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Abstract: The Statistical Mechanics developed by physicists for predicting
thermodynamic properties, also provides a formal mathematical procedure for
incorporating prior information into general statistical inference. In

some cufrent]y important problems, this can accelerate the process of finding

appropriate models.
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INTRODUCTION

For many years the writer has carried an evangelical message to
physicists, telling them: "Statisticians have learned many important
things that physicists ought to know about but don't". Here we face in
the opposite direction and note some things physicists have learned about
inference, that statisticians might find useful.

A sociologist has complained that "God gave the easy problems to the
physicists". While some of us would wish to qualify that statement, we

shall add only: --- and He so arranged that the solutions physicists
found would help also in solving the problems of others".

 What we have to say should be pertinent in some current problems,
particﬁ]ar]y those calling for a generalized inverse (i.e., given the
data vector d = Ax+e where A is a singular operator, estimate the
"state of Nature" vector x). Here sampling theory finds itsel{ groping
for a defensible algorithm, because the data cannot distinguish states

x, x' differing by a solution of the homogeneous egquation A{x-x') = O.
Collinearity in multiple regression, missing cells in ANOVA, and power
~spectrum estimation from incomplete autocovariance data, are examples.
Yet what the data cannot distinguish, the prior information often can.
In conventional sampling theory the act of choosing a model is
just an intuitive way of taking account of certain prior information
about the problem. This process can be, at least in part, removed from
the realm of intuition and reduced to a formal mathematical procedure.
In some cases prior information can create our model and parameters for

us, out of the data, in a way that is optimal by a certain well-defined

criterion (this "adjunct model" makes the best use of the data).



These things have been, in a sense, "well known" to physicists for
decades, but in a language and context so different that they were not
recognized. To explain, without going into lengthy detaiis, why this
happened and how the connection was finally made, we turn to a fable scmewhat

in the spirit of Fisher's "Problem of the Nile".

A MODERN FABLE

Once upon a time, at a mythical Agricultural Experiment Station, workers
faced problems of inference in which they had a great deal of noise, but very
1ittle prior information. Being rational people, they developed methods--one
of which was called maximum Tikelihood--that dealt most effectively with
these problems. That 1s, they represented the properties of the noise by
what they calied a "sampling distribution" and did not bother with prior
information that would have made little difference in their conclusions.
Being also human, they were plieased at the success of their efforts, and
made an inductive generalization of the kind everybody makes: since these
methods have been successful in the probliems we have studied, they must be
the correct methods for all problems of inference. Their descendants formed
what we shall call Camp A.

At an equally mythical Physics Laboratory, workers studied problems
of inference related to thermodynamics; for example, given the energy and
volume of a system composed of billions of molecules, predict its pressure,
specific heat, etc. In these problems they had a great deal of prior
information {all the known laws of physics as applied to the individual
molecules of the system) but very little noise (their measuring instruments
were quite good}. Being rational people, they developed methods--one of
which was called maximum entropy--that dealt wmost. effectively with these

problems. That is, they concentrated on finding the distribution, which



they called an "ensemble”, that represénted their prior information as
constrained by the data; and did not bother with noise. They too were
pleased at the success of their efforts and drew the obvious inductive
generalization: henceforth, all problems of inference must reduce to
finding the ensemble of maximum entropy. Their descendants formed Camp B.

Up to this point, our fable is not new. It is just the old story
of the elephant and the blind men, each of whom thought the whole elephant
must be like the part of it that he had touched. But there is a sequel:

Now there was a wise man who lived between these camps, observing
them. Like Socrates, he made himself highly unpopular with both by asking
thought-provoking questions. To the A camp he said, "Why do you not take
prior information into account? See how easy it would be--you have only
to introduce a prior probability distribution and add the log prior to
your log Tikelihood before maximizing." To the B camp he said, "Why do
you not take noise into account? See how easy it would be--you have only
to introduce a sampling distribution and add the log likelihood to your
log prior before maximizing."

But the Tower of Babel Syndrome had broken out and there was a language
difficulty. Those in camp B had never used the term "prior probability"
because for them an ensemble was not, logically or chronologically, "prior"
to anything else; it was the only distribution in sight. The "log prior"
was, essentially, what they called "entropy”.f So they did not understand
what the wise man was saying.

For those in camp A, the very word "probability" had come to have a
different meaning than the original one. As a result, they now believed

that the equations of probability theory were only rules for calculating



frequencies; and not for conducting inference. So they thought the wise man

was asking them to compromise the "objectivity" of their inferences with
personal opinions, unsupported by any data. They reacted with high-minded

scorn and indignation and coined the slogan "Let the data speak for themselves!"

The wise man's suggestion therefore had no effect on the actual practice
of either camp. Indeed, the situation deteriorated: instead of accepting
his advice, which would have moved them together into a single camp, the
two camps went their separate ways, developing not only totally different
languages, but also totally different conceptual foundations, that had
the effect of institutionalizing their differences instead of resolving
them.

Now in the fullness of time it came to pass that new problems appeared,
bearing such curious names as "time series analysis" and "image reconstruc-
tion", in which the noise and the prior information were equally important.
Fach camp moved in, filled with confidence from past successes. Since each
had a method that dealt properly with half the problem, each was able to
extract about half of the correct solution; and that much is often good
enough to be usable. But of course their sojutions were quite different.

In estimating the power spectrum of a time series, given the same
data both would find the strong lines in about the right positions, but
with different shape and resolution. Solution A, considering noise but
not prior information, achieved good stability with respect to nofse, but
suffered from poor resolution and spurious "side-lobe" responses. Solution
B, considering prior information but not noise, achieved very high resolution
without side-lobes, but suffered from variability and spurious responses to |

noise.



Here, so to speak, the whole elebhant finally came into view. But
because of Lheir language and conceptual differences, esach camp found the
rationaie of the other's method jncomprehensible. Each saw in the different
results, not evidence of the incompleteness of his own method, but a proof
of the defects in the other’s method.

And so our story ends in stalemate, the Tower of Babel Syndrome in
full control. Unable to communicate in a common language, each camp has
the solution to the other's probliem, and cannot recognize that the other has

the solution to its own problem.

APOLOGY
A fable is, by definition, something that is not 1iterally true, but
" which is thought by its writer to convey a true moral. In the reality,
differences in technical detail and chronology made the situation more
complicated than is portrayed above. Yet some 30 years' immersion in the
technical detaiis oflboth fields has led the writer to this rather laconic
view of the relation between two methods of inference, generally called
“sampling theory" and "Gibbsian statistical mechanics", and developed
respectively by statisticians and physicists.

But not all statisticians are sampiing theorists, nor all physicists
Gibbsians. The neutral terms "camp A" and "camp B" indicate our basic
concern with two different approaches to inference, hot two different
professions.

Our wise man is a composite of J. Bertrand (1889), H. Poincaré (1912),
Sir Harold Jeffreys (1939), I. J. Good (1950), and L. J. Savage {1954).

I still recall with a shudder the scorn and indignation of a well-known
Professor of Statistics when, as a student at Princeton in the Tate 1940's

(with John Tukey and Paul Meier among my friends) I asked, naively,



why he did not take Jeffreys' advice and improve his confidence intervals

by incorporating prior information into them. In camﬁ A it was considered

to be, not just illogical, but a morally reprehensible breach of "scientific
objectivity" to allow one's self to be influenced by prior information.

This scruple would undo all the useful results found in camp B.

Yet this vast difference in attitude in the two camps does not, in
the writer's view, reflect any difference in basic thought processes. It
is only an historical accident arising from the very different problems we
encountered in our formative years; and the situation might have been the
other way around. That is, Gibbsian statistical mechanics is a rather late
development in physics, while Rothamsted occurred at a relatively early
stage in the development of biology.

If the Rothamsted workers had been in possession of the exact
"biochemical equations of motion" telling how each individual cell of a
growing plant responds to its environment, it would have been obvious that
this prior information must be taken into account in estimating differences
in yield from two varieties or two treatments. Likewise, if physicists had
not possessed such good measuring instruments, it would have been obvious
that thermodynamics must take noise into account.

Recognizing this, could we not develop an area of common language
that emphasizes the basic unity of all inference? As a start, we try to
explain the rationale of Gibbsian statistical mechanics 1n a language
closer to that of statisticians, but without lapsing into statisticians'

jargon that would be unintelligible to most physicists.



LOGIC OF STATISTICAL MECHANICS

This is, in essence, no different from the game of "twenty questions”.
We have an initial hypothesis space HD==(h]...hn) determined by our prior
information about the nature of atoms. HO 1s enormous, comprising perhaps
r1=exp(]026) conceivable quantum states. FEach new piece of information
{data) that we acquire is a constraint that narrows down these possibilities
to some H1 = Ho‘ |

That is really all there is to it. Difficulties in understanding this
rationale come from the fact that it is usually described in a physicist's
jargon that refers, not to the simple underlying idea, but to elements of
the rather indirect mathematical formalism that has evoived to carry it out.

Certainty is never reached, and so whatever data we have managed to
obtain, we must be prepared to answer at each stage: What are the best
predictions we can now make, of the guantities of interest A==(a],a2,...)?
If we later acquife more data, then our hypothesis space will (unless the
data are redundant) be further contracted to H2 C'HI and in principie we
shall of course expect to improve on the old predictions.

In practice, as our sociologist noted, physicists are Tucky and we
guickly reach a "plateau” stage where our predictions have become so good
that further data hardly matters. That is, H] is already so homogeneous
in A that further contractions are unnecessary. It is not the amount of
contraction, but its homogeneity in A, that makes our predictions reliable.
So the strategy i;: what kind of data D =(d],d2,...) should we seek, to
get us to that plateau as quickly as possible? Stated differently: what
observable quantities D are most strongly correlated, in our initial

hypothesis space HO, with the things we want to predict?



When a physicist Tooks for the “1éws of thermodynamics”", i.e., the
reproducible connections between pressure, temperature, magnetization,
specific heat, etc., his rationale is no different from that of an economist
who looks Tor the most reliable indicators. Although the superficial
appearances are at present entirely different, we are all doing basically
the same reasoning, and all would benefit from recognizing this.

This principle of homogeneous contraction of the hypothesis space is,
of course, just the rationale anybody does adopt naturally in his everyday
problems of inference. A chemist trying to determine what elements are
present in a sampie, a medical diagnosticiah, a 1V repairman, a burgiar
casing a new neighborhood--all start with a large class of conceivable
hypotheses which they try to narrow down, as quickly as possible, by
acquiring data that are as relevant as possible to their various goals.

It is interesting to note that this reasoning is conducted without
mention of any sampling distribution. Conversely, it is .quite foreign to
the outiook of sampling theory to think of data as constraints on a prior
hypothesis space. This illustrates the compietely different language and

conceptual foundations that have developed in camp A and camp B.

HOW SHOULD WE USE PRIOR INFORMATION?

In most real-life situations no samp]iﬁg distribution is given to us
by Nature, and we have no generai principles, that could be taught in
statistics courses, to determine what our initial hypothesis space H0
should be. This is, necessarily, a matter of judgment based on knowledge
of the subject-matter. Clearly, our search for the right hypothesis will
be shortest if every bit of prior information, that would help to restrict

that space, is taken into account from the start.
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in spite of their disdain for prior probabilities, sampling theorists
do recognize the relevance of such prior information; and as noted, they
use it in deciding on the initial formulation of & problem. Presumably,
no rational ﬁerson would define a parameter space € that includes vaiues
of & known a priori to be impossible; or excludes values that seem a priori
possible. But if we stop at that point, we have missed something very
important. What is it that makes the physicist's contracted hypothesis
space 50 homogeneous with so 1ittle data?-

Most physicists and many engineers are without formal training in
statistics, and turn to the orthodox statistical Titerature only for help
with some specific application. But they perceijve instinctively, if
sometimes vaguely, that merely specifying a sémp]ing distribution and
parameter space cannot represent all the knowledge they have, that is
relevant for their inferences. It is typical of real scientific probiems
that one has some kind of direct, highly cogent prior information about
the 1ikely values of ¢ that has nothing to do with frequencieé in any
"random experiment". Most, finding in the current iiterature no way
of using this information, devise their own ad hoc procedures that rely
on judgment rather than orthodox statistical theory.

Indeed, it is not only physicists and engineers who have perceived
this. The necessity of incorporating prior information into the actual
process of inference--and not meré1y using it in deciding on the initial
formulation of a problem--was noted by J. Bertrand (1889) the year before

R. A. Fisher was born. Of Bertrand's several examples, we quote the last:
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“The inhabitants of St. Malo [& small French town on the English
channel] are convinced; for a century, in their village, the number of
deaths at the time of high tide has been greater than at low tide. We
admit the fact.

"On the Coast of the English channel there have been more shipwrecks
when the wind was from the northwest than for any other direction. The
number of instances being supposed the same and equally reliably reported,
still one will not draw the same conclusions.

"While we would be led to accept as a certainty the influence of
the wind on shipwrecks, common sense demands more evidence before
considering it even plausibie that the tide infiuences the last hour
of the Maiouins.

"The probliems, again, are identical; the impossibility of accepting
the same conclusions shows the necessity of taking into account the prior
probability of the cause.”

| Clearly, Bertrand cannot be counted among those who advocate *1etting
the data speak for themselves". Such adages as "Correlation does not imply
causation" or “An.empirica1 fit is no substitute for a reason" also
recognize that the data are only the latest addition to our knowiedge,
not the whoie of it. But we must become more specific: what is the
gquantitative factor missing from tamp A calculations but supplied by

camp B?
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THE MISSING MULTIPLICITY FACTOR W

The point we wish to make was recognized in a famous discussion between
d'Alembert and Laplace. Bernouili had given a rule for assigning probabilities:
P(A) = {(number of cases favorable to A)/{total number of equally possible cases).
Now predict the resuit of tossing two coins:

d'Alembert: “There are three possibilities: (Two heads), (One head,
one tail), (Two tails). Therefore, by Bernoulli's rule we assign probabilities
(1/3,1/3,1/3)."

Laplace: "No!! There are four possibilities: (HH, HT, TH, TT) so we
should assign probabiiities (1/4,1/4,1/4,1/4). The event (One head, one tail)
is more likely because it can happen in two different ways (i.e., it has a
multiplicity W=2) and we ought to take that into account. d'Alembert should
have assigned {1/4,1/2.,1/4)."

For 200 years all schools of thought--whether or not they accept
Bernoulli's ru]e——haye agreed that the prcbability of an event A is the
sum P({A) =E:P(ai) over the mutually exclusive ways in which A can occur.

If the P(ai) are all equal, the multiplicity factor W appears automaticallyv.

But these things are we]1.known to everybody; the centrail l1imit theorem
describes how muitip1iciﬁy factors pile up into a gaussian when convolved
many times. Indeed, the derivations of sampling distributions that launched
Fisher's career were, in essence, ingenious ways of reasoning out the
multiplicity factors for various functions z(D) of the data O. How then
can one say that sampling theory ignores multipiicity?

Well, sampling theory does take correct account of multiplicity in
the sample space; the trouble is that a sampling distribution P(D|8) says
nothing about the multiplicity of the parameter space ©. Yet our prior
knowledge of the phenomenon being observed might tell us that © has a

definite, calculable multiplicity W(6).



Any method of inference about % which Tooks only at sampling distribu-
tions conditional on 6 may be missing something of crucial importance for the
inference. If we know that the value ¢ = 0 can occur in conly one way, while
&€ = 1 can happen in 10 different ways, there are 100 different ways in which
Nature can generate the value 6 = 2, etc., that is information that we shall

ignore at our peril in making predictions involving 6.

EXAMPLE: HOW DO PHYSICAL CHEMISTS DO IT?

In the laboratory one measures certain macroscopic quantities. such
as temperature T, pressure P, etc.; and in the theory one tries to predict,
from such data, other macrcscopic properties such as total energy E, density
R, magnetization M, heat capacity C, etc. Everybody accepts the ruie found
by Ludwig Boltzmann, that at temperature T the probability of a state of
energy E is proportional to exp(-E/kT}, where k ( :1.38><1O_}6 ergs/degree]
is Boltzmann's constant, a corrective fudge factor necessitated by our
curious system of units.

Then, given the temperature of this room, T=2%0 K, what vaiues of
(R,E,M) for the air in it do we expect to observe? By the Boltzmann law,
it appears that the state of lowest energy will be overwhelmingly the most
probable, because k is so small. Thus all the air in the room where I am
writing this should be condensed into a small frozen puddie at the Towest
point of the floor. Evidently, the prediction has ignored something of
crucial importance for the inference.

J. Willard Gibbs (1875, 1902), showed how to correct this. We
introduce a new quaﬁtity, a function S(R,E,M) of the macroscopic state
and define the "free energy" F=E-TS. Then we modify Boltzmann's rule

by taking the probability of the state (R,E,M) proportional to exp(-F/kT).
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Given T, the most probable state is the one that minimizes F. We now find
that the corrected rule gives us, at all temperatures and to the accuracy
of our best measurements, a quantitatively correct prediction of the
condition of the air in this room. The new guantity S that has rescued us
from being eternally frozen and immobile is called entropy.
The rule for constructing the entropy function.S(X1,...,Xn) for
any macroscopic guantities {Xq,...,Xn} that we can measure experimentally
was given by Gibbs for the case of thermal equilibrium states. One can
apply it usefully, cookbook style, without understanding what entropy
really is. But generalization to other problems requires some understanding.
Let W(X

.,Xn)dX ...dXn be the number of quantum states of our

17 1
system, for which Xi is in the range dX., 1 < i <n. That is, W is the
multiplicity of the state {xq,...,xn}. If we make. following Boltzmann,

Einstein, and Planck, the interpretation of entropy:

S =k log W (1)

the successful rule becomes: the probability of the macroscopic state

{X?""’Xn} is proportional to

exp{~F/kT) = W exp{-E/kT) (2)

and suddenly all is clear!

When the chemist replaces the total energy by the free energy, he 1is
simply taking into account the missing multiplicity factor W, the number
of ways (number of microscopic guantum states) in which the observable
macroscopic state can be realized. Doing this converts a disastrously
wrong inference into a reliable, guantitatively correct one. Unfrozen

guantum states exist, not because any one is more likely than the frozen
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one, but because there are so many more of them. For every way in which
the air in this room can be frozen, there are something iike
W o= exp(10%°) (3)

ways in which it can be unfrozen. An increase in energy too small to
measure, may still correspond to an increase in multiplicity by a factor
of exp(lolo).

This shows why multiplicity factors forced themselves on our attention
in thermodynamics, before quantum states were discovered. In the real
worid, as Max Planck put it, Nature will appear to have a "strong preference”
for those situations of highest entropy. This preference was discovered
experimentally in the first half of the nineteenth century, long before its
explanation was found; and it was called the "Second Law of Thermodynamics®.

Boltzmann called W the "thermodynamic probability", an unfortunate
terminology because multiplicity is, like likelihood, not a true probabiiity
but only one of the factors in a probability. The resulting preference of
Nature was expressed in the variational principie of Gibbs {1875): all
thermal equilibrium states can be predicted quantitatively by maximizing the
total entropy of (system + environment) subject to the constraints operating,
both those imposed by the experimenter and those arising from laws of physics
(conservation of mass, energy, number of atoms, etc.). For a.century,
physical chemistry has been based on this principle.

Simi1ér1y, if W(g) varies over a parameter space by a factor of only
10 or 100, maximum-Tikelihood estimates would still have tolerably good
success. But when W(8) varies by many orders of magnitude in a small interval

of 6, we can hardly expect to make even qualitatively right inferences about

6 if that fact is ignored. Multiplicity is equally essential for predicting



16

a "parameter" or a "random variabie", and so a sampling theorist will be
most successful if his intuition leads him to define his parameters so that,

like location parameters, they have nearly uniform multiplicity.

RELATION TO PRIOR PROBABILITIES

Multiplicity is one factor--often the only variable factor--in a prior
probability distribution. Often in the past, prior probabilities have been
rejected as vague and ili-defined. Today, it would be misleading to repeat
such criticisms without taking note of the progress made on these problems
in the recent Bayesian literature. In any event, there are many important
applications where our prior information makes the multiplicity W{8) a
very well-defined quantity, far more "objectively real"” than are those
"1id normal" sampiing distributions assigned merely by convention.
falculaticn of W(6) may be a nontrivial combinatorial probiem.

Consider the simpie case where the only combinatorial resu]t needed
is the mujtinomfal coefficient. Nature generates a set of non-negative
integers {N] ce. Nn} which we may représent by the fractions fi = Ni/N’
where N = ENi' We have some data D and & sampiing distribution P(D]fT...f )

n

from which we are to estimate some function G(f .fn).

1--

The new feature, which makes this different from a conventional
sampling theory probiem, is that we have prior information about the
process that generated the set F = {f1"'fn}’ so we know that the
multiplicity of F (number of ways in which it could have been realized)
is

W(F) = N!/[(NfT)!(NfZ)! - (an)!] . (4)

Knowledge of W(F) can affect our inferences, just as it did in the case of

the physical chemist. In decision theory, F is called the "state of nature”;
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wanting a shorter term and with a view to applications in image reconstruction,
we call it here simp]y the "scene". Analogous to (1), we shall say that

any scene F possesses an entropy log W(F). Given {N,n), the number K of
different possible scenes is equal to the number of terms in the multinomial

N
n) :

expansion of (f]ﬁ-... + f
K= (N+n-1)!/NlI{n-1)! . (5)
In physicist’s jargon this is "the multiplicity factor for Bose-Einstein
statistics”.
We examine first the "no noise" probiem, where the contrast with pure

sampling theory methods stands out most clearty, after which we shall take

the advice of that wise man and combine the two methods into a single procedure.

THE NO-NOISE PROBLEM

By "no noise" we mean that there is no sampling distribution except
in the rudimentary sense that P(D|F) = 1 or 0; any data set D either is or
is not the one generated by the scene F. The problem is that many different

scenes all generate the same data and therefore have the same likelihood:
D = AF | (6)
where A is some operator, by hypothesis known but not upique]y invertible.
Any rule for estimating F from D is, symboiica]1y,
F=RD (7)

where R is a "resolvent" operator to be chosen.
It would appear that any rational choice of R must have, at the very
minimum, the property that F lies in the class C of logicaliy possible

scenes: for all F, D=AF=AF=ARAF. Thus R must be a generalized inverse:

ARA = A . ' (8)
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Stated differently, as seen through the "window" A, the estimated scene
must be indistinguishable from the true scene, otherwise we have not used
all our information. However trivial and obvious this requirement may seem,
solutions that violate it {for example, power spectrum estimators that can
become negative} have been. advocated repeatedly in the literature. Indeed,
~the only thing the data can tell us about the trué scene is that it Ties
in class C. The data provide no basis for choice within C.

Among current real problems encompassed by this model we note:

(I) Generalized Loaded Dice. A random experiment has n possible

 results at each trial, so in N trials there are in all nN = ZW(F) con-

ceivable outcomes, where Ni are the sample numbers, and F = {f]...fn}
is the set of frequencies generated in a particular realization. Given

some data D consisting of m functions dk(f]"'fn)’ where 1 <k<m<n,
estimate the {fi} or decide whether there is evidence for a systematic
deviation of a function G(f].;.fn) from its "null hypothesis” value Gq -

An entropy analysis of the famous dice data of R. HWolf from this standpoint

which Ted to definite conclusions about the imperfections of the die, was

given recently (dJaynes, 1978).

(II} Image Reconstruction. N elements of Tuminance have been

distributed over n pixels, to generate the scene F. Our data consist
of m numbers, D = {d]...dm}, m<n, which constitute a blurred image of
the true scene:

n
d, = Yy Afs > 1 (9)

i=1

LA
<

1A
=3

where the matrix A is the digitized point-spread function of our telescope.
Qut of the large class of scenes compatible with our data, which is most
Tikely to be the true one? Recent image reconstructions based on ‘entropy

have been given by Frieden {1980) and Gull and Daniell (1978).
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(ITI) Statistical Mechanics. N molecules have n possible guantum

states each, the fraction in state i being f1==Ni/N, T<i<n. The "scenes
are now the possible distributions F = {fl"'fn}' A molecule in state i
has energy Ei and magnetization Mi' Given the total energy, E=N ZEifi’
predict the total magnetization M = N ZMifi' The Tliterature of statistical
mechanics throughout this century has dealt with hundreds of problems with
this logical structure (although usually more complicated in detail). The
success of the predictions that flow from the multiplicity W(F) is taken

for granted just as confidently as for Newton's laws of motion.

(IV) Spectrum Analysis. Given the value of the autocovariance of

a time series for the first (m+l) lags:

N
-1
R = 1.20 Yi¥jug o Oz kcm (9)

estimate its power spectrum S{f). Many impressive results in problems of
this type arising in geophysics have been achieved recently by Burg (1975),
Currie (1980), and others by taking multiplicity into account.

From the standpoint of conventional sampling theory, each of these
problems is grossly ill-posed and has no solution, for the 1ikelihood 1is
constant on C. Yet in each case, recognition of the multiplicity factor
supplies the missing criterion of choice within £, and leads to solutions
that are unique, calculablie, useful, and empirically verifiable. To

understand this success, Tet us calculate some multiplicities.

SOME NUMBERS
 Suppose there are two scenes, 1 and 2, equally compatible with our
data: p(D|F]) = p(D|F2). The writer knows of no principle-in sampling

theory by which we could choose one .over the other. But calculating
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their multiplicities, we find that wz/w1 = 1010. That is, for every way in

which Nature could have generated scene 1, there are 1010 ways (about four
times the number of minutes since the Great Pyramid was built) in which she
could have made scene 2. [ shall, rather confidently, place my bets on
scene 2 as being the right one.

Someone will surely object here that I have ﬁade an unstated and
unwarranted assumption: that all these ways are equally likely. To this
there are two replies. First, in view of the factor 1010, I need not
"assume"  very much. Indeed, unless I had prior information that Nature
has, for other reasons, some Sfrong predilection for scene 1 over scene
2~-and by more than a factor of 1010~~my decision could not be changed.

But of course, if I did have that kind of prior information, to ignore
it would be an even greater sin than ignoring multiplicity. The objection
deserves a more aggressive reply; we return to it in our concluding remarks.

But do we really have such enormous variations in multiplicity in
the real problems that arise in image reconstruction and tihe series
analysis? Let us get some idea of the numbers of involved in a real case.
Gull and Danfe]l (1978) gave some beautiful examples of maximum-entropy
image reconstruction in fadio and x-ray astronomy. In most cases they
used a 128 x 128 grid, thus generating an image of n= 16384 pixels (requiring
3 minutes on an IBM 370/165). If we suppose, rather conservatively, that
they couid discern a change in intensiiy of a pixel amounting to 10% of
the averagé intensity, we have effectively N = 10n = 163,840 é1ements of
luminance comprising the scene. If their intensity resclution was better

than this, the following numbers are underestimates.
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These values of N and n could make, according to (5),

1802231 ) 23840
1638401 163837 ~ > * 10

distinguishable scenes, whose multiplicities range from wminz 1 to

163840! 675703

W = —— = = 4 x 10 . (11)
max (10!)16384

Therefore, we could partition the conceivable scenes into 67571 categories
according to their mulitiplicity, those in category ¢ having muitipiicity in
the range

10'9¢ < < 1000 g < ¢ < 67570 . (12)

A higher value of c denotes a smoother scene; but the eye surely does not
distinguish 30000 different degrees of smoothness. Thus two scenes, as
alike as possib]e'except that one lies in category c, the other inc+2,
- will be virtually indistinguishable td the eye. Yet every scene in c+2
has a muitiplicity greater than any scene in ¢ by a factor of more than
100,

In realistic problems, then, we not only have variations in multiplicity
by a factor 1010 between two scenes, we have chains of thousands of such

comparisons with a factor of 1010

at each step. As large numbers go, these
are hardly in a class with those we encounter in statistical mechanics;
yet by ordinary.standards the numbers are rather respectable, and it seems
evident that such multiplicity factors need to be taken into account in
image reconstruction by the same kind of reasoning that is used in statistical
mechanics.

That is, having seen these numbers, we expect that a kind of "second

law of thermodynamics" will manifest itself, and Nature will appear to have

a strong preference for those scenes which have highest multiplicity (entropy)



22

compatible with our data. The success of the maximum entropy reconstructions
of Gull and Daniell is in no way surprising as soon as it is recognized, as
an elementary combinétorial theorem, that with a plausible hypothesis about
how Nature is forming the scene, the overwhelming majority of all possible
scenes compatible with their data had entropy very close to the maximum.
Conversé1y, if that hypothesis were significantly wrong, the failure of those
reconstructions would tell us so, and give us a clue poihting to a better
hypothesis. As the writer sees it, this kind of logic is the essence of

the scientific method.

THE MAXENT FORMALISM

The abové indicates how, in generalized inverse prob]éms, entropy can
provide the missing criterion of choice within the class C of bossibi]ities
allowed by our data. In the noiseless case all scenes in C have the same
“1{ke1fhood“ in the technical sense of.that WOrd; and are thus equally good
from the standpoint of sampling theory. Yet in some cases the multiplicities
vary 6ver C by large numerical factors, making écenes of high entropy far
more "1ikely” than othérs, in the colloquial sense of the word.

This reasoning is evidently quite general, having no necessary connection
with thermodynamics or physics. Thermodynamics was, historically, the first
application where these things were recognized.

The mathematical formalism by which one locates the point of maximum
entropy was given, as a special case, by Boltzmann (1877); and in greater
~generality by Gibbs (TéOZ). However, full appreciation of the power of the
method outside thermodynamics has been achieved only quite recently, as a
result of the development of computer programs capable of dealing with dozens

to thousands of simultaneous constraints. We recall the MAXENT formalism
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briefly, in a notation that frees it from its historical origins in thermo-
dynamics, but without becoming so abstract that it no longer suggests any
applications at all. |

A real variable x may take on the discrete values (x]...xn). In N

trials these are realized with frequéncies (f r.,fn) respectively; this

1
defines the "scene" F. But the f are not observable directly; the available
data D are incomplete, consisting of the m measurements, m<n:

n
d, =_1; As Fo s T<kem (13)

where A is a known but singular matrix. Equation {(13) is a collection of
m simultaneous constraints defining our class C of possible scenes. Required:
to find the scene F = (%]...%n) which has maximum entropy'1og4w subject to
the constraints (13) and normalization Efi = 1.

In the expression (4) for W we may use the Stirling approximation,

since the Ni = Nfi are large. Then as N » = we have
] n
H(F) = ]1m,ﬂ-1og W(F) = —-g;% fi 1gg fi | (14)

the same expression as found by Shannon {1948), by an entirely different
argument, as a fundamental "information measure”. Analytically, it is much
easier to maximize H(F).
The conventional method introduces a Lagrange multiplier Ak for each
datum dy, (1<k<m) and yie1ds the solution |
exp[—Ek & Aki) : T< i<n .(15)

-4 Z(A]...km)
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where
m '
Z(Al...k ) = ii1 exp —£L1 AkAki (16}

is a basic generating function of the kind that arises in so many combinatorial
problems, called by physicists the partition function. Then, as usual, the
Lagrange multipliers are found by requiring (15) to satisfy the constraints

(13). The result may be written as

- _ _0_
dk— 7% log Z T<k<m (17)

a set of m simultaneous equations for the m unknowns (k]...km).

Of course, there is a great deal more detail in the full MAXENT formalism,
a mass of covariance —reprocity —perturbation theorems and generalizations to
continuous distributions and to quantum theory (Jaynes, 1978, 1980); but the
above bare skeleton will suffice to indicate how most of the calculations are
carried out.- Equation (15) defines a "generalized Gibbsian canonical ensemble’.
By the Shannon interpretation it is the "most honest" representétion of our
knowledge of the true scene, when the only information about it consists of
the data (13). That is, any other distribution would necessarily either assume
information that we do not have, or contradict information that we do have.

For some 60 years, virtually all analytical calculations in statistical
mechanics have started with thé determination--exact or approximate--of the
appropriate parfition function Z. Once log 7 is known, in its dependence on
- the Lagrange multipiiers Ak, essentially all physical predictions of interest
follow, and the Ak'acquire various physical meanings. For example, 1f we

define A]i as energy of the i'th quantum state:

ATi = Ei , l<i<n {(18)
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then the Lagrange multiplier A1 turns out to have the physical meaning
A = (kT)_}, and so the Boltzmann distribution exp(-E/kT) is a special case
of (15).

In the above we have supposed the data noiseless. Suppose that instead

of (13) we have d, = I Akifi + e, with e, ~ N(O,ok}, the traditional gaussian

k
noise. The wise man said: add the log likelihood to your log prior before
maximizing. From Eq. (14), we shall then maximize NH(F)} + Q(F), where

Q(F) = -% 5, (d, - ZiAkifi)Z/zokz islthe traditional quadratic form. The
resulting reconstructed scene:is the ﬁeak of a posterior distribution. This
is just the way Gull and Danié11 (1978) allowed for noise, and they show

how the quality of a reconstruction varies with the noise level. Further

details are in the process of publication, and should be available by late

1983.

Although there is much more to be said about the generalized inverse
problem, let us turn now to some more general uses for {15). We have
obtained it by a combinatorial argument, as an estimate of the frequency
distribution that generated the data. It is the "best" estimate in the
sense that, of all distributions consistent with those data, (15) hag the
greatest multiplicity. But the analytical result has other valuable

properties beyond the generalized inverse area.

REINTERPRETATION - ADJUNCT MODELS
The reIatioﬁs to be noted next are mathematically trivial but conceptualiy
subtle; we are trying to translate results long known in camp B into camp A
language, althoﬁgh the basic ideas that led to them are not in camp A vocabulary
and concepts. So the foliowing is not a derivation, but only a line of free
association. Given an éstimate ?} of frequency such.as (15), it seems

reasonable even to one who does not define a probability as a freguency,
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to assign p(xi)==?1 for purposes of future prediction. In camp A language,
having found the distribution (15), nothing prevents us from re-interpreting
it as a sampling distribution, with parameters {A}...Am}.

As soon as we know the matrix A that defines the "nature" of the data,
and before we have the data, we know that this distribution is going to have

the analytical form

p, = Al exp (- zkhkAki] , i<i<n : (19)

Given the distribution (19}, our "best" (by mean-square error criterion)

prediction of the data would be

Fal n

dk - E(Aki) = 1;] Aki-pi , T<k<m . . (20}
But this 1is

9 = . 08

dk-— akk]OQ z E T<k<m (21)

j.e., just Eq. {17), which now has a second meaning.
Finally, let us ask: given the sampling distribution (19) and the
results of N trials in which X; Was obtained Ni times, what are the maximum-

Tikelihood estimates of the parameters {A];..Am}? The Tog-likelihood 1is
' n
L(k1...lm) = g;% N, Tog p. -,

- - ) - | 22
N log Z(A1...Am) g; A A N . (22)
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Even though we now have the full data {Nl"’Nn}’ the 1ikelihood depends only

on the m quantities, m<n:

N, |
‘Aki—ﬁl. . i<k<m (23)

Sy _

n
i=

1
which are therefore sufficient statistics. But these were Jjust the given
data sk==dk in our original interpretation (13), and the maximum Tikelihood
condition 3L/3x, =0 is again just Eq. {17), which now has three meanings!

Let us summarize these interesting connections. We started with no
model and no sampling distribution, only prior information IO which determined
an hypothesis space consisting of an enumeration of the nN conceivable
outcomes of N trials, and some incomplete data D:={d]...dm} that did not
determine the frequencies {f1...fn}. Then recognition of the multiplicity
factors led us to definite freguency estimates {¥]...%n}, after all. But
now, given this mathematical result (15) we may choose to ignore where it
came from, and reinterpret it as a sampling distribution'pi= p(xiikl...km)
with m parameters.

In this development, Eq. (17) has metamorphosed from the condition
determining the Lagrange‘mu1tip1iers from the data in a variational problem,
to a prediction of those data from the parameters in a sampling distribution,
to the maximum-1ikelihood estimates of those parameters from different data.
The writer finds . it one of the most fascinating aspects of statistics--but
also one of the greatest difficulties in teaching it--that totally different

concepts and objectives may share the same mathematics.
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In effect, then, the maximum-entropy principle has created a model
and parameters for us, out of our prior information IO and incomplete data
D. Evefy camp B maximum entropy prqb1em defines what we shall call an
adjunct model, usable in camp A.

But these adjunct models would be of little interest--one could hardly
adjure others to use them--unless they had some desirable properties in
their own rigﬁt. Note first that a maximum-entropy distribution based on
mean-value constraints is always in the exponential form (15) and so, by
the Pitman-Koopman theorem the adjunct model is always one for which the
generating data D would have been sufficient statistics. Pondering this
may give one a deeper appreciation of the Shannon interpretation of
the entropy expression Ep, log p; as an "information measure".

We could give rather trivial exampleé, such as the analysis of Wolf's
famous dice data, from this standpoint (Jaynes, 1978); but in view of space

limitations let us proceed directly to a nontrivial case of current importance.

- TIME SERIES
Nature genefates a ]ong time series {y1...yT}, but our data D=‘{d0...dm}
are incomplete, consisting only of the sample autocovariances up to a lag
m<<T. Given this information, what joint probability distribution p(y1...yT)
should we assign, and what estimate of the power spectrum should we make?
‘In camp A, the gquestion does not seem to make sense. In camp B, with

an hypothesis space on which to define our multiplicities and entropies, it

becomes a We11—posed problem, which will-return an adjunct model to camp A.
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In é real situation the values Y; are defined only to some finite accuracy
tc over a finite range ly| < Y. Therefore the number n of possible
realizations is finite, of the order of (Y/e)T. We shall take as our
Hypothesis space the nN conceivable outcomes in N realizations of the
time series.

The i'th realization {ygi)...y§1)} produces the sample autocovariance

) 1 ) () (22)

If we suppose for the moment that our data are the average values of this
over N realizations, this fits into the combinatorial formalism {(13)-(17)

with Aki proportional to (25), a convenient choice being

T (i) TRe
TR (29)

But £ is small and n, N large, so if we use the continuum approximation to
the solution {15) we are committing no worse a sin than do those who use a
continuous Chi-squared distribution, even though Chi-squared can take on
only a discrete set of‘vaWues.

Now the sum X, Aki in (19) is, from {(25)

m -
kg(} Ak Ak'i = 5{y'Ay) (26)

(AN

where y = {y]...yT} a (1 xT) row vector, y' the (Tx1) column vectdr, and

A the (TxT) matrix

Al$j[’ -m<i,j<m

R
0 R otherwise
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in the which Ak are assembled in Toeplitz form. The adjunct distribution

i s therefore multivariate gaussian:

[

Plyq---yplrg Ay) = exp{— %— (y'Ay)} : - (28)

An experienced entropy maximizer would proceed directly from the data
to (26)}-(28) without the Tong combinatorial argument we have appealed to--just
as an experienced user of the Chi-squared test proceeds directly to the
result without feeling the need to repeat Karl Pearson's origfna1 derivation
of it every time it is used (but in both cases this facility in application
may conceal the rationale of what is being done from someone not in on the
secret).

Qur adjunct model (28) is, except for an "end effect" factor, the

sampling distribution of an autoregressive (AR) model of order m:

m
Ye ¥ k; Ytk T G | (29)

with etﬂJN(O,o) and the AR coefficients related to the A's by (a0 =1):

7 ﬁi% (30)
A, = O a. a.

k 520 J 3tk

Note that in this derivation we did not assume any "gaussian random
process”. The combinatorial argument told us that, of all distributions
consistent with our data, the particular gaussian one (28) has the highest
multiplicity--it could be realized by Nature in the greatest number of ways.

Unless we had further information indicating a different distribution, then,

it would seem irrational to use any other,
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Also, we supposedfor the combinatorial argument that our data were
averages over N realizations. Suppose we have data only from one
realization--would we wish to use a different adjunct model to represenf
our knowledge of the process? One popular rationalization of our negative
answer-is that we can always imagine our one realization as cut up into N
blocks, and the data are indeed averages over those blocks, so the
situation is not fundamentally different. The point deserves furfher
discussion, not given here; the adjunct model. (28) can be obtained by
completely different arguments based on Information Theory instead of
combinatorics.

Of great current interest is the estimatibn of the power spectrum

of a time series
2
S{w)

(31)

T .
-1wt

L. Y, €

=0t

The model {28) gives an estimate with an, at first glance, surprising form:

E[S{w}] =

i 1 iwk (32)
k;;; Ak e

This is the basis of the Maximum Entropy Spectrum Analysis (MESA) method
introduced by Burg (1967), which has largely supplanted older methods.

As noted in our opening fable, MESA gives higher resolution without side-
lobes because it takes into account prior information about multiplicity

factors. But our derivation has supposed the data noiseless, and (32)

needs to be modified when noise is present.
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It was this spectrum analysis problem, more than anything else, that
led to a clear perception of the camp A—?camp B situation that this essay
seeks to point out. The present status of MESA is presented in great detail
in Haykin (1982).

This example illustrates several things about adjunct models. Put
most briefly, adjunct models seem to anticipate--before we have seen the
data--the models that sampling theorists eventually decide upon--after
analyzing the data. The multivariate gaussian distribution (28} and/or
the almost equivalent AR model (29) are just what people with experience
in analyzing time series have been led to. Independently of Burg, Parzen
(1968) and more recently hany others, have advocated the same analytical
form (32). In spite of their totally different language and philosophy,
then, camp A and camp B do not necessarily differ in the final pragmatic
results that they eventually arrive at.

Important truths can often be Tlearned in more than one way; the MAXENT
principle, a sufficiently deep intuition, or analysis of enough data could
all lead us to (32). But intuition is unreliable, and data analysis is
tedious, so MAXENT ought also to be in our bag of tools. Let us try to

understand why this situation was inevitable.

RESOLUTION OF THE CONFLICT
In any experiment, certain factors are constant (under control)
while others vary erratically, not under control. The resulting observable
frequency distribution will be, almost certainly, the one that has maximum
entropy subject to fhé constant factors--because it 1s a combinatorial
theorem that the MAXENT distribution can be realized infar more ways than

can any other obeying the same constraints.
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With only a Tittle . poetic Tlicense, we could say that all real
frequency distributions are MAXENT with respect to some constraints--and
the most we could hope to learn from the experiment is: what are thosé
fixed constraints?

This principle applies far beyond statistics--the "laws of physics"
that we teach to our students with no mention of statistics, are actually
no more. than summaries of those aspects of physical phenomena that remain
unchanged in varying situations.

From this standpoint it might appear that history--a record of unique
events that will never be repeated--is the diametric opposite of physics.
Yet for many the purpose of historical study is to detect those features
that have been at work in all past civilizations, as a guide to the future.
The "lessons of history" aré only estimates of the constraints imposed on
all civilizations by environment and human nature. And of course, the same
can be said of psychology and econometrics. Behind our superficial
differences there is & deep unity of logic and purposé. In saying this
we are only extending what Karl Pearson poihted out long ago.

As we noted in the Introduction, when the sampling theorist chooses
a model, he is expressing some kind of prior knowledge about the phenomenon.
But the same model could express knowledge of a "mechanism"--or knowledge of
multiplicity factorsthat, while not referring to any specific mechanism,
tentatively suggest one.

| If we have knowledge of--or if we hypothesize--some definite mechanism

that tends to make a process repetftive byrinducing correlations after a
certain lag, then an autoregressive model would of course be the apbropriate
one to compare with our data, and to see this requires no entropy considera-
tions [as we know from Volterra's ecological models, Richardson's "Statistics

of Deadly Quarrels" or Yule's pendulum].
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On the other hand, if we have no prior knowledge of the mechanism but
we know that the available data will consist of correlations, then adjunct
model considerations tell us that an autoregressive model is still apprdpriate,
because it captures all the information about the process that is contained
in the data. We see this as providing some support for those who, with such
data at hand, have adopted an autoregressive model in arrather tentative and
half-apologetic way; their choice has at least the justification that no
other model could have made better use of the 1nformatibn they had.

But now we see that if different kinds of data later become
avai1ab1e——other things than correlations--then a différent adjunct model
will be defined, with more parameters. At first glance it may smack of
shifting sands to change our model when the type of data changes. But on
second glance we- see that the adjunct model is aTwayS the parsimonious one,
introducing only the parameters that our data are able to deal with; and
indeed, advancing to a new adjunct model only anticipates what the pure
sampling theorist will do eventually; significance tests will undoubtedly
show that the old model is not flexible enough to accommodate the new data,
and so. a new model with more parameters wii] be invented.

The point is that adjunct models tell us this in advance, and indeed
in considerable detail. Equation (28) tells us not only the general form
of the distribution but also the order of the corresponding AR model. It
tells us something that seems obvious in fetrospect but which, as recent
literature shows, has not been obvious to all workers--sample autocovariance
data.only up to Tag m can prbvide no evidence for the existence of AR
coefficients beyond lag m. The Burg spectrum estimate (32) indicates

this by the finite 1imits on the sum.
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In contrast, the Blackman-Tukey (1958) estimate for the same data,
implies non-zero AR coefficients far beyond the data--which were not
indicated by the data and which were therefore, by our combinatorial.
arguments, confining us to an extremely small and unrepresentative subclass
of all the spectra consistent with the data. The subclass happened to be
one in which spurious "side-Tobes" were present. Burg's removal of the
spurious AR coefficients also removed the side-lobes, without losing any
resolution. But the MAXENT approach would have told us thfs from the start.

Long age, Harold Jeffreys (1939) and Jimmie Savage (1954, 1962) opined
that Bayesian principles can often supply the missing theoretical justifica-
tion for what sampling theorists do anyway, on intuitive grounds. Indeed,
until an intuitive ad hockery has recejved some kind of theoretical
justification we cannot judge its range of validity, or how to extend
it.

But now we are suggesting more than that--prior information expressed
“by entropy factors gives us not just general theoretical justification, but
guantitative details that the sampling theorist could discover eventually
by analysis of enough data. Fitting a model to one's data so as to make
the residuals as small as possible is the same thing as trying to account
for as much of the data as possible by those constant influences that the
model recognizes. If the model has captured all the systematic effects
that are actually being used by Nature in generating the data, thié fit
will be judged in camp A as successful, reducing the residuals to a
"purely random sequence" (although such a phrase is not in the vocabulary

of camp B).
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Note that the adjunct model is not asserted to be the “true® model.
Indeed, that term has no meaning in camp B; the function of a model is only
to represent our state of knowledge in the most honest way. The adjuncﬁ
model is the one that yields the best prediétions we are able to make from
the prior information and the data D that generated it. In camp B it is a
platitude that with different prior information, or aidifferent:kind of:data,
we-have:a-different:state of:knowledge:and:therefore a-different model.

Of course, if the data are of a wide enough scope to capture all the
constraints that are being used by Nature, then the adjunct model will become
"true" in the.fo]1owing sense, explained in more detail in Haykin (1982). If
any new datum dm+1 is found to be only what we would have predicted from the
old data, then Al = 0. 1If, after a certain point, all additional data are
found to be thus redundant, then the adjuct model becomes stable, and further
data do not affect our predictions. This is the reason why physicists are, as
- noted, lucky; our muitiplicity factors are so overwhelming that our adjunct
models become stable with very little data. |

As in the case of multiple regression (y = Xg + e), the number of alge-
braically independent parameters that can be estimated from our data is equal
to the rank R of the matrix A (or X). The adjunct model recognizes this auto-
matically. For example, if R = m-2, then it will be found that the )'s are
connected by two algebraic relations, and two of them can be eliminated without
changing the adjunct distribution. Here parsimony appears, not as an aesthetic
consideration, but as a consequence of our honestly representing what we know
-- and only what we know -~ by avoiding gratituous assumptions 1ike more AR
coefficients than the data are able to "see". The Information Theory rationale
for maximizing entropy (Jaynes, 1957) takes this "honesty" goal as the

basic desideratum.
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CONCLUSION

7 Finally, we return to that "more aggressive reply" promised earlier.
It seems to be a common view that it is dangerous to express lack of definite
prior knowledge by assigning equal prior probabilities. This seems to the
writer to miss the whole point of scientific inference. In making an
inference, we are not asserting that our prediction must be right; only
that it is the best we can do on the informatjon we have. Of course, it
is possible that, unknown to us, Nature does have some counter-preferences
that are not being properly taken into account if we use only multiplicity
factors in our prior probabilities. It is also possible that our calculation
of W was wrong because we made a bad guess about how Nature generates the
scene. |

But science does not advance on timidity. Ifour‘prfor hypothesis
is wrong or incomplete, how areWe to discover that fact if we do not have
the courage to go ahead and use it to make the best inferences we can; and
compare them with observation? Indeed, it is only when our inferences
turn out to be wrong that we have the opportunity to learn new things
about Nature's workings.

This is not empty whistling in the dark; early in this century Gibbs
made the best thermodynamic predictions possibie onthe information he had
(multiplicity factors of classical mechanics); but at low temperatures
Nature persisted in generating a scene with lower entropy than the one
Gibbs predicted. Thus we learned that Nature has stronger constraints
than are provided by classical theory; this was the first clue pointing
the way to quantum theory. So getting a wrong answer is not such a calamity
after all. But if Gibbs had lacked fhe courage to carry out his calculations
for fear that he might be wrong, nobody would have realized that in low-

temperature specific heats we had evidence for new laws of physics.
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Today in astronomy, econometfics, geophysics, we have almost always
some prior hypotheses about how our data are being generated by the real
world. Suppose that, instead of "letting the data speak for themselves”,
we use this prior information in our inferences; what calamity is there to
fear? If our hypotheses are right, we shall be rewarded by getting more
reliable and accurate predictions, just as quantum statistics and maximum
entropy image reconstruction and spectrum analysis are doing today.

If our hypotheses are significantly wrong, we shall obtain a far
greater reward; new evidence about the true mechanism, that we would not
otherwise have recognized. This rather favorable covenant that we have
with Nature, inherent in the logic of scientific inference, couid be
exercised much more today if more workers recognized it.

The class of problems considered here is, of course, only a small
fraction of all real statistical problems. Yet that class is wide enough
~to include many common and currently important problems. Prior information
can never become a panacea, but it can sometimes make the process of
inference more efficient. In cases where data acquisition is costly, in
time or money, it is wasteful to have to learn from the data what we could
have learned from neglected multiplicity factors. For a century, physicists
and physical chemists have been able to make accurate and reliable thermo-
dynamic predictions with very 1ittle data, simply because Josiah Willérd
Gibbs showed us how to include multiplicity in our ca]culafions. Similar

advantages are available to statisticians if they wish to use them.

This essay has sought to expound a viewpoint about the nature of
inference that appears to the writer to combine the best features of
both camp A and camp B, into something broader and more useful than

either taken alone.
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