Lecture 2

PLAUSIBLE REASONING

Suppose some dark night a policeman walks down the street, and the
place is completely deserted apparently; but all of a sudden he hears a
burglar alarm, he locks across the street, and seses a jewelry store with a
broken window. Also, there's a gentleman wearing a mask, c¢rawling ocut through
the broken window, carrying a bag which turns cut to be full of watches and
diamond rings. The policeman doesn't hesitate at all in deciding this
gentlieman is dishonest. But by what reasoning process does he arrive at
this conclusion?

2.1 Deductive and Tnductive Reasoning

A moment's thought makes it clear that our policeman's conclusion was
not a logical deduction from the evidence; for there may have been a perfectly
innocent explanation for everything. It ﬂight be, for example, that this
gentleman was the owner of the jewelry store and he was coming home from a
masquerade party, and didn't have the key with him. He noticed that a passing
truck had thrown a stone through the window, and he was merely protecting
his own property. You see, the conclusion which seems so easily made was
certainly not an example of logical deduction.

Now while we agree that the policeman's reasoning process was not an
example of logical deduction, we still will grant that it had a certain
degree of validity. The evidence didn't make the gentleman's dishonesty

certain, but it did make it extremely plausikle. This is an example of the

13
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kind of reasoning which we all have to use a hundred times a day. We're
always faced with situations where we don't have encugh information to permit
deductive reasoning, but still we have to decide what to do.

The formation of plausible conclusions ig a very subtle process and
it's been discussed for centuries, and I don't think anvone has ever produced
an analysis of it which anyone else finds completely satisfactory. These
problems haven't been sclved and they're certainly not geoing to be sclved
in these talks; but T do hope that we'll be able to say a few new things
about them.

All discussions of these questions start out by giving examples of the
contrast between deductive reasoning and plausible reasoning. The syllogism
is the standard example of deductive reasoning:

If A is true, then B is true

A is true

Therefore, B is true
oY, its inverse:
If A is true, then B is true

B is false

Therefore, & 1s false
This is the kind of reasoning we'd like to use all the time; but, unfor-
tunately, in almost all the situations we're confronted with we don't have
the right kind of information to allow this kind of reasoning., We fall back
on weaker forms:
If A is true, then B is true

B is true

Therefore, A becomes more plausible
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The evidence doesn't prove that A is true, but verification of one of its
consequences does give us more confidence in A. Another weak syllogism,
still using the same major premise, is:

If A is true, then B is true

A ig false

Therefore, B becomes less plausible

In this case, the evidence doesn't prove that B is false; but one of the
possible reasons for its being true has been eliminated, and so we feel less
confident about B. The reasoning of a scientist, by which he accepts or
rejects his theories, consists almost entirely of syllogisms of the second
and third kind.

Now the reascning of the policeman in this example was not even of the
above types. It 1s best described by a still weaker form:

If A is true, then B hecomes more plausible

B is true

Therefore, A becomes more plausible
In spite of the apparent weakness of this argument, when stated abstractly
in terms of A and B, we recognize that the policeman's conclusion had a very
strong convincing power. There's something which makes us believe that
in this particular case, his arcgument had almost the power of deductive
reasoning.

This shows that the brain, in doing plausible reasoning, not only decides
whether something becomes more plausible or less plausible, but it evaluates
the degree of plausibility in some way. B2And it deces it in some way that
makes use of our past experience as well as the specific data of the problem

we're reascning on. Te¢ illustrate, for example, that the policeman was

making use of the past experience of policemen in general, we have only to
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change that experience., Suppose that these events happened several times
every night to every policeman, and in every case the gentleman turned cut
to be completely innecent. Well, very soon policemen would be ordered to
ignore such trivial things. This shows that in our reasoning we depend
very much on past experience--or as we will pregently call it, on prior
information--to help us in evaluating the degree of plausibility. This
reasoning process goes on unconsciously, almost instantanecusly, and we

conceal how complicated it really is by calling it common sense.

Professor George Polya has written three beccoks on plausikle reasoning
(Polya, 1945, 1954), pointing out all sorts of interesting examples, showing
that there are fairly definite rules by which we do plausible reasoning
(although in his work they remain in gqualitative form). Evidently, the
deductive reasoning described above has the property that you can go through
arbitrarily long chains of reasoning of this type and the conclusions have
just as much certainty as the premises. With the other kinds of reasoning,
the reliability of the conclusion attenuates if you go through several stages.
Polya showed that even a pure mathematician actually uses these weaker kinds
of reasoning most of the time. Of course, when he publishes a new theorem,
he'll be very careful tc invent an argument which uses only the first kind
of reasoning; and his professional reputation depends on his ability to do
this. But the process which led him tc the theorem in the first place almost
always involves one of the weaker forms.

Now the proklem I'm concerned with is this. Is it possible to reduce
this process of plausible reasoning to guantitative terms? The idea of
inventing a mathematical theocxry of reascning, both deductive and inductive,
is a very old cone. Leibnitz had speculated on such a "Characteristica

Universalis,” almost 200 years before Boole's The Laws of Thought (1854)

provided a calculus of deductive reasoning. When the theory of probability
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was developed, culminating in Laplace's Theorie Aralytigue (1812), it was

believed to be the long-awaited "calculus of inductive reasoning,” fully
developed. Throughout the 19th century this was the prevailing view, ex-
pounded by such people as Laplace, de Morgan, Maxwell, Poincaré, and many
cthers, And yet, in the 20th century we find that probability theory has
erupted into controversy, almost all of this fruitless, inconclusive kind,
in which one person attacks the assumptions of ancther person.

This issue has been framed rather sharply by Ludwig von Mises (von
Mises, 1957; 1963) who is really violent in dencuncing any idea that proba-
bility theory has anyvthing to do with inductive reasoning. He insists that
it is, instead, "the exact science of mass phenomena and repetitive events.”
On the other hand, Sir Harold Jeffreys (Jeffreys, 1939; 1955) is equally
vigecrous in upholding the opposite view, and insists that probability theory
is exactly what Laplace thought it was: the "calculus of inductive reasconing."”

Well, which is it? I want to point out that it makes a hig difference
in applicaticens. Science and engineering offer many problems where use of
probability theory is entirely legitimate on one interpretation, and entirely
unjustified on the other. Even in cases where both viewpoints would allow
the use of probability theocry, vour decision as to which mathematical pro=-
blems are important and worth working on, can still depend on which view-
peint you adept. (As an example, whose meaning will become clear later:
when approximaticons are necessary, is it the sampling distribution of a
statistic or the posterior distribution of a parameter that should be approx-
imated? The two different schools of thought will give opposite answers
te this; and each regards the mathematical labors of the other as effort
wasted on a false problem.)

Sooner or later, such an unsettled condition in probability theory

couldn't fail to have pretty serious repercussions in thecoretical physics
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and engineering--both of which make more and more use of probability methods.
And so now you see why any serious student of physiecs or engineering must
kecoms werried about this situation., I hope to show in these talks that

some of the outstanding unsolved problems in both physics and communication
theory have their origin in this state of utter confusion which exists in the

foundations of probability theory.

2.2 aAnalogies with Physical Theories

In physics, we guickly learn that the world is toco complicated for
us to analyze it all at once. We can make progress only if we dissect it
into little pieces and study them separately. Sometimes, as I already said,
we can invent a model which reproduces several features of one of these
pieces, and whenever this happens we feel that great progress has been made.
These mathematical mcdels are called physical theories. As knowledge advances,
we are able to invent better and better models, which reproduce more and
more features of the real world. Nobody knows whether there is some natural
end to this process or whether it will go on indefinitely.

In trying to understand common sense, we'll take a similar course.
We won't try to understand it all at once, but we'll feel that progress
has been made if we are able to construct idealized mathematical models
which reproduce a few of its features; that is the methodology of Gibbs.
We expect that any model we are now able to construct will be replaced by
better ones in the future, and we don't know whether there is any natural
end to this process.

The ultimate test of a physical theocry is not, "Can you demeonstrate it
by logic?" but only; "Is it free of cbvious inconsistencies and does it
agree with experiment?" It has taken the human race thousands of years

to comprehend this simple fact. It was utterly unknown to the ancient
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philosophers, and Galileo was the first to demonstrate clearly the advantages
of recognizing it.

It 1s exactly the same in our present problem. The test of any model
of plausible reasoning is not "Can yvou prove that it is correct?" Reszl
life, unfortunately, does not permit such a Utopian program. The only test
which can actually be applied in practice is: "Is it free of inconsistencies
and in agreement with common sense?" It has taken us a long time te realize
this, and I'm sure that there are still many people who will dispute it
vigerously.

The analogy with physical theories goes a lot deeper than a mere analogy
of method. Cften, the things which are most familiar tc us turn out to he the
hardest to understand. Our universities can train people to perform surgery
on the living heart and measure the internal charge distribution of the
proton; but nobody seems to know how to prevent the common cold, and all of
modern science is practically helpless when faced with the complications of
such a commonplace thing as a blade of grass. Accerdingly, we must not
expect too much of our models; we must be prepared to find that some of the
most familiar features of mental activity may be ones for which we have the
greatest difficulty in constructing any adequate model.

There are many more analogies. In physics we are accustomed to find
that any advance in knowledge ultimately leads to consequences of the greatest
practical wvalue, but of a totally unpredictable nature. Roentgen's discovery
of x-rays led to important new possibilities of medical diagnosis; Maxwell's
discovery of one more term in the equation for curl H led to the possibility
of practically instantanecus communication all ovexr the earth.

Our mathematical models for common sense also exhibit, although on a

more modest scale, this feature of practical usefulness. Any successful

model, even though it may reproduce only a very few features of common sense,
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will prove to be a powerful extension of common sense in some field of appli-
cation. Within this field, it enables us to solve problems of plausible
reasoning which are sc involved that we would never attempt to solve them
without its help. Thus the problem of optimum design of an electrical filter
or an antenna (which is just a particular kind of filter, operating in space
instead of in time) can sometimes be solved by applying a model of common
sense. Similarly, we will show that the prediction of the laws of thermo-
dynamics, including all experimentally reproducible features of irreversible
processes, can be viewed as an application of a single, formally very simple
model of common sense.

Models may have practical uses of a guite different type. Many people
are fond of saying, "They will never make a machine to replace the human
mind--it does many things which no machine could ever do." One of the best
answers te this attitude was given by J. von Neumann in a talk on computers
given at the Institute for Advanced Study in Princeton in 1948, which I was
privileged to attend. In reply tc the canonical question from the audience
("But of course, a mere machine can't really think, can it?"), he said:

"Lock hexe. You insist that there is something a machine cannot do. If
vou will tell me precisely what it is that a machine cannot do, then I can
always make a machine which will do just that!"

The only coperations which a machine cannot perform for us are those
which we cannot describe in detail. The only limitations on making "machines
which think" are our own limitations in not knowing exactly what "thinking”
consists of. For further comments on this, see my recent Letter (Jaynes,
1963a). But in cur study of common sense we will be led to some very explicit
ideas about the detailed mechanism of thinking. Every time we can construct
a mathematical model which reproduces a part of common sense by prescribing

a definite set of operations, it becomes a kind of blueprint showing us how
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to build a machine which operates on incomplete data and does plausible
reasoning instead of deductive reasoning. In science fiction, such machines
have been an accomplished fact for many years. In fact, T want to turn
this idea around and instead of asking, "How can we build a mathematical
model of common sense?” I want to ask, "How could we build a machine which

would do plausible reasoning?"

2.3 Intrecducing the Robot

Now the guestion of the process of plausible reascning that actual
human brains use is very charged with emotion and misunderstanding, to the
extent that the only seluticn is to avoid it. Alse, it is so complicated
that we can make no pretense of explaining all its mysteries; and in any
event we are not trying to explain all the abberations and incconsistencies
of human brains. That is an interesting and important subject, but it is not
the subject we are studying here. We are trying rather to understand some
of the good features of human brains.

In order to direct attention to constructive things and away from
controversial things which we can't answer.at present, we will follow the
methodology of Gibbs and invent an imaginary beast. Hig brain is te be
designed by us, so that he reasons according to certain definite rules.

The rules are suggested by preoperties of human brains which we think, or
hope, exist; but by introducing the beast we accomplish the following. You
can't okbject to the thecry on the grounds that we have failed to prove the
"correctness" of the rules, whatever that may mean. We are free to adopt
any rules we please. That's our way of defining which beast we are going
to study. After we've worked out the properties of this beast, we can then
compare the results of his reasoning process with the results of ours. If

yvou find no resemblance between the way the beast reasons and the way you
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reason, then you're free to decide that the beast is nothing but an idle,
useless teoy. But if you find a very strong resemblance, which makes it almost
imposeible to aveid concluding "I am this beast,” then that will be an
accomplishment of the theory, not a premise.

Now, let's take a problem with maybe some science fiction cvertones.
We've been assigned the job of designing the brain case of a robot. This
is supposed to be a very sophisticated robot. He doesn't just receive orders
and carry them out. He also has to have the ability te¢ learn, he has to
be able to make judgments on his own, he has to decide on the best course
of action even when we fail to give him full instructions. This means that
his brain has got to contain some kind of computing machine which will caxry
out plausible reasoning whenever the information we give him is insufficient
to permit deductive reasoning. How shall we design his brain case? This
is a fairly definite engineering problem.

Well, our robot is going to reason about propositions. We dencte various
propositicns by letters A, B, C, and so on, and for the time being we'll have
to require that any proposition we use will have, at least to the robot,
an unambiguous meaning. It must also be of such a "logical type" that it
makes sense to say that the proposition must be either true or false. Of
course, not all propositions are of that type at all. Later cn we'll see
whether there are any possibilities of relaxing that restriction.

Now to each proposition the robot is going to associate some plausikility,
which represents his degree of belief in the truth of the preposition, based
on all the evidence we have given him up to this time. In order that these
plausibilities can be handled in the circuits of his brain, they must be
assoclated with some physical guantity such as voltage or pulse duration

or frequency, and so on, however you want to design him. This means that

there will have to be some kind of association between degrees of plausikility
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and real numbers. This assumption, you see, is practically forced on us
by the requirement that the robot's brain must operate by the carrying out
of some definite physical process.

Let me emphasize the contrast between such a robot and a human brain.

We have decided that we will attempt to associate mental states with numbers
which are to be manipulated according to definite rules. Now it is clear
that cur attitude toward any given proposition may have a very large number
of different "coordinates." You and I form simultaneous judgments not only
as to whether it is plausible, but alsc whether it is desirakle, whether

it is important, whether it is interesting, whether it is amusing, whether
it is morally right, etc. If we assume that each of these judgments might
be represented by a number, then a fully adequate description of a state

of mind would be represented by a vector in a space of a rather large number
of dimensions.

Not all propositions reguire this. For example, the proposition, "The
refractive index of water is less than 1.3" generates no emotions; consequently
the state of mind which it produces has very few coordinates. On the other
hand, the proposition, "Your mother-in-law just wrecked vour new car" gener-—
ates a state of mind with an extremely large number of coordinates. A moment's
introspection will show that, guite generally, the situations of everyday
life are those inveolving many coordinates. It is just for this reason, I
suggest, that the most familiar examples of mental activity are often the
mest difficult to reproduce by a model.

We might speculate further. Perhaps we have here the reason why science
and mathematics are the most successful of human activities; they deal with
propositions which produce the simplest of all mental states. Such states
would be the ones least perturbed by a given amount of imperfection in the

human mind.
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I interject these remarks te point out that there is a large unexplored
area of possible generalizations and extensions of the thecry to be developed
here; perhaps this may inspire others to try their hand at developing "multi-
dimensional" theories of mental activity, which would more and more resemble
the behavior of actual human brains. Such a theory, if successful, might
have an importance beyond our present ability to imagine.

For the present, however, we will have to be content with a much more
modest undertaking. Is it possible to develop a consistent "one-dimensional”
model of reasoning? Evidently, our problem will be simplest if we can manage
to represent a degree of plausibility uniquely by a single real number, and
ignore the other "cocordinates" just mentioned; and at the risk of belaboring
it, let me stress again: we are in no way asserting that degrees of plausi-
bility in actual human minds have a unique numerical measure. OCur job is
not to postulate any such thing; it is to investigate whether it is possible,
in our robot, to set up such a correspondence without contradictions, If
the attempt to do this should fail, then we will have to consider more com-
plicated kinds of association; but I propose to try out the simplest possi-
bility first.

We'll adopt a convenient but nonessential convention; that this will
be done in such a way that a greater plausibility always corresponds to a
greater number. It will be convenient to assume also a continuity property,
which is hard to state precisely at this stage; but to say it intuitively:
an infinitesimally greater plausibility ought to correspond only to an
infinitegimally greater number.

To state the above ideas more formally, we introduce some notation of
the usual symbolic logic, or Boolean algebra. By the symbolic product

AB

we mean the proposition "both & and B are true." OCbviously, AB and Bh are

24



Lecture 2, Section 2.3.

the same proposition. The expression

A+B
stands for the proposition: "at least one of the proposgitions A, B is true,”
and is the same as B+A. The plausibility that the robot asscciates with
proposition A could, in general, depend on whether we told him that some
other proposition B is true. And so we indicate this by the symbol

(a]B) .
I'11 call this the "conditional plausibility of A, given B:;" or just, "A

given B. It stands for some real number. Thus, for example,
(a] BC)
(I'"11l read this as "A given BC"} represents the plausibility that A is true,
given that B and C are true. Or,
(A+B| CD)

represents the plausibility that at least one of the propositions A and B
is true, given that both C and D are true, and so on. Now we've decided
that we're going to associate greater plausibility with greater numbers, so

(a]B)>(c|B)
says that given B, A is more plausible than C.

You know that when a computing machine is asked to divide by zereo, it
develops a psychosis--the poor machine tries its best, but just can't sclve
the problem. On some old kinds of desk calculators the only thing you can
do is to put the machine ocut of its misery by pulling the plug. In the
interest of aveiding impossible problems, we are not going to ask our robot
to undergec the agony of reasoning on the basis of mutually contradictory
propositions, Thus, we make no attempt to define (A]BC) when B and C are

mutually contradictory. Whenever such a symbol appears, we will understand

that B and C are compatible propositions.
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Now we wouldn't want this robot to behave in a way that's very greatly
different from human behavior, because that would make him very hard to
live with and ncbody would want to keep such a robot in his home. So, we'll
want him to reason in a way that is at least gualitatively like the way you
and T reascn, as described by the above weak syllogisms. As a further exam—
ple, if he gets new information which increases the plausibility (AIBC) but
does not affect the plausibility (B’C), this of course can only preduce an
increase, never a decrease, in the plausibility (AB|C) that both A and B
are true. And it can only produce a decrease, not an increase, in the
plausibility that A is false. This gqualitative reguirement simply gives
us the sense of direction in which reasoning gees; it says nothing about
how much the plausikilities change.

Also, it would be nice if we could give this robot a very desirable
property which we don't have; namely, that he always reasons consistently.
By "censistently" I mean three things:

{(a} TIf a conclusion can be reasoned out in more than cne way, then

every possible way must lead to the same result.

(k) If twe problems are entirely equivalent; i.e., if +the robot's

state of knowledge is the same in both, then he must assign
the same plausibilities in both.
(¢} The robot is completely non-ideclegical; if he has several
pleces of evidence relevant to a question, he deoes not
arbitrarily throw out part of his efidence, basing his
conclusions only on what remains; he always takes into
account all of the evidence available to him.
All right. Now I claim something which may seem startling. The condi-

tions that we have imposed are:
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1. Representation of degrees of plausibility by real numbers.

2. Qualitative correspondence with common sense.

3. Consistency.
These requirements, I claim, uniquely determine the rules according to which
this robot must reason; there is only one set of mathematical operations
which has all these properties. In the next Lecture we commence the mathe-

matical development by deducing these rules.
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