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Abstracr:

Some results emerging from the formalism of quantum theory seem 10 indicate probabilities outside of the conventional range between 9 and 1.
This article draws attention to argumenits in favour of extended probabilitics, reviews some approaches 10 a formal account and interpretation, and
prasents a collection of statements of disiinguished scientists about this 'strange lopic.

1. Intreduction

Reading of old papers sometimes opens unexpected views. Although it is well known, for instance,
that P.A.M. Dirac was the first to introduce explicitly the concept of negative energy, the number of
those who know his remarks about negative probability —closely related to negative energy and
invented simultaneously -seems to be very restricted. In one of his papers on this subject [1] for
example, “probability” appears in connexion with the adjective “negative’ not less than 20 times, not
considering the appearance in numerous equations. This concept is used with reservations but, as it
seems, not without a certain kind of sympathy. Said paper—not the only one on this topic, as will
become clear from the following - meanwhile has been forgotten, at least as far as negative probability
is concerned. It shares the fate of many ideas which have been rejected by the majority of their
contemporaries. Nevertheless, as history shows, in some cases revision of a verdict happened to prove
useful.

Of course, there is nothing simpler than to show by means of the usual axioms that negative
probabilities are impossible and self-contradictory, but quite frequently the shortest way fails to reach a
hidden aim, and axioms are essentially a matter of convention. Thus an investigation along these lines is
perhaps not completely unreasonable as will be pointed out briefly in chapter 2. In chapter 3 some
indications in favour of extended probabilities will be presented. It starts with those emerging from
non-relativistic quantum mechanical phase-space distributions, invented by Wigner and elaborated by
Moyal, Margenau and Hill, Cohen, Wigner and many others. Subsequently the large set of indications
appearing in relativistic quantum theory is briefly reviewed, referring to work of Dirac, Gupta and
Bleuler (the latter being utilized by Heisenberg) and Feynman. The Einstein—Podolsky-Rosen paradox
and few non-quantum examples conclude this chapter. Some attempts to a formal treatment of negative
probabilities, first formulated by Bartlett, are reported in chapter 4. Subsequently a collection of opinions
about the existence of extended probabilities is presented, and chapter 6 contains short articles by G.
Ludwig; C. Dewdney, P.R. Holland, A. Kyprianidis and J.P. Vigier; N. Cufaro Petroni; M.S. Bartlett;
E.T. Jaynes, written independently of this review and discussing the topic from different pomts of view.

According to Szent-Gydrgyi discovery consists of seeing what everybody has seen and thinking what
nobody has thought. The present work - to the author’s knowledge the first review of this strange
concept ~1s not intended to meet the second part of Szent-Gydrgyi’s remark, and those who expect to
find in it any explicit solution will be disappointed bitterly. All thoughts mentioned here were thought
before; its aim is merely to concentrate some ideas dispersed over literature and to repolish what got
dusty, in order to encourage those who are interested to “see”. May the passed sentence be confirmed
or revised.

2. Vindication

Sometimes in the development of scientific theories it happens that fundamental concepts which - up
to then-were believed to represent indisputable truth have to be sacrificed in order to resolve
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contradictions and to facilitate progress. Well-known examples are the extension of the set of natural
numbers by negative, non-rational and imaginary numbers, the introduction of non-Euclidian geometry,
the elimination of absolute space and time, the admission of entirely negative energies, and, most
recently, the discovery of negative temperatures [2].

In the course of development of quantum theory — and, in particular, of its formulation with respect
to Lorentz invariance — new problems arose which seemingly require one or the other modification of
fundamental concepts which, on the first glance, seem to represent basic axioms of each physical theory.
The present state of physics indicates that at least one of the following three axioms cannot be upheld:
(1) The principle of cause and result, or the definite direction of the time-arrow, (2) the principle of
separability, ie., the limited velocity of any interaction, (3) the concept of an observer-independent,
precisely defined realiry [3]. On the other hand, there are quite a lot of plausible arguments in favour of
the validity of these physical axioms. To name only few: Instantaneous interactions have to be excluded
because there is no objective definition of simultaneity of spatially separated events, unless Newton’s
absolute space and time were reestablished. (There seems to exist a preferred reference frame {4-6],
namely that which makes our universe appear isotropic with respect to the averaged Doppler red-shift
or to the blackbody background radiation of temperature 2.7 K. But it would mean an overbiased
conclusion to doubt relativity theory on grounds of this accidental natural reference frame.) Further it is
meaningless to distinguish between interactions which can be used for signalling and those which can
not, as long as the axiom of an observer-independent reality is maintained, because in that
case it does not play a role whether an interaction is in principle observable or not. On the other hand,
the elimination of an objective reality is hard to swallow since its existence always can be proved “post
festum”.

In order to circumvent the elimination of the physical axioms mentioned above, an alternative idea
has been considered which consists of modifying classical logic. Birkhoff and von Neumann already
replaced in the framework on non-relativistic quantum mechanics the distributive law of classical logic
by the modular identity [7]:

ifaCc, then aU(Ne=(aUb)Nc.

Mittelstaedt excluded the principle of “unrestricted availability” denying expressions like a= (b a) in
case a and b are measurements corresponding to non-commuting operators. The “tertium non datur”
becomes inapplicable in three-valued logics of Lukasiewicz, Destouches-Février and Reichenbach as
well as in the complex-valued logic of von Weizsicker. Finkelstein and Putnam stressed the analogy
between the epistemological situations in logic and geometry. All these attempts, however, are
disputable because physics, and in particular quantum theory, is based upon classical logic. Hence, a
fundamental modification in this field would entail unforeseeable alterations of our whole set of
concepts. Moreover “we can formulate a system of geometry without the use of geometrical principles, but
we cannot formulate a system of logic without the use of logical principles” [8).

Therefore a less radical change might be considered which consists of modifying probability theory.
According to Strauss [9] a different probability theory has to be used in quantum mechanics, and
according to Watanabe [10] conditional probability precedes logic. Hence, this step is already implied
by above considerations. Nevertheless, just because of the close relationship between conditional
probability and logic, it might be preferable to take the plunge at a slightly different, perhaps less
sensitive point, namely by eliminating Kolmogorov's axiom, which restricts probability numbers p to the
interval 0 < p=<1. It is, of course, not necessary to mention that the objections to this idea are of the



W. Miickenheint, A review of extended probabilities
341

same strength and plausibility as those objecting to any change of the physical axioms mentioned above;
and the principle of cause and resuit—at least in its strong deterministic meaning - is not maintainable,
even when introducing extended probabilities.

Therefore, the attempt of struggling with plausibilities — often enough condemned to fail - will be
discontinued in order to present some examples which —truely or falsely — appear to indicate the
existence of extended probabilities.

3. Indications

At first sight quantum mechanics looks like a statistical theory, comparable to, say, statistical
thermodynamics, and numerous attempts have been made to formulate quantum mechanics in a purely
statistical way. But this will be shown to be impossible as long as the physical axioms (1)~(3) mentioned
in chapter 2 are maintained and the predictions of quantum theory continue to be verified experiment-
ally. Since the latter cannot reasonably be doubted too, we have the choice between equally undesirable
alternatives, and the decision seems to be merely a matter of taste or uneducated guess. The reader will
be aware that for the present work it has been settled by following Feynman’s remark: “The only
difference between a probabilistic classical world and the equations of the quantum world is that
somehow or other it appears as if the probabilities would have to go negative, and that we do not know,
as far as I know, how to simulate” [11].

This chapter is subdivided into four sections, due to the independent importance of four realms for
the present subject. These realms are: (1) non-relativistic phase-space distributions or Wigner functions,
(2) some approaches to generalize quantum mechanics, (3) the EPR paradox, and (4) some non-
quantum indications.

3.1. Phase-space distributions

Even in non-relativistic quantum mechanics negative probabilities creep into the picture. To
formulate a conventional (Maxwellian) probability distribution of the coordinates x and momenta p,
similarly to statistical mechanics, is plainly excluded by the corresponding uncertainty relation which
prevents at least the simultaneous knowledge of these quantities. Wigner and Szilard, however, found a
distribution function which for the first time was applied by Wigner in order to calculate the quantum
correction to the gas pressure formula [12]. If a wave function ¢¥(x,, ..., x,), abbreviated by ¢(x), is
given, the corresponding Wigner function reads

P(sp)= ()™ | dryy*(e+ 3)ote y)expllip - yih), cRY

-

with x, y and p vectors having as many components as has the configuration space of the ¢, namely n.
Py denotes the scalar product. In order to demonstrate the fundamental features of the Wigner
function, relevant for the present purpose, it is sufficient to consider a single particle in linear motion.
Thus n =1 and the vector symbols will be dropped henceforth.

The Wigner function exhibits remarkable similarities to a probability distribution in that it leads to
the correct probabilities for the coordinates when integrated with respect to the momenta (the
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ration range is always understood to be (—, ®) unless indicated otherwise),

| Pt pydp = It (32)

and, vice versa, it gives the proper probabilities for the momenta when integrated over the coordinates,

2

[ Pt p)ax = @ohy| [ dx i) expl-ipsth)| 3.3

Although Wigner calls it the probability function of the simultaneous values for the coordinates and
momenta {in more recent papers the notation “quasi-probability” is adopted [13]) he stresses in the
same context, that it cannot really be interpreted in this way “as is clear from the fact, that it may take
negative values. But of course this must not hinder the use of it in calculations as an auxiliary function
which obeys many relations we would expect from such a probability” [12).

The indefiniteness of P is already suggested by the following consideration [13]. If two state vectors
and ¢ are chosen so that they are orthogonal, the equality

[ [ apPutz Ptz p) =0 649

must hold. Thus it is clear that P cannot be everywhere positive, and it must exhibit a very pathological
shape in order to avoid going negative in spite of (3.4).

But the existence of Wigner functions taking negative values is firmly proved by imposing two very
general conditions on P which, among others given in [13], can be said to define this type of probability

distributions, namely {14]: )
(i) P(x, p) should be a Hermitian form of the state vector ¥(x), i.e., with M(x, p) a self-adjoint

operator,

P(x, p) = ($(x), M(x, p)i(x)} . (3.5)

This condition makes P(x, p) a real number,
(ii} P(x, p) should give the proper expectation values for all operators which are sums of a function

of p and a function of x,

[ j P(x, p) f(p} + g(x)]dp dx = (c!r, [f Ga_i) + g(x)]w) : (3.6)

This condition is a somewhat milder form of (3.2) and (3.3) which properly have to be understood as
axioms of the Wigner function and, in any case, must be satisfied.

Further, it suffices to consider such ¢ which are linear combinations ay, + by, of any two fixed
functions, vanishing in certain intervals of x. Now, by requiring

P(x,p)=0 forall x and p (3.7

for every such i, Wigner obtains a contradiction {14] which in short runs as follows:
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Consider an interval I, inside of which ¢(x)=10 and g(x)=0, while g(x)=0 outside and f(p)=0
everywhere. Then (3.6) leads to

f P(x, p)g(x)dx=0 (3.8)
for all p (except a set of measure zero) and
j f P(x, p)g(x)dpdx=0. (3.9)

From (3.7) and the condition imposed on g(x) we obtain (Wigner's lemma 2): If ¢(x) vanishes in an
interval I, the corresponding P(x, p) vanishes {except for a set of measure zero) for all values of x in that

interval.
Now, consider two functions ,(x) and ¢»(x) which vanish outside of two non-overlapping intervals

I, and I, respectively. Because of (3.5) P(x, p) corresponding to ¢ = ay, + by, will have the form
P= Ia]2P1+ a*bP12+ ab*Pzgl'I' Iblzpz- (310)

By setting b = 0 it is obvious that P, is the Wigner function belonging to 4, (and P, that belonging to
i,). The meaning of P;, and P, is less obvious, but we need not bother, because both must be
identically zero. This can be seen by considering any interval I’ outside I,. Since, according to the above
lemma, P, vanishes almost everywhere in interval I, (3.10) cannot be positive for every choice of a and
b unless P;; = P,, =0 outside /;. The same proof applies to I,. Thus, instead of (3.10) we have

P =|aPP, +|b]P, (3.11)

almost everywhere.
In order to complete the contradiction, let us denote the Fourier transforms of ¢, and ¢, by @((p)

and @,(p), respectively. Equation (3.3) then reads
|af® f Py(x, p) dx + |bf f Py(x, p) dx = |afle(p)F + |bFle2(p)f +2 Re[ab* ¢1(p)e3(p)] (3.12)

Since this must be valid for all 2 and b, we must have identically in p:

e1(p)e3(p)=0. (3.13)

“This is, however, impossible since ¢, and g,, being Fourier transforms of functions restricted to finite
intervals, are analytic functions of their arguments and cannot vanish over any finite interval” {14].

In order to illustrate this result, the Wigner function formalism may be applied to the paradigm of
quantum theory, the linear harmonic oscillator.

From its Hamiltonian

H{x, p)= p*l2m + mw*x*/2 (3.14)
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and the time-independent Schrédinger equation
~{ B @
A (5+=) (x) = E() (3.15)
1 dx
it is easy to find the wave function of the ground state
do(x) = (mawf 7h)* exp(— x*mwi2h) (3.16)
corresponding to the energy Eo,= Aiw/2. Inserting (3.16) in (3.1) and integrating out m y leads to
Po(x, p) = (7h) " exp(—x*mowfh ~ p*[mwh) (3.17)

which does not exhibit any anomaly in that it is non-negative and, when integrated with respect to x,
supplies the proper distribution of the momentum

J Py(x, p) dx = (mewwh )7 exp(-p*fmeh) (3.18)

which is a Gaussian distribution with expectation zero and standard deviation (Ap)* = mw#/2. Integrat-
ing with respect to p yields, as expected, the square of (3.16),

j Py(x, p) dp = (mof=h)"* exp(—x*majh), (3.16")

also a Gaussian distribution with expectation zero and standard deviation (Ax)* = #/2mew.

It is well known that Gaussian distributions satisfy Heisenberg's uncertainty relation in its marginal
form, i.e., as an equality [15]. From (3.18) and (3.16") we obtain (Ax)(Ap) = #/2. “It may also be noted
that the distributions of momentum and position are statistically independent, because [ Podp [ Ppdx =
P,. A fortiori, the covariance and correlation coefficient are zero™ [16].

Clearly, this example does not contradict Wigner’s “negativity proof” because the latter only says
that there are state functions for which the corresponding P(x, p) cannot be everywhere non-negative.
One of those is the first excited state of the harmonic oscillator. Using the state function of the first
excited level, the same formalism as described above will lead to the corresponding Wigner function.
As, however, the calculation is somewhat lengthy, we adopt the elegant formula given in {13}. With H
the Hamiltonian of eq. (3.14) and L, the nth Laguerre polynomial, the Wigner function corresponding
to the nth excited state can be expressed by

P.(x, p) = (ah) (~1)" exp(~2Hlhw)L,(4Hihw) (3.19)

or, using (3.17),

Pa(x, p) = (=1)"Po(x, p)L.(4Hlfiw) . (3.19)
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As, P, was found to be non-negative everywhere, we have to examine the remaining expression
PJPy=(-1)'L,(4Hw). (3.20)
The first-order Laguerre polynomial is [17]
L{u)y=1-u. (3.21)
Hence, P,(x, p) goes negative for
H=p?2m+ mo*x*2 < hw/d . (3.22)

Since the energy of the first excited level of the linear harmonic oscillator is known to be E, = 2 hiw, this
should never happen. On the other hand, energy conservation can be violated during short time
intervals, corresponding to the uncertainty principle. Therefore, in this special case, negative prob-
abilities will only occur in connexion with rather drastic violations of the conservation law. The
inversion of this proposition, however, is not true.

This is demonstrated by the Wigner function of the second excited state. The second-order Laguerre

polynomial is [17]
Lw)=2—4u+ 1>, (3.23)

(Aswe referred the reader extensively to [13], it should be mentioned, that L, is incorrectly given there.)
Using (3.20) we obtain that Pa(x, £) goes negative for

Iw(l-27"< H<ihw(l+27'7), (3.24)

distinctly smaller than E, = 3 fiw. For H =0 and H - =, however, Py(x, ) is non-negative in spite of the
drastic violation of the law of energy conservation, corresponding to these energy values.
We will not leave this illustrative example without noting some general features of Wigner functions

of the linear harmonic oscillator.
From

lim L, (1) = (~1)"u" (3.25)

K=

and (3.19) we find P, being positive and asymptotically approaching zero for A going to infinity. In the
special case of H =0,

L.(0)= n! (3.26)

together with (3.19) makes even-order P, being positive and odd-order P, being negative at H = 0.
Most interesting in the present context is, however, that all these Wigner functions of non-zero order
unavoidably will take positive as well as negative values. This can easily be seen from the orthogonality
relation [17]
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11

nlm'
0

e“L, ()L, (u)du =8, (3.27)

by inserting L, (u) = Ly(u)=1.

The Wigner function in a more general form was also derived and thoroughly analyzed by Moyal
[18], who shows in few steps, how it can be obtained from the characteristic function of a basic set of
dynamical variables. Further, he shows that the Wigner function can be expanded in terms of
“phase-space eigenfunctions”, which form a complete orthogonal set in the Hilbert space of the
phase-space functions or Wigner functions. Corresponding to our example (3.27), we have in general:
“Phase-space eigenfunctions must generally take negative as well as positive values, since they are
orthogonal. Only one eigenfunction (generally the ground state one) may possibly be non-negative for
all values of the dynamical variables, except for singular eigenfunctions involving delta functions, such
as the momenta eigenfunctions” [18]. Moyal considers the partial being negative of the Wigner function
as an indication that “where the distribution [...] can take negative values, it is not an observable
quantity” and concludes “that in applications of the theory, we need not be concerned whether the
phase-space distributions are true probabilities, provided that the final results {. . .] are necessarily true,
non-negative probabilities” {18].

A closely related function Py was analyzed by Margenau and Hill [19]. They consider the general
case of a wave function ¢ having the alternate expansions

W= 2 au(r) and ¢= Z b, (1) (3.28)

on orthonormal sets « and v, which are, respectively, eigenstates of operators X and Y. Whence, given
i, the joint probability of the corresponding variables taking values x; and y; is expressed by

Pulx y,-)=Re[ 5, f Wi d ] (3.29)

“Most unfortunately”, they observe however, “the defining relation (3.29) does not prevent the joint
probabilities from being negative” [19], demonstrating this by means of some examples.
Treating a system with angular momentum J = 1(=%), represented by a state vector

they obtain a negative joint probability for, e.g., two eigenstates belonging to eigenvalues J, = -1 and

J, = -1, provided a, b, and c¢ are suitably chosen.
The probability for simultaneous measurement of position x and linear momentum p of a particle, as
derived from (3.29) by using a Gaussian wave packet with mean momentum p,, results in a distribution

Pu(x, p) = f(x, p)cos(p = po)xih,

where f(x, p) =0, and thus, Py being indefinite.
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Finally, Margenau and Hill discuss the joint probability, again in the simple case of a moving free
particle, for position measurements at different times. While they arrive at a satisfactory result for large
time differences, they obtain an indefinite result for certain positions x and small time differences.

After briefly considering a different alternative for calculating a joint probability P(x, p), which leads
to indefinite results too, the authors consider this feature of joint probabilities reason enough to reject
in toto their attempt, by means of which arguing they arrive at the desired conclusion, namely, a denial
of von Neumann’s projection postulate and the reduction of wave packets on measurement. (See

however, H. Margenau in chapter 5.)
Cohen [20] could show that a wide class of probability distribution functions is supplied by the rather

general expression
P(x, p)= 2m) j j j £(6, 7) exp(~i6x - itp+ 160y (u — ThI2)u + Th12) 4O dr dur, (3.30)

Herein f is simoply a smearing function. By setting f =1, substituting 7 by —2y/# and integrating over 8
and i, we obtain the original Wigner function (3.1). The choice of f(8, 7) = cos /2, using the latter in
its exponential form and again integrating over # and y, leads to a reformulation of (3.29) in terms of x

and p.
Pl p) = @) Re [ 9() [ exp(-im)y (= 7#) dr | 6:29)
Other distribution functions may be built with different functions f, if only f satisfies the condition
JO,7)=f(6,0)=1 (3.31)
in order to yield the correct quantum mechanical marginal distributions.
Cohen imposed the following conditions on a general distribution function P(x, p) [21]: (i) those

given by (3.2) and (3.3); (ii) if the quantum mechanical mean value of the operator G is {G), then there
should exist a function g(x, p) such that

(G)= j j g(x, p)P(x, p)dp dx; (3.32)
and, for any function K,

(K= | [ K(gtx, pOP, p)dpx. (3.33)

And he found, that, irrespective of whether P is positive semidefinite or not, condition (ii) can never be
satisfied [20~22). The Wigner function P, of the harmonic oscillator, e.g., yields the correct expectation
value for the mean energy, but fails to supply the zero-standard deviation, which one should expect
from a quantum mechanical energy eigenstate. He concludes: “Of course, it can be argued that the
classical formalism does go through as long as we do not insist that the function which must be used to
obtain the mean value of a function, X, of g is not identical to K{(g). But this would carry us even.
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further from the conceptual basis of classical probability theory than does quantum mechanics itself!”
[21].

In spite of this concern the Wigner function (“the rather trivial connections among the various
distributions {. . .] leads one to wonder why more than the Wigner distribution need be considered for
any calculations” [23]) being essentially nothing else than a convenient version of the density matrix,
has found numerous applications. References are given in review articles [24, 25] and [13], the authors
of the latter note only few further references, but are preparing a forthcoming article on this subject,

Bopp [26], well aware of the fact that “it is not possible to construct non-negative distribution
functions”, tried to circumvent the problem by introducing a constant ! which “is a certain length,
describing the accuracy of measuring space positions.” The corresponding distribution function can also
be derived from Cohen’s general expression (3.30) by suited choice of f, namely [21]:

f=exp(-Th?2P - §6°F) . (3.34)

But, “since f does not satisfy (3.31), we immediately know that it cannot yield correct quantum
mechanical marginal distributions. {. ..] The advantage of Bopp’s distribution is that of being positive
definite for all values of the variables. However, the statistical predictions obtained using [it] will, of
course, contain / and are therefore at variance with the usual predictions of quantum theory” [21].

The use of a smearing function £, not fulfilling (3.31) but leaving P(x, p) positive semidefinite, was
first proposed by Husimi [27] and has since been employed several times [13]. But we do not wish to
elaborate on this topic, because of Wigner’s general proof, which essentially means, that a statistical
foundation of quantum mechanics can be excluded, unless the currently accepted axioms are medified.
The existence of “positive” smearing functions suggests, however, that extended probabilities do appear
real on the microscopical leve] of reality, thus, the Wigner function “once smoothed out over any
phase-space region of dimensions larger than or equal to unity [= 4], is always positive and smaller than
one” [28].

3.2. Approaches to quantum theory

The necessity of extended probabilities becomes most distinct if a Lorentz-invariant formulation of
quantum theory is attempted. The special role that time plays in non-relativistic theory can, e.g., in the
most simple case of particles with no charge and spin, be removed by means of the Klein-Gordon
equation which for a single free particle of rest mass m is given by

@+m?y=0 (3.35)

(h = ¢ =1, and the usual terminology [29] is adopted). Born’s notion, however, according to which the
square of the wave function has to be interpreted as probability density [30], necessarily must fail in this
context, because I as a scalar violates conservation of total probability. On the other hand, the

density proposed by Gordon [31] and Klein [32],

1 o™ Lo
2im ( at v=¥ ar)’ (3.36)

satisfies as time component of a four-vector the conservation law, and “thus (3.36) is evidently the
correct mathematical form to use™ [1], but, clearly, it can go negative.
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This is not the only difficulty. If the wave function of a plane wave

¢ = exp[—i(poXo— prxy~ p2X2— P3X3)], Xe=1, po=E, (3.37)

is transformed to the momentum and energy variables, the Gordon-Klein expression (3.36) goes over
into

|¥(pop1p205) 05" dpy dp2 dps, (3.38)

“as the probability of the momentum having a value within the small domain dp, dp, dp, about a value
D1, P2, D3, With the energy having the value p,, which must be connected with p,, pa, p; by

pa—pi-pi-p3—m*=0. (3.39)

The weight factor pg' appears in (3.38) and makes it Lorentz invariant, since ¢{p) is a scalar—it is
defined in terms of ¥(x) to make it so - and the differential element p;’ dp, dp, dp; is Lorentz invariant.
This weight factor may be positive or negative, and makes the probability positive or negative
accordingly. Thus the two undesirable things, negative energy and negative probability, always occur
together” [1].

In more recent work [33,34] Dirac tried to avoid negative energy solutions (and hence, negative
probabilities) by referring to an approach of Majorana's [35]. The result, however, entailed some
strange consequences like “Zitterbewegung™ and an inverse mass-spin dependence. Furthermore it
does not allow for a minimal coupling to an external electromagnetic field. (The latter difficulty has
been overcome most recently by Sudarshan et al. {36], at least in the special case of particles with fixed
mass, zero spin and positive energy.) Dirac seemingly was not convinced of his approach, because some
years later he confessed: “I have spent many years looking for a good Hamiltonian which I haven’t yet
found.” [37).

In some older papers [1, 38] Dirac formulates an alternative approach to quantum electrodynamics
which allows for a conventional treatment of particles with half-odd integral spin, but unavoidably
entails negative probabilities when applied to particles with integral spin, in special cases even
demanding probabilities of plus or minus 2, distinctly outside the usual range. On the other hand, this
relativistic theory has great advantages over the usual method in that it avoids the most artificial process
of renormalization. With respect to the latter, Dirac never changed his mind, qualifying it as a “working
rule” and considering its results, in spite of their accuracy, as “nor reliable” [37].

Indeed, as we know that semi-classical treatment of the radiation field as, for example, investigated
by Jaynes et al. [39,40] can be excluded [41-43] (see also section 3.3) and, on the other hand, the
commonly applied method of renormalization is a thing between artificial and unphysical, we are left
between Scylla and Charybdis, in that our equations contain eithér probabilities as large as plus or
minus 2 or electron masses exceeding that of the whole universe.

Obviously, also Dirac was very sceptical about those “undesirable things, negative energy and
negative probability”, but he asserts: “Negative energies and probabilities should not be considered as
nonsense. They are well-defined concepts mathematically, like a negative sum of money, since the
equations which express the important properties of energies and probabilities can still be used when
they are negative. Thus negative energies and probabilities should be considered simply as things which
do not appear in experimental results. The physical interpretation of relativistic quantum mechanics
that one gets by a natural development of the non-relativistic theory involves these things and is thus in
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contradiction with experiment. We therefore have to consider ways of modifying or supplementing this
interpretation” {1].

The essential difference between Dirac’s theory and the usual method, going back to Heisenberg and
Pauli [44,45], is, in the case of photons, to extend the range of integration from only positive
frequencies » € (0, «), for odd photon states n unavoidably implying divergencies, to (—, ). Since f(v)

in the expression

J F(w)dy, f(v)x v" for large », (3.40)

-—1

is always a rational algebraic function, the divergencies with odd n values all cancel out. But as there is
no simple physical explanation of the traded-in extended probabilities, Dirac bans his considerations to
a hypothetical world, which however, shows some similarities to the real world. In his subsequent paper
[38] he proposes the following interpretation: “The various parts of the wave function which referred to
the existence of positive- and negative-energy photons in the old interpretation now refer to the
emissions and absorptions of photons. {...] The probabilities (3.41), equal to 2 and -2, are not
physically understandable, but one can use them mathematically in accordance with the rules for
working with a Gibbs ensemble. One can suppose a hypothetical mathematical world with the initial

probability distribution” for n photons
P, =2e-1)", (3.41)

where ¢ is a small positive quantity tending to zero, in order that we may have 23 P, = 1. “One can
work out the probabilities of radiative transition processes occurring in this world. One can deduce the
corresponding probability coefficients, i.e., the probabilities per unit intensity of each beam of incident
radiation concerned, by using Einstein’s laws of radiation. For example, for a process involving the
absorption of a photon, if the probability coefficient is B, the probability of the process is

> nP,B=-Bj2, (3.42)
n=0

and for a process involving the emission of a photon, if the probability coefficient is A, the probability
of the process is

> (n+1)P,A=A2. (3.43)
n=0

Now the probability of an absorption process, as calculated from the theory, is negative, and that for an
emission process is positive, so that, equating these calculated probabilities to (3.42) and (3.43)
respectively, one obtains positive values for both B and A. Generally, it is easily venified that any
radiative transition probability coefficient obtained by this method 1s positive.

If now becomes reasonable to assume that these probability coefficients obtained for a hypothetical world
are the same as those of the actual world” [38].
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In a review article “On Dirac’s New Method of Field Quantization”, Pauli [46] interpreted: “‘the
term ‘negative probability’ means essentially that observables with only positive eigenvalues can get
negative expectation values’, a point of view which seems not exhaustive (compare Gupta’s formalism
of indefinite metrics [47], outlined in chapter 4). Pauli concluded: *“The arbitrariness of the rules for the
translation of results concerning the hypothetical world into results concerning the actual world and the
lack of uniqueness of these rules seems to indicate that new ideas and more radical changes of the
present formalism will be necessary in order to get a really satisfactory quantum theory of the
electromagnetic field” [46]. Now, 40 years later, the problem has not yet been settled.

Another early example involving extended probabilities in the formalism of quantum theoretical
description of radiation is given by extending the work of Weisskopf and Wigner [48] who calculated
the natural linewidth of radiative decay of an excited atom. The corresponding transition amplitude
(equation 15b of [48]) may be rewritten

-2 PEr

€ c
A(E, )« = (3-44)

with E denoting the difference between actual photon energy and mean state energy E; in units of the
natural width of the excited state, and ¢ denoting the time interval between excitation and decay in units
of the mean lifetime of the state. In case Ey» 1, (3.44) is valid for practically the total duration of
detectable emission, because it holds up to times ¢ of order E,.

In finishing their calculation, the authors obtain the well-known Breit—Wigner lineshape in the limit
t—>®

It is now very interesting to consider the spectral distribution of photons emitted in finite time
intervals. For the time interval (0, 1} we have

1 1=2e cos(En)+e”*

A(E B =— 3.45
JA( )I. e 2 (3.45)

?

which undoubtedly is non-negative for every E and t The spectral distribution emitted a: time f,
however,

I(E t)y=dlA(E, 1)}*/dt, (3.46)
entails negative values, as easily can be seen from

I(E, )= zi (2E sin(Er) + cos(Er)) e~ ¢~ |

3.46'
T E*+1 (3.46)

Further, if the Breit—-Wigner lineshape |A(E, t— «)|* in connection with the law of exponential decay,

1 & 3.47
2w E* 4% (3:47)

Inorm(E: f) =

is used to normalize I{£, ), we obtain the normalized decay probability density
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p(E, 1) = I(E, W lrom(E, 1), (3.48)

which can take on negative values as well as values exceeding unity, and, if integrated over suited
domains AE - At, small compared to unity (=#), the normalized probability p(E, r)AE Ay, which is an
observable quantity, may violate both the lower and the upper limit of Kolmogorov's axiom.

These results have been verified by experiments [49-51]. A Mdssbauer absorber, covering mainly a
negative part of /(E, ¢} in the 14.4keV decay of >'Fe, exhibits a significantly enhanced transmission,
compared to the non-Massbauer case which is expected (and usually proved) to absorb least photons at
all.

One reason for the difficulties with quantum electrodynamics is the general Lorentz condition,
according to which the four-divergence of the electromagnetic potential A must vanish

A° aA' §A* aA’®
+ + + =
3x0 axl sz é’x3

3.A*=0. (3.49)

13

A photon density obtained from this continuity equation suffers from the same problems as the
Gordon—Klein conserved density (3.36) in that it is not positive semidefinite, or, according to the
opinion of the respective referee, it does not exist. “This is related to the fact that photons cannot be
sharply localized. If they could, we could define the photon density as the number of photons per unit
volume in some arbitrary small volume. However, in a relativistic field described by E, A, and B, we
cannot define such a density. If this density (=;°) would exist, it would have to form a four-vector j*
together with [...] the corresponding current density, satisfying with j° a continuity equation 4,/* = 0.
Moreover, j° then should be positive definite. Such density four-vector j* does not exist for the Maxwell
field.

If A is generalized to a four-vector A* satisfying the Lorentz condition (3.49), it is possible to form a
four-vector j* = (4w) ' F**A,, but then 8,j* = (8#) 'F**F,, — j*A, # 0, and j° is not positive definite”
[52]. (F** = 3,A* — 3,A")

The same holds for distribution functions, applied in quantum optics in order to describe modes of
the electromagnetic field. These functions which have been invented by Glauber [53] and Sudarshan
[54], analogously to the Wigner functions, allow to replace the operator description (in this case: the
creation and annihilation operators) by distribution functions in terms of c-numbers. (See also H. Paul
in chapter S. A detailed review containing a lot of recent contributions to this topic is given in [13].)
However, in some cases it can be shown that such a Glauber-Sudarshan P function P(a) does not exist,
or, in other words, that it is not positive semidefinite. Most recently [55] the theoretical investigation of
an optical field produced by intracavity four-wave mixing, exhibiting photon antibunching, squeezing,
and violation of Cauchy-Schwarz and Bell’s inequalities led to the following conclusion (which is also
interesting in the context of section 3.3, EPR paradox and Bell’s inequality): It may be shown that if
P(a) is positive and interpretable as a probability distribution, the above mentioned classical in-
equalities must hold. “The quantum theory of radiation, however, allows P(a) to be singular and take
on negative values for certain fields. [...] Thus we deduce that violation of classical inequalities is
associated with the non-existence of a positive normalizable representation of the electromagnetic field
in terms of the Glauber-Sudarshan P function” [55).

Negative measures (or probabilities) appear also in Feynman’s “Space-time approach to non-
relativistic quantum mechanics™ [56], describing the famous path integral method. “Finite results can be
obtained under unexpected circumstances because the measure is not positive everywhere, but the
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contributions from most of the paths fargely cancel out. These curious mathematical problems are
sidestepped by the subdivision process”™ {56).

In the same year, 1948, Feynman proposed a symmetric treatment of the longitudinal and the
transverse parts of the electromagnetic field [S7)], the former of which was usually separated and
replaced by the Coulomb interaction, because real photons are known to possess only transverse
components. This method, also proposed by Majumdar and Gupta [58] and others, was completed by
Gupta [59] to a symmetric treatment of the four components of the electromagnetic potential by
introducing four types of photons: two transverse, one longitudinal and one scalar. The scalar photons
require the use of an indefinite metric. In order to account for the experimental fact that only transverse
photons are observable, the usual supplementary condition (3.49) which, as we have seen above, is too
restrictive to allow any state of the radiation field to satisfy it 1s replaced by

[3,A*I"¢=0 and ¢'[d,4*] =0, (3.50)

where [d,A*]” and [d,A"] are, respectively, the positive and the negative frequency parts of 4, A*.

In most cases of practical interest, the initial and the final states may be taken to be interaction-free.
In such cases longitudinal or scalar photons do not exist in the initial state, and though they may occur
in intermediate states, they will again disappear in the final state. “The probability of the emission of a
real longitudinal photon is cancelled by the ‘negative probability’ of the emission of a corresponding
scalar photon” [59].

In applying this formalism to the interaction of two electrons, the contribution of the longitudinal
and the scalar photons alone is shown to be precisely the Coulomb interaction. A calculation of the
electron’s self-energy, however, leads to the old difficulties in that the result is divergent.

Bleuler [60] could show that Gupta's symmetrical theory was equivalent with the reduced theory
where the longitudinal field is replaced by the static Coulomb interaction. In the course of his paper, he
remarks that gauge-invariant quantities are uniquely defined in Gupta’s theory. Difficulties in interpret-
ing them do not arise, for negative probabilities here are prevented by the new Lorentz condition (3.50).

As the theory is operating in a Hilbert space with indefinite metric, entailing negative probabilities,
the characteristics of indefinite metric will be outlined briefly in chapter 4.

Although in particular Heisenberg is known to be a vehement proponent of the opinion that a
physical explanation is not absolutely necessary if a sufficient mathematical formalism 1s available, he
took the opposite point of view with respect to negative probability. In the course of discussing
renormalization theory, he wrote in 1959 [61]: “A more detailed investigation of this mathematical
scheme, however, made it most probable that those quantities which in common quantum theory have
to be interpreted as probabilities, here occasionaily can get negative, after the renormalization has been
applied. Of course, this would prevent a consistent interpretation of the formalism with respect to a
description of matter, because a negative probability is a senseless notion.” Some years later he was
forced by mathematical difficulties arising from his unified field theory of elementary particles to change
his mind [62]. He adopted the indefinite metric, referring to the method of Gupta and Bleuler and the
Lee model. Observable quantities are represented by self-adjoint operators in a Hilbert space with
indefinite metric. The eigenvalues of these operators need not be real, but imaginary eigenvalues do not
conflict with experimental observation, because the norm of the respective “ghost states” must vanish.
After describing his rather difficult theory, Heisenberg concludes: “The indefinite metric of the Hilbert
space implies an essential extension of the usual mathematical scheme of quantum mechanics. From the
physical viewpoint this extension can be interpreted by the assumption, that the notion of probability
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cannot be applied to local events, i.e., to space domains of order 107* c¢m or less. The universal length
which enters the theory by the constant / or by the proton mass, can be defined as that distance, below
which the quantum theoretical representation of probability fails.

These answers to the critical questions may not be the only ones possible. But they seem to be the
most simple ones, considering the fact that it has not yet been possible, to formulate a relativistic
theory including interactions within the tight frame of Wightman’s axioms™ [62, p. 136].

The Lee model [63] was introduced in order to study some characteristics of quantum elec-
trodynamics by means of a simplified analogon. Even a brief description of its formalism is beyond the
scope of the present work. Therefore we would only mention, that, as Kallén and Pauli {64] have
pointed out, the basic Schrodinger equations maintain their usual form if states with negative norm are
taken into account. Eigenstates with non-zero norm are always real. Similar to original quantum
electrodynamics, “in this model divergencies enforce the introduction of an indefinite metric in the
Hilbert space. If usual quantum mechanics is extended this way, then the mathematical scheme is
consistent and does not cause any unexpected divergence. Indeed, the scheme permits one to construct
a unitary S-matrix and the respective physical interpretation. Therefore it seems to be a suited mode]
for the mathematical structure of a non-linear spinor-theory” [62, p. 156},

We will not leave this topic without mentioning a paraphrase of Heisenberg’s, which is a rather trivial
one but supports our standpoint, not to consider deviations from probability theory (even in its
extended form) other than enlarging the range of probability numbers. It reads “. . . and the norm of a
product state is equal to the product of norms of its separate factors” [62, p. 154].

That the problem is still pending can be seen from a paper of Cufaro Petroni and Vigier [65], who
confess: “We are confronted here with an old problem characteristic of relativistic quantum mechanics,
namely the existence of negative probabilities. [. ..} Of course, we have no final answer to the question
‘“What is a negative probability?’: We can only quote a proposition for its interpretation [66] in which the
negative sign of the probability distribution 1s interpreted as reflecting the opposite ‘charge’ values of
antiparticles in a particle-antiparticie distribution. We further remark that this is a problem which arises
every time we are dealing with particles and antiparticles, and hence that it would be very strange not to
meet it here where the possibility of trajectories running backward in time on our lattice are interpreted
with the presence of pair creation and annihilation [67]. On the other hand, it is clear that if we had not
assumed the possibility of the trajectories running backward in time (i.e., the antiparticle behaviour) all
our statistics would be different since it is possible to show that one obtains in this case a classical
diffusion equation that one cannot reduce to the quantum Klein-Gordon equation.”

In this chapter we have not explicitly considered the Dirac equation

(id—eA-m)p=0, (3.51)

with e and m denoting charge and mass, respectively, and ¥ =y, V* symbolizing the product of
Dirac-matrices vy, with a four-vector V {29]. This has been omitted because it has been shown (and can
be obtained from textbooks [68] already) that it is impossible to simultaneously maintain positive
semidefinite probability densities and a physical meaning of the basic expression (3.39). And it is
self-evident that also modifications of the Klein—-Gordon equation (3.35) which permit a treatment of
charged particles, i.e., second-order equations like the Feynman and Gell~Mann equation [69],

[(,8—eA)id—eA)-m3g=0, (3.52)
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do not permit the conserved density to be positive semidefinite [70]. For a discussion of this topic see
the note by N. Cufaro Petroni in section 6.3.

In a series of very recent papers [71-75] the Vigier group, however, proposed how to avoid negative
probability solutions under most circumstances. ‘“We now suppose that all physical states correspond to
those parts of the Klein-Gordon solutions which, following Einstein’s basic principles, have positive
energy and probability for particles and antiparticles” [71]. “The negative energy and probability
solutions may be associated with positive energy and probability antiparticles by means of the charge
conjugation operation” [72].

This formalism and the corresponding stochastic interpretation of quantum theory will not be
elaborated here, because it is briefly outlined by its authors in section 6.2. The theory is a causal one,
but necessarily suffers from being non-local, and thus it is in contradiction with axiom (2) of chapter 2.
On the other hand, local causality (in its strong form) yields Maxwell-Boltzmann statistics and is thus in
contradiction with quantum statistics [73].

Concluding, we should keep in mind that mathematics is capable of giving an inconceivably precise
picture of reality if the correct equations for a certain realm of reality are applied. Considering how
frequently renormalization has to be applied in modern quantum electrodynamics {29] and, further-
more, considering the unsatisfying state of present elementary particles theories {(this opinion is
explicitly stated in the preface of [29] and [76]), one is forced to conclude that either the correct
equations or the correct interpretations (or both) have not yet been found. This, although weakening
some of our indications for extended probabilities obtained from perhaps incorrect examples, suggests
at least a close reexamination of theories entailing negative probabilities but being satisfying otherwise.

3.3 The Einstein-Podolsky~Rosen paradox

The opinions, whether the EPR paradox is really a paradox, are differing. Bohr [77] and the
Copenhagen school refuse to see anything like a paradox in this case (cf. T.W. Marshall and H.J. Treder
in chapter 5). However, we will point out briefly, that there is a paradox as long as the axioms (1)<3)
mentioned in chapter 2 are valid and the Copenhagen-school prohibition is not obeyed, which forbids
to put questions which cannot be answered by the Copenhagen-school interpretation of quantum
theory.

The EPR paradox {78] in Bohm’s most popular version [79] deals with a spatially separated pair of
electrons in the singlet state. That means, if the spin 5 of one electron (labelled by 1) is measured in
direction a and yields the result 5,(2), the same measurement performed on the other electron (2) will

yield the result
s(a)= —si(a). (3.53)

As (3.53) is valid for any direction a whatsoever, it must be concluded that the result in every direction
is determined, or, to put it in other words, that the total spin §$=Vs(s+1) has a uniquely defined
direction, unless one measurement influences the other one, 1.e., unless the axiom of separability is
dropped. According to the Copenhagen-school interpretation of quantum theory, the simultaneous
existence of more than one spin component s, however, is excluded, because the corresponding
operators represented by the Pauli matrices do not commute. According to this interpretation it is
meaningless (and, hence, forbidden) to ask for more than one spin component, because on one electron
only one component can be measured simultaneously, thereafter the original state is destroyed and
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another component which could have been measured but has not may have changed its value (if ever it
had a value at all).

The paradox emerging from this interpretation with respect to this and other situations has been
distinctly articulated by Schrédinger [80], who puts the only possible logical conclusion in the plain
picture: “From so many experiments performed in advance [ know that the pupil answers my first
question always correctly. Hence it follows, that in any case he knows the answers to both questions™,
implying that the Copenhagen-school interpretation was wrong. As, so far, the paradox emerges only
from this interpretation, it has been attempted to avoid it by so-called “hidden vanables”, namely
physical quantities which are not observable, but influence the result of a measurement (in the present
case: 2 definite direction of the total spin). The reader interested in this topic is referred to [52].

The argument of Einstein, Podolsky and Rosen, intended only to demonstrate the incompleteness of
quantum theory, became really a paradox, when Bell [81] could prove that hidden variables existing in a
separable reality (both notions together being usually termed “local hidden variables”) cannot yield the
quantum theoretical expectation values in some special cases. Bell considers the product of measure-
ments performed in directions a and b on the first and the second electron, respectively, of a correlated
pair in the singlet state. The single result s,(a, A} depends on the direction a of the due measuring
device and a hidden variable, usually denoted by A. But it does not depend on the result s,(b, A) or the
direction 5, of the measurement of the second electron. If now the expectation value of the product of
the correlated measurements is denoted by E(a, b), and corresponding expressions involving a third
direction ¢ are formed, Bell’s inequality reads, setting # = 1 [81],

|E(a, b}~ E(a, c)| =i+ E(b, ), (3.54)

which obviously is violated by the quantum theoretical expectation value (s(a)s(b)) = —3cos(q, b), if e.g.,

b bisects the angle 27/3, formed by 2 and c¢.
In the present context we have to mention, that Bell in deriving (3.54) introduced a hidden variables

density p(A), which must be positive semidefinite in order to arrive at (3.54). Meanwhile various
inequalities of this type have been derived (some are reviewed in {82, 83]), but all necessarily make use
of positive semidefinite probabilities (or, what essentially is the same: densities or measures). The most
elegant derivation was given by Wigner [84] who, like Bell, considers pairs of correlated electrons in the
singlet state, and subdivides the whole set into subsets, the members of which would yield identical

results s,
st = {si(a), si(B), si(c), si(a), s5(B), s3(c)} (3.55)

if all six individual results s} could be determined. If the results in all three directions are determined,
then each of the sets s' must be considered an entity of reality. Wigner, however, shows that the
measure of at least one of the sets s’ must be negative, if the directions are not chosen parallel or
anti-parallel and the quantum mechanical expectations are correct.

Analogous derivations were given for the experimentally most relevant case of correlated photon
pairs [85-87] and, in the most general case of arbitrary spin, Mermin obtains the result that the range of
angles, for which a contradiction to quantum theory arises, vanishes as 1/5 as the classical limit (S x)
is approached [88]. Most recently, even a spin-S Bell inequality was derived that is violated for any set
of three coplanar detector orientations for any value whatever of the spin [89)].

As the overwhelming number of experiments performed in this realm [90] verified quantum theory
and violated the inequalities based on the existence of local hidden variables, the paradox is completed.
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This implies a full justification of the orthodox Copenhagen-school interpretation of quantum theory,
asserting that physical quantities which cannot be measured simultaneously cannot exist simultaneously.
The usual interpretation, however, (which, like all experimental descriptions, has to be expressed in
terms of classical physics) ascribing the uncertainty principle to mechanical disturbance of the con-
sidered system [91], necessarily must fail in the EPR case. Hence it is open to question whether it is the
correct one at all. It is not a far step to do, to arrive at the opinion that all physical quantities come into
being only by measurements, and from that point it is an even smaller step to accept solipsism which,
however, will be banned explicitly from the present context. But the results presented above prevent us
from applying some familiar concepts.

It is, for example, wrong to ascribe any spin component to an electron, unless it has been measured
or prepared, because, if one component came into being accidentally and the electron had been
prepared by a Bohm-like process, another component could be measured on the correlated electron,
and the former one was in possession of two definite spin components.

Further, it is no longer justified to assume the square of the wave function as describing the
probability of an electron to exist within a certain domain of space, but we must properly think of it as
indicating the probability of an electron to be contracted to this domain. Because, if the electron had an
exactly defined moment before the coordinate was measured, it could not simuitaneously possess an
exactly defined coordinate. Thus we have to accept that, after an electron has been localized within,
say, 107°cm, the only entity corresponding in reality to our concept of the electron’s position, has a
diameter of 107°cm one second later. The failure of the concept of an exactly defined, observer-
independent reality is precisely the reason for the inapplicability of semi-classical theory of radiation,
mentioned in section 3.2, because not even a definite polarization can be ascribed to a photon unless it
has been measured or prepared. On the other hand, all the physical quantities which do not exist at
present, can be determined retrospectively, because the past is not subject to the uncertainty principle.
Hence, time acts like a filter, transforming a presence which is undefined and blurred (except those
quantities, which are accidentally measured) to a past which is exactly defined and clear.

There is a manifold of unsatisfying answers, but a satisfying answer to the problem is still lacking. As
mentioned above, the answer of the Copenhagen school which is widely accepted reads plainly and
concisely: Don’t bother, But, with respect to the EPR paradox in particular, we then have to accept the
following statement too: “The idea which is found to be untenable may, roughly, be said to be that of
the independent existence of two entities, the state of system II and one’s knowledge of its state, only
the fatter being affected by measurements made on system 1. Quantum theory shows that this is not an
adequate concept of the relation between subject and object™ [92]. This is not far from solipsism, not to
be considered in this article, and the answer it is suggesting to Feynman'’s famous question “if a tree falls
in a forest and there is nobody there to hear it, does it make a noise?” (93], may be “‘does it fall?”.

On the other hand, nobody can give a nearly plausible solution. Most of those, who dislike above
non-solution, tend to drop the axiom of separability by introducing non-local interactions {73, 94],
others consider retroactive influences [95], which implicitly are contained in the assumption of non-local
interactions too. Some physicists doubt the validity of the crucial experiments [96] and propose
sophisticated local hidden variables, giving predictions which come extremely close to those of quantum
mechanics [97, 98], some express their despair: “Thus the theorem of Bell proves, in effect, the
profound truth that the world is either fundamentally lawless or fundamentally inseparable™ [99].
Further, there is Everett’s “Relative state formulation of quantum mechanics” [100], usually termed
“Many worlds theory”, according to which the whole universe is split into distinct branches by every
quantum jump, all existing simultaneously but being not observable from that one occupied by us (cf.
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[100--102]). This theory is not verifiable neither is it falsifiable but, at least, it is hard to swallow. After
ail, we have to mention some attempts to get around Bell's inequality by altering some of the
fundamental laws of probability theory, mainly the calculus for joint probabilities, and introducing a
generalized probability space, nevertheless keeping probabilities restricted to the usual interval between
0 and 1 {103-108].

As the reader will already be expecting, Bell’s inequality can also be circumvented by means of
extended probabilities. This claim is valid for all inequalities of this type which have been derived yet,
or will ever be derived, as can be demonstrated by a simple example reproducing exactly the quantum
mechanical averages for measurements on beams of correlated electrons. The model is not a deter-
ministic one and, hence, Wigner's contradiction (3.35} does not apply. The subsets considered, simply
do not exist, because there are not 6 individually determined results, since determinism is not involved.
One can speak of the outcome of a measurement but never be sure (except in special cases which
belong to a probability value of O or 1) what the result of an experiment would have been, if it was not
actually performed. Therefore, we are not in trouble with subsets which had to be considered elements
of reality. The big disadvantage of this model is, however, that it does not satisfy (3.53} strictly in the
single case, but only in the average case. This feature is due to any model of this kind, and at present
there 1s no evidence whether and how this drawback can be removed. Nevertheless, with respect to the
other “solutions” of the EPR paradox mentioned above, it seems appropriate at least to have a brief
look on that one fitting our general topic.

Clearly there is an infinite number of *‘solutions” involving extended probabilities. We take the most
simple one [109].

The probability for the result “spin up”, denoted by w,(a, S), is assumed to be a linear function of
the projection of the hidden variabie (which in this case is the total spin §) on the direction a of
measurement:

w.(a, S)= Ci+ Ga- §. {3.56)

As the result of a measurement must be either “spin up” or “spin down”, the respective probabilities
must satisfy the condition

w.{a, S)+w.(a, §)=1. (3.57)
From the symmetry of the problem we obtain
w.(a,$)=05 for a-5§=0 (3.58)

and, as repeated measurements in the same direction with certainty will reproduce the initial result, the
last condition necessary is

wo(a,S)=1 for a-S=3i(h). (3.59)
Consequently the probability functions read
w.(a,8)=05+a-S and w_(g,8)=05~4a-8§. (3.60)

These probability functions ranging from (1-V3)2 to (1+V3)2 admit a correct calculation of
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averages of correlation measurements as described above. In addition they reproduce correctly the
quantum mechanical averages concerning repeated measurements on polarized electron beams [110]. A
similar treatment for the experimentally most interesting case of correlated photon pairs requires an
extension of the usual interval of probability numbers to [(1—V?2)/2, (1+V2)/2] [110].

Further it has been shown [89] that quantum theoretic correlation results for particles with arbitrary
spin can be obtained from classical distribution functions, which for large spin approximate §-functions,
but “they cannot, for any value of S, share with ordinary é-functions the property of being everywhere
non-negative. [...] they perfectly reproduce the quantum theoretic spin-S EPR correlations. But there
is no way to give meaning to the phrase ‘spinning about the direction n’, and the interpretation as
conditional probabilities suffers from the appearance of negative ‘probabilities’. The functions are thus
reminiscent of Wigner’'s phase-space ‘distribution functions’.

The generalized Bell's theorem establishes that no matter how large S, the representation of the
quantum theoretic spin § distribution [. . .] lacks the essential non-negativity of the analogous represen-
tation [...] of the classical distribution, that makes possible a simple interpretation in terms of
conditional distributions” [89)].

Of course, there are many physicists, who prefer to sacrifice locality if reality can be kept and
negative probabilities are avoided, but it has been proved explicitly [111] that the concept of the total
spin S to have a uniquely defined direction excludes that the quantum mechanical expectations can be
obtained from any theory making use of this assumption, even if the theory is a non-local andfor
statistical one (unless something else than the spin influences a spin measurement). Therefore reality
cannot exist without extended probabilities, But it is open to question whether it can exist with, because
of some strange consequences emerging from this special example. These, however will be left for the

discussion.
3.4. Non-quantum indicanions

There are some examples even in classical physics, which either entail or at least can be interpreted
in terms of negative probabilities, being however so simple, that negative probabilities involved are
usually overlooked. We need not ambiguously intermingle negative processes with negative prob-
abilities for these processes by, for example, 1dentifying an absorption with an emission appearing with
negative probability, in order to demonstrate this.

One interesting example (among others) is cited by Feynman [112], who considers the process of
diffusion (like many physicists have been doing before him, but without noticing the following).

“A particle diffusing in one dimension in a rod has a probability of being at x at time ¢ of P(x, ¢)
satisfying dP(x, 1)/dt = —3*P(x, 1)/dx*. Suppose at x = 0 and x = # the rod has absorbers at both ends so
that P(x, t) = 0 there. Let the probability of being at x at £ = 0 be given as P(x, 0} = f(x). What is P(x, ¢)
thereafter? It is

P(x, )= > P,sin nxexp(—n’), (3.61)

n=]

where P, is given by

flx) = i P, sin nx, (3.62)

noi
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p =2 j £(x) sin nx dx. (3.63)
m

The easiest way of analyzing this (and the way used if P(x, ¢} is a temperature, for example) is to say
that there are certain distributions that behave in an especially simple way. If f(x) starts as sin nx it will
remain that shape simply decreasing with time, as exp(—s?f). Any distribution f(x) can be thought of as
a superposition of such sine waves. But f(x) cannot be sin nx if f(x) is a probability and probabilities
must always be positive. Yet the analysis is so simple this way that no one has really objected for long”
[112].

This example may be claimed to resemble quantum mechanics because of the close relationship
between diffusion equation and Schrodinger equation, but the Planck constant clearly is not involved, It
seems to be easy now, to find many similar indications, but we will restrict ourselves to one additional

example.
The simplest solution describing the behaviour of the classical damped oscillator

dxf/df+dx/dt+ wix =0 (3.64)

(the damping constant is set equal to unity) is given by
x(£)= xoexp(-t/2)cos ot, @=Vei-1 (3.63)

In case of an electromagnetic oscillator, (3.65) may also be interpreted as the time-dependent amplitude
of the field, observed (with the respective time delay not interesting in this context) at a certain point of
space. In order to obtain the amplitude in terms of frequency, the usual Fourier transformation has to
be applied. If, however, the considered point of space is shielded from the oscillator by a shutter, which
opens at time ¢ =0, when the radiation starts, and closes at time 1, we obtain for the observable part of
the amplitude

!

Alw, 1)« j exp(—7/2) cos{ar) expliw) d7, (3.66)
or
expl(i(w = 3) = 1)1 =1  expl(i(w + &)= }i] -1
Alw, t)x CETAEY + wta)=1 : (3.67)

If the damping is very low, i.e., @ > 1, the second term of (3.67) can be omitted for w > 1. The energy
observed in the time interval (0, ¢) then is given by

-2 .- -t
2e”"cos({w—w)t+e (3.68)

(w—afP+3

1—
|A(w, 0 =
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Formula (3.68) is the classical analogon of (3.45) and, hence, according to (3.46) and (3.46') its time
derivate will yield extended probabilities for small frequency intervals Aw if the shutter is opened for
short time intervals As only. It may be difficult even with modern opto-electronic devices to set up an
appropriate experiment. But the validity of this classically derived relation has been demonstrated by a
quantum effect, namely the Mdssbauer effect (cf. section 3.2).

This section should not be finished without briefly referring to work of D.R. Cox [113] who found use
even for complex probabilities in a theory of stochastic processes having discrete states in continuous
time. A method invented by Erlang [114], who supposed that life has k stages, the time spent in each
following independently an exponential distribution, is generalized by Cox to non-exponential dis-
tributions involving complex transition probabilities between the different stages. “Erlang’s idea is
particularly useful in fairly practical investigations because it gives a routine method of dealing with
non-exponential distributions” [113]. The method can be applied to biological processes like division
times of bacteria or economical problems like service times of customers in a queue. However, the
subdivision of life into fictuous stages 1s merely a mathematical device and need not have physical
significance. The same must hold for all macroscopic examples involving extended probability. In this
realm extended probabilities emerge from a mathematical subdivision of an entirely positive function
like (3.62) into a sum of functions, some of which can go negative without altering the entirely positive
character of the original one. But it is as justified to deal with these subdivision functions as it 1s justified
to represent the number 2 by 5+(~3).

On the quantum level of matter extended probabilities may be credited with a higher degree of
reality. This is an open question. Nevertheless, as has been shown in the first three sections of this
chapter, extended probabilities cannot a priori be banned from quantum theory, at least not without
defining exactly what has to be understood by she quantum theory. This fact cannot be considered
surprising, because one of quantum theory’s most fundamental concepts generally 1s an inherently
complex quantity and as such essentially different from, e.g., the complex quantities used in classical
electrodynamical calculations. The latter are applied for convenience but can easily be avoided.
Nevertheless the popularity of this computing tool may have assisted to the end that the complex wave
function has been accepted without too much concern. The complex character of the wave function,
aithough with respect to the description of reality eliminated by a mathematical trick, raises the
question, whether (and if yes, which) properties of reality unavoidably cause it. Basically the wave
function as fundamental means for the description of reality is scarcely more plausible than the formal
use of extended probabilities. Its being defined not in real space and time but rather in complex Hilbert
space does not too much improve this situation.

These arguments are far from attempting to doubt the extremely successful formalism of quantum
theory. But it should be realized that-as soon as a relation to reality is concerned - the accepted
foundations of this formalism are as obscure as its possible consequence discussed in this review.

4. Formal accounts

The commonly accepted interpretation of probability [115] is based on the relative frequency of
events exhibiting a certain property (so-called successful trials, henceforth denoted by A) in a number
N, of events (trials). Let

No= N(A)+ N(—A) 4.1)
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with — A denoting the absence of A, then the probability of observing A is given by
p(A)= lim N(A)/N,. (4.2)

This event-related definition has proved well in practical applications, it suffers however from serious
philosophical objections (cf. H. Margenau in chapter 5), because the number of events observed or trials
performed never can reach infinity and thus the experimental result can take each value between 0 and
1 in practical measurements. Of course there is a probability for the experiment to yield more or less
exactly the true probability, but as long as finite sequences are considered, this and any further
probability or level of confidence suffer from the same problem. (On the other hand most concepts
applied in science can be verified only approximately {cf. M.S. Bartlett in chapter 5).)

In order to avoid the event-related character of the frequency interpretation the fact-related measure
(or density) definition can be applied, if the facts are known. Given a box with 10 balls, 3 of them being
red and the other 7 being not red, the relative measure {or density) of the property “red ball” is 0.3 and
thus, the probability of finding a red ball by ideal “blind choice™ is 0.3 too. The problem with this
definition in physics is however, that in most cases the numbers of balls are unknown, and experiments
based upon the measurement of relative frequencies are performed just in order to determine the
measure or density of a property. In quantum mechanics, moreover, we cannot be sure that definite
numbers of balls do exist at all (cf. section 3.3). If, however, the conditions are known and the ideal
character of blind choice is guaranteed, the probability obtained from relative measure or density can
be understood as a degree of confidence to find the desired result.

If reality was wholly deterministic, probabilities could be applied due to our lack of knowledge only,
because every event would have the inherent probability 0 or 1. Referring to the difficulties with
quantum theory (especially the EPR paradox, cf. section 3.3) we cannot take this viewpoint. Therefore
it seems reasonable, to attnibute a probability number to each individual case, reflecting the objective
probability for a certain result (the time interval during which a radioactive atom will decay and the
direction in which it will emit its decay product, for instance). Of course subjective probabilities (due to
unknown parameters which, however, in principle could be determined — whether there is a radioactive
atom, for instance) have also to be taken into account in real experiments, but they will not be subject
to the following considerations.

Obviously the probability of a certain result will depend not alone on the intrinsic objective state of a
physical entity being analyzed, but also on the conditions under which this is done. Hence the whole
system has to be taken into account. Herewith we arrive at Popper’s “propensity definition”. This
definition appears to be a very reasonable one (Popper illustrates it by a loaded die, the probability of
which to show up the biased number will depend on the strength of the gravitational field present [116]),
but the existence of an objective intrinsic state unavoidably implies extended probabilities (a nice
example hereof is discussed in [117]). Nevertheless those propensity-like probabilities may be handled
by means of the frequency interpretation as follows.

Consider a number Np of particles prepared in a pure quantum state, but, deviating from quantum
theory, possessing hidden variables A, i=1,...,n < N,. For the sake of brevity assume, that the
different values A; are taken with equal positive probability p. The generalization to an in-
homogeneously occupied space of hidden variables follows by a straight forward treatment. By an
interaction the nature of which need not be specified the values of these hidden variables change from A;
to A}, j=1,...,m=N,, the transition probability being denoted by p;. By this interaction the pure
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state may split into k =< m experimentally distinguishable states one of which is called A. Those values
of Ajwhich form this state are denoted by Aj.,. The result of a measurement exhibits N(A) particles in
the state A and N(—A) particles in other states (— A). Conservation of particle number requires
N(A)+ N(— A)= N,. The combined transition probability for state A follows from the experiment in

case Np~> o by

p(A)= % > 2, py = lim N(A)/N,. 4.3)

i QA Ne—e

If the single transitions are admitted to interfere with each other, it is easy to extend the defining
equation of probabilities to that end that not only “normal events” are covered, but also events by
which normal ones are eliminated or quenched. By this means-in close analogy to theory of
matter —two kinds of events are introduced, namely normal and quenching events. As the individual
p; —due to the uncertainty principle -~ may be not observable, some of them may exceed the usual range
between 0 and 1. A negative probability of an event is interpreted in this formalism as a positive
probability for the appearance of a quenching event; a probability exceeding 1 indicates that sometimes
more than one transition may happen from a substate populated by only one particle.

While in this picture the usual, macroscopically observable probabilities are restricted to 0 < p(A) =
1, the individual transition probabilities only have to obey the normalization

1
PRI @4)

and the left side of (4.3) for distinguishable resuits. At first sight, one would say that individual
transition probabilities are not observable, because of the uncertainty principle. But—as discussed in
connection with the time-resolved photon decay - sophisticated devices employing the Mdssbauer effect
may be capable of detecting something like that.

While this interpretation of extended probabilities by means of quenching events assumes a concrete
physical mechanism, a more abstract and, thus, more general approach to introduce extended prob-
abilities makes use of moment-generating and characteristic functions. This access was analysed in a
short paper by Bartlett [118]. Before coming to this work, we would like to remind the reader of some
definitions and technical expressions.

The function

F(z)=2>z'P(r), z€C and |z|=1 (4.5)
r=0

is called probability-generating function of the random variable r or of its probability distribution P(r),
for the probability distribution is uniquely defined by

1rd
PO)=5 |57 E@)] (6)

Further, for fixed z, the probability-generating function is equal to the expectation value of the random
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variable z":
F.(2)= E{z"}. 4.7

For p the probability for a successful single trial, ¢ =1— p the complementary provability and n the
number of (independent) trials making up the random variable r, another expression for F,(z) is

(pz+q)". (4.8)

The equivalent moment-generating function M,(t) is obtained by substituting e’ for z in F.(z); and, as
suggested by its name, the variance and higher moments of the distribution can be calculated from it.

For example, as

M= e"P(r) 4.9)

r={

for a Bernoullian scheme, the expectation is

d
Ef{r}= [—M ! ]
H=|gM0)]
and similarly for further moments.
A further advantage of the moment-generating function is its usual availability for continuous
random variables; in fact it is always available (even for non-finite moments) if the exponent is

imaginary [119]. The function
M,(f) = E{exp(irt)} with -oo<t<w (4.10)

is then called the characteristic function of r.

The short paper by Bartlett [118] entitled “Negative Probability” now will be given in some detail.
After mentioning the work of Dirac [1} and Moyal ([18], unpublished at that time), Bartlett concludes
that it may be “in the highly abstract symbolism of physics that this extension is most likely to prove
useful. Moreover, it is in the same field that the relation between the probability theory and its physical
interpretation, while tending to agree with the natural viewpoint [1] that the extended theory merely
corresponds to a more elaborate accounting system involving debit as well as credit entries, is also a
warning not to ascribe individual reality to negative entries in this theoretical book-keeping.” Then he
considers the probability equation p = p, + p, and applies it to the case of a biased penny with p, = %
and p, a correcting term. “We are naturally led to ask whether, if p <3, and p, <0, we can still in any
consistent sense regard p = p, + p, as a probability equation, provided we admit negative numbers mto
the domain of admissible probability numbers.” [...] “Since the formal structure for the distributions is
unaltered, it is trivial to show that the probabilities in the extended theory must for consistency obey the
same rules as before, that is, the addition and multiplication laws. In particular, the familiar method of
deriving the distributional moments for binomial frequencies r; and r, corresponding to n independent
trials for the event represented (by above probability equation), by forming the expectation

Elexp(nty+ b))t = (1—p+piexp i+ pyexp 1) (4.11)
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whence are obtained the well-known results
F2= E{r} = np,, a*(r) = E{(r.— %)’} = npa1 - ),
cov(ry, ro) = E{(r,= R)(r;— )} = ~np\ps

etc., is also valid for p, negative.

Having set up a consistent extended theory which still retains the same rules as the orthodox theory,
we may next ask what physical interpretation these more general probability numbers can have. In the
orthodox theory mathematical limit theorems provide the appropriate theoretical relations between
probability numbers and limiting frequency ratios (see, for example, [120]). It is, however, not clear how
I»/n can tend to p, in any sense in the extended theory when p, is negative since the formal distribution
of r, only covers the positive range 0 to n. The usual proof (e.g., on p. 9 of my previous paper [120]} in
fact breaks down for negative probabilities. Notice, moreover, that the partition or probability-
generating function for the distribution of r, alone,

(1= pat p2zo)" (4.8")

consists of a number of terms of alternating sign for negative p,, the sum of the absolute values of the
coefficients being (1+ 2| p,|)" and tending to infinity with n.

Thus probabilities in the original range 0 to 1, as we might reasonably expect, still retain their
special significance. It is only these probabilities which we can immediately relate with actual frequen-
cies; it is only these probabilities, for example, for which the theoretical frequency ratio 7/ tends to p
with probability one, as » tends to infinity.”

The next chapter is entitled “Extraordinary random variables and their characteristic functions”, in
which is reasoned that the use of negative probabilities “is still possible through their moment-
generating or characteristic functions, which still have proper limits. We have, for example, the
cumulant function of r,/Vn defined by

log Efexp rzt/\/;}-—> Vn- Pat + 302028, (4.12)

where g, =1— p,.” (When expanding the logarithm and the exponent, all higher order terms vanish
with n~2 or faster.) “We may consistently think of rzl\/; as a random normal or Gaussian variable
with mean Vn-p, and standard deviation V/(p.g.). For p, negative, this random variable has an
imaginary standard deviation; it will be termed, using Eddington’s convenient adjective [121], an
extraordinary random variable.” Considering the joint distribution of r, and r,, “the varable Vn
becomes a normal random variable with two correlated components r,/\/E_ and rzj\/ﬁ_, of which r/Vn
has an imaginary standard deviation, and imaginary correlation with r,/V n.
One further result will be noted. The characteristic function equation

M(5) = M()M:(1) (4.13)

where M(t)= E{expitx}, etc., implies that the random variable x is the sum of two independent
components x; and x,. Given M(z) and M,(1), this equation has the solution

My(r) = MOM' (1), (4.13)
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[??]if M7'(¥) can be interpreted as the characteristic function of some random variable. Since
M{OMTH) =1, M7'(t) will be said to define the reciprocal distribution to M,(¢). This distribution is
only an admissible one in our extended theory, since it corresponds to an extraordinary independent
random variable y, such that the random variable x, + y is certainly zero. A binomial distribution with
negative probability p, gives rise to a well-behaved reciprocal distribution (g, + p,z) ™", which has the
form of the so-calied ‘negative binomial distribution’. Even on the present theory, however, M7'(¢)
does not necessarily define a distribution function obtainable from it by Fourier inversion.”

Bartlett summarizes: “Negative probabilities must always be combined with positive ones to give an
ordinary probability before a physical interpretation is admissible. This suggests that where negative
probabilities have appeared spontaneously in quantum theory it is due to the mathematical segregation of
systems or states which physically only exist in combination.” (See also M.S. Bartlett in chapter 6.) This
rather general treatment gives an impression of how extended probabilities could appear and be
handled in the framework of the frequency interpretation generally, although no physical interpretation
is intended.

Turning to the special field of quantum electrodynamics, an account of solving the problems referred
to in section 3.2 may be given, following an example of Feynman [112].

“In the quantum theory of electrodynamics, the free photon moving in the z direction is supposed to
have only two directions of polarization transverse to its motion x, y. When this field is quantized, an
additional interaction, the instantaneous Coulomb interaction, must be added to the virtual transverse
photon exchange to produce the usual simple

Uit oy Jefm i) €17 (4.14)

virtual interaction between two currents, j and j'. It is obviously relativistically invariant with the usual
symmetry of the space j,, j,, j. and time j, components of the current (in units where the velocity of
light, is ¢=1). The original starting Hamiltonian with only transverse components does not look
mvariant. Innumerable papers have discussed this point from various points of view but perhaps the
stmplest is this. Let the photon have four directions of polarization of a vector x, y, z, ¢ no matter which
way it is going. Couple the time component with ie instead of e so that the virtual contribution for it
will be negative as required by relativity in eq. (4.14). For real photons, then, the probability of a

photon emission is negative, proportional to —Kflj i) the square of the matrix element of j, between
initial and final states, just as the probability to emit an x photon is +§f|/,[i}. The total probability of
emitting any sort of photon is the algebraic sum of the probabilities for the four possibilities,

KEL D + KEL IDF + KEL 1D = KL - (4.15)

It is always positive, for by the conservation of current there is a relation of j, and the space components
of j, k. =0 if k, is the four-vector of the photon. For example, if k is in the z direction, k, = w,
and k, =k, =0 so j,=j. and we see eq. (4.15) is equal to the usual resuit where we add only the
transverse emissions. The probability to emit a photon of definite polarization e, is (assume ¢, is not a
null vector)

_I<f|jﬂveﬂli>|2/(eﬂeﬂ-) * (4.16)

Thishas the danger of producing negative probabilities. The rule to avoid them is that only photons
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whose polarization vector satisfies k,e, = 0 and e, e, = —1 can be observed asymptotically in the final or
initial states. But this restriction is not to be applied to virtual photons, intermediary negative
probabilities are not to be avoided. Only in this way is the Coulomb interaction truly understandable as
the interchange of virtual photons, photons with time-like polarization which are radiated as real
photons with a negative probability.

This example illustrates a small point. If one f photon is emitted with a negative probability —«a
(e >0), and another ¢ photon is emitted say independently with probability —8 (8> 0), the chance of
emitting both is positive (—a)(~B) = af > 0. Should we not expect then to see physical emission of two
such photons? Yes, but (if these photons are moving in the z direction) there is 2 probability to emit z
photons @ and B also, and there are four emission states: two  photons with probability +af; two z
photons with probability +a8; the first z and second ¢ probability (+a)(—8)=—aB and the first ¢
second z with probabilities —af8 so again, for total emission rate only transverse photons contribute”
[112].

This physical interpretation of extended probabilities in photon emission processes comes very close
to that one based on quenching events described in the first part of chapter 4, sharing with it the
problem of how to explain that probabilities always interfere precisely enough to prevent negative
events from being identified directly.

While this crucial question must be left to further study, we shall now descnbe the formalism of
indefinite metric, which is a useful tool to handle extended probabilities appearing in quantum
electrodynamics. This account was invented by Gupta [122] and has been repeated in his recent
textbook [47] from which the following paragraphs are excerpted.

After stating that the usual formalism of quantum mechanics is not adequate to deal with all the
fields in nature, Gupta develops his more general formalism, considering a space of infinite dimensions
in which the components of vectors are in general complex numbers, “[...] let us denote any vector in
this space by i or &. With this space let us associate a dual space such that corresponding to any vector
¥ there exists a vector ¢* in the dual space. Let us assume that the relationship between the two spaces

is such that
Y+ )=y +P%,  (ch)* =Ty, (4.17)
@*y = number = (y*P)*, (4.18)
where ¢ is a number. It follows from (4.18) that

J* ¢ = real number. (4.19)

The only difference between the above assumptions and those of [usual quantum mechanics] is that now
the quantity y*y is not positive definite, but, according to (4.19), it can be positive, negative, or zero.
We shall, therefore, refer to the space under consideration as an indefinite-metric space” [47].

Vectors ¢ and * satisfying the relations (4.17) to (4.19) are called Hermitian conjugates of each
other, and the real number *¢ is called the norm of the vector ¥. Any vector satisfying the condition

g*¢==1 or 0 (4.20)

is said to be normalized, because we cannot change the sign of the norm of a vector by multiplying it by
any number.
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If an operator A is such that
A*=A, 4.21)
it is called Hermitian. The expectation value of a dynamical variable is given by
(A)=y Ay, (4.22)

where the operator A represents the dynamical variable, and ¢ is the normalized state vector. It follows
from (4.22) that all quantities of physical interest must be represented by Hermitian operators in order
that they have real expectation values. If @ is an eigenvalue of A belonging to the eigenstate ¢, in usual

quantum theory
(a=a*)*y=0 (4.23)

accounts for the reality of eigenvalues of Hermitian operators. Since according to (4.19) the norm ¢*y
may vanish, this conclusion is not generally valid here. But we can still infer from (4.23) that ali
eigenvalues of an Hermitian operator corresponding to eigenvectors of nonvanishing norms are real.
“Similarly, we cannot now establish in general the orthogonality of all eigenvectors of an Hermitian
operator. But, by following the [usual] treatment, we can still show that those eigenvectors of an
Hermitian operator that have non-vanishing norms form an orthogonal set, provided that the eigen-
vectors corresponding to the same eigenvalue are chosen in a suitable way.

We shall assume that if all the eigenvectors of an Hermitian operator have non-vanishing norms, the
orthogonal set of eigenvectors formed by them is a complete set. Then, if the eigenvalues of an
Hermitian operator A are discrete and all its eigenvectors have non-vanishing norms, we can express

any normalized vector @ as

D= Cathn, (4.24)

where the ¢, are numbers, and the ¢, are orthonormal eigenvectors of A corresponding to the
eigenvalues a,, so that

wm wn = (4.25)

mn:

where the plus and minus signs correspond to the eigenvectors of positive and negative norms,
respectively.” Be f{A) an arbitrary function. Instead of the usual expansion

(fAY =3 cteflas) (4.26)

we have in the present case

(fA) = T = cheflan), (4.27)
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which gives
P,==xckc,, (4.28)

“where P, is the probability of obtaining a, as the result of measurement of A. The result (4.28) shows
that vectors with a negative norm represent states occurring with a negative probability. It should be
noted that if the vector i, has a negative norm, the expectation value of A in this state is —a,. But we
cannot regard i, as representing a state of positive probability corresponding to the observable value
—a,, because in this state

(FA)=~fla)# f(~a). (4.29)

[...] Finally, it must be observed that because of some difficulties of physical interpretation, the
formalism of quantum mechanics with an indefinite metric can be used only under special circum-
stances. The main difficulty of physical interpretation arises from the fact that a vector with a negative
norm represents a state occurring with a negative probability, which is of course meaningless. [. . .] Since
the above difficulties of physical interpretation are connected with vectors of negative or vanishing
norms, an indefinite metric can be used for a quantum mechanical system only when the states
represented by vectors of negative or vanishing norms are physically unobservable” [47].

Summarizing: we have (i) proposed a general interpretation of the appearance of extended prob-
abilities on the microscopical level of reality, (ii) presented an account of extended probabilities based
upon general probability theory, (iii) reviewed an example for the field of quantum electrodynamics,
and (iv) described a formalism of handling extended probabilities in the quantum theoretical frame-
work. All these approaches are obtained from the frequency- or measure-based definitions of prob-
ability. These definitions, however, are not the only ones possible, and in some cases they even fail to
yield exact results, although probabilities can be defined uniquely. As this fact may turn out to be useful
when considering extended probabilities, a different and more general approach, although not dealing
with extended probabilities, should be mentioned in the present context. It is based on the invariance
principle and has served Jaynes’ in solving Bertrand’s paradox. The following paragraphs are cited from
Jaynes’ paper: “ The well-posed problem” [123], in order to illuminate this principle by means of one of
its most striking applications.

“Many statistical problems, including some of the most important for physical applications, have long
been regarded as undetermined from the standpoint of a strict frequency definition of probability; yet
they may appear well posed or even overdetermined by the principles of maximum entropy and
transformation groups. [...] On the viewpoint advocated here, Bertrand's problem turns out to be well
posed after all, and the unique solution has been verified experimentally.” (This verification, of course
has made use of the frequency interpretation.) “We conclude that probability theory has a wider range
of useful applications than would be supposed from the standpoint of the usual frequency definitions.”

Bertrand’s problem, originally stated in terms of drawing a straight line “at random” intersecting a
circle, may be formulated as follows in a more concrete way.

“A long straw is tossed at random onto a circle; given that if falls so that it intersects the circle, what
is the probability that the chord thus defined is longer than a side of the inscribed equilateral triangle?
Since Bertrand proposed it in 1889 this problem has been cited to generations of students to demonstrate
that Laplace’s ‘principle of indifference’ contains logical inconsistencies. For, there appear to be many
ways of defining ‘equally possible’ situations, and they lead to different resuits. Three of these are: Assign
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uniform probability density to (A) the linear distance between centers of chord and circle, (B) angles of
intersections of the chord on the circumference, (C) the center of the chord over the interior area of the
circle. These assignments lead to the results p, =3, ps =3, and pc = §, respectively. Which solution is
correct?” While most mathematicians cited in [123] believe that the problem is ill posed and, hence, has
no definite solution, Jaynes demonstrates that it is possible to obtain the resolution by “pure thought”.

“Bertrand’s problem has an obvious element of rotational symmetry, recognized in all the proposed
solutions; however, this symmetry is irrelevant to the distribution of chord lengths. There are two other
‘symmetries’ which are highly relevant: Neither Bertrand’s original statement nor our restatement in
terms of straws specifies the exact size of the circle, or its exact location. If, therefore, the problem is to
have any definite solution at all, it must be ‘indifferent’ to these circumstances; i.e., it must be
unchanged by a small change in the size or position of the circle. This seemingly trivial statement, as we
will see, fully determines the solution™ [123].

Observing the mentioned invariances, for a circle of radius R, Jaynes obtains the unique random
distribution of chord lengths. “A chord whose midpoint is at (r, §) has a length L=2(R*- A, In
terms of the reduced chord lengths, x = L/2R, we obtain the universal distribution law”

p(x)dx=xdxyVi-x*, 0=x<1, (4.30)

corresponding to the solution A.

“Any rain of straws which does nor produce a frequency distribution agreeing with (4.30) will
necessarily produce different distributions on different circles. But this is all we need in order to predict
with confidence that the distribution (4.30) will be observed in any experiment where the ‘region of
uncertainty’ is large compared to the circle. [.. ]

These conclusions seem to be in direct contradiction to those of von Mises [115, 124], who denied
that such problems belong to the field of probability theory at all. It appears to us that if we were to
adopt von Mises’ philosophy of probability theory strictly and consistently, the range of legitimate
physical applications of probability theory would be reduced almost to the vanishing point. Since we
have made a definite, unequivocal prediction, this issue has now been removed from the realm of
philosophy into that of verifiable fact. The predictive power of the transformation group method can be
put to the test quite easily in this and other problems by performing the experiments.

The Bertrand experiment has, in fact, been performed by Professor E.T. Jaynes and Dr.
Charles E. Tyler, tossing broom straws from a standing position onto a 5 inch diameter circle drawn on
the floor. Grouping the range of chord lengths into ten categories, 128 successful tosses confirmed eq.
(4.30) with an embarrasingly low value of chi-squared. However, experimental results will no doubt be
more convincing if reported by others” [123].

The reason for extensively citing this example is, besides its beauty, the fact that there are other
physical problems which are not verifiable by means of the frequency interpretation, nevertheless being
subject to defining probability densities. To quote a last time from Jaynes’ paper: “Bertrand’s paradox
has greater importance than appears at first glance, because it is a simple crystallization of a deeper
paradox which has permeated much of probability theory from its beginning. In ‘real’ physical
applications when we try to formulate the problem of interest in probability terms we find almost always
that a statement emerges which, like Bertrand’s, appears too vague to determine any definite solution,
because apparently essential things are left unspecified” [123].

If we reject the principle of indifference, e.g., in kinetic gas theory, and insist that the only valid basis
for assigning probabilities is frequency in some random experiment, it would again appear that the only
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way of determining quantities like velocity distribution, pressure fluctuations, etc., is to perform the
experiments. With regard to the uncertainty principie and, even more significantly, with regard to
extended probabilities, it appears howeyer, that some probabilities assigned to physical quantities on
grounds of invariances or other general reasoning, are not verifiable by means of experiments
determining relative frequencies. As Jaynes’ treatment of Bertrand’s problem suggests, such prob-
abilities need not a priori be meaningless.

Definite answers to these questions cannot be given at present but may be obtained by further
physical and philosophical research. Those who insist, that probabilities are meaningless without a
frequency definition, may be referred to Dirac’s very pragmatic interpretation at least of small negative
or even complex probabilities, which does not attempt to look behind the curtain, but may serve as a
good guide. When developing a theory of functions of non-commuting variables, Dirac obtained a
formal probability for these observables to have numerical values: “This probability turns out 1o be in
general a complex number, but all the same it has some physical meaning, since when it is close to zero one
can say that the numerical values are unlikely” [125].

5. Statements

The first chapters of this review may arouse the (justified) impression of being a pleading for
extended probabilities. This is because to plead against this concept would resemble carrying coals to
Newcastle. Mainly examples, facts, or considerations in one or the other way suggesting or permitting
the use of extended probabilities have been described; and it is superfluous to mention that the
overwhelming domain of reality gives no reason for considering this concept.

In order to restore a certain degree of balance, some paraphrases of distinguished scientists about the
present topic are quoted below. Also some statements dealing not directly with extended probabilities,
but illuminating some points touched in this review are included. Ideas devoted to extensions of
probability theory other than by dropping Kolmogorov’s axiom, however, have been omitted. The
reader interested in this wide field is referred to Gudder’s text book [104].

The statements are given in alphabetical order, and, of course, no kind of completeness whatsoever
can be claimed.

A. Aspect: "] know that several smart physicists (among them Richard Feynman) have considered
the negative probabilities as an issue to the EPR problem. As a simple-minded experimentalist, I can
hardly accept such a solution. As a matter of fact, in the experiments that we have performed, a
negative probability means that an event that has been detected, and stored in the memory of the
computer, will be erased later, when the event with a negative probability will occur! On the other
hand, any attempt to ‘understand’ with a simple picture the EPR situation raises hard problems” [126].

M.S. Bartletr: “Statistical probabilities [...] may be termed objective in the sense that while we
cannot say they exist exactly in the real world they exist outside ourselves in the theory, and can ideally
be measured. The criticism has sometimes been made that this ideal measurement does not exactly
correspond to anything possible in practice, since it involves an infinite series of trials, but this kind of
sriticism is not peculiar to statistics. Theoretical methods of measuring other quantitative scientific
soncepts will be found to be only approximately realisable, owing to the inevitable idealisation involved
n the theory” [127].
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A.O. Barut: "l first got involved in negative metric in connection with the quantization of
higher-order spinor equations in one of my first papers [128, 129]. The problem of indefinite metric
always arises if one tries to make a field theory of several fermions. I believed we have made recently
definite progress by showing that negative norm states are separated from those of positive norm by a
superselection rule [130]. Thus negative metric is now a virtue instead of a disease in explaining for
example, the absence of u —e+ ¥ decay.

As to the EPR problem, [. .. in] recent calculations I made with P. Meystre [131] we show here that a
classical model exists giving exactly the same correlations as quantum mechanics, thus the program set
by Bell and others in the form p(a, b}= [ dA p(a, A)p(b, A) is not a realizable program: the abstract
theoretical assumptions are inadequate, not the experiment, nor the classical mode! or the quantum
theory!” [132].

The probabilities used in {131] are the same as given in {109]; cf. eq. (3.60). For a more general
treatment see [89].

J.S. Bell: “Unfortunately I cannot think of anything intelligent to say about negative probability, or
indeed about the square circle. [There is a] very recent paper by Feynman in which he finds a use for
negative probabilities at intermediate steps provided they cancel out at the end. I have great difficulty
dividing the worid sharply into intermediate steps on the one hand and ends on the other!” [133].

F. Bopp: “As is well known there exists a transformation invented by Wigner, which converts each
von Neumannian state-matrix P = {r|P|r’} uniquely into a phase-space state-function f(p, r) and vice
versa. In case of the harmonic oscillator, the equation defining f(p, r) is identical to Liouville’s
equation. Though the domains for (#*}Pju}=0 and f(p, r) =0 are different, hence negative averaging
weights can appear. This is closely related to the fact, that the second inequality in quantum-physics has

to be replaced by
jf(P, ry &p &r < const/f>.

This is a new formulation of the uncertainty relation, independent of the choice of coordinates [134].

Stimulated by works of Heisenberg I once investigated how theories involving negative probabilities
can be formulated in Hilbert spaces with finite dimensionality., I remember I have shown but not
published that negative probabilities can be eliminated by the requirement (due to Heisenberg) that
they do not appear experimentally” {135].

R.F. Bordley: “Most physicists currently feel that quantum behavior such as the n-slit interference
experiment requires an abandonment of standard probability theory. This seems rather peculiar because
other fields [. . .] have found standard probability theory perfectly adequate for their use. [...] quantum
physics does not, in fact, require an abandonment of standard probability theory” [136].

L. de Broglie: *[...] von Neumann’s demonstration implies a hypothesis that is not absolutely
unavoidable, and that is not substantiated in the causal theory in question. This hypothesis is that when
a system is tn a state ¢ the distnbutions of probabilities defined by Wave Mechanics are valid prior fo any
act of measurement. Now, if these laws of probability are stated in the way they should be (for example,
lcx? is the probability that an exact measurement of the quantity A will furnish the value a), it is
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immediately clear that they are valid only after the measurement has been performed and prior to the
knowledge of the result” [137].

A.A. Broyles: “We shall see here that it is not necessary to postulate that *(X) (%) is the coordinate
probability distribution. This fact will be derived from the mathematics of quantum mechanics with the
aid of a coordinate-measuring thought experiment” [138].

S. Bugajski: “Joint probability distributions for uncompatible observables should be non-¢lassical,
hence the seemingly most natural property (i) should be rejected” [139). [(i) expresses that the joint
probability distribution for observables A,, A, in a pure state is a probability measure on the real
plane.]

W. Déring: “The notion ‘probability of a certain measurement result’ is in my opinion explained
according to quantum mechanics as follows. The same measurement has to be repeated very frequently
on the same system in the same state. Then it is simply counted how often the result in question has
happened. The ratio of this number and the total number of measurements in the case of a very high
number of the latter is called probability. As I do not know, how to visualize a negative number of
measuring results, a negative probability has no sense for me. Therefore, in my opinion, that is
‘nonsense’. Clearly, this does not exclude the appearance of quantities in quantum mechanics, which
can become negative and are called probabilities. I think, who wishes to use this nomenclature, has to
explain what is to be understood by this probability, because the explanation known to me then does

not make sense” [140].

B. d’Espagnat (in the framework of a proof of the inseparability of quantum theory): “On the other
hand, a standard rule of probability theory (the validity of which is here beyond doubt since the
probabilities we consider are defined as limits of frequencies on ensembles of events that, being
observational results, necessarily obey classical logic) gives [...]"" [141].

R.P. Feynman: “If a physical theory for calculating probabilities yields a negative probability for a
given sttuation under certain assumed conditions, we need not conclude the theory is incorrect. Two
other possibilities of interpretation exist. One is that the conditions (for example, initial conditions) may
not be capable of being realized in the physical world. The other possibility is that the situation for
which the probability appears to be negative is not one that can be verified directly. A combination of
these two, limitation of venfiability and freedom in initial conditions, may also be a solution to the
apparent difficulty. [...] It is not our intention to claim that quantum mechanics is best understood by
going back to classical mechanical concepts and allowing negative probabilities {for the equations for
the development of [a phase-space distribution] in time are more complicated and inconvenient than
those of ¢). Rather we should like to emphasize the idea that negative probabilities in a physical theory
does not exclude that theory, providing special conditions are put on what is known or verified. But how
are we to find and state these special conditions if we have a new theory of this kind? It is that a
situation for which a negative probability is calculated is impossible, not in the sense that the chance for
it happening is zero, but rather in the sense that the assumed conditions of preparation or verification
are experimentally unattainable.”

With regard to a classical treatment of the double-slit experiment Feynman concludes: “With such
formulas all the results of quantum statistics can be described in classical probability language, with
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states replaced by ‘conditions’ defined by a pair of states (or other variables), provided we accept
negative values for these probabilities. This is interesting, but whether it is useful is problematical, for
the equations with amplitudes are simpler and one can get used to thinking with them just as well”

[112].

N. Grossman: “The quantity C}, C, is clearly a real positive number Jess than or equal to one, and is
interpreted as the probability that a measurement made on a system whose initial state is ¢ will yield
the eigenvalue corresponding to the eigenfunction U,” [117].

S.P. Gudder: “Bell concludes that locality, reality or hidden variables must be rejected. [...] There is
another alternative which has been missed in the above arguments. The above arguments not only rely
upon the concepts of reality, locality, and quantum theory, but also upon probability theory. We
contend that reality, locality and the predictions of quantum mechanics can be retained if we alter our
concept of probability theory. We argue that the framework of conventional probability theory is too
restrictive to describe subatomic systems and must be extended. This extension does not contradict
traditional probability theory, but merely enlarges its scope” [108].

J.M. Jauch, after celebrating Heisenberg’s important contributions to modern science, he writes in a
review of Heisenberg’s book [142]: “Since in a later stage of the development of the theory Heisenberg
runs into mathematical difficulties, he postulates that the metric of the Hilbert space in which the basic
field operates is not positive definite. While it is not at all certain that the mathematical difficulties can
be overcome by this artifact, it is interesting to examine the reasons which Heisenberg adduces for this
assumption. {...]

As an example of a similar situation in quantum electrodynamics, the so called Gupta-Bleuler
method is mentioned, which permits a formal construction of normalizable states satisfying the
subsidiary condition and a representation of gauge transformation. Another example Is encountered in
the Lee model where the appearance of ‘ghost’ states for sufficiently large coupling constants seem to
require a similar hypothesis in a formal treatment of the problem.

In the opinion of this reviewer, such reasoning for the indefinite metric of the Hilbert space is not
very convincing. There seems to be a confusion between the definiteness of a quadratic form which 1s
left invariant under a group and the metric which characterizes the physical Hilbert space. The two are
not necessarily related. On the other hand, the definiteness of the metric in Hilbert space seems to be
required for a physical interpretation of the theory. [.. ]

What all this shows is that Heisenberg’s contention that the indefinite metric is essential cannot be
correct. It may at best be a mathematical convenience, but certainly not essential. This is very well
demonstrated by precisely the prime example of Heisenberg’s, the Gupta-Bleuler method. It 1s well
known that the electromagnetic field can also be quantized with the subsidiary condition in a space with
definite metric. Thus, just in this example, the indefinite metric is not at all necessary; it gives at best a
slight formal advantage.

As to the example of the Lee model, the situation here is one of mathematical ambiguity in the
definition of the Hamiltonian as a self-adjoint operator. The occurrence of ‘ghosts’ in this theory 1s, as
modern treatments have shown, merely an indication that the formal expression of this Hamiltonian
cannot be interpreted as a self-adjoint operator. To attribute any deep physical significance to ‘ghosts’
and the associated indefinite metric seems to this reviewer to attach too much importance to a
mathematically inadequate model theory™ [143].
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E.T. Jaynes: “In all applications of probability theory, basically the same controversy rages over
whether our probabilities represent real situations, or incomplete human knowledge.

If the wave function of an electron is an ‘objective’ thing, representing a real physical situation, then
it would be mystical -indeed, it would require a belief in psychokinesis—to suppose that the wave
function can change, in violation of the equations of motion, merely because information has been
perceived by a human mind.

If the wave function is only ‘subjective’ [.. ], then a new difficulty appears; the relative phases of the
wave function at different points have not been determined by our information; yet they determine how
the electron moves. |...]

As many have pointed out [.. ], the Copenhagen interpretation of quantum theory not only denies
the existence of causal mechanisms for physical phenomena; it denies the existence of an ‘objectively
real” world.

But surely, the existence of that world is the primary experimental fact of all, without which there
would be no point to physics or any other science; and for which we all receive new evidence every
waking minute of our lives. This direct evidence of our senses is vastly more cogent than are any of the
deviously indirect experiments that are cited as evidence for the Copenhagen interpretation. [...]

At this point, it is clear that theoretical physics has gone berserk. In quantum theory we have got
ourselves into a situation where the objects have become unreal, but the probabilities have become
real!” [144].

“Finally, I note that in conventional general probability theory having nothing to do with quantum
mechanics, whenever we write a ‘probability mixture of conditional probabilities: p(x)=
[ p(x]8)w(8) dé, the distribution function w(8) may become negative while p(x) remains nonnegative.
An old historical example is Laplace’s derivation of the Rule of Succession from a probability mixture
of binomial distributions. Today this is often called the de Finetti representation theorem because de
Finetti proved, in a sense, the converse of Laplace’s result. We find {145] that if Laplace’s probability
density w(8) becomes negative we can represent not negative probabilities, but negative correlations, in
an exchangeable sequence. This was not heretofore possible with the Laplace—de Finetti choices of
w(8). So I now call w(f) a ‘generating function’ and do not interpret it as a probability” {146)].

H. Jeffreys: “But observable quantities are mathematically real, and probabilities real and non-
negative. It is therefore somewhat puzzling to find that the fundamental statements of the [quantum]
theories involve complex numbers, non-commutative multiplication, or matrix roots of —1. Real
combinations of these are identified with observables, and the probabilities calculated are positive, so
that the conditions required are satisfied, but the logical status of the complex quantities remains
mysterious. [...] it does not appear that [. ..} the probability density is correctly given by yaj” [147).

A. Kolmogorov: “Axiom II: A non-negative real number P{A) is attached to each set A of F. This
number P(A) is called the probability of the event A [148].

G. Liiders: *When discussing negative probabilities I would not emphasize the issue ‘to show by
means of the usual axioms that negative probabilities are impossible’. Rather, I would like to debate the
relation between calculated and ‘observed’ probabilities. The only physical ~ and, therefore, at least in
principle testable —meaning of quantum mechanical probability predictions known to me, however, is
that of relative frequencies of observed results in an ensemble of identical systems being in identical
states (certainly a difficult concept when a detailed theory is lacking). The mentioned relative frequency
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as ratio of non-negative numbers (number of ‘successful’ trials divided by number of all trials) is
non-negative itself. Under this aspect negative probabilities apparently cannot occur in the final result;
this being fairly independent of the ‘usual axioms’.

Perhaps something else was meant in in the introduction to this article, In any case, however, the
question concerning the physical -and, hence, at least in principle testable —and not purely formal
meaning of negative probabilities cannot be neglected” [149].

G. Ludwig: “The problem of probability (and in this context possibly negative probability) is
basically due to the use of the word ‘probability’ for completely different facts. Hence one can
reasonably assert, that negative probabilities are senseless, and the other one can as reasonably invent
‘negative probabilities’; for both do not understand even approximately the same by this word” [150].

H. Margenau (in a comment concerning the introduction to this article only): “[This] account of
negative probabilities appears to me perfectly reasonable, especially in view of the fact that there is to
my knowledge no entirely acceptable definition even of positive probability. As I have set forth in my
earlier writings we do not even have a completely rigorous definition of positive probability, since von
Mises definition in terms of the limit of relative frequency must be rejected because the limit does not
exist. Hence I find [the introductory} comments wholly acceptable: The subject of probability is not yet
closed” [151].

T.W. Marshall: “There is no ‘EPR paradox’. In 1935, Einstein, Podolsky and Rosen devised the
‘EPR argument’ to show that quantum mechanics is incomplete. In 1964 Bell strengthened this
argument to the ‘EPRB theorem’, namely that quantum mechanics cannot be reconciled with any
model based on the axioms of local realism. The realist axioms are precisely those which say that, the
quantities p(A), Py(a, A) and Py(b, A) are all positive. Of course it is possible to avoid the consequences
of the EPRB theorem by relaxing the requirement that probabilities be non-negative, but this amounts
to abandoning, or at least redefining, ‘realism’. This is in no sense ‘a resolution of the EPR paradox’.

Einstein has already pointed out {152] that, if the world really were nonlocal in the way quantum
theory depicts it, then we would not be able to do any science. In my opinion this judgement remains as
valid as ever, and I and my colleagues have proved, in a series of publications {96, 97, 153], that claims
to have observed this nonlocality experimentally are without foundation. I would say the same applies
to any nonrealist features of quantum theory, such as negative probabilities. No meaningful system of
hypothesis testing is possible once we admit such entities. For an early statement of mine on negative
probabilities see my paper on Random Electrodynamics [154]. That negative probabilities seem to be an
inescapable feature of all quantum theories is, for me, precisely the point at which the inadequacy of
those theories becomes manifest” [155].

N.D. Mermin: “My feelings about negative probability are rather negative. I agree that they provide
a formal ‘solution’ to the EPR paradox [...but] an explanation in terms of negative probabilities
doesn’t illuminate anything for me” [156).

P. Meystre: ““1 would like to suggest that, maybe, none of these ‘self-evident truths’ [locality, reality,
and the use of inductive inference] is wrong. In the derivation of Bell's theorem, there was a fourth
hypothesis, which one mostly doesn’t pay much attention to, namely the fact that probabilities are
positive and bounded by 1” [157].
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J.L. Park: “In anty physical theory which assigns probabilities to possible measurement results, use of
the construct ensemble is unavoidable, simply because probability in physics means relative frequency”

(158).

H. Paul: "] do not believe that negative probabilities actually offer a solution to the EPR problem.
In my opinion, only the fundamentally non-classical character of quantum theory becomes obvious by
this issue, as one learns from the Wigner distribution. Another nice example is provided by Glauber's
P-representation of a radiation-field. There exists a complete equivalence between classical and
quantum mechanical description, if the radiation field has a P-representation, i.e. if its density operator
can be written as p = [ P(a)|a)a]d’a, where a denotes a Glauber state and the integration extends
over the whole complex plane. (For the sake of simplicity only the single-mode case is considered.) The
mentioned equivalence reads:

(Flg”, g}y =t{F(q", g)p} = [ P(a)F(a", a) da.

Here, F is an operator of the radiation-field, more precisely speaking, a normally ordered function of
the photon creation and photon annihilation operators g and g, respectively. F(a* a) is the
corresponding classical function, in which ¢ is substituted by ¢* and g by . In most cases P(«) is
positive definite and, hence, can be interpreted as a classical distribution function. But there are cases in
which P{a) becomes negative in small « domains. Then the above interpretation can no longer be
maintained. However, one might say, also in this case classical physics succeeds to reproduce the
quantum mechanical result, but only by means of an unallowed trick, namely by allowing for negative

probabilities” {159}.

I. Pitowsky: “We can conceive of mathematical situations where a natural concept of probability
emerges which is not captured by the usual (Kolmogorov) axioms of probability theory. What I have in
mind is not a radical extension of probability (such as introducing negative or complex probability
values) but rather a conservative extension [...]” [106].

K.R. Popper: “We thus arrive at the propensity interpretation of probability. It differs from the
purely statistical or frequency interpretation only in this-that it considers the probability as a
characteristic property of the experimental arrangement rather than as a property of a sequence.

The main point of this change is that we now take as fundamental the probability of the result of a
single experiment, with respect to its conditions, rather than the frequency of results in a sequence of
experiments” [116].

G. Richter: “Negative probabilities have been well-known since the thirties. They occur if, in the
course of a statistical interpretation of quantum mechanics, e.g., physical quantities of a system in a
state with sharp energy are treated as ensemble properties of a set of individual systems, which populate
states with less sharp energy. It seems hardly possible to attach an exact physical meaning to such a
description. After creation of quantum mechanics so much has been written about this question, that it
seems appropriate, first of all to review the existing literature; it will be seen then, that a lot already has
been reflected — as is stated in the introduction” [160].

A. Salam plainly and concisely answered (the remark: “Although 1 expect that your attitude towards
negative probabilities is very negative .. .”}: “Correct, Abdus Salam” [161].
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E. Santos: “‘Probabilities must be identified with ratios between number of successes and number of
trials, and this ratio is always non-negative.

There are, however, two instances where negative pseudoprobabilities may be useful. The first one is
in formal manipulations, where one uses mathematical techniques similar to those used in probability
theory which may be valid even for negative functions. A typical example is the use of the Wigner
function (but without attributing to it the meaning of a probability density).

Another instance is the use of expectation values incorrectly called probabilities. For example, it is
usually stated that the density of particles is the number of particles per unit volume, but this is
incorrect from a mathematical point of view because the limit

lim AW/AV

AV

does not exist as An is an integer. The correct definition is the expectation value of the number of
particles per unit volume. Now, if one is not interested in the number of particles but, say, in the electric
charge per unit volume, this can be negative if we have two kinds of particles (e.g., electrons and
positrons). In this way, it might be possible to give a physical meaning to the Wigner function as the
expectation number of electrons minus positrons per unit volume™ [162].

F. Selleri: ““1 have made a point of honor for me to foliow good sense in research, since I saw crazy
ideas going around in elementary particle physics: from this point of view I should conclude that
negative probabilities do not make sense. However, 1 happen to be very interested in the EPR paradox
and I am convinced that all possible solutions of it are necessarily far fetched. One is that quantum
mechanics is not correct. Another one is that there is not a separable reality in the world, in spite of the
fact that all interactions are known to decrease with distance. A third one is [that] with negative
probabilities. A fourth one is the propagation of signals towards the past. And so on. This means that
physics is reaching a hot point from which great changes could take place. |...] There is a point which I
would like to make. If one has the state vector |n) for a pair of correlated particles S and T and if {}y;)}
and {|¢;)} are two orthonormal and complete sets of vectors for S and T, respectively, one can write

In}= 2 Cr'jwfi)l‘Pj) .
L}
This is obvious. However von Neumann could prove that {|)} and {{¢;)} can always be chosen in such

a way that

) = 2 Vol erd

with V w, = 0. This is less obvious, but true. Given then the operators A(a), B(b) corresponding to two
dichotomic observables (values £1), one for S, the other for T, one has from the definition of the

correlation function
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P(a, b= (n[A(a)® B(b)n)
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where p(l, I') = V w0, and
1= A(g [ =WlA@w)s1, =1=sB(b L ")={e|Bb)er)=1.

Expression (x) is just like a two-hidden-variable expression
P(a, b)= j dA dA’ polA, AVA(a, A, ADB(b, A, A")

with an important difference, that
jd,{ dA’ po(A, V)= 1,

while

Sl =S VoVar =2 o+ > VeoVae, =1+ 3 Vo Ve >1.
Lr i

Lr sl I

Thus, one could say that quantum mechanics differs from hidden variables theory simply because it
implies the existence of probabilities larger than unity; but this is very near to negative probabilities as
also [109] shows. This seems to be the formal origin of the violations of Bell's inequality, but I am not
sure if it is physically meaningful” {163].

A. Shimony: “1 am negative about negative probability. There are two generic concepts of
probability, One is epistemic, and includes personal probability and logical probability. In both cases it
is possible to give a fundamental proof for the non-negativeness of probability, once reasonable
assumptions are made, The other is ontic, which includes the frequency and the propensity concepts —
the latter postulating that probability makes sense in an individual case, but that the evidence for a
propensity comes from an ensemble. Because of the role of frequencies for both versions of ontic
probability, non-negativeness is essential.

I do believe that quantum mechanics makes us change our fundamental concepts. It makes us
introduce objective indefiniteness and entanglement. My main worry about negative probabilities is that
it uses a rather formal device to shield us from facing the radical metaphysical consequences of quantum
mechanics” [164].

A, Siegel: “I have no a priori objection to negative probabilities. As with negative energy solutions
of the Dirac equation, or the concept of neutrinos, they will have to wait for their acceptance until they
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are proved useful or convenient, or turn out to be ‘real’. ‘Realness’ in science is of course a relative
concept. A purely mental construct can gradually acquire ‘reality’ if it explains an experimental result
not easily explained otherwise.

One circumstance under which I would accept negative probabilities would be if their use led to
some important simplification in probability theory or calculation, or to correct results not otherwise
readily obtainable. I do not know of any such achievements.

The formulation of probability theory now dominant-of events and their frequencies of
occurrence —of course contains no room for negative probabilities. It 1s easy to see, for example, that if
negative probabilities were permitted, the expectation values of essentially positive quantities (the
squares of numbers, for example) could have negative values; to accept this we would have to redefine
our concept of expectation value.

Until some good reason turns up to compensate us adequately for such violations of intuition, any
formulation of negative probabilities will be useful only in highly restncted circumstances.

In this connection the ‘Wigner distribution’ {12] comes to mind. With this formalism, one avoids the
awkwardness of probability amplitudes in quantum mechanical caiculations and gains an illusion of
having an orthodox probability distribution in p and ¢. This probability distribution, of course, takes on
negative values for certain sets in p, ¢ space. The use of the Wigner distribution is hemmed in by a set
of rules and regulations designed to guarantee agreement with orthodox quantum mechanics. These
rules prevent any unphysical consequences. In particular, the above-mentioned negative expectation
values for positive observables cannot occur under them. In the case of the Wigner distnibution, one is
simply trading one theoretical fiction —the probability amplitude ~ for another, the negative probability.
Since the negative probability is not permitted to have any physical consequences as such, there is no
reason to object to its presence, and I see no reason to condemn the use of the Wigner distribution if it
makes life simpler in any situation. The equivalence of the Wigner distribution to the wave function
makes it clear that the properly regulated use of ‘ensembles’ containing negative probabilities 1s no
more objectionable, in principle, than the use of probability amplitudes. But this is, of course, not the
same as an endorsement of negative probabilities per se” [165].

P. Suppes: “The joint ‘distribution’ derived by the methods of Wigner [12] and Moyal [18] is not a
genuine probability distribution at all. If this ‘distribution’ is accepted as the most reasonable one
possible, then we may infer a stronger result than the Heisenberg uncertainty principle, namely, not
only are position and momentum not precisely measureable simultaneously, they are not stmultaneously
measurable at all. [...] Koopman [166] is concerned to argue that quantum mechanics provides no real
evidence for changing the foundations of probability. And with this I am in complete agreement, for the
simple reason that there is, so far as I know, no substantial argument for making any such changes. The
use of functions like the improper joint densities [. . .] is for purposes of calculation. In no sense do they
help make a case for changing the basic laws of probability. Far from it, rather it may be argued that we
can use their very improperness as a key to inferring what is not possible to measure experimentally”

[16].

H.J. Treder: “In particular Heisenberg has dealt with the meaning of ‘negative probabilities’ in
Dirac’s sense. At the time he conceived the idea that measurements beyond the elementary length
become senseless, because they would imply negative probabilities for the measurement resuits.
Certainly negative probabilities are not involved in the Einstein-Podolsky-Rosen paradox. As I
recently [167-169] stated for another time, Bohr’s arguments are absolutely conclusive in this context;
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also experimentally situations have been realized meanwhile, which claim the EPR paradox to be
impossible (..., die das EPR-Paradoxon fir unméglich erkldren)” [170].

V.S. Varadarajan: “The Kolmogorov axioms are precise, concise and lead to an extensive theory; the
pure mathematician asks for nothing more. However there remains the problem of understanding the
phenomenological background to these axioms. [...] it is found that when thus formulated {as a
Boolean o-algebra], the theory of probability does not include the situations that arise in quantum

physics” [171].

C.F. von Weizsdcker: *“An indefinite measure on the Hilbert space has been considered frequently
and 1s used concretely, e.g., in quantum electrodynamics by the method of Bleuler and Gupta; also by
Heisenberg’s spinor-field theory. But since it has turned out impossible, to conceive negative probability
in a visualizable sense, the indefinite measure was no longer understood as probability. I do not think
that fundamental difficulties have appeared in this context. If probability is defined, e.g., as prediction of
a relative frequency, clearly it has to be non-negative” [172].

E.P. Wigner: “I fully agree that the concept of a negative probability is in contradiction to the usual
definition of the probability concept. However, other quantities from which an actual probability can be
calculated, are often called ‘probabilities’ ”* {173].

H.D. Zenh: “I think that negative probabilities do not explain anything. On the contrary the
necessary negativity shows that the intended explanation fails. In my opimon probabilities can only
make sense if interpreted as relative frequencies. Negative frequencies, however, can have formal
meaning only (as numbers in calculations), and, therefore, do prevent an interpretation™ [174].

LS. Zlatev: “Here we leave open the question about the possible physical picture which leads to
quasidistnibutions. Let us adduce just a few arguments which prove eloquently that quasidistnibutions
are closely connected with a classical probability treatment. This connection lies in the fact that, if they
are formally considered as distributions, one can follow a standard procedure and get expressions that
not only allow but also require an interpretation as probability distributions. [...] a clear physical
picture should be sought behind the quasidistributions which themselves may be devoid of a physical
meaning” [175].

6. Notes

This chapter continues the previous one in that its contents was written independently of (but
destined to appear in) this review. It differs from chapter 5 in that the contributions give a more detailed
and elaborate account of some special aspects connected with the subject under discussion.

The first note, written by G. Ludwig, examines the physical meaning of negative probabilities from
the conceptual point of view, discussing the concept of axioms in physics in a more subtle way than it
was applied in chapter 2.

The second note, written by C. Dewdney et al., contains a concise account of the problem of negative
probabilities in connection with guantum electrodynamics — touched in section 3.2~ with special respect
to the causal stochastic interpretation invented by its authors and capable of avoiding negative
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probabilities under most circumstances. This topic is also discussed by the following note by N. Cufaro
Petroni treating the consequences implied by the use of the Feynman and Gell-Mann equation and
presenting an alternative interpretation of the resulting non-positive conserved densities.

This chapter is concluded with notes by M.S. Bartlett and E.T. Jaynes, presenting some examples
and considering the topic from an open-minded pragmatic point of view.

6.1. Have negative probabilities a physical meaning? (G. Ludwig)

The discussions concerning physical concepts often suffer from using the same words for very
different concepts. Not to distinguish between theoretical auxiliary concepts and basic concepts is a
second source of misunderstandings. Here basic concepts mean such concepts which are used to
compare a theory with experiments. Therefore, it is necessary first to classify the various concepts.

6.1.1. Classification of physical concepts
There must be a possibility of comparing a physical theory with experiments; otherwise the

theoretical framework cannot claim to be a “physical” theory, since it will be invariant against any
experience, Physical concepts are necessary in order to compare a theory with experiments, concepts by
means of which the experimental results can be described; we say, by means of which the “obser-
vational report” can be formulated (see [176, 177] and [178, chapter XIII]). We will call these concepts
the basic concepts of the theory.

The meaning of these concepts is not explained by the theory under consideration. It must be
explained before formulating the theory; it may be explained by other yet known theories, which we
will call “pretheories” (relative to the theory under consideration). For the concept of pretheory see
also [176-178].

We say that those facts which can be described by the basic concepts, can be “directly’” measured.
That many other things can aiso be measured with the help of the theory is very well known. What,
however, is the meaning of this paraphrase: with the help of the theory?

A physical theory does not merely consist of a description of the observational report applying the
basic concepts; in addition, it contains as an essential part a formulation of “physical laws”. These laws
and the basic concepts allow for “a definition of new concepts” named ‘“‘theoretic concepts”. The
physical meaning of these concepts is given by the meaning of the basic concepts and the “definitions”.
These definitions also furnish methods how to measure *“indirectly” facts which can be descnbed by
these new theoretic concepts (see {176] and [178, chapter XIII]).

In addition to the basic and theoretic concepts described above, many theories include a third kind of
concepts, namely those which will be called “theoretic auxiliary concepts”. The following example may
serve to illuminate this point. With the help of Boltzmann’s collision equation we may deduce the
Navier-Stokes equations. For this theory we can use the velocity field, the mass density field, and the
temperature field as the basic concepts of the theory. A lot of different theoretic concepts can be
deduced from these basic concepts, e.g., the heat transfer. The auxiliary concept of atoms, however,
cannot be derived. Exactly because of this fact, the positivists objected to the “atomic hypothesis”.

Nowadays nobody will forbid the introduction of theoretic auxiliary concepts. On the contrary, if a
new theory is lacking, all kinds of ideas, formulations, concepts, even crazy ones and contradictions, are
permitted as an intermediate phase of the development towards a sufficient theory. Nevertheless, if a
theory has taken a valid form, then there remains the task to decide to which extent the theoretic
auxiliary concepts can be replaced by theoretic concepts, i.e., to which extent the auxiliary concepts are
“real”
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Concerning the “atomic hypothesis” we know that the development of physics has offered new
experimental results by investigating the interactions of macrosystems, which made it possible to
develop a theory of these interactions. This theory entails atoms as theoretic concepts and, in this sense,
as real facts (see [178]).

This classification, briefly outlined above, can be replaced by a rigorous treatment introducing a form
of theory which we called an “axiomatic basis”. As these chains of reasoning would exceed the space of
this note, the interested reader may be referred to [176, 179) and [178, chapter XIIl]. It should be
mentioned, however, that the theoretic auxiliary concepts appear in the mathematical part of an
axiomatic basis in axioms of the form: “there are such ..., that ...”; e.g., “‘there are such entities,
called atoms which emit light, and the light can be measured directly by spectral devices”.

In the philosophy of science we sometimes find the opinion that modern theories cannot be
formulated without theoretic auxiliary concepts. On the contrary I have formulated the task of
obtaining every physical theory in a form {ree of theoretic auxiliary concepts. I have shown that this is
possible for quantum mechanics {178]. Such a form of theory is best suited to investigate all possible
new theoretic concepts. Concerning quantum mechanics it is possible in this way to recover the
microsystems and their structure as theoretic and, therefore, real concepts [178].

In the development of physics it is a very essential step to realize that some concepts, originally
introduced as theoretic auxiliary concepts, can be deduced as theoretic and, hence, real concepts,

In this modern classification of physical concepts the old controversy between Galilei and the church
was nothing else than the question whether the motion of the planets around the sun 1s only a theoretic
auxiliary concept or a theoretic, i.e., a real concept. While the notions of Copernicus rather had the
character of auxiliary concepts, Galilei, due to the advanced state of experimental results (i.e. a more
comprehensive domain of applications) was right in declaring these notions to be realistic concepts, a
point of view which later on was confirmed by the theories of Newton and Einstein.

6.1.2. Probability as a basic concept
The most important concept of probability in physics is a basic concept, i.e., a concept by which a
theory can be compared with experiments: Probability as a mathematical picture is to be compared with

reproducible frequencies occurring in experiments.

A general mathematical structure covering all cases in physics which involve experimental frequen-
cies in comparison with a mathematical formalism is given in {176, 178, 180]. The main concepts are
experimental “selection procedures”, which can be treated formally by a set S of subsets of a set M.
This set S fulfills the following axioms:

(3, bES) A (aCh)D (B\a€ES), (6.1)
(bES)D(@NLES). (6.2)

Here A is the logical “‘and”, 2 is the logical implication, and b\a is the relative complement of a in 5.
A set of statistical selection procedures is determined by the additional axiom: There is a real function

p: T={(a,b)|(a, bES) A (@D b) A (a#B}D]0,1]
satisfying the following conditions:

(2, a2€8) A {a;Na=8) A (a;Ua €S p(ayUay, a)) tpla,Uay, a)=1, (6.3)
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(ay, a» a3 E S)alaiDaDas) r(a# ﬁ)ép(an as;) = play, az)P(azs as), (6.4)
(@, € S) A (a; 2D i #0)> play, a;) # 0. 6.5)

pla, b) is called the probability of the selection procedure b relative to a. The real number p shall be
compared with reproducible frequencies. That means, if among a number N of trials selected according
to a there is a number N, of trials satisfying also the finer selection procedure b, then the frequency
N./N has to be approximately equal to p; the precision of the approximation being determined by the
degree of reproducibility of the frequencies.

It is obvious that for this basic concept the axiom 0= p =1 is trivial since 0 = N, /N =1. Also the
other axioms (6.1)-(6.5) are not refutable by experience since they are prescriptions for the “correct”
way of performing experiments; they are “norms”. If an experiment 1s 1n contradiction to one of these
axioms, then it has to be eliminated from the observational report; it does not belong to the domain of
application (the “fundamental domain™) of the theory. The same holds for such experiments where the
frequencies are not approximately reproducible. If, for instance, we repeat an experiment only ten
times, then the reproducibility of the frequencies is not ascertained and, therefore, the experiment 1§ not
useful for a comparison with this theory.

A very well-known objection to this basic concept of probability is that probability itself can be
compared with frequencies only with a certain probability. This objection is wrong. If the number N of
repetitions of an experiment is Jarge enough, it is possible to obtain reproducibility of frequencies as
precisely as reproducibility of trajectories in point mechanics, for instance. If a physicist would get a
frequency strongly deviating from all other reproducible frequencies in some experiment, he would not
ascribe this to a very exceptional case but would look for “disturbances’ assuming that the experiment
had not been performed “correctly” (with respect to the issue under investigation).

This basic concept of probability is not in contradiction with the introduction of a subjective weight
for special irreproducible experiments as tests of a theory. If, for instance, only insufficiently small series
of experiments are available, they may be attributed with weights in order to compensate for the
uncertainty resulting from these series of experiments performed as tests for the (objective) basic
concept of probability. These subjective weights, also called subjective probabilities, however, will not
be discussed further, since I have never seen anyone introducing negative weights.

The basic concept of probability, characterized by the axioms (6.1)-(6.5), is the same for all physical
theories, classical theories as well as quantum mechanics (see [178]). This concept defines the method of
comparing theory and experiment and will not be changed in the future. Only the idealization due to
which p is a mapping T%>[0, 1] can be changed by introducing finite imprecision sets (see [176, 181}).
The only empirical contents of the axioms (6.1)-(6.5) is that experiments fulfilling these axioms as norms
are possible.

In the same way the basic concept of a (pseudo-) Euclidian geometry in the laboratories has never
been changed. On the contrary this basic concept is necessary to interpret the non-(pseudo-) Euclidian
ceometry of Einstein’s gravitation theory.

6.1.3. Probability as a theoretic real concept

In many physical theories the basic concept of probability is extended to other concepts than
“selection procedures”, i.e., there are new concepts deduced from the basic concepts. The inter-
pretation of these theoretic concepts is given by the due deduction from the basic, already interpreted

concepts (see section 6.1.1).
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An example for such a deduced concept of probability is delivered by quantum mechanics. The
deduction is presented in [178] and [180]. We get tr(WE) as the probability to register the “decision
effect” E on systems in an “‘ensemble” (also denoted “state””) which is represented by the self-adjoint
operator W in a Hilbert space with 0= W and tr(W) = 1; E is a projection operator. “Decision effect”
and “ensemble” (“state’) are new deduced concepts.

In this form of quantum mechanics (i.e., in the axiomatic basis given in [178] and [180]) also the
Wigner distribution function on the phase space I' can be deduced. This measure on I' can take
negative values. The deduction shows, however, that the values of this measure are not the values p of
the basic probabilities. Therefore, I propose not to use the same notation “probability” for this measure
but to maintain the notation “measure”. The physical interpretation of this measure is (at least as fong
as we take quantum mechanics on said axiomatic basis) supplied by the deduction. Signed measures as
the Wigner measure are very well known in mathematics and represent nothing extraordinary. Only a
new interpretation deviating from that deduced from the axiomatic basis would be extraordinary. Such
a new interpretation would be possible only by introducing additional theoretic auxiliary concepts in
quantum mechanics.

6.1.4. Probability as a theoretic auxiliary concept

A completely different concept of probability is the theoretic auxiliary one. Auxiliary concepts are
primarily imagined concepts involving no direct relation to experiments. Since one can imagine
whatever one likes, no constraints are to be imposed on the imagined concepts, except the following
two: the imagined concepts

(1) must not be self-contradictory,
(2) must not show up any contradiction with experience.

We may, for instance, add theoretic auxiliary concepts to quantum mechanics (as founded in
{178, 180]). Then condition (2) requires that the auxiliary concepts are not in contradiction with
quantum mechanics (at least with very high precision [176, 177, 181]) since quantum mechanics is a very
precise theory in its fundamental domain, i.e., the domain of application. Such a theoretic auxiliary
concept could consist of a stochastic model with an imagined “probability structure”. Since this
probability structure is only an imagined notion, one may introduce also negative probabilities if one
wants to do so. Imagined concepts are free concepts. It is merely a matter of taste, what concepts are
preferred.

But have these imagined concepts any physical meaning? That is the decisive question.

It is by no means decisive that someone believes in the reality of additional theoretic auxiliary
concepts (e.g., in probability as something like a propensity in the real world), since such a believer
cannot convince a non-believer as long as decisive experiments are lacking, or, to put it in other words,
as long as the theoretic auxiliary concepts cannot be replaced by theoretic (i.e., physically real)
concepts.

It is alright that theories involving additional theoretic auxiliary concepts are called hidden variables
theories. In this sense also these auxiliary probability concepts deal with hidden probabilities. To discuss
whether these hidden concepts have a realistic meaning is fruitless.

The historical development of the atomic hypothesis to a realistic physical theory serves as a good
example to demonstrate what is necessary for a realistic interpretation of present hidden variables
theories. Aerodynamics alone was not suited to demonstrate the reality of atoms. It was necessary
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to extend the domain of applications beyond that of aerodynamics. The Brownian motion is an example
for such new applications of an atomistic theory.

A hidden variables model for quantum mechanics (perhaps including negative probabilities) has to
supply with high precision the same results in the fundamental domain of quantum mechanics and has
to go beyond this domain of applications if this theory should be more than only an imagination. It has
to lead us to new regions of applications, to experiments which do not belong to the fundamental
domain of quantum mechanics. Then we will have a more comprehensive theory than quantum
mechanics and on an axiomatic basis of this new theory we can decide which of the concepts at first
introduced as auxiliary are real.

By an exactly equivalent procedure it was possible to show that the originally introduced auxiliary
concepts of atoms are real concepts. An axiomatic basis of quantum mechanics demonstrates this [178].
My objection against most of the imagined models for quantum mechanics is that these are “pure”
imaginations, 1.e., they give no extension of the fundamental domain of quantum mechanics. Without an
extension of the fundamental domain (i.e., the domain of application), however, the introduced
auxiliary concepts have no physical meaning.

6.2. Negative probabilities and second-order wave equations (C. Dewdney, P.R. Holland, A. Kyprianidis
and J.P. Vigier)

The causal Stochastic Interpretation of Quantum Mechanics (SIQM) provides, by introducing the
notion of a real trajectory in spacetime for quantum particles acted on by the quantum potential
[182-184], an imagery which renders intelligible quantum processes in a way that the Copenhagen
interpretation (CIQM) cannot do. In this note we discuss the interpretative problem raised by
relativistic quantum mechanics, namely, the mathematical existence of negative probability density and
negative energy solutions to second-order wave equations, which, as in all other quantum processes, we
argue can only be coherently treated by assuming the real physical existence of paths. Indeed, this is an
important issue in the SIQM since the very existence of paths in spacetime implies positive probability
distributions and, moreover, in accordance with Einstein’s basic principles, all material drift motions
should be time-like and propagate positive energy forward in time.

It is sometimes erroneously stated that the only way out of the problem of negative probability
solutions to the Klein-Gordon (KG) equation is to reject the first quantized formalism in favour of
second quantization. In fact, this is not so and it is possible to show by a Hamiltonian method due to
Feshbach and Villars [185, 186] that for certain well-behaved external potentials the KG solutions may
be split into positive- and negative energy parts associated, respectively, with positive and negative
probability.

To see this, let us start from the charged scalar wave equation

(D.D*-m*y =0, (6.6)

where D, = 3, —ieA,, e and m are the charge and mass, respectively, of the particle moving in the
external field A,, the metric has the signature (—+++) and the units are chosen so that i=c¢= 1.
Equation (6.6) may be expressed in the form

i¥ = H(e)V¥, 6.7)

where ¥ is a two-component wave function and H is 2 2X 2 matrix Hamiltonian. One can show that for
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the inner product {®, ¥} = [ ¢*o ¥ d°x = [ j° &®x where the conserved current is
=y G 3¢ -ieA*) v 6.8)

(* means that 3* is to be applied to the left and right wave functions in turn), the mean value of H in
any state is positive: (¥, H¥)>0. It follows that, with H¥ = E¥, the space of solutions of eq. (6.7)
splits into two disjoint subsets: {E>0,(¥, ¥)>0} and {E<0,(¥, ¥)<0}. The latter subset of
solutions may be mapped onto positive-energy, positive-probability antiparticle solutions by means of
the charge conjugation, ¥(x)~ ¥(x)= o, ¥*(x), since from eq. (6.7), H(-e)¥*=—-E¥* and j5= —jo.

Thus, within the CIQM, one can show formally how, for stationary states, the signs of energy and
integrated probability are correlated and that negative probability solutions may be physically inter-
preted, as antiparticles running backwards in time. Note though that the local values of probability
density may become negative and that such motions remain uninterpreted. We shall now show {75] how
in the causal interpretation we are able to prove a stronger result than that just given, and in a way
which is technically easier and physically clearer. Our approach extends some brief remarks of de
Broglie {187] concerning this problem.

Substituting ¢ = exp(P +iS), where P, § are real scalars, in (6.6) yields the Hamilton-Jacobi and
conservation equations:

(3“S—eA*)3.S—eA,) = —M*, (6.9)
3.j* =0, (6.10)

where M?=m*-[0P-3*P3,P is de Broglie’s variable rest mass and j* = 2?7 (3“5 - eA*) is the
current (6.8).

The assumption of the SIQM is that the KG particle has a drift velocity u* = dx*/d+ where 7 is the
proper time along paths parallel to j*. In terms of the momentum P* = 3“S — eA*, u* = M~'P* with
u,u* = ~1, from eq. (6.9).

Defining a scalar density p = Me** we may express eq. (6.10) in the form [188)

Dp/Dr=3,(pu*)=0.

(Note that D/D is an average derivative in a volume element [188).) From this it follows that along a
line of flow

wM e =K (6.11)

where @ is a volume element of fluid, and X is a real or pure imaginary constant (which however varies
from one drift line to another). If on an initial space-like surface the motion is time-like then from eq.
(6.9) M is real and so is K. Now, in the rest frame, u®E = M where the particle energy E = §°S — eA°.
It follows that if initially the motion is future pointing with E >0 then M > 0 which implies K >0 (since
e*® >0 and w > 0 always} and we see from eq. (6.11) that the time-like and positive-energy character of
the motion is preserved all along a trajectory. Moreover, the sign of the probability density j° =2 e*E
is correlated with the sign of E and will remain positive along a line of flow if the initial motion has

EF>0.
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Identical arguments lead to an association of past pointing negative-energy motions with negative
probability densities and this coupling is preserved along 2 line of fiow if initially E <0. Such solutions
may be mapped onto positive-energy, positive-probability-density antiparticle solutions by the charge
conjugation ¢ = y*.

These results, proved in the rest frame, evidently remain valid under orthochronous Lorentz
transformations.

We have thus succeeded in separating the solutions to the causal KG equation into two disjoint
subsets, {E <0, j°<0} and {E>0, /°>0}, and shown that the causal laws of motion prevent the
development of one type of solution into the other. This reasoning holds for all external fields A, which
maintain the time-likeness of the momentum P*. Should the external potential be strong enough pair
creation may occur and the separation of the solutions breaks down. In addition, we assume that the
initial motion is associated with a wave packet so that the initial total probability is unity. This is an
important point since de Broglie [183] has shown how with a plane KG wave incident on a partiaily
reflecting mirror superluminal motions apparently occur in the region of the Wiener fringes. It seems
that these unphysical motions are a consequence of the excessive abstraction implied by the use of plane
waves.

It is emphasized that we have only been able to overcome the difficulty of negative probabilities by
assuming that particles possess well-defined spacetime trajectories, and that they are subject to action
by the quantum potential (contained in M). With these assumptions, we can immediately associate the
sign of particle energy with the sign of local probability density, an energy, moreover, which is
well-defined and continuously variable for all possible particle motions (and not just for stationary
states). The initial character of these motions is preserved for ali time by the Hamilton-Jacobi and
conservation equations.

If one accepts that the quantum mechanical formalism is complete then one must accept Feynman’s
statement [11] that there is no way of eliminating negative probabilities from the intermediate stages of,
for example, an interference calculation. The problem of their physical interpretation then cannot be
avoided.

However, if one accepts the introduction of trajectories in the description, then our demonstration
above shows how the positive character of probability is preserved at every stage of the calculation. The
association of positive probabilities with positive energy is of course in accordance with the principles of
relativity theory.

We note finally that although our discussion here has been confined to a single KG particle, our
method may be applied to the elimination of negative probabilities from the theory of the many-body
KG system [73), the spin-1 Proca equation [72], and the spin-} Feynman-Gell-Mann equation {74].

6.3. Non-positive conserved densities in relativistic quantum mechanics (N. Cufaro Petroni)
In a series of recent papers [70, 189, 190] the author proposed a theory of spin 5 particles based on a

second-order wave equation: the so-called 4-component Feynman and Gell-Mann equation [69] that, in
the presence of an external electromagnetic field A,, by rewriting eq. (3.52) takes the following form

(Ai=c¢c=1):
[(3, ~ eA)(id* ~ eA*)—3eF, 0" —~m*|y=0. 6.12)

Beyond a series of weil-known remarks [69] about the use of (6.12), the main reasons that induced the
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authors to adopt it instead of the Dirac equation
(i —eA—my=0 (6.13)

are the following:

(a) if we are looking for a causal interpretation of the quantum equations, a classical analogy can be
found only starting from a second-order differential equation;

(b) if we want to interpret the appearance of 2 Quantum Potential [70, 182, 189-193] in the classical
equations as the global effect of a stochastic process induced on the particle by a subquantum medium,
namely, the so-called Dirac aether {65,184, 194-196]), we must use only second-order differential
equations [197-201];

(c) both the preceding steps are essential in a coherent causal physical interpretation {202-204] of the
non-local quantum effects suggested by the experiments {205-207] on the EPR paradox (cf. section 3.3).

Let us start with a discussion of the relations between the 4-spinors ¢ solutions of {(6.12) and those
solutions of (6.13). From this standpoint we can define the following sets:

F={lI-PW=0, D-={lU=B)y=0}, (6.14)

with
D, =2 (.- eA,). (6.15)

Of course & is the set of the solutions of (6.12) and 9. the set of the solutions of (6.13). Moreover, to
show what 9. is, the following propositions can be proved (note that the meaning of 3’ is “such that™):

P, 2.0NP.={y=0, P, 9,UD CF,
Py V., €D.3Y_ED.5 ¢ = ysih_ .

By recalling what vys represents for the symmetry operations on spinors [29], we can conclude that &,
contains the antiparticle wave functions moving backward in space-time and with the sign of energy
inverted with respect to the particle wave functions (solutions of the Dirac equation (6.13)) belonging to
9.. In a word we could say that % contains both particle and antiparticle solutions and we will show
now that it contains also all their superpositions. In fact it can be proved that

P VWEFIY €D, A . ED_D' Y=g+ ¥,

since it is very easy to see that, if € &, the spinors ¥. = 3(I = D)y, belonging to 9., are such that

Yot Y=y

The mixing of particles and antiparticles in the general solutions of (6.12) is particularly evident in
the form of the conserved density. It is well known [70, 189, 190] that eq. (6.12) can be deduced from the
scalar Lagrangian density

E= ({5~ eA)Wid — e AW — ming, (6.16)
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so that the conserved current density 1s
.1 - .
Ju =S Re[dy. (.4 — e A, (6.17)

that, of course, does not coincide with the Dirac current ¢y, ¢ unless the spinor ¢ is a solution of (6.13).
As a consequence the conserved density j, will not be positive definite. This feature, that is common to
all the relativistic second-order quantum equations, forbids a direct statistical interpretation of (6.12)
with the conserved density playing the role of a probability density,

The way out proposed by Dirac [29] was, in some sense, the restriction of the physically acceptable
states to the solutions of (6.13), so that the conserved density becomes 'y = 0. We will now analyze
another interpretation (12,66} of the appearance of non-positive densities: j, is not a probability
density, but an auxiliary function which obeys many relations we would expect from such a probability.
In fact it behaves like an average charge density where, for mixtures of particles and antiparticles,
“charge” must be understood in the widest sense, i.e., as a certain property which distinguishes between
particles and antiparticles which are identical to each other in all other respects (electric charge, baryon
number, etc.). In this sense we can calculate averages of physical observables exactly like in the ordinary
probability calculus but using a *“probability measure” which is not positive.

From this standpoint the connection between the non-positivity of j, and the mixing of particles and
antiparticles is better elucidated if we consider that in the preceding section it was settled that each
W € F is a superposition of ¢_ and ¢, namely, of a particle and ar antiparticle state. As a consequence,
we get from P, that

ju = Rel(fs + 4-)7. DY+ 4]
= Re[(117+ + J—)?’n (¢ + ’1&—)] (6.18)
= J—?’u‘a{’— = ll7+?’ulﬁ+ )

i.e., the conserved current j, is the difference of two Dirac-like conserved currents for particles and
antiparticles. Moreover,

jo=¢lv—yly., (6.19)

that means that the non-positive conserved density j, is always a difference of two positive Dirac
densities for particles and antiparticles. The result (6.19) is perfectly coherent with the point of view that
considers j, as a non-positive measure, because a classical result of the measure theory [208] states that
each real measure is the difference of two positive measures.

In conclusion we make the following remarks:

(1) All the theories ruled by a second-order relativistic wave equation will lead to the appearance of
non-positive conserved densities j.

(2) If we want to interpret directly this j, as a probability density we have two ways: (a) to restrict
ourselves to the solutions with positive definite density (Dirac equation; see also the contribution of
Dewdney et al. in section 6.2); (b) to generalize our idea of probability in order to physically interpret
its negative (and greater than one) values.
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(3) Before cutting off a part of solutions or modifying our conception probability, however, we
should explore the possibility, discussed in this note, that j, be interpreted not as a probability density
but as a difference of probability densities, so that it could be used as a non-positive real measure to
calculate averages of random vanables in a theory containing both particles and antiparticles.

6.4. Some aspects of negative probabilities (M.S. Bartlett)

I do not think my views on negative probability have changed much since my 1945 note [118). It may
perhaps be helpful to illustrate Eddington’s concept of an extraordinary random variable by citing the
error variance of a sample mean of n observations taken without replacement from a finite ‘universe’ of
N individuals. This is o*(1— n/N)/n, where o” is the variance of one observation, or equivalently
o?/n - o*/N, where the first term represents the usual formula when the universe is infinite, and the
second term is the negative correction term due to measuring the uncertainty from the mean of the
finite total unmiverse.

I found formula (3.46) intriguing, as it relates to my comments on the uncertainty principle in my
article “The Paradox of Probability in Physics’ {209]. There I noted (p. 39) that any spectral distribution
(in the orthodox sense used by physicists, communication engineers and statisticians, as a distribution of
‘frequencies’, where here is meant by ‘frequency’ reciprocal periodicity) cannot be defined at a time
instant ¢, only over an extended time.

The connection with a ‘spectral distribution’ of energy in quantum mechanics arises from the
quantum relation E = hy, where v is frequency in the above sense.

Feynman's example (section 3.4) of a probability in classical physics which is expressed as a sum of
terms, some of which are negative, is interesting; but such expressions are very familiar to those
working with random processes, and are merely a warning to physicists never to ascribe reality to the
individual terms of such expansions unless there is other justification. This is underlined with
Feynman'’s example, as there is an alternative expansion, also involving negative terms, obtained by the
‘method of images’. Thus compare my formula [210]

fi(x)= i (__";‘)“ cos l:(r-i- %)i"ﬂ exp[~L(r + 1P a20?ib?, (6.20)

which is equivalent to Feynman's, with my alternative formula {210]

fx)= > (=1)Qmo?t) " exp[=3(x - 2bs)/(c*])]. (6.21)
solw
The notion of ‘deletions’ mentioned by some discussants in connection with negative probability
seems consistent with my own example of ‘bias’ (cf. chapter 4) which can be positive or negative. A
special but simple case is the negative probability —¢ associated with any (positive) probability p by the
equation p =1 - g. Whereas a series of trials for p could be represented by a series of 0's except
where the occurrences were denoted by 1’s, the same series would consist of all 1’s (denoting certainty),
with deletions to 0’s representing the negative component —g.
It may be argued that what is meant by ‘separate existence’ can be a matter of convention even in
classical problems (not involving probability) with positive terms only.
Consider a communication engineer’s wave form such as WU L. Common-
sense tells us that this is a wave form involving a single frequency. But a standard spectral analysis



392 W. Miickenheim, A review of exiended probabilities

would be equivalent to expanding the wave form f(¢), say, in a Fourier series which is

(1) = f‘;_‘?- il é;?l cos[(2s+ 1)), (6.22)

if we take the period as 2, and the height of the wave form f(¢) from —a to a.

The spectrum of f(¢) will be proportional to the squares of the coefficients of the cosine terms, and
thus consist of a series of positive discrete lines, the dominant one at the basic frequency (s = 0), but
with higher harmonics at 5= 1,2, ... with amplitudes varying as 1/(2s + 1)>. Such a spectrum could be
readily demonstrated, but no one, as far as I know, would suggest in this example that the further
discrete lines in the spectrum imply separate real ‘entities’. (Notice in this example that any ambiguity in
interpretation from the spectrum alone is due to the loss of the phases; in the linear Fourier expansion
above, the phases are synchronous, this additional information allowing the recovery and recognition of
the original simple wave form.)

I have always regarded the ad hoc introduction of probability in quantum theory by Max Born, as an
interpretation of the wave function, as puzzling [209), so that, when I once asked Born about this, T was
surprised to hear that he saw no difficulties! However, other aspects than negative probability may
prove more important. For example, the paradox of Maxwell’s demon was resolved by Szilard in terms
of entropy and information (which is negatnive entropy). Attempts to derive quantum theory in terms of
the Brownian motion of particles have revealed both similarities and differences (see, for example my
article “The Paradox of Probability in Physics’ [209]; or, mere recently, {211]), and particles may have to
be regarded as special cases of Schrodinger’s event sequences.

6.5. Negative probability (E.T. Jaynes)

Since probabilities are defined, in our textbooks, to be non-negative, one would think that in a
well-run world there would never be any occasion to bring up the notion of negative probability. Yet in
our world the topic seems to arise more frequently than it should. We are led to ask whether the
seeming appearances of negative probability have only the nature of error or triviality; or whether they
are hinting that something useful might be gained by extending the notion of probability beyond the
domain of non-negative real numbers.

The possibility of such an extension cannot be dismissed a priori, particularly since there is good
historical precedent for such generalizations. Students today may be surprised to learn that the concept
of a negative number was a very difficult one, long regarded with suspicion. Even after the notion of
negative numbers had been assimilated, the square of a number seemed, by definition, to be an
inherently non-negative quantity. One can imagine the derision with which the idea was first received,
that there are numbers whose squares are negative. Traces of this still persist in the epithet “imaginary
number” which expresses exactly the initial attitude toward them.

With these lessons from history, we might approach the notion of negative probability with some
caution. Rather than greeting it with derision, we can raise it as a serious question whether generaliza-
tions to negative —or even complex —probabilities would be (1) possible without contradictions; (2)
useful in applications.

But that same caution restrains us from uncritical acceptance of such ideas until their consistency and
usefulness are shown. Not all such generalizations are valid; we have become, perforce, accustomed to
the idea of a Government owning 2 negative amount of money, but not to a man having a negative
number of pennies in his pocket.
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Others have noted various cases of seeming appearances of negative probability. As we should
expect, most are merely erroneous, trivial, or frivolous; but some, associated with quantum theory, are
indeed thought-provoking.

Eugene Wigner was my thesis advisor and I have been teaching Wigner distribution function theory
for many years. However, that the Copenhagen interpretation of the mathematics may sometimes
suggest negative probabilities does not bother or surprise me in the least; it merely confirms my
judgment that the Copenhagen interpretation is wrong. Eventually, the quantity now called “‘prob-
ability”” will turn out to have some other meaning.

To state the writer’s conclusions as they stand presently, we see no insuperable obstacle to such an
extension, but question whether a complete consistent extension could have any new content. By a
“complete consistent formalism” for probability theory we mean a set of rules for calculation with two
properties: (I) Given a set of propositions (A, B, C, ...}, it must show how to calculate not only their
probabilities, but also the probabilities of all the propositions that can be formed from them by the
logical operations of conjunction, disjunction, and negation. {II) Two methods of performing a
calculation, each permitted by the rules, must lead to the same result.

The theorems of R.T. Cox [212] obtain the conclusion that, if we represent degrees of plausibility by
real numbers, then the rules of conventional probability theory are uniquely determined, to within a
change of variables that does not affect their content, by these completeness and consistency require-
ments. Thus we conjecture that, given any probability formalisin using negative probabilities, if it 1s
complete and consistent in the above sense, then a change of variables will reduce it to the present
non-negative probability system.

For this and other reasons it 1s not clear how negative probabilities could lead to any useful results
that are not already available from conventional probability theory; i.e., if the negative probability
formalism led to different conclusions from the same information, then one could exhibit an in-
consistency. Negative probability seems to us usable as a calculational device, much as a bookkeeper
may pass through negative numbers in calculating a necessarily non-negative sum. Nevertheless, it
appears unnecessary for any purposes we can think of.

When such a radical innovation is proposed, the onus is not on you and me to either refute it or accept
it; but on the innovator to justify it by demonstrating that it has positive advantages not otherwise
attainable. We stand ready - indeed, eager — to see such demonstrations, which if they could be produced
would be not only stimulating, but of decisive importance for the future of probability theory (they
would also have to be rather subtle, finding some way to sidestep Cox’s results). But to date we have
not seen any such demonstrations substantive enough to make us alter the way we now teach
probability theory.

7. Discussion

A variety of examples presented in this review show that extended probabilities —though living a
wretched existence below the surface of orthodox physics —are more widely spread than is commonly
perceived. Here and there they rise to the surface and behave like *“true” probabilities in ali
respects — except one. Therefore it seems appropriate to speak of “‘extended probabilities™, suggesting
by this wording a close relationship to true probabilities which, after all, cannot be denied completely.
But 1t is certainly the minor task to find a suited nomenclature, and those who dislike this expression
may substitute it by quasi-, pseudo-, meta- or even para-probabilities, -densities or -measures.

The fundamental questions to be discussed (and in part already discussed in the foregoing chapters)
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may be listed in progressing order as follows: Are extended probabilities

(1) free of being self-contradictory?

(2) useful as a formal device in calculations?

(3) in agreement with experience?

(4) suited to improve the situation of present physics?

(5) enlarging the domain of application (in the sense of section 6.1)?

(6) a necessary concept of a theory which describes a maximum domain of reality by requiring a
minimum number of axioms?

(7) to be considered an essential aspect of reality?

As already stated in the introduction, no final answers can be given to most of these questions. To a
large extent this is due to the fact that their meaning depends strongly on the interpretation of the
notions used to formulate the questions, in particular that of the Iast one. Further, the answers will
depend on the choice of axioms to be maintained or eliminated.

What has to be understood, for example, by “an essential aspect of reality”? The spectrum of
answers reaches from “nothing” via “everything which is an unavoidable concept of a well-proved
theory” to “those things which can be touched by hands and seen by eyes™. But can reality be touched
and seen? Certainly it cannot. If understood in its ontologic sense, a final answer to guestion {7) can
never be obtained; and, if arguing physically, we cannot deal with reality itself but with concepts serving
to make a picture of reality. Physics is a method to gain more and more-detailed concepts reflecting
reality while permanently testing and, if necessary, changing previous ones. The aim is to map the
properties of reality as closely as possible~a task which in its last consequence is tantamount to
approaching the zero mark of the Kelvin scale in thermodynamics. Thus we are forced to adopt the
classical meaning of “an essential aspect of reality”, which may be defined by “everything which is a
necessary concept of a theory which describes a maximum domain of reality by requiring a minimum
number of axioms”. This makes questions (6) and (7) becoming synonymous, and it entails the
undesirable consequence that reality changes when a new theory creates new concepts. Unfortunately
no better definition is available, apart from pure ontological speculation. Hence, we will treat questions
(6) and (7) as expressing the same contents.

At present there is no evidence leading to an affirmative answer to these questions, but, on the other
hand, also a flat denial does not appear to express the adequate point of view with respect to the
non-absolute state of fundamental concepts of scientific theories, Substantial modifications of current
notions are to be expected and one may be aware (or afraid) of the possibility of this esoteric concept of
extended probability to become “an essential aspect of reality” in future —whatever then might be
understood by this phrase.

The Mdssbauer experiments referred to in section 3.2 may be considered as giving some indication
along this line. Of course, different explanations of the experimental results have been discussed.
Commonly the absorber is assumed to act like a resonant filter, reverberating in response to the
incident damped oscillation [51], but this picture is debatable on grounds of the high internal conversion
(@ = 8.26£0.19, [213]) of the 14.4 keV decay of *'Fe investigated. Also rescattering or similar processes
can be excluded due to experimental tests performed parallel to the original experiments [50]. After all,
even if the experimental evidence is questioned, there remains the fact that the theory derived from
quantum mechanics as well as from classical physics, namely eq. (3.46'), contains extended probabilities
without involving reverberating absorbers or analogous devices.

The same holds for the phase space distributions discussed in section 3.1. As long as the axiom of an
exactly defined reality is upheld, attributing simultaneously coordinate and momentum to each



W. Miickenheim, A review of extended probabilities 395

individual, extended probabilities will result. However, as shown in the framework of the harmonic
oscillator, they will appear only in connexion with rather drastic violations of the axiom of energy
conservation. Maintaining this axiom, energy as a substance of changeable but not destructible
character should not be created or annihilated. The violation of energy conservation possible during
short time intervals corresponding to the uncertainty relation (AE)Ar)=#/2, then rather might be
thought of as some kind of “‘energy oscillation™ in that sense that a system may transfer energy from
one time interval to another one which is not connected to the former; to put it in other words, we may
speculate on extended probabilities as accounting for deviations from the macroscopic arrow of time.

Applying the concept of quenching events examined in chapter 4, we have to face the situation that
events which have been detected and stored, say in a note book, will be erased later on [126]. This
concept exhibits even more unreasonable features, if applied to the EPR-Bohm experiment. An event
appearing with positive probability in one of the detectors together with a correlated one appearing
with negative probability in the other detector, will result in cancelling a (hopefully) preceding pair of
events of same character (identical or opposite results of spin measurements), which occurred with
entirely positive (or entirely negative) probability. No idea about the dimensions of the space-time
interval allowing for this kind of interference to occur can be given; and if it could, easily experiments
exceeding such a limit could be set up. The list of strange consequences can be continued, and the
model of quenching events is highly questionable and justified by nothing than the fact that other
attempts to explain how nature works in the EPR case suffer from the same doubtfulness. In no case
extended probabilities are compatible with the notion of local particles existing in an exactly defined
reality. On the other hand, the non-locality entailed is conceptually different from direct non-local
interactions sometimes considered as a resoiution of the EPR paradox, since the result of a measure-
ment (spin up or down as normal or quenching event) in fact does not depend on any distant circum-
stances. The non-locality involved rather may be compared to the non-locality of negative amounts of
money. The corresponding positive amount must be somewhere else (and the total sum of all money
cannot be negative). Thus the non-locality is shifted from the experimental situation to the level on
which the results are interpreted and compared.

Whether the problems appearing in quantum electrodynamics result from the “reality” of extended
probabilities is open to question. But it should be noted that numerous attempts have been made the
results of which were not capable of eliminating the pending problems. Each attempt suffers from
unreasonable features; also the most recent theory by the Vigier group (cf. section 6.2) does not avoid
extended probabilities in case of potentials which are strong enough to allow for pair creation.

Here we have gathered a collection of problems of present day physics, which may be treated by
using extended probabilities, and hence, be reduced to one single problem, namely the interpretation of
extended probabilities.

Nevertheless, there remain two essential points which prevent an affirmative answer to questions (6)
and (7): The first obstacle is caused by the lack of a reasonable interpretation. The second is due to the
fact that at present there is no consistent theory of extended probability, but only some formalisms
which allow for a reproduction of established results. On the other hand, theoretic concepts and
auxiliary theoretic concepts as defined by Ludwig (cf. section 6.1) cannot be sharply distinguished; the
border between these sets is blurred and is at least depending on the development of experimental
physics; and it seems worthwhile to recall the paraphrase of Siegel’s (see chapter 5) according to which
“a purely mental construct can gradually acquire ‘reality’ if it explains an experimental result not easily
explained otherwise”, which is completely in agreement with the physical definition of reality. Thus,
from the general trend mentioned by few examples in chapter 2 (see also section 6.5) and by numerous
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others in history of science, we find some support to express our denial in the form of a conditional

143 "”

no”.
Turning to question (5) it must be confessed that there is no evidence at present for new

experimental applications accomplished or facilitated by the concept of negative probability. This,
however, may be due to the scarce research up to now invested along these lines.

Considering question (4) we may arrive at different answers. If the Copenhagen interpretation
(forming quantum theory together with the current formalism) is accepted, then quantum theory is with
no doubt a splendid theory describing the properties of reality with outstanding accuracy (at least in the
original domain of non-relativistic quantum mechanics) and no improvement seems possible. Then
extended probabilities arising from its formalism are merely due to a mathematical segregation of
physical entities which is not permitted by the Copenhagen interpretation. This interpretation, however,
cannot be considered an interpretation in the sense of describing, explaining or visualizing anything on a
stage beyond the Copenhagen prohibition. Although this stage is sometimes called the ontologic or
metaphysical one, in order to distinguish it from “true” physics, this declaration is highly debatable
because the only offence of this arguing consists of universally applying some concepts which are
supported and even required by other well-proved physical theories. From this viewpoint the Copen-
hagen interpretation can be charged with precisely its characteristic verdict, L.e., to entail an artificial
segregation of things which inherently belong together unless “physics” 1s used synonymously to
“engineering”. Once having crossed the border created by the Copenhagen prohibition we are
immediately faced to a variety of problems; and applying the Copenhagen interpretation to this domain
(which it is not destined for) it may be compared rather to astrology than to astronomy. Hence,
violating the Copenhagen prohibition but maintaining the fundamental axioms, we arrive at situations
which are described by equations enforcing extended probabilities. From this point of view, they might
be considered as improving the situation of present day physics in case a consistent theory of extended
probabilities was achievable (which, however, has not yet been presented).

In order to treat question (3) we must distinguish between different examples of extended prob-
abilities discussed in the previous chapters. Obviously there is no model making them compatible with
experimental results obtained in EPR experiments in any reasonable way. On the other hand, there is
direct evidence of experimental observation in case of radiative decay analyzed by Mdssbauer
spectroscopy (see section 3.2). Certainly, it is impossible to observe negative probabilities, but it is as
impossible to observe negative energy states. In the latter case, only the absence of an electron in the
Dirac sea or the radiation created during the transition from a positive-energy state to a negative-energy
state can directly be detected. The same applies to extended probabilities. 1f, for example, a density is
known to be normalized and the resuit of an experimental integration, extending over a certain space,
exceeds unity, this must be interpreted as direct experimental evidence for negative parts of said
density. Thus, it can be concluded that in some cases extended probabilities are in agreement with
experience. (Their disagreement with experience in other cases may be either due to as yet unknown
circumstances or to erroneous application of the concept.)

In addition, a concept can be useful even when direct experimental evidence is lacking. The concept
of atoms led Boltzmann and Maxwell to extremely useful formulas [123] and Jaynes’ solution of
Bertrand’s problem would not loose its beauty if an experimental verification was not possible by
presently available experimental means. The same applies to extended probabilities in connexion with
phase space distributions. In purely formalistic application the interpretative problems may be side-
stepped as long as no experimentally falsifiable consequences result. Thus question (2) deserves an
affirmative answer although there remains the serious objection [164,174] that the use of extended



W. Miickenheim, A review of extended probabilities 397

probabilities may possibly veil the more fundamental problems of physics without presenting an
acceptable solution to them after all. This is with no doubt an important objection which should never
be overlooked, but, on the other hand,.also current quantum theory does not supply anything but a
successfu] formalism {admittedly a more universal one than extended probabilities) if observed from
what sometimes is declared as the “ontologic level”.

There are several ways to treat extended probabilities (cf. chapter 4) starting with Bartlett’s biassed
penny via Feynman'’s partition of the diffusion function to Gupta’s metric. Although strange issues like
complex standard deviations may be involved self-contradictions in the formalism of extended prob-
abilities should be avoidable.

In any case, until detailed formalisms will have been established, one may use extended probabilities
and interpret the results by Dirac’s very pragmatic concept (see the end of chapter 4), but must be
carefully aware of their formal character.

Quite a lot of speculations have been presented and the discussion already has become too lengthy
with respect to the fact that —as stated in the introduction - no final answers can be given. But the set of
“final answers™ in physics is very small. Nevertheless this paper should not be finished without at least
one statement which can claim to represent an absolute truth: Kolmogorov's axiom may hold or not;
the probability for the existence of negative probabilities is not negative.
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