What (s the ?,uestion?

DISCUSSION

E.T. JAYNES (Washington University):

It is always interesting to recall the arguments that Jeffreys used to find priors. The
case recounted by Zellner is a typical example where it appears at first glance that we
have nothing to go on; yet by thinking more deeply, Jeffreys finds something. He
shows an uncanny ability to see intuitively the right thing to do, aithough the
rationalization he offers is sometimes, as Laplace said of Bayes’ argument, *‘fine et trés
ingénieuse, quoiqu’un peu embarrassée”, It was from studying these flashes of
intuition in Jeffreys that I become convinced that there must exist a general formal
theory of determination of priors by logical analysis of the prior information-and that
to develop it is today the top priority research problem of Bayesian theory.

Pragmatically, the actual results of the Jeffreys-Zellner-Siow and Bernardo tests
seem quite reasonable; without considerable analysis one could hardly say how or
whether we should want them any different. Likewise, there is little to say about the
mathematics, since once the premises are accepted, all else seems to follow in a rather
straightforward and inevitable way. So let us concentrate on the premises; more
specifically, on the technical problems encountered in both works, caused by putting
that lump of prior probability on a single point A =0.

1. The problem

In most Bayesian calculations the same prior appears in numerator and
denominator, and any normalization constant cancels out. Usually, passage to the limit
of an ‘“‘uninformative’ improper prior is then uneventful; i.e., our conclusions are very
robust with respect to the exact prior range. But in Jeffreys’ significance test this
robustness is lost, since K=p(D|H,)/p(D|H,) contains in the denominator an
uncancelled factor which is essentially the prior density m{\) at A =x. Then in the limit
of an improper prior we have K— o independently of the data D, a result given by
Jeffreys (1939, p. 194, Eq. 10), and since rediscovered many times. Note that the
difficulty is not due solely to the different dimensionality of the parameter spaces; it
would appear in any problem where we think of H, as specifying a definitive, fixed
prior range, but fail to do the same for H,.

Jeffreys (1961) dealt with this and other problems by using a Cauchy prior 7(\|g)
scaled on ¢ in the significance test, although he would have used a uniform prior
m(A) =1 in the same mode! H, had he been estimating \. But then a question of principle
rears up. To paraphrase Lindiey’s rhetorical question; Why shouid our prior
knowledge, or ignorance, of A depend on the question we are asking about it? Even
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more puzzling: why should it depend on anocther parameter ¢, which is itself unknown?
One feels the need for a clearer rationalization.

Furthermore, the difficulty was not really removed, but only concealed from view,
by Jeffreys’ procedure. All his stated conditions on the prior would have been met
equally well had he chosen a Cauchy distribution with interquartile span 40 instead of
o; but then all his K-values would have been quadrupled, leading to indifference at a
very different value of the t-statistic [see Eq. (5-13) below]. We do not argue that
Jeffreys made a bad choice; quite the contrary. Our point is rather that in his choice
there were elements of arbitrariness, arising from a still unresolved question of
principle. Pending that resolution, one is not in a position to say much about the
“‘uniqueness’’ or ‘‘objectivity’’ of the test beyond the admitted virtue of yielding
results that seem reasonable.

Bernardo comes up against just the same problem, but deals with it more
forthrightly. Finding again that the posterior probability P, of the null hypothesis H,
increases with the prior variance ¢, in a disconcerting way, he takes what I should
describe as a meat-axe approach to the difficulty, and simply chops away at its prior
probability p until P, = pk/(pk + 1-p) is reduced to what he considers reasonable (from
the Jeffreys-Zellner-Siow standpoint he chops a bit too much, since his P, tends only to
1/2 on prolonged sampling when A, is true). This approach has one great virtue:
whereas the Jeffreys results tended to be analytically messy, calling for tedious
approximations, Bernardo emerges triumphantly (in the limit of large o,) with a
beautifully neat expression (Eq. (11)) which has also, intuitively, a clear ring of truth to
1t.

But for this nice resuit, Bernardo pays a terrible price in unBayesianity. He gets it
only by making p vary with the sample size n, calling for another obvious paraphrase of
Lindley. This elastic quality of his prior is rationalized by an information-theoretic
argumernt; it is, in a sense, the prior for which one would expect (before seeing the data)
to learn the most from the experiment. But is this the property one wants? ,

If a prior is to incorporate the prior information we had about ) before the sample
was observed, it cannot depend on the sample. The difficulty is particularly acute if the
test is conducted sequentially; must we go back to the beginning and revise our prior as
each new data point comes in? Yet after all criticisims I like the general tone of
Bernardo’s result, and deplore only his method of deriving it.

The common plot of these two scenarios is: we (1) start to apply Bayes theorem in
what seems a straightforward way; (2) discover that the result has an unexpected
dependence on the prior; (3) patch things up by tampering with the prior until the
expected kind of result emerges. The Jeffreys and Bernardo tamperings are similar in
effect, although they offer very different rationalizations for what they do. But in both
cases the tampering has a mathematical awkwardness and the rationalization a certain
contrived quality, that leads one to ask whether some important point has been missed.

Now, why should that first result have been unexpected? If, according to H,, we
know initially only that A is in some very wide range 2¢,, and we then receive data
showing that it is actually within :¢/\/n of the value predicted by H,, -as a physicist
would put it, ‘‘the data agree with H, to within experimental error’’- that is indeed very
strong evidence in favor of H,. Such data ought to yield a likelihood ratio K = /no,/0
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increasing with a4, just as Bernardo finds. This first result is clearly the correct answer
to the question Q, that was being asked.

If we find that answer disconcerting, it can be only because we had’in the back of
our minds a different, unenunciated question Q,. On this view, the tampering is seen as
a mutilation of equations originally designed to answer (,, so as to force them to
answer instead Q,.

The higher-level question: **Which question should we ask?’’ does not seem to
have been studied explicitly in statistics, but from the way it arises here, one may
suspect that the answer is part of the necessary “‘software’’ required for proper use of
Bavesian theory. That is, just as a computer stands ready to perform any calculation we
ask of it, our present theory of Bayesian inference stands ready to answer any question
we put to it. In both cases, the machine needs to be programmed 1o tell it which task to
perform. So let us digress with some general remarks on question-choosing.

2. Logic of Questions

For many years 1 have called attention to the work on foundations of probability
theory by R.T. Cox (1946,1961) which in my view provides the most fundamental and
elegant basis for Bayesian theory. We are familiar with the Aristotelian deductive logic
of propositions; two propositions are equivalent if they say the same thing, from a
given set of them one can construct new propositions by conjunction, disjunction, etc.
The probability theory of Bernouilli and Laplace included Aristotelian logic as a
limiting form, but was a mathematical extension to the intermediate region (0<p <1)
between proof and disproof where, of necessity, virtually all our actual reasoning takes
place. While orthodox doctrine was rejecting this as arbitrary, Cox proved that it is the
only consistent extension of logic in which degrees of plausibility are represented by
real numbers.

Now we have a new work by Cox (1978) which may prove to be of even more
fundamental importance for statistical theory. Felix Klein (1939) suggested that
guestions, like propositions, might be used as logical elements. Cox shows that in fact
there is an exactly parallel logic of questions: two questions are equivalent if they ask
the same thing, from a given set of them one can construct new questions by
conjuncuon (ask both), disjunction {(ask either), etc. All the ‘“‘Boolean aigebra” of
propositions may be taken over into a new symbolic algebra of questions. Every
theorem of logic about the ‘‘truth vaiue’’ of propositions has a dual theorem about the
‘‘asking value’’ of questions.

Presumably, then, besides our present Bayesian statistics -a formal theory of
optimal inference teiling us which propositions are most plausible- there should exist a
paraliel formal theory of optimal inquiry, telling us which questions are most
informative, Cox makes a start in this direction, showing that a given question may be
defined in many ways by the set of its possible answers, but the question possesses an
entropy independent of its defining set, and the entropies of different questions obey
algebraic rules of combination much like those obeyed by the probabilities of
propositions.

The importance of such a theory, further developed, for the design of experiments
and the choosing of procedures for inference, is clear. For over a century we have
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argued over which ad hoc statstical procedures ought to be used, not on grounds of
any demonstrable properties, but from nothing more than ideclogical committments to
various preconceived positions. There is still a great deal of this in my exchanges with
Margaret Maxfield and Oscar Kempthorne in Jaynes (1976), and even a little in the
exchange with Dawid, Stone, and Zidek over marginalization in Jaynes (1980). A
formal theory of optimal inquiry might resolve differences of opinion in a way that
Wald-type decision theory and Shannon-type information theory have not
accompiished.

Qur present problem invoives a special case of this. If, seeing the answer (o
question Q, we are unhappy with it, what alternative question {J, did we have,
unconsciously, in the back of our minds? Is there a question Q, that is the optimal one
to ask for the purpose at hand? Since the conjectured formal theory of inquiry is still
largely undeveloped, we try to guess some of its eventual features by studying this
exampie.

Note that the issue is not which question is *‘correct’’. We are free to ask of the
Bayvesian formalism any question we please, and it will aiways give us the best answer it
can, based on the information we have put into it. But still, we are in somewhat the
position of a lawyer at a courtroom triai. Even when he has on the stand a witness who
knows all the facts of the case and is sworn to tell the truth, the information he can
actually elicit from this witness still depends on his adroitness in asking the right
questions.

If his witness is unfriendly, he will not extract any information at all uniess he
knows the right questions to force it out, phrasing them as sharp leading questions and
demanding uneguivocal ‘‘yes’’ or ‘‘no’’ answers. But if a witness is friendly and
intelligent, one can get all the information desired more quickly by asking simply,
“‘Please tell us in your own words what you know about the case?’’ Indeed, this may
bring out unexpected new facts for which one could not have formulated any specific
guesticn.

Significance tests which specify a sharply defined hypothesis and preassigned
significance level, and demand to know whether the hypothesis does or does not pass at
that level, therefore in effect treat probability theory as an unfriendly witness and
automatically preclude any possibility of getting more information than that one bit
demanded.

Suppose we try instead the opposite tactic, and regard Bayesian formalism as a
friendly witness, ready and willing to give us all the pertinent information in our
problem even information that we had not realized was pertinent if we only allow if the
freedom to do so. Instead of demanding the posterior probability of some sharply
formulated null hypothesis H,, suppose we ask of it only, ‘‘Please tell us in your own
words what you know about A\?’’ Perhaps by asking a less sharp and restrictive
question, we shall elicit more information.

3. Information from questions

Evidently, to deal with such problems one ought to be an information theorist,
-and not only in the narrow sense of One-Who-Uses-Entropy. In the present problem
we are concerned not only with the range of possible answers, as measured by the



622

entropy of a question, but aiso with the specific kind information that the question can
elicit. In the following we use the word ‘‘information’ in this semantic sense rather
than the entropy sense. -

All statistical procedures are in the last analysis prescriptions for information
processing: what information have we put into our mathematical machine, and what
information are we trying to get out of it? In these terms, what is the difference -if any-

between significance testing and estimation? Having put certain information (model,
prior, and data) into our hopper, we may carry out either, by asking different
questions. But the answers to different questions do not necessarily convey different
information.

The tests considered by Zellner and Bernardo sought information that can help us
decide whether to adopt a new hypothesis H, with a value of X\ different from its
currently supposed value A=0. Presumably, any procedure which yields the same
information would be equally acceptable for this purpose, even though current
pedagogy might not call it a ‘‘significance test”’.

Now this information criterion establishes an ordering of different procedures, or
‘‘tests’’, rather like the notion of admissibility. If test B (which answers question Q)
always gives us the same information as test A4, and sometimes more, then B may be
said to dominate A4 in the sense of information yield, or question Q, dominates Q, in
‘“‘asking power’’; and if B requires no more computation, on what grounds could one
ever prefer A?

In my work of 1976 (p. 185 and p. 219), I showed that the original Bayesian
sigificance test of Laplace, which asks for the posterior probability £, of a one-sided
alternative hypothesis, dominates the traditional orthodox ¢-test and F-test in just this
sense. That is, given P, we know what the verdict would be, at any significance level,
for all three of the corresponding orthodox tests (one equal-tails and two one-sided; but
the veredict of any one orthodox test is far from determining P,. Thanks to Cox, we
have now a much broader view of this phenomenon.

Let us call a question simple if its answer is a single real number; or in Cox’s
terminology, if its irreducible defining set is a set of real numbers. For example: **What
is the probability that A, or some function of A, lies in a certain region R?”

In any problem involving a single parameter X for which there is a single sufficient
statistic u, then given any simple question Q. about A, the answer will be, necessarily,
some function a(u). Given any two such questions Q,, Qs and any fixed prior
information, the answers a(u), b(u), being functions of a single variable v, must obey
some functional relation a = f{b). If f{b) 1s single-valued, then the answer to Qy tells us
everything that the answer to Q, does. As Cox puts it, ‘‘An assertion answering a
question answers every implicate of that question’’. If the inverse function b =f"(a) is
not single-valued, then Qp dominates Q,.

In the case of a single sufficient statistic, then, any simple question whose answer is
a strict monotonic function of u, yieids all the information that we can elicit about A,
whatever question we ask; and it dominates any simple question whose answer is not a
strict monotonic function of u. But this is just the case discussed by Bernardo; he
considers o known, and consequently x is sufficient statistic for \. Since his odds ratio
K(x) is not a strict monotonic function of x, we know at once that Bernardo’s test is
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dominated by another.

The Jeffreys-Zellner-Siow tests are more subtle in this respect, since o is unknown,
and consequently there are two jointly sufficient statistics (x,5). Given two simple
questions Q,,Q, with answers a(x,s), b(x,s}, the condition that they ask essentially the
same thing, leading to a functional relation a=/(b), is that the Jacobian
J = 3(a,b)/d(x,s) should vanish. If J# 0, then neither questions can dominate the other
and no simple question can dominate both, But any two simple questions for which
(x,s) are uniquely recoverable as single-valued functions x(a,b), s(a,b) will jointly elicit
all the information that any question can yield, and thus their conjunction dominates
any simple question.

We may, therefore, conclude the following. Since Jeffreys’ test asks a simple

question, whose answer is the odds ratio K(x,s}, it can be dominated by a compound
question, the conjuction of two simple questions. Indeed, since K depends only on the
magnitude of the statistic ¢, it is clear that Jeffreys’ question is dominated by any one
simple question whose answer is a strict monotonic function of ¢.
These properties generalize effortlessly to higher dimensions and arbitrary sets.
Whenever sufficient statistics exist, the most searching questions for any statistical
procedure, -whatever current pedagogy may call it- are those (simple or compound)
from whose answers the sufficient statistics may be recovered; and all such questions
elicit just the same information from the data.

As soon as I realized this, it struck me that this is exactly the kind of result that
Fisher would have considered intuitively obvious from the start; however, a search of
his collected works failed to locate any passage where such an idea is stated. Perhaps
others may recall instances where he made similar remarks in private conversation; it is
difficult to believe that he was unaware of it.

With these things in mind, let us re-examine the rationale of the Jeffreys-Zellner-
Siow and Bernardo tests.

4. What is our rationale?

In pondering this -trying to see where we have confused two different questions
and what the question @, is- I was struck by the constrast between the reasoning used in
the proposed tests and the reasoning that physicists use, in everyday practice, to decide
such matters. We cite one case history; recent memory would vield a dozen equally
good, which make the same point.

In 1958, Cocconi and Salpeter proposed a new theory H, of gravitation, which
predicted that the inertial mass of a body is a tensor. That is, instead of Newton's
F=Ma, one had F,=XM,a,. For terrestrial mechanics the principal axes of this tensor
would be determined by the distribution of mass in our galaxy, such that with the x-axis
directed toward the galactic center, M. /M, =M,/M, =(1+X). From the
approximately known galactic mass and size, one could estimate (Weisskopf, 1961) a
value A = 108,

Such a small effect would not have been noticed before, but when the new
hypothesis H, was brought forth it became a kind of challenge to experimental
-physicists: devise an experiment to detect this effect, if it exists, with the greatest
possible sensitivity. Fortunately, the newly discovered Mossbauer effect provided a test
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with sensitivity far beyond one’s wildest dreams. The experimental verdict (Sherwin,
et.al, 1960) was that A, if it exists, cannot be greater than |A| <10'%, So we forgot
about H, and retained our null hypothesis: H,=Einstein’s theory of gravitation, in
which A =0,

From this and other case histories in which other conclusions were drawn, we can
summarize the procedure of the physicist’s significance test as follows: (A) Assume the
alternative H,, which contains a new parameter A, true as a working hypothesis. (B) On
this basis, devise an experiment which can measure A with the greatest possible
precision. (C) Do the experiment. (D) Analyze the data as a pure estimation problem-
Bayesian, orthodox, or still more informal, but in any event leading to a final ‘‘best’”
estimate and a statement of the accuracy claimed: (A)...=A'-%\. It is considered good
form to claim an accuracy oi corresponding to at least two, preferably three, standard
deviations. (E) Let A, be the correct value according to the null hypothesis H, (we
supposed A, = 0 above, but it is now best to bring it explicitly into view), and define the
“‘statistic’’ ¢ = (A\’-X\,)/6A. Then there are three possible outcomes:

If |¢] < 1, retain H,, STATUS QUO
If || > >1, accept H,, AWARD NOBEL PRIZES
If 1 <ir] <3, withhold judgment SEEK BETTER EXPERIMENTS

That is, to within the usual poetic license, the reasoning format in which the
progress of physics takes place.

You see why I like the actual results reported here by Zellner and Bernardo,
although I find their rationalizations puzzling. They did indeed find, as the criterion for
accepting H,, that the estimated deviation |\’-A\,| should be large compared to the
accuracy of the measurement, considered known (¢/+/n) in Bernardo’s problem, and
estimated from the data in the usual way (s/+/n) in Zellner’s,

It is in the criterion for retaining A, that we seem to differ; contrast the physicist’s
rationale with that usually advanced by statisticians, Bayesian or otherwise. When we
retain the null hypothesis, our reason is not that it has emerged from the test with a
high posterior brobability, or even that it has accounted well for the data. H, is retained
for the totally different reason that if the most sensitive available test fails (o detect its
existence, the new effect (A-A,) can have no observable consequences. That is, we are
still free to adopt the alternative /, if we wish to; but then we shall be obliged to use a
value of A so close to the previous A, that all our resulting predictive distributions will be
indistinguishable from those based on A..

In short, our rationale is not probabilistic at all, but simply pragmatic; having
nothing to gain in predictive power by switching to the more complicated hypothesis
H,, we emulate Ockham. Note that the force of this argument would be in no way
diminished even if H, had emerged from some significance test with an extremely low
posterior probability; we would still have nothing to gain by switching. Our acceptance
of H, when 1| > >1 does, however, have a probabilistic basis, as we shall see
presentiy.

Today, most physicists have never heard the term ‘‘significance test’ .
Nevertheiess, the procedure just described derives historically from the original tests
devised by Laplace in the 18’th Century, to decide whether observational data indicate
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the existence of new systematic effects. Indeed, the need for such tests in astronomy
was the reason why the young Pierre Simon developed an interest in probability theory,
forty-five years before he became the Marquis de Lapiace. This problem is therefore
the original one, out of which ‘‘Bayesian statistics’’ grew.

As noted also by E.C. Molina (1963) in introducing the photographic reproduction
of Bayes’ paper, even the result that we call today ‘‘Bayes’ theorem’’ was actually given
not by Bayes but by Laplace (the eniy valid reason I have found for calling it ‘‘Baves’
theorem’’ was provided at this meeting; ‘“There’s no theorem like Laplace’s theorem™’
does not set well to Irving Berlin’s music). Molina also offers some penetrating remarks
about Boole’s work, showing that those who have quoted Boole in support of their
criticisms of Bayes and Laplace may have mistaken Boole’s intention.

Now, although Laplace’s tests were thoroughly ‘‘Bayesian’ in the sense just
elucidated, they encountered no such difficulty as those found by Jeffreys and
Bernardo; he always got clear-cut decisions from uniform priors without tampering. To
see how this was managed, let us examine the simplest of all Laplacian significance
tests,

As soon as fairly extensive birth records were kept, it was noticed that there were
almost always slightly more boys than girls, the ratio for large samples lying usually in
the range 1.04 <(n,/n,)<1.06. Today we should, presumably, reduce this to some
hypothesis about a difference in properties of X and Y chromosomes (for example, the
smaller ¥ chromosome, leading to a boy, would be expected to migrate more rapidly).
But for Laplace, knowing nothing of such things, the problem was much simpler.
Making no reference to any causal mechanism, he took the model of Bernoulli trials
with parameter A = probability of a boy.

His problem was then: given specific data D= {n,,n,}, do these data indicate the
existence of some systematic cause favoring boys? Always direct and straightforward in
his thinking, for him the proper question to ask of the theory was simply:
Q. = “*Conditional on the data, what is the probability that A >(1-A\)?"" With uniform
prior, answer was

Dot
DY a0 As(10yech

L=

n,tn,!

with n=n, +n,, \,= 1/2. In this Essai Philosophique Laplace reports many results from
this, and in the Theorie Anaiytique (Vol. 2, Chap. 6) he gives the details of his rather
tedious methods for numerical evaluation.

Needless to say, Laplace was familiar with the normal approximation to p(ah | D),
the inverse of the de Moivre-Laplace limit theorem. But Laplace also realized that the
normal approximation is valid only within a few standard deviations of the peak, and
when the numbers n,,n1, become very large, it can lead easily to errors of a factor of
109 in P,/(1-P,); hence his tedious methods.

Bernardo’s example of Mrs. Stewart’s telepathic powers, where the null hypothesis
value A, =0.2 is about 24 standard deviations out, is another instance where the normal
approximation leads to enormous numerical errors in K (many millions, by my
estimate).

40
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But pragmatically, once it is estimated that an odds ratio is about 10'3¢, it hardly
matters if the exact value is really only 10%2°. Once it 1s clear that the evidence is
overwhelmingly in favor of H,, nobody cares precisely how overwhelming it is. After
Laplace’s time, physicists lost interest in his accurate but tedicus evaluations of P,; for
the criterion that we have overwhelming evidence in favor of a positive effect (A > \,),
is just that the overwhelmingly greater part of the mass of the posterior distribution
p(dniD) shall iie to the right of A,. In the above example, the peak and standard
deviation of p{dh: D) are \' = n,/n, 6x = [A"(1-A")/n}'"% and this criterion reduces to
the aforementioned r=(\" \,)/6A > > 1, of the modern physicist’s significance test-
just the same criterion that Jeffreys and Bernardo arrive at in their different ways.

We have noted above that the orthodox r-test and F-test are dominated by
Laplace’s, and argued that the Jeffreys and Bernardo tests must also be dominated by
some other, Let us now compare their specific tests with the ones Laplace would have
used in their problems.

5. Comparisons with Laplace

In Bernardo’s problem we have a normal sampling distribution p(dx|X,o) ~ N(\,0)
with ¢ known. Hypothesis H, specifies A = \,, H, a normal prior =(ad\ | Hy) ~ N(uy,04),
leading to a normal posterior distribution p(d\ | D,H,) ~ N(A",6\) where

(6N 2 = no?+0i? (5.1
A = n(dN 0P x + (BN o) uy (5.2)

Laplace, asking for the probability of a positive effect, would calculate
P. = p(\>\,|D,H,) = &) (5.3)

where ®(7) is the cumulative normal distribution, and as always, 7 = (A"-X,)/dA.
Bernardo (Eq. 9) finds for the posterior odds ratio

Ky = p(H,|D)/p(H,| D) = exp(-R/2) (5.4)

where

T V2 v u)2
R = (-A)e (- (5.5)

o¥/n o1 +a/n

But by algebraic rearrangement, we find this is equal to
R =1-w (5.6)

where w = (u,-\,)/0, is independent of the data and drops out if ;=\, or if 0; — .
Bernardo would then find for the posterior probability of the nuli hypothests
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P.q = p(HO.D) = [exp(tz/?_) + 1] ! (57)

and comparing with (5.3) we have, as anticipated, a functionai relation P, = f{P,). To
see the form of it, I plotted P, against P, and was surprised to find a quite accurate
semicircle, almost as good as one could make with a compass. To all the accuracy one
could use in a real problem, the tunctional relation is simply

P, = [Pi(1-P)}VE, 0=pP =1 (5.8)

The error in (5.8) vanishes at five points (0 = P, < 1).

Since P, = f(P,) is single-valued while the inverse tunction is not, we have the
result that Laplace’s original significance test does, indeed, dominate Bernardo’s. As
stressed in Jaynes (1976), one-sided tests always dominate two-sided ones; gives P, we
know everything that Bernardo’s K or P, can tell us; and if [/} > >1 we know in
addition whether A >, or A <A, which P, does not give.

Of course, in this case one can determine that extra bit of information from a
glance at the data; so the mere fact of domination is hardly a strong selling poimnt. What
is important is that Laplace’s method achieves this without any elements of
arbitrariness or unBayesianity.

In Jeffreys’ problem we have the same sampling distribution, with the standard
likelihood function L(\,¢) = o n exp[-ns*Q*\)/20%], where

oM = [1+(-x)%/s12 (5.9)

H, and H, assign common priors do/o, but H, specifies A = \,, while H, assigns the
Cauchy prior p(dh |0,H,) = w(7\|o)d\ with the density

ao
7\ |0} = —————m (5.10)
w(@*a? + \%)

scaled on o (Jeffreys takes a = 1, A\, = 0, but we define the problem thus to bring out
some points noted in Sec. 1). To analyze the import of the data, Jeffreys then calculates
the likelihood ratio

D|H,
Kis) = PP (e ordoro (5.11)

pDIH,)

while Laplace (if he used the same prior) would caiculate instead the probability of a
positive effect, given H;:
- (o <] oo
P.(%,5) = pO>\|D,Hp = M [y d\ [ ydo ot 7\ {0)L(N,0) (5.12)

These expressions have a common denominator M, equal to the integral in (5.12) with

Ao = -00,
It is straightforward but lengthy to verify that Jeffreys and Laplace do not ask
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exactly the same guestion; 1.¢., J = d(KN,,P)/dx,s) # 0. However, they are not very
different, as we see on making the same approximation (large #) that Jeffreys makes.
Doing the o-integration in (5.12) approximately, the other integrals may be done
exactly, leading to the approximate form

K, = [=(n-1)/2]" a(l + ¢*)/ Q" (\.) {5.13)

where g = (x/as). This reduces to Jeffreys’ result [Zellner’s Eq. (2.7) in this volume]
when g = 1, A, = 0. In the same approximation, Laplace’s result is the tail area of a -
distribution with n-2 degrees of freedom:

0.0}
Po= A, | &/ (5.14)

where 4, is a normalization constant. Of course, if Laplace used a uniform prior for A,
he would find instead the usual **Student’’ result with {(n-1) degrees of freedom.

in the limit of an improper prior {a— oo}, K, diverges as noted in Sec. i, the
original motivation for both the Jeffreys and Bernardo tamperings; but the arbitrary
parameter a cancels out entirely from Laplace’s feading term, appearing only in higher
terms of relative order n°1.

Had we been estimating A instead, we should find the result (\).,,=\" * 6\, where
A = x, 0A = s/yn, But Laplace’s result (5.14) is a function only of the statiStic 7 = (A’
As)/0h, and Jeffreys’ (5.13) is too for all practical purposes (exactly so if \,=0, as
Jeffreys assumes). Therefore, while considering ¢ unknown has considerably
complicated the mathematics, it does not lead to any real difference in the conclusions.
Again, Laplace’s test yields the same information as that of Jeffreys, and in addition
tells us the sign of (A-A,). In all cases -Jeffreys, Bernardo, Laplace, and the modern
physicist’s test- the condition that the data indicate the existence of a real effect is that
> >,

6. Where does this leave Q,?

In summary it should not, in my view, be considered ‘‘wrong’’ to ask the original
guestion @y = ‘“What is the relative status of H, and H, in the light of the data?’’ But
the correct answer to that question depends crucially on the prior range of A according
to H,; and so the question appears in the retrospect awkward,

Now the original motivation for asking Q,, stated very explicitly by Jeffreys, was
to provide a probabilistic justification for the process of induction in science, whereby
sharply defined laws are accepted as universally valid. But as both Jeffreys and
Bernardo note, H, can never attain a positive posterior probability unless it is given
some to start with; hence that *‘pump-priming’’ lump of prior probability on a single
point A =0. It seems usually assumed that this step is the cause of the difficulty.

However, the question ; is awkward in another, and I think more basic, respect.
The experiment cannot distinguish differences in A smaller than its ‘‘resolving power’’
6k =s/+/n. Yet Q, asks for a decision between H, and H; even when |A-A,] <é\. On the
other hand, the experiment is easily capable of telling us whether ) is probably greater
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or less than A, (Laplace’s question), but Q, does not ask this. In short, Q, asks for
something which the experiment is fundamentally incapable of giving; and fails to ask
for something that the experiment can give.

[Incidentally, a ‘‘reference prior’’ based on the Fisher information #(\) is basically
a description of this resolving power 6A of the experiment. That is, the reference prior
could be defined equally well as the one which assigns equal probabilities to the
“‘equally distinguishable’’ subregions of the parameter space, of size 6x. This property
is quite distinct from that of being ‘‘uninformative’’, although they happen to comcide
in the case of single location and scale parameters].

But what we noted in Sec. 4 above suggests a different view of this. Why does
induction need a probabilistic justification if it has already a more compelling
pragmatic one? It is for the departures from the previous line of induction (i.e.,
switching 10 H,) that we need -and Laplace gave- a probabilistic justification. Bernardo
seems to have sensed this also, in being content with the fact that his p(H,!D) tends
onlv to 1/2 when H, is true. Once we see that maintenance of the status quo requires no
probabilistic justification, the original reason for asking Q, disappears.

7. Conclusion

What both the Jeffreys and Bernardo tamperings achieved is that they managed to
extricate themselves from an awkward start and, in the end, succeeded in extracting the
same information from the data (but for the sign of A-A\,) that Laplace’s question QJ, =
““What is the probability that there is a real, positive effect?’’ elicited much more easily.
What, then, was that elusive question Q,? It was not identical with Q,, and perhaps
does not need to be stated explicitly at all; but in Cox’s terminology we may take QJ; as
any implicate of Laplace’s question whose answer is a strict monotonic function of {t].

We have seen how the answers to seemingly very different questions may in fact
convey the same information. Laplace’s original test elicits all the information that can
be read off from Jeffreys’ KAx,s) or Bernardo’s Ku(x). And for all purposes that are
useful in real problems, Laplace’s P, may in turn be replaced by the A’ and oA of a pure
estimation problem. Because of this, I suggest that the distinction between significance
testing and estimation is artificial and of doubtful value in statistics-indeed, negative
value if it leads to needless duplication of effort in the beltef that one is solving two
different problems.




