but do not assume anything beyond that, If we
accept, with Shannon, the expression S = - Zpklog P, as
the proper measure of uncertainty represented by any prob-
ability assignment, then the probability assignment which
has maximum entropy subject to the prescribed average
values, is the one which correctly describes Mr, A's state
of knowledge at stage 2. This leads to a familiar mathemat-
ical problem solved in every textbook on statistical mechan-
ics.

The average values, <£1(9) >, <f2(9)>, ... <fm(6 ) >
of several functions fi(B) of the state of nature 6 are con-
sidered known. We assign probabilities pj to the possible
states of nature 63., in such a way as to maximize S sub-
ject to these constraints. The constraint fpj =1 is formal-
ly included by defining fO(E)) =1, and requiring <f_> =1,

We introduce a Lagrange multiplier for each of the fj(G),

and obtain the variational problem

§[{S-u oSt <E

1 l>,,,-7Lm<f1_n>] =0 (7

or
6 2: E).logp.tu p-+k f 6- p1;+oto

+Amfm (Gj)pj] =0
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The solution is that the probability assigned to the

state of nature 8]’ is of exponential form:

p; = exp [-2, - xlfl(ej)-x:zfz(ej)— s -)mem(aj)] (8)

where )Lo =1+ Mo and in order to fix the values of the
Lagrange multipliers ?Li, we must force this to agree with

the prescribed average values:

<1l>= = pj
<fy,>= = fl(E:?j)pj (9)
<f,>= 3 fz(ej)pj

llllll

All these steps are summarized most neatly if we define

a function, which is called the partition function:

ZO . oay) = ? exp{ - M f (6, - ...

RSUNCR) (10)

In terms of tt-= function, our conditions reduce to:

A, log Zh oA )

- .8
<, a.)1].og Z.(A.l ceA) (11)
<t " - 9 log Z(x x_)
* A g 17" m"

2
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Of course, you recognize that these rules of calculation
are identical with the formalisin of statistical mechanics,
given to us by Gibbs. It was only through the work of
Shannon that we could see what these rules meant
intuitively, and thus how general was their applicability.

Let us solve Mr. A's truncated problem in stage 2,
where the mathematical expectations <nl>, <n2> , <n3>
of orders for red, yellow, and green widgets are given as
50, 100, 10 respectively. With three average values given
we will have three Lagrange multipliers A, lz, l3,

and the partition function is

%0 0 20
Z&l, '12’ }\3) = Z,; 23 Z_ exp(—)kln1 —).an ->L3n3)
n,=0 n,=0 n,=0
1 2 3
3
= T (1-ep7} (12)
i=1
The )Li are determined from Egn. (11):
<n,>= - ___8____ log Z = ———]:—— (13)
{ X, g X :

The maximum-entropy probability assignment pj for the

states of nature 93. = {n1 n, n3} factors:

p(n; n, ng) = p (n;)py(n,)psln,) (14)

with
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'-li -hini
py{n,) = (1 -e e , n, =90, 1,2, ,,,

<n> . n
= 1 [ gt (15)

<n>+1 <n >+1
i i

Thus in stage 2, Mr. A's state of knowledge about today's

orders is given by

1 ,50.M1
L1 100 ,%2
Pyny) = 151 (—1g7)
1 10, 3 16

Now in order to proceed we have to introduce a loss
function. Mr. A's Judgment is that there is no loss if all
orders are filled today; otherwise the loss will be equal to
the total number of unfilled orders. The present stock of
red, yellow, and green widgets iS'Sl = 100, 82 = 150,

Sq = 50 respectively. On decision D, (make red widgets)
the available stock S1 will be increased by the day's run

of 200 widgets, and the loss will be
L(Dl; n, n, n3) = g(nl - Sl - 200)+g(n2 - SZ)+g(n3 - SB) (17)

where
X, X

(18)

A v
< (]
ey

glx) = {

0, X
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D, the loss will be

Likewise, on decisions D2, 3

L(D,; n; nyng) =gln, - S))+glny- S,- 200)+g(f13~ S (19)

3)
L(DS; n, n, n3) = g(nl— Sl)—fg{n2 - Sz)-{—g(ns— SS- 200) (20)
So, if decislon Dl is made, the expected loss will be

= X .
< L> " p(nl nzns)L(Dl,nln

1

5 N13)

= fl pl(nl)g(nl-Sl-ZOU)'i-

-S
n, Py (ny)g(n, - S))

+ i ;)3(113)g(n3 - S3) (21)
3

and similarly for D2, D3.

The summation are elementary, giving

-, (S,+200) - A S -A
< L> =<n,>e 171 +<n.>e 7‘2 2+<n >e 38‘3
1 1 2 3
“A.S -2,{S,+200) “A LS
_ 1¥1 2 72 373
<L>2 = < nl>e +<n2>e +<n3>e
A “AaS -2 (S, +200)
<L>, =<n,>e 1 l+<n >e 2 2+<n >e k3 3
3 1 2 3
(22)

To slide-rule accuracy we have
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e 151 . g 133 e M g 1rs
e 22 g 25 e M2 g s (23)
e 373 o008 e 8 0 5x 1078

and
<L >l = 22,4 unfilled orders
< L>2 = 9.7 unfilled orders (24)
< L>3 = 28.9 unfilled orders

showing a strong preference for decision D2, as Mr. A's

common sense had already antiéipated.

You will recognize that Stage 2 of Mr. A's decision
problem is mathematically the same as the theory of the
harmonic oscillator in quantum statistical mechanics.
There is still another engineering'_application of the
harmonic oscillator equations, in some problems of
message encoding [ 12]. Iam trying to emphasize the
generality of this theory, which is mathematically quite
old and well known, but which has been applied in the
past only in some specialized problems in physics. This
general applicability can be seen only after we are
emancipated from the objectivist view that all probability
distributions must be justified in the frequency sense.
Historically, this made it appear to most workers in
statistical mechanics that the methods of Gibbs could be

justified only via unproved "ergodic hypotheses'' (in spite
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of the fact that Gibbs himself never mentioned them). I
have suggested[ 13 ] that we interpret Gibbs' equations
not as assertions about frequencies but as examples of
inductive reasoning. It is clear that the laws of inductive
reasoning do not depend on ergodic theorems or any
other aspect of the laws of physics - ergo, the methods
of Gibbs can be applied to any problem of inductive
reasoning where the given information can be stated in
the form of mean values,

In stage 3 of Mr. A's problem we have some
additional pieces of information, giving the average
“individual orders for red, yellow, and green widgets.

This new information makes it expedient to set up a more

detailed enumeration of the states of nature, in which we
take into account not only the total orders for each type,

but also the breakdown into individual orders. We could
have done this also in stage 2, but since at that stage

there was no informmtion available, bearing on this break-
down, it would have added nothing to the problem. However,
in the interest of checking the consistency of this theory,
you may find it amusing to retrace stage 2 on this basis
and see how it would have led to exactly— the same results
given above.

In stage 3, a possible state of nature can be
described as follows. We receive uy individual orders for
l red widget each, Uy orders for 2 red widgets each, . .. u.
individual orders for r red widgets each., Also, we
receive Vy orders for y yellow widgets each, and Wg orders
for g green widgets each,Thus a state of nature is specified

by an infinite number of non-negative integers:

6={ulu2...;vlv2...;wlwz...} (25)
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and conversely every such set of integers represents a
conceivable state of nature, to which we assign a
probability p(u1 Ug ooV Vg oo W) Wy L ).
Today's total demand for red, yellow and green

widgets is, respectively

[=a]
nl = b ru
r=1 r
o0
y=1
0
n, = ~Z gw_,
3 g=1 g

the mathematical expectations of which were given before

as <nl> = 50, <n2> = 100, <n3> = 10. The total number

of individual orders for red, yellow and green widgets are
respectively

o]
ml= = ur
r=1
oQ
m, = Z u (27)
y:l Yy

8
u
o
g
#

And the new feature of stage 3 is that < m, > <m,>

1 27 ¢
<m3> are also known. For example, the statement

that the average individual order for red widgets is 75,

means that <n1> = 75 <ml>.

With six average values given, we will have six
Lagrange multipliers {).1 Bis Ao Hei Ag ;.z3} . The
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maximum-entropy probability assignment will have the

form

p(uluzu.;vlvz...,wlw )-EXp(k A,y ulml~h2n2

which factors:
p(uluz. Ca VYo W WL )=p1(u1u2.. X )pz(vlvz.. )

The partition function also factors:

Z = Zlal“l)zz(hz“z)zsaa‘“s) (29)
with

o0 0

Z (llyl % ZJ_ exp[-hl(ul+2u2+3u3+...)
ul—l uz—l

el 1
- fuytu, tu +...)]=T v
1172 3 r=1 e r?tl H

(30)
with similar expressions for Zz, ZS‘ To find Al, By we
apply the general rule, Eqn. (11}:

r
A, + U
lell Lo

(31)

é o0 -rAl-ul
= e - =
<n,> o rZ::l log(l-e )

T M8
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3 % TTA

Q0
1
<m,>=——-—— X log(l-e )= = -
e R | r=1 TR tH

e -1
(32)

Comparing with Eqns. (26) and (27), we see that
<u > = 1 (33)

r rll—f Ky
€ -1

and now the secret is out - Stage 3 of Mr. A's decision
problem is just the theory of an ideal Bose-Einstein gas in
quantum statistical mechanics! The index r corresponds
to the r'th single-particle energy level, u to the number
of particles in the r’th state, )Ll and My to the temperature
and chemical potential.

In the present problem it is clear that for all r,
<ur> << 1, and that <ur> cannot decrease appreciably
below <ul> until r is of the order of 75, the average
individual order. Therefore, My will be numerically large,
and )&l numerically small, compared to unity. This means
that the series (31), (32) converge very slowly and are
useless for numerical work, However, we can transform

them into rapidly converging ones as follows:

1 _ e-n()Lr+u)
r=l erTTH 1 ral p=l

™8
¥/
M

(34)

14
YR
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The first term is already an excellent approximation.

Similarly,
%0 % -n{z + )
= r = z £ (35)
r=l ATHH ) n=1 (1_-n;52
and so (31) and {32) become
-
- € .
< n1> - (36)
A
-1y
<m >= L (37)
A
or
<m,>
1”1
<n1>
e & by = 112 (39)
<ml>
My, = 4,72 (40)

Looking back,we see that the error in the approximate
formulas (36), (37) is less than 0. 5 percent.
The probability that u, has a particular values is,
from (28) or (30)
raA

AT Hy e"(r)l+ul)ur

p(u ) = (1 -e )
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which has the mean value (33) and the variance

r}Ll t+ uy

var{u } = <u 2> - <u >2.—. €
r r r

(41)

is expressed as the sum of a large number of independent

T

"random variables.” The probability distribution for n,

will -have the mean value {36) and the variance

. - rzer)tl-f Hy
r var(ur)-: == (42)

- rA, tu
rl(e 1 1_1)2

8

var(nl) =

[

r:

which we convert into the rapidly convergent sum

0 } e -nQu 1) ~n(2x+ w)
. m,2@ n(ritu)_ 5 € e -
=] =1 -

r,n n (- e n}L)

(43)
or, approximately,
var{n,) = 2e . 2 <n,>. (44)
1 3 )\1 1
Ay

By analogy with the central limit theorem, the probability
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distribution for n, will be very nearly gaussian:

| A, 12 hl(nl-<n1>)2
pln) = (mepy e - — s}

(45)

for those values of n; which can arise in many different
ways. For example, the case n, = 2 can arise in only two
ways: uy = 2, or uy = 1, all other u, being zero. On the
other hand, the case n, = 150 can arise in an enormous
number of different ways, and the ''smoothing' mechanism
of the central limit theorem can operate. Thus, Eqn. (453)
is a good approximation for the large values of n, of
interest to us, but it is a very poor approximation for
small n,.

The expected loss on the various declsions is, as we
saw in Eqn, (22), the sum of three terms arising from
failure to meet orders for red, yellow, or green
widgets respectively. I we do not make red widgets today,
then the possibility of failing to meet orders for red

widgets contributes to the expected loss the amount

l .
00 w Al ) : A.l(nl--<nl>)2
Z p(n)g{n,~S )={-——c] n- S)exp{- }
n1=0 1 1 1 4ﬂ-<nl> Sl 1 71 4 <nl> d'nl
= ——2———[1 terfa (<n> -~ S))]+——exp[-af (<np-5) ]
ZQlﬁ

(46)

where alz = ll/4<nl>, and erf x is the error function
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/T 0

erfx= —2 [ ¥ dx. (47)

If we do decide to make red widgets today, the possibility
of failing to meet red orders contributes to the expected
loss the above expression (46) with S Treplaced by
(S1 + 200).

Similar equations held for yellow and green widgets.
Although the approximations we made are not equally good
in all cases, let us use Eqn. (486) for the partial losses

and apply it three times with the given numerical values

S; =100, S, =150, S, =50

<n,>

30, <n,>=100,<n,>= 10

2 3

@, =0.0082, a, = 0.016, @, = 0. 035.

3
Doing the indicated calculations, we find that on the

decisions Dl’ D2’ DS’ the expected losses are

<L> = (0) + 2.86 + 0.18 = 3. 04 unfilled orders
<L>, = 14.9 + (0) + 0,18 = 15,1 unfilled orders
<L>3 =149+ 2.86 +(0) =17, 8 unfilled orders (48)

where (0) stands for a term orders of magnitude smaller
than the others. The breakdown indicated is to be read
as follows: If Decision D; (make red widgets) is made,

there is negligible loss from the possibility of failing to
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meet red orders, while the possibility of failure with
yellow orders leads to an expected loss of 2. 86, and only
0. 18 for green.

The results show the great preference for D1 caused
by the additional information about average individual
orders, which had the intuitive effecti of making the
situation with respect to yellow widgets much safer than
it seemed in stage 2.

It is in passage from stage 3 to stage 4 {where the
new information consists of a specific order for 40 green
widgets), that our common sense first fails us. Now both
the red and green situations seem rather precarious, and
our commeon sense lacks the ''resolving power' to tell
which is the more serious. Strangely enough, this new
knowledge, which makes the problem so hard for our
common sense, causes no difficulty at all in the mathe-
matics. The previous equations still apply, with the sole
difference that the stock S3
from 50 to 10, We now have (<n3> - SB) = 0 so that (46)

reduces to

of green widgets is reduced

and in place of {(48) we have

<L>; = (0) + 2.86 + 8. 08 = 10, 94
<L>2 = 14,9+ (0)+ 8,08 =23.0
<L>, =149+ 2 86 + {0) = 17.8 (49)
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So, Mr. A. should stick to his decision to make red
widgets! Our common sense fails just because there is
now so little difference between < L>, and <L>3.

I have tried to show that use of probability theory in:
the sense of Laplace, with prior probabilities determined
by the principle of maximum entropy, leads to a
reasonable method of treating decision problems and to
results in good correspondence with common sense,
Mathematically, our equations are nothing but the Gibbs
formalism in statistical mechanics, the only new feature
being the recognition that the Gibbs methods are of far
more general applicability than had been supposed,

The moral of this is simply that questions about

11

"interpretation of a formalism, "' which the positivist
philosophy tends to reject as meaningless and useless, are
on the contrary of central importance in scientific work.

It is, of course, true that in an application already
established, a different interpretation of the equations
cannot lead to any new results, But our judgment as to

the range of validity of a formalism can depend entirely on

how we interpret it. The interpretation (probability) =
(frequency) has led to a great and unnecessary restriction
on the kinds of problem where probability theory can be
applied. The scientist or engineer today is faced with
many problems which require the broader Laplace

interpretation.
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