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It is a particular pleasure to write a review of this book
for the American Journal of Physics, because the book had
its beginnings in an article by Professor Cox which ap-
peared in this journal in 1946, and for several years I have
been giving lectures on probability theory which draw
their inspiration from that article. It is, in my opinion,

one of the most important ever written on the foundations,
of probability theory, and the greatest advance in the

conceptual, as opposed to the purely mathematical,
formulation of the theory since Laplace.

In the meantime discussion among statisticians and
others, concerned with the practical use of probability

theory has continued, and intensified, on a very basic ques-

tion: Is it or is it not legitimate to use the mathematical
rules of probability theory in problems of inductive infer-
ence, where the probabilities cannot be regarded as fre-
quencies in any random experiment, but denote only a

“degree of reasonable belief?’” It is clear from the recent -

literature that protagonists on both sides are still unaware
of the fundamental contribution made sixteen years ago
by Cox, which all but settled this issue. Professor Cox has
performed another valuable service by enlarging the origi-
nal article, with several improvements in the derivations,
and making it available to a wider audience in this small,
but very important, book.

Professor Cox undertook to state in mathematical terms
the most general rules for a “calculus of inductive reason-
ing”’ which would agree with certain elementary common-
sense requirements and would represent degrees of plausi-
bility by real numbers. He not only succeeded, but he
showed us an entirely new technique for the construction
of mathematical theories.

Let us recall the usual axiomatic technique in mathe-
matics, of which perhaps the purest and most familiar
example is the geometry of Euclid. We start with a few
axioms, the rules of the game, which are basically arbitrary.
Then we deduce their consequences, carrying the process
as far as possible. The game continues until we discover a
contradiction. The we know that our axioms were in some
way inconsistent. We go back and modify them, and repeat
the game. In this way, one hopes, we arrive eventually
at a set of rules which can be applied as far as we please
without generating contradictions.

Many authors have tried to develop probability theory
as an extension of logic to the case of inductive inference
in just this way; by arbitrarily stating the rules for asso-
ciating degrees of plausibility with real numbers, and the
rules for combining these numbers. This was done, for
example, by Laplace (1812), de Morgan (1847), Keynes
(1921), Jeffreys (1938) and Koopman (1940). But none
of these efforts was taken seriously by twentieth-century
mathematicians and statisticians, for a very simple reason;
if the rules of combination are merely stated as arbitrary
axioms, how do we know that they are unique? What
makes these rules any better than a hundred other arbitrary
" ones we could invent?

Professor Cox's great contribution was to notice that
there is another way of developing mathematical theories.
Instead of stating the rules arbitrarily and hoping that
they are free of inconsistencies, the requirement that the
rules be consistent can be taken as ¢ne of the basic condi-
tions imposed on the theory from the start. As in all really
fundamental advances, the key to the situation lay simply
in learning how to ask the right question. Cox found that
the conditions for consistency could be written in the form
of three functional equations, whose general solutions he
proceeded to find. These conditions restricted the possi-
bilities so greatly that for all practical purposes, there is
only one way of writing the basic rules. Mathematical
transformations can alter their form, but not their content.

In terms of the standard notation for conditional
probabilities, p(A]B)="probability of A4, given B,”
the basic rules derived by Cox are simply, P(ABIC)=
P{AIRC) p(B|C), and p(4|B)+p(A|B)=1, where AB
stands for the proposition, “both 4 and B are true,”
and A is the proposition, ‘' 4 is false.” These are, of course,
the fundamental equations of probability theory; all others
follow from their repeated application. This result estab-

- lished for the first time that the mathematical rules of

probability theory given by Laplace not only constitue
a wvalid calculus of inductive reasoning; they are in fact
unique in the sense that any set of rules in which we repre-
sent degrees of plausibility by real numbers is either
equivalent to Laplace's, or inconsistent.

Two years later, Professor Cox’s method was used
again, with equal success and infinitely greater fanfare,
by C. E. Shannon. He wrote down conditions for a reason-
able “‘information measure.! Again the conditions of
consistency took the form of functional equations, and
with their solution the notion of entropy became a funda-
mental new concept in probability theory.

1 want to emphasize the importance of Cox’s result,
because Cox himself has not seen fit to do so. While his
great modesty and gift for understatement are charming
and make every page of this book a delight to read, a less
happy consequence is that the average reader would never
realize the implications for practical problems, There are
no applications, and not even a hint that applications exist.

In order to understand the full importance of Cox's
work, we have to look at the recent history of statistics.
Because of supposed difficulties with Laplace’s rules,a
belief arose that no valid “calculus of inductive reasoning”
had been produced, and that the term ‘‘probability’” should
be used only in the restricted sense of “physical” or *‘sta-
tistical” probability, which refers not to anybody’s judg-
ments but only to limiting frequencies in the outcome
of seme random experiment. In other words, probability
statements can be made only about random variables;
it is meaningless, to speak of the probability that an hy-
pothesis is true, or that an unknown constant parameter
lies in a certain interval. This viewpoint has been expounded
by R. von Mises, R. A. Fisher, W. Feller, and many others,
and it was adopted by almost all statisticlans until very
recently.

Unfortunately, a theory of probability restricted in this
way is totally inadequate to meet the needs of practice;
for as soon as we depart from the most artificial textbook-
type problems, almost every useful application of prob-
ability ‘theory concerns some problem of inductive infer-



ence, and not primarily any calculation of frequencies.
Thus, whenever we decide between alternative hypotheses,
estimate an unknown parameter, predict a future trend
on the basis of present data, we are doing inductive, or.
plausible, reasoning gbout a quantity which ts not “random."”
Adoption of the strict frequency interpretation of prob-
ability thus forced statisticians to relegate such problems
to a new field, statistical inference, which was considered
to be distinct from probability theory. Its aim was to avoid
the supposed mistakes of Laplace by developing entirely
new approaches.

Now a very strange thing happened. Some of our finest
mathematicians labored for some ffty years, developing
this new field. The culmination came in the 1950’s with
the decision theory of Abraham Wald, where for the first
time general rules of procedure were uniquely derived from
certain very elementary requirements on a reasonable
theory. But by 1954, several workers in this field had
realized that if we simply ignore Wald’s entirely different
vocabulary and diametrically opposed philosophy, and
look only at the specific mathematical steps that were now
to be used in solving specific problems, they were identical
witht he original rules given by Laplace tn the 18th century,
- which two generations of statisticians had held to be meta-
physical nonsense! The real road to progress lay not in
rejecting Laplace’s methods, but in learning how to use.
them properly.

All the while this dramatic development (which sta-
tisticians refer to as the “Bayesian revolution", sineer
Laplace’s use of Bayes' theorem was the main bone of
contention) was taking place, Cox's article, which con-
tained the real key to understanding this situation, lay
there ignored. The problems of statistical inference are all
problems of inductive, or plausible, reasoning; and Cox’s
argument shows clearly why it does not make any differ-
ence which philosophy of interpretation you have when
vou approach these problems. By the time you have made
your methods fully consistent, you will be forced to
rediscover Laplace’s principles, just as Wald did. But
Cox’s argument is much simpler and more direct than
Wald’s.

The emancipating effect of this development, which
makes the methods of probability theory once more avail-
able for problems of inductive inference, cannot be ade-
quately conveyed in a short discussion. Equally important
is the pedagogical advantage; a student who has ap-
proached probability theory via Cox’s theorems has at his
fingertips the basis of all modern statistical practice. In
the writer's Statistical Mechanics course, by the end of
the second week the students are familiar with statistical
principles such as maximum likelihood, confidence inter-
vals, sequential analysis, etc., and the Gibbs canonical
formalism has been derived as a general method of induc-
tive reasoning, applicable to problems in or out of physics.
We are thus able to devote much more time to the im-
portant applications of the theory than was formerly
possible, while giving the students a glimpse of other
statistical methods useful in physics.
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