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ABSTRACT

The theory of almost-periodic functions is applied to the problem of
the relation, conjectured by the Chrenfests, between Poincare resnrrence
times and ¢he time over which uveragee of phase functions must be taken in
oxder to aporozimate thelr limiting values for infinite time. It is con-
cluded that the necessary averaging times might be very puch longer then
the Poincare periacds. Eguality of onserble averages and time averages
would then carry ne implicatiome about egunlity of ensemble averages end
experimental values., ‘Two possible ways of understamding the success of
pstatistical mechanies without reccurse 0 ergedicity arve then discussed.
One of these interpretatione has implications for the theory of irreversi-
ble processes and the preblem of condensaltion, which axe capable of being

tested independerntly.




1. INTRODUCTION

One of the most serious obj ectinnalha

to the ergodic appreach in sta-
tisticzl mechanics ie the fact that, even if the equality of time averages
and ensembles averages were demonszirated rigorouely and universally, this re-
sult would be establighed only for averages over the times which would be
required for the phase point to “explore” all the accessible regions of

phase space. This time is presumebly related to the Poincare recurrence
4.5

-

which are enomous compared to the age of the universe for macro-

scopic systems. Recently, the suggestion has been mudaﬁ'?

times,
that this ob-
jection may be answered by considering pemsmtations of identical particles.
The Poincare periods should then be divided by N! in order to obtain re~
currence times for cbservable quantities. This raises the question whether
thess “generic recurvence times® are sufficiently short te be comparable
with the times invelved in experiments, and whether averages over these
times will approximate thelr limiting values for infinite time.

These questions are difficult te discuss in tems of classical theory,
aince phase space is not a metric space and there seems to be no canoni-
cally invariant way of defining “closeness of appreach.” Bolitzmamn®s esii-
mate of these timess {Ia-l():’"":‘:iIIEI years) was made by considering distances in
coordinate space and momentum space separately. Poincare’s thmram,.é on
the other hand, involves only the invariant element of phase volume. Since
the foctor N! i3 in 2 sense a quantum effect, it appears more satisfactory
to discuge these problems in tems of quantum theory. Here the nom
7 Y provides an invariant meaning to the “degree of closeneces™ of two
states.

The classical problem concemmed a completely isoleted system, restriot-

ed to a finite volume and a finite snergy, therefore a finite phase volume.



The phase point of such a system must ultimately return to a neighborhood,
of arbitrarily esmall phese volume 80, of the initial point. We take as
the corresponding quantum theory model an isclated system of finite size,
for which all elements of the density matrix referring %o energies greater
than Emax are zero. The analog of recurrenes in phase space will be
taken as a recurrence of the expectation values of all cbservables. The
problem then reduces to a transcription of known results in the theory of

almost-periodio functimas.a

2. ALMOST--PERIODIC FUNCTIONS

A set of real numbers [Ti} is ealled relatively dense if there exists
a4 nunber T euch that every interval t < v <t + T of length T contains
at least one number of the set. A continuous function F£({t) is called
almost periodigc if for any € > 0 there exists a relatively dense set of
rumbers {Ti} such that if{t tT) - ElE)] S for =<t < = The
are czlled translation pumbers of f£(t) corresponding to £ . We denote

T
i
by Tﬂla] an interval such thet every interval of lenath TD{E] contains
at least one translation number cerrespending to £ .

It may be shown® that the class of almost-periodic functions is identi-

cal with the class of functions consisting of all finite sums

1]
£ lt) = z a_ ol¥%F (2-1)

n=1
when “closed” by the addition of all functions #£{t) which can be uni-
fornly approxinated by the gy [£(t) = £5(t)| Se for all t. In (2-1)
the a  are arbitrary complex numbers and the © ~ave arbitrary real
numbers. ‘

In our phyzical problem, the density matrix at time + i given by

Oon(t) = 0 (0) e¥y® (2.2)

vinere the stationary states are defined by H?{._ = En!!fn, and "Ewm = Em - En .

Only a finite nwiber of the Pop 2Ye different from zero, and therefore
any expectation value




t

B(t) = FD = TroF) =) B o (0) o™%m (2-3)

m,n

is an almost-pericdie function of t . Recurrence times then eorrespond to
the simultaneous translation numbers of all functione of the form (2-3).

3, TIME AVERAGES

In eleszical theory, the statement that recurrence times are related
to the period over which time averages must be taken in order to approxi-~
mate their limiting valuves (henceforth called the averaging times), secems
to be only a reasonable conjecture. In quantum theory, however, this be-
comes a theorem with surprising content. For every almost-periodie func-
tion, not only does there exist a mean value ‘

a+T
ME(t) = 1im / £(t) at {2-1)
T

o

et i

independent of a, Iut it is also tma that for any = > 0 we have

ME(t) -

=1

T
f £(£) ati< e (3-2)
0

Wwhenhever

4
T23 Tﬂfﬁfﬂl oax

whers £ is an upper bound of !f{t}{ in ~=< £ < ¢» This result is
surprisingly weak, since one might expect intuitively a much stronger state-
ment, that the average over & translation mmber corresponding te & would
alrveady approximate Mf(t) to the order e . HNote, however, that T,le)
niight be very mmch greater than the fi:rn‘i:g translation number 'rl(E;} COX TG
sponding to &, 5o that the kehavior of £{t) in 0Lt <7, would not
prwidalﬂ “representative sample” of its beshavior in ell regiuns.;lo

This result applies aiso to the classical case, 1f we interpret the
Poinearé recurrence theorem az implying that every phese function F{pi 4 q‘i]
is, by virtue of the equations of motion, an almost-pericdic funcilon of time.



One then sees that the averaging time for F might in fact be very much
longer than the Pnim:&r; periods. There is no guarantee that behavior
during one recurrence time with given closeness of return provides a repre-
sentative aalfﬁzai behavior for all time. We conclude that no simple e
lation exists haveminq times and generie¢ recurrence times, and consequently
the averaging times should be studied on their own merite, without reference
to Poincara peyicds.

For any macroscopic system the averaging time for the quantities (2-3)
will still be large. To take the simplest possible example, consider a
“systen” consisting of a single hydregen atom moving in a cubie box of mide
1 om, and known to be in one of the two lowest energy states., The averaging
time for this case, of the order of Il's..-'{E2 - E]_}, iturns out to be about 15
mimites. Every new particle added to the system, and every new energy level
taken into account, will increase this by a large factor. When we have
reached any realistie model, the averaging time will again be enormous com—
pared to the age of the universe. It seems hardly worthwhile to work ocut

a typlcal mumerical value.

4, PHYSICAL INTERPRETATION

The times involved in experiments are shorter, by perhaps lﬂm orders
of magnitude, than the times required for a full exploration of the accessi-
ble classical phase space or quantum function space. Thus there can be no
possibility of explaining the laws of thermedynamies on the gronnds that
every poseible microscople condition is approximated in succession during
the time of obsmervation. In spite of this, the experimental fact which
hag to be explained is not that the average behavior over an ensembd® of
similar systems follows the laws of themmodynemics, but rather that sach
individual gystem obeys these lews. We conclude that any explanation of
the fact thet ensemble averages correspond to experimental values, muat ba
based on other properties than ergodicity.

It should be noted that justification of the methods of statistical
mechanics, and explanation of their success, sre entirely different prok-
lems., The fommer is very easy if we regard statistical mechanics as a fom
of statistical inferencs, and ahﬂwu that its methods make full use of all




the avallable information. Whether the theory is successful or not, one
cannot do better than this. However, until we have also explained the
reasong for its success, we cannot claim to have any real understanding
of statistical mechanics.

Any attempt to do this without making use of ergodicity leads one
immediately into the decpest questions of interpretaticn. There are two
directions in which one can proceed, depending on whether we accept the
following assumption of realism: Every system is, at every time, in a single,

definite microscopic state. In classical theory one would never question
this, but in guantum theory the Elnstein-Podolsky-Rosen pamdnxl'?'m showrs
that it is not to be dicmissed as obvious. If we deny this assumption, we
imply the possibility that an individual system may be, in gome sense which
is different from that of the principle of superpesition,® similtancously
in many different microscepic states. The statement that a system has a
given temperature because it is “in a Boltzmann distribution® might then
have a definite operational meaning for a single system at a single time.
If we admit this possibility, the proeblem is solved in a very simple way;
we asgume that interaction with a heat-bath eventually produces this con-
dition. There are good reamnslﬁ'lﬁ for believing this can be justified
quite generally, If all states of the system are in some sense present
simuitanconsly with Boltzmamn welghiing factors, the idemiification of
ensemble averages with experimental values is immediate, independently of x
ergodicity or, in fact, of any property relating to evolution in time,

It is to be emphagized that this interpretation, bizarre as it may
scem, probably cannot be refuted by logic. Purthermore, a study of the
Einstein-Podolaky-Resen paradox will lead one to conclude that it is quite
congistent with, if not indeed reqmired by, the present interpretation of
quantum theorv. For example, the present theory allows the possibility
that the system of interest 0y and a heat-bath O which have been in
interaction in the past, but are now completely isclated from each other

“nd from the rest of the univerze, may be jointly in a pure state

¥(1,2) = & e u (1) v (2) (4-1)




where unfl} and vm{ﬂ are possible state vectors of systems o, and
Og respectively. This implies that system 1 is in some sense in each
of the states wu (1), with a density matrix

k-
p (1) = EZm a. . . (4=2)

There is clearly no possibility of interpreting this density matrix as giving
the relative frequencies with which systen o, occcuples the various states
succesgively; because of coherence properties implied by (4-1) which are in

principle cbservable (by measurement of some joint property of the two

systems), we must conclude that there is some objective sense in which
gystem 9y is in all these states gimultancously. Thus the statement that
an individual sgystem {8 "in a Boltzmann distribution™ at a given time does
not contradict the mode of deseription provided by cuantum theory.

In gpite of this, and a certain attractiveness becaunse of the simple
way in which this dispoges of difficult problems, we prefer to retain the
assumption of realism, and to try to understand statistical mechanics on
that basis. The remainder of this paper is based on the aszumption of
realism ond represents what appears to the writer as the only possible way
of understanding the smceese of siatistical mechanics which is compatible
with that asswmption, and which does not malke use of ergodicity. We do not,
however, attempt to answer the ¢mestion whether “microscopic state® is to
be interpreted as a pure state of quantum theory.

5. HACROSCOPIC UNIFORMITY

Consider any experiment perfommed on a macroscopic system, It might
be anything from & nuclear induction measurement to throwing a baschball.
The initial conditiens of the experiment never restrict the system to a
partieular micrescopic state; it could be in any one of billions of possi-
ble states, Clearly, when we repeat the experiment we do not repeat the
initial microscopic state. IF, in spite of this, the result is reprcduci-
ble, we mst conclude that the game result would have i:een obtained for
each of the great majority of the possible initial states. This is the
prineiple of maecroscopic unifommity. The properties for which it holds

true are precisely those for which rsproducible mﬂ.cmm::c}pic experiments



are possible.

Given the prineiple of macrescopic uniformity, it follews that, whether
& process in reversible or irreversible, in order to ealculate any repro-
cducible feature of it we could choose &t random any one of the possible
initial states and solve the equations of motion (for example, the time-
dependent Schrodinger equation) for it. We would get the same results for
any such state, unless we were unfortunate enough to choose, cut of all the
billions of possibilities, one particular state of the small minority for
which the answer is different. The only thing which the use of & probability

distribution over initial states accomplishes for us is that it protects us
from that danger; in calculating the average over many possible states, we
Buppress this =small minority. “Almost any® probability assignment for initial

states, which gives the correct average values for the controlled or cbsearved

parameters, would lead to the same macroscopic predictions. The Boltzmann
distribution, besides being mathematically convenient, is the broadest one
(i.e., it has maximum entropy) for a given value of {E ) ! therefore it is
the one which affords maximum protection against minority states.

Because of the principle of macroscopic uniformity, the validity of
statistieal mechaniecs as a method for predicting experimental resuits in no
way depends on the "correctress™ of the Boltzmann distribution. It is rather
the other way arcund; the Boltzmenn distribution or a gemeralization thereof
derives its wvalidity as a tool for prediction from the fact that it is5 com=
sistent with the measured values of temperature and other parameters, and it

assumes nothing beyend th&t-ll

This remark carries meny implications. In
particular, if we adopt the view just ezpressed, it becomes necessary to discuss

anew the meaning of experimentally messured temperature and entropy.

6. EXPERIMENTAL TEMPERATURE AND ENTROPY

In a thermodynamic experiment, a few dogrees of freedom of a system are
fixed by the experimental conditions, and a few others are chserved, while
the wast majority are naither eontrolled nor observed. Energy exchanged wvia
controlled degress of freedom iz called work: unarg]:‘ exchanged via uncontrollad
ones is called heat: Two systems ere said to be at the seme temperature if,
when placed in weak interaction with each other, the net =mount of energy
which they exchange over long periods of time is small, of the order of the
interaction energy. Humerieal values of tempsrature are defined by the relative

o A



amounts of enargy whish 4wo hest baths interchawge with a thixd system
operating in a Carnol cycle between them. Since these are the only oriteria

used in X ts fto measure t rat and heat, they mst, according to

the zaticnal view of ics, be only ones involved in the correspond-
ing concepts.

We may say that the temperature of a system iz known if we can prediet
correctly which one of a set of thermometers, showing different readings, will
not exchange a;:praeiﬁble energy with it if brought into weak interaction. If
the system is in a known microscopic state, we must surely be in the best
possible pomition to make this prediction. Thus, an operaticnally defined
temperature has a definite meaning even, or rather especially, in the case of
8 _system in a known microscopic state. This is in sharp constrast to the often
oxpressed view that the concept of tempsrature requires same degree of ignorance
or "randomness.” To say that a system has a given temperature becauss it is
®in a Bolizmann distribution,” or to eay, “the system has random phases,” is
devold of any meaning if we adopt the asa'mn;-:tian of realism.

Conventional modes of expression often suggest that experimentally messured

entropy represemts the logarithm of the volume of phase space “occupied” by a
system, or its degree of "disorder.” From the present point of view, such state-
ments also bscune meaningless., The experimental entropy is constrzucted fram
cbserved guantities, and would be exactly the same for any microscopic eondi-
tions which would lead to the observed values. Thus it is not required that
the system astually "avail itself” of this full volume of phase space® very
severe consiraintes on the possible states could exist without in any way
affecting maorcscoplo observations. Suppose we have found the experimental
entropy Stal v Og s weu) @8 & function of certain measured parameters « i
This entropy measures the volume of phase space which is compatible with the
a; , and thus it measures ocur degree of ignorance &s to the true state in the
case where o, provide the only aveileble information sbout that state.
There is in prineiple no reasen why we could not obtain additional infor-
mation, on a miamseapidlz level. ©OSuch additional information would, of course,
not alter the experimental entropy if we continue tc define it as
[Saxpjl = jdﬂﬂ' » It ﬁ:uld. however, enable us to define a new experimental
entropy (S expjﬂ ’ ﬁzir:h}mbodias this information. A method of doing this is
described in reference 1l. In principle, the additional information would

ws B o



alvays make possible more relisble predicticns of the behavior of the system
then are obtainable frem the equations of thermodynamics. In practies, how-
ever, it would be found to be of very little value unless we wished to predict
miecrosecopic details of that behavior, or unless it showad us that the eystem
was in a "minority state.” The reason for this is to be found, again, in the
principle of macroscopic uniformity, which shows that the additional informa-
tien is usually irrelevant for macroscopic predictions. If this were not the
cass, macroscople information would not suffice for predicting macroscoplc
behavior, and there could be no science of thermodynamics.

7. CONCLUSICN

Although the assumption of realism implies that the prineiple of macro-
pooplie uniformity must be troe, the converse does not hold. Indeed, the
prineciple of maeroscopic uniformity, in & somewhalt weaker form, has long been
recogniged, If we aecept it, we can relax considerably the requirements for
the possible interpretation discussed in Sec. 4. There is no longer any need
for the system to be exactly “in & Bolizmann distribution.” Any reasonable
appraximation to it will ztill lsad to the =ame macroscople predictions.

The interpretation of statistical mechanics based on the assumption of
realism carries many implications for current unsolved problems in statisti-
cal machanicsﬂl? In the following we point out two exmmples of the manner in
which these problems change if we now interpret "microscopiec state” as mean—
ing a pure state of guantum theory.

4. Irreversible Processes. One of the fundamental problems of the theory of
irreversible processes is how to find the ensemble which corrsctly represents
a system in a nonequilibrium state. With our interpretation, however, there
is no such thing a5 a "correct™ ensemble; the notion iz quite meaningless.
Hevertheless, b-éuause of the principle of macroscopie uniformity, we conclude
that the methods of maximm-entropy inference, 11 when generalized to the
density mairix formalism, must provide a corrasct prediction of every feature
of irreversible wg_égg_ wnich is experimentally reproducible. The reason
for this is that every property which is characteristie of ths great majority

of the possible states will emerge from this treatment with a sharp probability
distribution. Thus the prescription for a genersal theory of irreversible
processes becomes: For the initisl time + = 0, find the density matrix
which maximizes the entropy 8 = « Trip log p) subject to all the constraints

Tepresented by the available information. The solution of ;iE{) = [H,& with

-u-'g-r




this initial condition must contain the description of the irreversible
process. In finding this solution, any approximation which does not alter

the expectation values ( F} = Tr(pF) of the gquantities which we wish to
predict, are permissible regardless of what they do to Trip lcg p) o Thus,
the adoption of a "coarse-grained density”™ is not something required by
philosophical pm'inciples? concerning the accuracy of measurements; it re-
presents zimply the process of discarding, voluntarily, irrslevant information.
B, Condensation. In attempts to understand econdensation since the time of
van der Waasls, the underlying idea has been that the phenomenon iz basically

a statistical one, which would be understood if only one could do a rigorous
job of evaluating partition functions and passing to the limit HN- =, How
ever, since condensation is an experimentally repreducible property, we are
forced to conclude that it must be found, not only in some ensemble average,
but it must be characteristie of sach of the great majority of the pure states
compatible with the conditions of the experiment. But if this is so, then
condensation must be predictable already from a study of the properties of

typlcal pure states, independsntly of any statistical consideration. As we
lower the energy of a gas, we must reach a point where practically all of

the possible stationary states correspond to a greater density of matter
along the botitom portion of the container. Thus the problem of condenzation
becomes primarily one of physies rather than statisties.

We sea that if we abandon the attempt to utilize ergodicity, and at the
same time retain the assumption of realism, the fa.ct that statistical mechanics
is suceessful carries far-reasching implications which are capable of being
tested independently. Conversely, if it can be shown that any of these implica-
tions, such as (A) or (B} above, is false, then it would appear that we
must either abandon the association "miecrcscopic state = pure state,” or else
return to the interpretation of Seo, 4.
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