TLecture 1

INTRODUCTION AND BACKGROUND

Let's start out by putting our motto on the board:
"PRCBABILITY THECRY IS NOTHING BUT COMMON SENSE
REDUCED TO CALCULATION" (Laplace).
This is the motto and this is the exact summary of everything I'm going to
tell you in all these talks.
Our main concern is with applications of prcbability theory, but we're
going to have to gspend some time on foundations cof probability théory for
a very simple reason. Before you can apply any theory to any problem, vou
first have to make the decision that the theory applies to the problem. It
turns out that this is not always an easy decisicon to make. In most of the
problems in science and engineering where you might think of using probability
theory, vour decision as to whether its use is really Jjustified can depend
entirely on how you approach the fundamentals of probability theory itself.
In other words, what do we mean by probability? Before we can discuss any
applications, we'll have to make up our minds about that.
My purpose in these talks is To show that, with a little different
approach to fundamentals than the cone usually given nowadays, we can extend
the range of practical problems where probability theory can be used, and

in some known applications we can simplify the calculations.
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1.1 Historical Remarks®

Before going into details a few historical remarks might be of interest,
to show how it could happen that a person who is a rather strange mixture
of theoretical physicist and electrical engineer could get really worried
about the foundations of probability theory. The things that I'm going to
talk about here arose from my attempts,'over a period of ten years, to under-
stand what statistical mechanics is all about and how it is related to com-
munication theory. In 1948 I was very fortunate in being a graduate student
in Princeton, and I tocck a course in statiétical mechanics from Professocr
Bugene Wigner, who went very carefully into the various approaches to statis-
tical mechanics and in particular, pointed cut the unsolved problems that
still existed. I was lmpressed by the fact that everyone who has written
about the fundamentals has a very ready way of resclving all the famcus
paradoxes; but that no two pecple have done this in the same way.

It was just during this year that Shannen's papers (Shannon, 1948} %%,
announcing the birth of information theory, appeared. I discovered them
accidentally in the Princeton library, took them back to my room, and dis-
appeared from the face of the earth for about a week. When I finally came
cut, I ran through the halls of Princeton explaining to anvbody who would
listen to me (and a few who wouldn't) that this was the most important piece
of work done by any scientist since the discovery of the Dirac eguation.

It's almost impossible to describe the psychological effect of seeing our

old familiar expression for entropy derived in a completely new way, and

*This and the following Section describe the histery and motivation of the
work repcrted. The reader who does not care about this and wants to get on
with the constructive development can turn immediately to Lecture 2.

#*Insertions of this type refer to the General Bibliography in Appendix A.
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then appiied to problems of engineering which apparently have no relation to
thermodynamics. But all of the inegualities, which are often associated
with the second law of thermodynamics, turn out also to be statements of the
greatest significance in an entirely different context. It seemed to me
that there must be something pretty important that we could learn from this
situation.

This feeling was shared by a number of physicists and there was quite
a rush to exploit all these wonderful new things. But then something went
wrong. Quite a few papers appeared in the physics journals inspired by
Shannon's work, but there was a scarcity of new results useful to physics.‘
This caused a psychological reaction, and by 1956 Information Theory had
acquired a bad reputation among physicists.

I think the time has come now when physicists might find it worthwhile
to take a sober second look at Information Theory and what it can do for them.
And with the benefit of hindsight, we can see what went wrong in those first
few years. The first efforts were based only on a mathematical analogy
kbetween statistical mechanics and communication theory, in which the appear-
ance of the same mathematical expression was the dramatic thing. The essen-
tial link between them—--the thing I want to try teo show here-—-is not one
of mathematics, but something more subtle. Until you see what the link is,
you can't expect to get results out of this situation. Now let's see why
this is so.

The mere fact that a mathematical expression like

Zpi log pi
shows up in two different fields, and that the same inequalities are used,
doesn't in itself establish any connection between the fields. Because

after alil,
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e, cos 6, J (z)
o

are expressicns that show up in every part of physics and engineering. Every
place they show up, the same equalities and the same inequalities turn out

to be useful. Ncobody interprets this as showing that there is some deep
profound connection between, say, bridge building and meson thecry. The
reasen for that is the underlying ideas are entirely different.

Now the essential content of both statistical mechanics and communica-
tion theory, of course, does not lie in the eguations; it lies in the ideas
that lead to those equations. And at first glance there doesn't seem to
be any relation at all between the kind of reasoning that the physicists
go through in statistical mechanics and the kind of reasconing that Shannon
went through. We might describe this by paraphrasing a statement of Albert

Einstein (Einstein, 1%4&) that I like wvery much: Science is fully justified

in identifying these fields only after the equality of mathematical methods

has been reduced to an equality of the real nature of the concepts. You

recall that Einstein insisted on exactly this point in connection with gravi-
tational and inertial mass. It had been known, for 200 years befeore Einstein
was born, that gravitational mass and inertial mass were experimentally
proportional to each other; by proper choice of units you can make them
numerically equal. Einstein refused to identifyv them; i.e. to accept this
empirical equality as a general principle of physics, until he could reduce
inertial mass and gravitational mass to the same concept. He had to pay a
rather high price to do this. Before he could find a viewpoint from which
he saw them as special cases of the same idea, he had to invent General
Relativity.

It is interesting to note that this principle was appreciated egually

well by J. Willard Gibbs, many yvears earlier. In his response to the Ameri-
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can Academy of Arts and Sciences of Boston, on the occasion of his being
awarded the Rumford Medal {(January 12, 1881), Gibbs remarked: "Cne of the

principal objects of theoretical research in any department of knowledge is

to find the point of view from whieh the subject appears in its greatest

simplicity." Gibbs had shown in his famous work of 1878 that classical
thermodynamics appears particularly simple if we regard entropy as the funda-
mental quantity; from its dependence on energy, volume, and mole numbers

all thermcdynamic properties of a system are determined.

These examples could be used with profit in all parts of science. We
won't commit any serious error of methodology if we try to follow the examples
of Gibbs and Einstein in our problem, because it's really a very similar
sort of thing. So the job as I saw it was not to try to inveant any new
fancy mathematics. That would presumably come later if we were successful;
but the immediate jok was to try to find a viewpoint from which we cculd see
that the reasoning behinéd communication theory and statistical mechanics
wasg really the same. As it turns out, to do this requires a rather drastic
reinterpretation of both fields; and this reinterpretaticn clears up several
outstanding difficulties in each field.

1.2 The Gibbs Model.

Now to state the prcblem a little more specifically, I'd like to go
very briefly into the version of statistical mechanics that Gikks gave us
{Gibbs, 1902), and try tc show the sense in which my work is not only an
attempt to generalize his theory, but also an attempt to make use of another
legson in methodology which he gave to science.

Most of the discussions about the foundations of statistical mechanics
censist of Mr. A criticizing the basic assumptions of Mr. B and this process

is always fruitless and inconclusive. It never leads to any useful results.
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However, there is one person who has kept free of that, and his name is J.
Wil;ard Gibbs, I think of all people who have written on statistical mecha-~
nics, he is the only person who has stayed above this kind of criticism,

He did this by a very claver trick. He avoided criticism of his assumptions
by not making any assumptions, and by pointing this out to the reader in the
preface to his book.

Gibbs simply constructed models in which he assigned certain prcbhabi-
lities for certain situations, and in introducing them he did not say a word
about why he chose those particular probabilities. In the preface he tells
us that the reason for this has something to do with difficulties which the
theory faced in his day, and in particular he mentioned the fact that the
experimental specific heat of diatomic gases comes out only 5/7 of what he
expected it to be on the basis of his thecory. There are a few other dif-
ficulties. The paradex akout entropy of mixing, for example, and the fact
that his theory failed to predict the actual values of equilibrium constants
and vapor pressures until you added still more assumptions.

I like to think that there is ancther reason why Gibbs operated this
way. 1t was maybe even more compelling that the temporary difficulties.

Of course, all those difficulties we recognize today as signaling the first
cluesg to the guantum theory. We all know that Gibbs was a very shrewd old
gentleman whc was a master of science as it existed in his day. I think he
was equally well a master of psychology. He realized that the physics of
his day and the preobability theory in his day didn't provide any really
convincing arguments to justify the probability assignment of his canonical
ensemble in terms of more fundamental things. 2and yet, his work had shown
that it had all the formal properties which convinced him that it must be

right. It clearly was the neatest, most elegant, and simplest way of des-

cribing thermodynamics.
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Suppecse yvou were in a situation like that. Which is the best way to
proceed? I think Gibbs said to himself, "If I try to say a single word
to justify this canonical distribution, if I try to invent any argument to
back it up, then almost everybody who reads this work will conclude, quite
irrationa}ly, that the validity of my equations depends on the validity of
those arguments. But I know in my bones that this theory is right indepen-
dently of any arguments I am now able to give, because it has formal proper-—
ties which make it superior to any other. So I will say as mach as possible
about what I know, and as little as possible about what I don't know. The
real justification will have to come later." So he simply introduced his
canonical ensemble by entitling a chapter "On the Distribution in Phase
called Cancnical, in which the Tndex of Probability ig a Linear Function
of Energy," and that was it. He goes right on into the discussion.

So you can't say to Gibbs, "How do you know that this is the right
probability distribution?" He'd be perfectly justified by answering some-
thing like this: "I didn't say it was the right probability distribution,
and I'm not sure the guestion has any meaning. I'm simply constructing a
model for my own amusement. My canonical probability assignment is not
derived from anything, it's not an assumption about anything. It's a defi-
nition of which model I propose to study. After this model is set up, we
can compare 1ts predictions with experimental facts and see how far this
model is able to reproduce thermodynamic properties of systems. If the
modeal turns out to be successful, then it will be worthwhile to consider
whether, and in what sense, we might consider it to be correct.”

I think that's a very clever attitude to take - it aveoids so much useless
argumentation. It's a good example also of the methodology we really have

tc use in all theoretical physics. If we had to be sure we were right before

starting a study, we would just never be able te do anything at all. We have
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to start out by arbitrarily inventing something, some model, which we don't
attempt to justify in terms of anything deeper at the time, and see where

it leads us. Every once in a while we find that we can invent a model which
has very great success in reproducing cobserved phenomena, and whenever this
happens we get convinced that there must be some deeper reason why this

model is correct. Then we repeat the process. We try to invent another
model operating at some deeper level, from which we can deduce the features
of cur old model. The exciting thing about this is that when we finally
succead, we always find that the new model ig much simpler than the o¢ld model,
but at the same time is much more general.

There are all sorts of examples of this in the history of science which
vou all know akbout; for example, in electromagnetic theocry, the experimenta-
lists had produced a large number of separate eguations and rules of thumb--
the work of Coulomb, Ampere, Faraday, Henry, and so on. A&And then these were
all summed up in Maxwell's eguations. Maxwell's equations are much simpler
than this series of models which they replaced; but still they are more
general, and predicted new phenomena which the experimentalists hadn't found.
In fact, Maxwell's equations proved toc be so general that to this day, a
century later, they still provide the theoretical basis for all of electrical
engineering.

Perhaps the best example of all is the tremendous complication which
spectroscopy got into by the esarly 1920's. All the rules of thumb that
were developed in predicting what spectral lines would occur and which ocnes
would not, estimating where they would be, and so on. These rules of thumb
were guite successful, of course. You could use them for practical prediction.
But then we have the Schr¥dinger equation, which suddenly in a single dif-

ferential eguation says everything that all these ruleg ever said, and much

mnore; so much more that we are still finding new things from it.
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How has the Gibbs model fared? We'wve had it for 70 years now. It has
fared very well, except for these minor changes which have something to do
with quantum theory. We find that in every case where you can work out the
mathematics, the model has been successful in reproducing cbserved properties
of matter in the limiting case of thermal egquilibrium. There are some equili-~
brium cases where the mathematics is rather resistant to calculation, parti-
cularly the phenomenon of condensation; and we don't really know whether the
Gibbs model exhibits condensation for general attractive forces, in the sense
of being able to prove it rigorcusly. But I den't think anyone doubts that
the Gibbs model would be successful here if we were just better mathematicians
than we are. 3o for the sake of the argument, let's just grant that the
Gibbs model has turned out to be completely successful in reproducing all
features of equilibrium thermodynamics.

Because of its success, naturally, attempts would be made to Jjustify
the Gibbs model in terms of something deeper. Unfortunately, these attempts
do not seem to have been successful; at least I don't think there is a single
one of them which is so considered by any clear majority of the physicists
who worry about these things.

It hasn't been easy to get rid of the idea that the ultimate justifi-
cation of the Gibbs model must be found somehow in the laws of physics.

By this we mean particularly, say, the Schrddinger equation or the Hamil-
tonian equations of motion on a microscoplic level., For this reascon you
have this enormous amount of work that has been expended on "ergodic™
approaches to statistical mechanics, in which we tried to prove that the
time average of some quantity for a single system would, in consequence of
the eguations of motion, be egual to an average over the Gibbs ensemble.

But the results of this apprcach have remalned inconclusive, and it has

done ncthing to extend the Gibbs model to more general situations, as real
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advances in understanding always do.

More specifically, while the ergodic arguments have led to a number of
important theorems (such as reduction of the original problem to that of
metric transitivity), they have led to no definite conclusions proved appli-
cable toc real physical systems even in the eqguilibrium case; and they have
provided no clues as to how a general thecry of irreversible processes might
be set up.

I don't want to go at this point inte any detailed criticism of past
attempts to justify the Gibbs model, because that would take a lot of time
and would again be one of those fruitless and inconclusive kinds of criticism
which leads nowhere. But I'd like to indicate why it seems to me that any
appeal to the laws of physics may miss the point. It is simply that the
problem is not to justify any statement about physics. The problem is to
justify a probability assignment, and you can't deduce probability from
certainty. Nc matter how profound your mathematics is, if you hope to come
out eventually with a probability distribution, then some place you have
to put in a probability distribution; and nothing in the equations of motion
tells you what distribution to put in. They can give you only relations
between probabilities, at different times.

You might note that this argument has nothing to do with whether we're
considering classical or guantum statistical mechanics. In classical theory
we have our precisely defined states where we've specified the value of every
coordinate and every momentum to arbitrary accuracy, and the equations of
motion then determine unigquely what every coordinate and momentum must be
at some other time. In gquantum theory we don't use that method of descrip-
tion, but we still have our precisely defined states. They now are points in

a linear vector space, or Hilbert space, whose motion is uniguely determined

by the SchrBdinger equaticn.

10
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The analogy goes a good deal deeper; Licuville's theorem in the class-
ical case finds its analog in the fact that in quantum theory the eguatiocns
of motion induce a unitary transformation, which is therefore a measure-
preserving transformation, in the Hilbert space. The fact that the total
phase volume below a certain energy is finite in the classical case, has
its analog in the fact that the linear manifold spanned by all eigenfunctions
of the Hamiltonian with energies below a certain value, is a finite-dimen-
sicnal vector space. These are about the only properties which are actually
used in the ergodic arguments. Therefore practically everything that has
been said about these problems in classical statistical mechanics carries
over immediately to guantum theory.

One of our major obljectives is to justify the Gibbs cancnical probability
distribution in terms of scmething more fundamental. The only thing we could
accomplish by applying the laws of physics is that we could carry out trans-
formations and express the same distribution in terms of some other parameters.
But the distribution of Gibbs is already as simple as any we could hope to
get in this way, and afterwards we would still be faced with exactly the
same problem; to justify some probability assignment.

It seems to me that if we're ever going to justify the Gibbs model in
any meaningful way, we'll have to justify it directly on its own merits,
without considering the laws of physics at all. In other words, the problem
is to find a viewpoint from which we can see that the Gibbs model, and
Shannon's model of a communication process, are special cases of a general

method of reasconing.

In the next twe lectures, we're going te take what may seem like a
rather leng detour, and study the general problem of plausible reasoning--

also known by the more highbrow, and more restrictive, name of inductive

reasoning (I'm not going to bother to distinguish betwesn these terms).

11
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But if you'll bear with me, I think you'll find that we can give, not quite

rigorous theorems, but very powerful heuristic arguments, which indicate

what this more general viewpoint is.



