Lecture 3

TAPLACE'S MODEL OF COMMON SENSE

We have now formulated cur problem, and it ought to be a matter of

straightforward mathematics to work out the consequences of our three

desiderata:
1. Representation of degrees of plausibility by real numbers.
2. Qualitative correspondence with common sensge.
3. Congistency.

This seems in retrospect an cbviocus and natural thing to do; but histori-
cally, the rules we are about to deduce were first stated as arbitrary axioms,
on intuitive grounds, without any attempt to demonstrate their unigueness
or consistency. This, of course, left room for practically endless contro-
versy; 1f the rules are introduced in that way, what right have we to suppose
that they are any better than a hundred cther arbitrary ones we could invent?
It was just this kind of doubt, strengthened by some ridiculous misapplica-
tions, that led many to reject Laplace's work and to deny that probability
theory has any connection with inductive reasoning. As a result, the develop-
ment of statistical theory was delayed for many years, and the very "latest”
advances in this field amount only to a rediscovery of methods thal had been
described and used by Laplace and Daniel Bernoulli in the 18th century.

To the best ¢f my knowledge, the first person to see that there is a

better way of developing the theory was Professor R. T. Cox (Cox, 1946; 1961).

Instead of stating the rules in a way that leaves their consistency and

28



Lecture 3, Section 3.1.

uniqueness open to doubt, the requirement that they be consistent can be
imposed from the start as one of the basic conditions of the theory; and then
their unigueness can be deduced mathematically. Cox's argument, which we
follow here, therefore cuts the ground cut from under more than a century

of urnjust criticisms of Laplace's methods.

3.1 Deduction of Rule 1.

We first seek a consistent rule for obtaining the plausibility of AB
from the plausibilities of A and B separately. In particular, let us find
the plausibility (ABIC); on what others must it depend? Now in order for
AB to be a true proposition, it is certainly necessary that B be true; thus
the plausibility {B[C) should be inveolved. In addition, if B is true, it
is further necessary that A should be true; so the plausibility (A]BC) is
also needed. But if B is false, then of course AB is false independently
of anything about A, so if we have (B|C) and (A|BC) we will not need (AIC).
It would tell us nothing about AB that we didn't already have. Similarly,
(A|B) and (B|A) are not needed; whatever plausibility A or B might have in
the absence of data C could not be relevant to judgments of a case in which
we know from the start that C is true.

We could, of course, interchange A and B in the above paragraph, so the
knowledge of (AJC) and (B]AC) would also suffice to determine (BA|C)E(ABJC).
The fact that we must obtain the same value for {ABIC) no matter which pro-
cedure we choose will be one of our conditions of consistency.

We can state this in a more definite form. (AB[C) will be some function
of (B|C) and of (A|BC):

(a|c) = PL(B|C), (A]BO)] (3-1)

Now if the reasoning we went through here is not completely obvious,

let us examine some alternatives. We might suppose, for example, that
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(aB/C) = Fl(a]|c), (B[O)]
might be a permisgssible form. But we can show easily that no relation of this
form could satisfy the conditions that we'wve imposed on our rchot. A might
be very plausibkble given C, and B might be very plausible given C; but AB
could still be very plausible or very implausible. For example, if I'm told
that Mr. Jones lives in Dallas, it might be quite plausible that his eyes
are blue, and it might be guite plausible that his hair is black; and it's
reasonably plausible that both are true. But, if I'm told that Mr. Smith
lives in St. Louils, it is quite plausible that his left eye is blue, and
it's quite plausible that his right eye is hrown; but it's extremely implaus-
able that both of those are true.

We would have no way of taking such influences into account if we tried
to use a formula of this kind. Our robot could not reason the way human
beings do, even qualitatively, with that kind of functional relation.

You might try further a relation of the form

(aB|C) = Fl(alo), (a{B), (BlA), (B|O)]
in which you try to take the above cases inte account by allowing all four
of these simple plausibilities to determine (AB[C). But even here you can
produce counter—examples which show that a function of this form could not
reproduce plausible reasoning even qualitatively like ours.

You can blow this up into a whole research project, if you like. Thus,
introduce the real numbers

u = (aB|CY, v = (a]Q), v = (n|BC), x = (B|Q), w = (B|nQ).
If u is to be expressed as a function of two or more of v, w, %, and v,
there are eleven possibilities. You can write cut each of them, and subject
each one to various extreme conditions, as in the brown and blue eves (which

was the abstract statement: A implies that B is false). Other extreme

conditiong are A = B, A= C, C implies A false, etc., If you do this, Myron
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Tribus has shown (Tribus, 1969) that all but two of the possibilities can
exhibit qualitative violations of common sense in some extreme case. The
two which surviﬁe are u = F(x,v) and u = F{w,v), which are just the two
possibilities already suggested.

Another way cof loocking at this, suggested by Mr. Alfred S. Gilman, may
seem more attractive than this laborious elimination of alternatives, one
by one. We may regard the process of deciding that AB is true as a sequence
of two "mental transitions" in which there are only two possible routes,
illustrated by the decision tree diagram, Fig. 3.1. In order to decide
that AB is true, we

(1) decide that B is true,

(2) having accepted B as true, decide that A is true.
or, we can

(1') decide that a is true,

(2') having accepted A as true, decide that B is true.

Along either route, the state of knowledge in which we decide to make the

next transition is indicated by the plausibility symbols on the arrows,

Fig. 3.1. The possible "mental transitions" in deciding that A and
B are true, given that C is true.
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However you like to view this, I don't think you'll be able to produce
any situation where equation (3-1} does not reproduce cualitatively the way
you would reason about the situation. (If you can, then all I can say is
that your common sense is qualitatively different from mine--and Laplace's——
and you are free to design your own robot!l)

Now let's start imposing our conditions on the form of this function
and see if we can nail down what function it has to be. If anything increases
the plausibility (B|C), then that must produce only an increase, never a
decrease, in the plausibility (AB]C). Similarly, if anything increases
(A|BC), this must also produce an increase, not a dgcrease, in (ABlC). The
only case where it would not produce an increase is where the other inde-
pendent variable happened to represent impossibility; if we know that A is
impossible given C, then, of course, the plausibility of B could increase
without affecting (AB|C). Also, the function F(x,y) must be continuous; for
otherwise we could produce a situation where an arbitrarily small increase
in one of the plausibilities on the right side still results in the same
big increase in (AB‘C).

In summary, F(x,v) must be a continuous monotonic increasing function
of both x and yv. I will assume that it's a differentiable function. The
derivatives cannot be negative, and they can be zero only in the case where
AB is impossible. Now for the condition that it shcould be consistent.

Suppose that I try to find the plausibility (ABCID) that three propo-
sitions would be true simultanecusly. I can do this in two different ways.
If the rule is going to be consistent, we've got to get the same result for
either order of carrying out the operations. I can first say that BC will
be ccnsidered a single proposition, and then apply our rule. This plausi-

bility would then be

(aBC|D) = F[(BC|D), (A|BCD)]
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and now in this plausibility of (BClD) we can again apply the rule to give us
(aBC|D) = F{F[(C|D), (B|CD)]1, (A|BCD)}
But we could equally well have said that AB shall be considered a single
proposition at first. TFrom this we can reason ocut in the other order to

obtain:

(aBC|D) = FI(C|D), (2B{CD)]

F{(c|p), FI(2|cD), (n|BCD}]}.

il

So by doing it in the other order, we come out with a different expression.
If this rule is to represent a consistent way of reascning, these two expres-
sions must always be the same. The condition that our robot will reason
consistently in this case takes the form of a functional eguation,
F[F(x,y),2z] = F[x,F(y,z)]. (3-2)

Conversely, if this functiocnal equation is satisfied, then cur original
rule is automatically consistent for all possible ways of finding the Jjoint
plausibility of any number of propositions; (ABCDEIF), for example. You
can see that there are an enormous number of different ways you can work
this out by successive applications of Equation (3-1). And you can show
by induction that if the functional Eguation (3-2) is satisfied, then you're
guaranteed to get the same answer for every possible way of doing it.

This functional equation is one which has guite a long history in mathe-
matics. The earliest reference to it that I know about goes back to 1826,
and is a paper by N. H. Abel in the first issue of Crelle's journal. A2abel
considered equation (3-2) merely as an amusing exercise, and found the general
solution by reducing it to a differential equation. The sclution has been
rediscovered probably dozens of times since 1826. In particular, this is done
in a paper by R. T. Cox (Cox, 1946} which I rate as one of the most important
ever written on the foundations of probability theory. Cox established the

conditions for consistency of this theory in the sense {a} given above, and
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ny only contribution was to add the gualitative requirements and the other

conditions of consistency, which are needed to make the result unique. 1In

a later book (Cox, 1961) Cox's work is given more fully, with some improve-

ments in the derivations. For an appreciation of the importance of Cox's

contributions to probability theory, see my review of his bock {(Jaynes, 1963b).
A particularly neat mathematical treatment of our functional egquation

(3-2) has been given by J. Aczel in a paper (Aczel, 1948) and in his monu-

mental book on functional equations (Aczel, 1966; Sec. 6.2). He calls it,

"The associativity eguation." Let me just quote you the theorem that Aczel

gives. He says, "Let's let

where

represents any operation which maps z into the same interval with x and y.
In other words, if x is in the interval from a to b, and v is in the interval
from a to b, then this operation is one which will always put z into the
same interval." He gives a theorem which is exactly backwards from the way
we would want it for our applicaticon. He consgidered a formula for the design
of the most general slide rule. The general condition that z could be cal-
culated without ambiguity on a slide rule calibrated with numbers x and y
ig, of course, that there is some monotonic function fi{z) = £({x) + E£(v).
If this is true then you can make a slide rule which gives z in terms of
X and yv. Aczel shows that a necessary and sufficient condition for that is
that the operation x o y must have the following properties:
(1) It must be monotonic: if x'>x, then x'oy>xoy, and similarly for v.
(2} It must be continuous: lim (xoy) = (lim x) o (lim vy).
{(3) Tt must be associative: (xoy)oz = xo(voz).

You see that these are precisely the conditions that we have imposed on ocur
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function z = F(x,y). It had to be a monotonic, continucus cperation in
order to agree gqualitatively with common sense. The condition that it sheould
represent a consistent kind of reasoning was just the condition that it ke
associative. We conclude that the general relation between x, y, =z, implied
by z = F(x,y) must be expressible in the feorm
-1
F(x,y) = £ "[£x) + £(y)], or

f(z)

f(x) + £(vy).
Now, of course, we can write this equally well as a product,
p(z) = p(x) ply),
where p{x) = expl[f(x)] is still an arbitrary continuous monotonic function.
It makes no difference which form we chocose, but the second choice will
prove more convenient later on.
So our rule for finding the plausibility of both A and B takesg the form
p(AB|C) = p(a|BC) p(B|O). (3-3)
The condition that this shall represent reasoning gqualitatively like
ours can tell us scmething more about this function p(x). For example, let's
imagine first that A is certain, given C. What would happen then? Well,
if A is certain given C, then in the "envircnment" produced by knowledge of
C, AB and B are the same proposition, in the sense that one is true if and
only if the other is true. So, the plausibility that AB is true must be

just the plausikility that B is true:

(sl = (B|o).

And also we would have:

(alsc) = (a]|o),
because 1f A is already certain given C, the fact that we may also have B
given would not be relevant; it's still certain. To what is our equaticn

{3~3) reduced in this case? It then says

p(alo = pala pilo,
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and this would have to hold no matter how plausible or implausible B might

be. So our function p(x) has toc have the property that certainty must always

be represented by p = 1.

Now suppose that A is impossible, given C. In this case, the proposition

AB is also impossible given C:

(aBlC) = (alo)
and if A is already impossible given C, then if we had been given B also,
A would still be impossible:

(aleo) = o).
In this case, equation (3-3) reduces to

p(alc) = p(B|C) p(a]Q) (3-4)

and again this equation would have to hold no matter what plausibility B
might have. Well, there are two possible values of p(A]C) that might satisfy
this condition. It could be zero or plus infinity. The choice minus infinity
can be ruled out [see what happens in (3-4) if B alsc becomes impossible],
but at present there's nothing to tell us to choose zero rather than plus
infinity; either one is equally good.

All right, let's sum up what we know about p(x) so far. It is a con-
tinucus monotonic function. It may be either increasing or decreasing. If
it's an increasing function, it must range from zero for impossibility up
to one for certainty; if it's a decreasing function, it must range from
one for certainty up to infinity for impossibility. The way in which it

varies between these limits, of course, cur rule says nothing at all about.

3.2 Deduction of Rules 2 and 3.

Now there are still other conditicns of consistency which these rules
must satisfy. Let me introduce another notation. By a small letter I'll

mean the denial of the kig letter. In other words, proposition a stands
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for the propositicn "A is false." Conversely, A stands for the proposition
"a is false." Most of the literature follows the notation of Boole, who
indicated denial by placing a bar over the letter. This is fine except that
it's a little hard to do reproducibly on a typewriter, so I've taken the
liberty of changing it in a way that makes typed notes easier to preoduce,
and less ambiguous to the reader. Actually, we will have little use for
this notation beyond the present derivation; sc it hardly matters.

Because of the fact that these propositions are of the type which must
be either true or false, we see that the logical product ahd is always false,
and the logical sum atA will always be true. Now the plausibility of a,
given some data B, depends in some reciprocal way on the plausibility of A;
if we define =x = p(A[B), y = p(a]B), then

y = s(x). (3-5)
Evidently, if this is going to agree qualitatively with common sense, the
function S(x) must be some continuous monotonic decreasing function. But
the relation between propositions a and A is a symmetrical one; it
doesn't matter which I choose to call a capital letter and which the small
letter. I can equally well say that

x = 5(y). (3-6)
It would have to be the same function. So S(x) must satisfy a functional
equation that when we apply it twice we get back to where we started:

s[s(x)] = x (3-7)

Now this alone is not enough to tell us much about this function. It says
only that the graph of v = S(x} has mirror reflection symmetry about the
line v = x. Sc now I'd like to give you another argument. There's another
condition which ${x) will have to satisfy in order to represent a consistent
way of reasoning, and for this we already have one rule of calculation

worked out:
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p(aB[C) = p(B|O) p(aA|BO) (3-8)
We'll <all this Rule 1 from now on. Now we can make this step:
p(aR|C) = p(B|C) sip(a|BO)]

but Rule 1 also says that p(aBlC) = p(B|C} p(a|BC}, and so

_ (28] )
pmBlo) = plo) )T (3-9)

This looks like a very strange thing to deo. But notice that the quantity
we started with inveolved A and B in a symmetric way. If I interchange A and
B, I don't change p(AB‘C). Therefore, although it doesn't lock like it at

all, this final expression must also be symmetric in A and B. In other words,

p(alC) s P(kz’i 8} = p{2|Q) S{P(?i 8} (3-10)
D P

These two expressions must be equal no matter whalt propositions A, B, and
C are. In particular, they must be equal when the denial of B is the same
as the proposition "both A and D are true," that is, when b = AD, or
B=a+ d.

But in that particular case, equation (3-10) simplifies. If B has this
meaning, then what is p(bA{C)? Well, b 1ig the statement that & is true and
also that D is true. But this means that bA = ADA = AD = b; the propositions
ba and b are the same, in the sense that they have the same "truth value.”
Cne of them is true if and only if the other is true. Therefore, they must
have the same plausibility:

p(balc) = p(blc) = sipB|cy].
Likewigse, aB = a(at+d) = a + ad = a; in other words, aB and a are the game
propesition in the sense that they have the same truth value, and so

p(aB|C) = pla|C) = slp(a C)]
Substituting these into {3-10), we get a rather awful looking functional

equation:
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S {y) S{x)
x S| | = v s (3-11)

Here is another functional equation which has to be satisfied in order to

have a consistent set of rules for reasoning.

At this peint, we will simply turn again to the paper by R. T. Cox
{Cox, 1946), or to his later book (Cox, 1961), which solves this problem.
He shows that the only twice differentiable function which satisfies all of
our conditions is

sto = (1 - = ™
and you sasily verify that this does satisfy (3-7) and (3-11). This means
that our reciprocal relation between the proposition and its denial would
then have to take the form
p™alB) + p(alm) = 1. (3-12)

m can ke any constant except zero. I might say that I'm not entirely satis-
fied with the argument that we went through to get this; not because I think
it's wrong, but because I think it's too long. The final result we get is
so simple that there must be a simpler way of deriving it; but I haven't
found it.

Now suppose that we make the choice that p = 0 is going to represent
impossibility. In that case, we'll have to choose m as a positive number
in order that (3-12) can be satisfied; but notice that choosing different
values of m is really idle, because the only condition cn this function p
is that it is a continuous monotonic function which increases from zero to
one as we go from impossibility to certainty. But if pl{x) gsatisfies these
conditions, then p2(x) = [pl(x)]m also satisfies them. So the statement
that we could use different values of m doesn't give us any freedom that

we didn't alrsady have in the fact that p(x) was an arbitrary monotonic

function. This means that if I choose to write eguation (3-12) in the form
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plalB) + p(alB) =1 (3-13)
this is just as general.

On the other hand, we could represent impossikility by p = «, In that
case, we would have to choose m negative. Once again, to say that we can
use different values of m wouldn't say anything that wasn't already implied
by the fact that p was an arbitrary monctonilice function which increased from
cne to infinity as we went from certainty to impossibility. So I could
equally well write this reciprocal law in the form

1 + 1
p(alB) © pl(alB)

= 1.

Now we could go through our entire theory of the design of this robot's
brain with the choice of p = ® to represent impessibility, and we would

not get stopped any place. Everything would go through just fine. We would
end up with equations which don't look guite so familiar to yvou as the ones
that the other choice will give us. But notice that they're not different
thecries, because if pl(x) is a possible choice which goes to plus infinity
to represent impossibility, then

L
- pl(x)

p3(X)
is a function which represents impcssibility by zero, and has all the pro-
perties that we needed. Sc regardless of which choice T make to represent
impossibility, it makes the form of equations lock different but their content
will be exactly the same. ¥You can go from one to the other simply by replac-
ing all p's by the reciprocals of the p's. So if we agree not to use this
choice of p = @ and always to use the cheoice p = 0 tc represent impossibility,
we're not throwing away any possibility of representation as far as content

is concerned. We're just removing a redundancy in how you could have stated

the theory. Let us agree, then, to use the choice:
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0

A

p < 1.
(for impossibility} (for certainty)
You recognize, of course, that this equation (3-13)

plalB) + p(alB) =1

which we henceforth call Rule 2, plus our ERule 1
p(AB|C) = p(B|O) p(alBO)
are actually the fundamental equaticns of probability theory. Evervthing
in preobability theory follows from those by sufficiently complicated arguments.
For example, I'd like to get the formula for
p(a + BlC),

the piausibility that at least one of the propositions A or B would be true,
given C. This follows frcm the rules we already have; we just apply Rule 1

and Rule 2 over and over again:

p(a + BlC) = 1 - plablc)
=1 - p(albc) p(blo)
= 1 - [1 - p(a]pC)] p(b|O)
= p(B|C) + p{ablQ)
= p(B|C) + p(b|aC) p(a]o)
= p(B|C) + p(a|Q) [1 - p(B]aC)].
Finally, we get
o(a + B|C) = p(ajc) + pB|c) - p(aBla). (3-14)

At long last we come out with the above form. 2And it's this result that I
will take as our Rule 3.
We can summarize what we have learned up to this point by writing down

our fundamental rules:

Rule 1: p(AB|C) = p(A[BC) p(B[C) = p(B|AC) p(r[Q) (3-15)
Rule 2: p(A‘B) + p(a|B) =1 (3=-106)
Rule 3: p(A + B|C) = p(A{C) + p(B|]C) - p(aB|0Q) (3-17)
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Rule 1, of course, involves A and B in a symmetric way and we could have
interchanged A and B in all the argument leading up to it, so we have the

liberty of writing it with A and B interchanged, as shown.

3.3 Deduction of Rule 4.

We've found sc far the most general consistent rules by which our robot
can manipulate plausibilities, granted that he must associate them with
real numbers in some way sc that his brain can operate by the carrying cut
of a definite physical process, and we are encouraged by the familiar appear-
ance of these rules. But there are two evident circumstances which show
that our job isn't yet finished. In the first place, while Rules 1, 2, and
3 show how plausibilities of different propositions must be related to each
other, it would appear that we have not yet found any unique rules, but
rather an infinite number of possible rules by which cur rchot ¢an do plaus-
ible reasoning; corresponding to every different cheice of a monotonic
function p(x), there'd bhe a different gset of rules.

Secondly, nothing given so far tells us what actual numerical values
of plausibility sheculd be assigned at the beginning of a prcblem, sc that
the robot can get started on his calculaticons. How is the robot to make
his initial encoding of the given information, intc definite numerical values
of plausibilities?

The following analysis answers both of these questions, in a way that
I think you will f£ind both interesting and unexpected. Let's ask for the
plausibility (A1+A2+A3IB) that at least one of three propositicns {Al, A, A3}
is true. We can find this by two applications of Rule 3, as follows. The
first application gives

p(Al+A2+A3!B) = p(Al+A2lB) + p(A3[B) - p(AgA, + A2A3|B)

where we first considered (A1+A2) as a single proposition, and used the
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legical relation (A1+A2)A3 = A1A3 + A2A3. Applying Rule 3 again to the first

and third of these expressions, we obtain seven terms which can be grouped
as follows:
p(Al+A2+A3|B) = p(A{|B) + p(A,{B) + p(a,]B)
- p(A2,[B) - p(A2A3fB) - p{a 2 |B) (3~18)
+ p(AlA2A3|B)
Now suppose these propositions are mutually exclusive; i.e., the evidence
B implies that no two of them can be true simﬁltaneously. This means that
p(aga,B) = p(Ai]B)aij (3-19)
where Sij is the Kronecker delta
I, if i =73

S8, = .
1
Jolo, if 1% 3

If the Ai are mutually exclusive, then the last four terms of (3-18) wvanish,
and we have
p(Al+A2+A3IB) = p(AlfB) + p(AZIB) + p(A3|B) (3-20)
Adding more propositions A,, Az, etc., it is easy to show by induction
that 1f we have n mutually exclusive propositions {Al e e An}, (3-20)
generalizes to
m
pag+ . . . +AmlB) =} p(a;[B), mzgn (3-21)
i=1
a rule which we will be using constantly from now on. In cenventional expos-—
itions, Eqg. (3-21) is usually introduced directly as one of the basic axioms
of the theory, without any attempt to demonstrate its unigqueness or consist-
ency. The present approach shows that this rule is deducible from simpler
relaticons, which in essence represent the conditions for this theory to be
consistent in the sense (a) given in Sec. 2.3.

Now suppose that the propositions {Al . e An} are not only mutually

exclusive but also exhaustive; i.e., on data B one and only one of them
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must be true. In that case the sum (3-21) over all ¢f them must be unity:

Zril:lp(Ai[B) =1 (3-22)
This alene is not enough to determine the individual numerical values p(Ai[B).
Depending on further details of the information B, many different choices
might be appropriate, and in general finding the p(Ai|B) can be a difficult
problem.

There is, however, one case in which the answer is particularly simple,
requiring only direct application of principles already given. But we are
now entering a very delicate and crucial area which has caused trouble and
controversy for over a century; so I ask that you suppress all intuitive
feelings that you may have, and contemplate the following logical analysis
minutely. The point we are about to make cannot ke developed too carefully;
and unless it is clearly understood, you will be faced with tremendous
conceptual difficulties from here on.

Consider two different problems. Problem I is the cne just formulated;
we have a given set of mutually exclusive and exhaustive propositions
{Al N An} and we seek to evaluate p(Ai[B). Problem II differs in that
the lakels Al' A, of the first two propeositions have been interchanged.

These labels are, of course, entirely arbitrary; it makes no difference which

proposition we choose to call Ry and which A In problem II, therefore,

5

we alsc have a set of mutually exclusive and exhaustive propositions

{Al'. .. An'}, given by
Al' = A2
A2' = Al (3-23)
Ak' =2Ap, k=3

and we seek to evaluate the guantities p(Ai'lB), i=1, 2, . . ., n.

In interchanging the labels we have generated a different hut closely

related problem. Tt is c¢lear that, whatever state of knowledge the robot
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had about Al in problem I, he must have the same state of knowledge about

A2' in problem II, for they are the same proposition, his given information

B is the same in both problems, and he is contemplating the same totaliity
of propositions {Al e . An} in both problems. Therefore we must have

p{A [B) = p(A)"[B) (3-24)

and similarly

p(a,|B) = pa,'|B) (3-25)

1T

We will call these the transformation eguations. What we have just done

may appear utterly trivial to you, but bear with me; this line of reasoning,
as Professor Eugene Wigner has aptly remarked {Wigner, 1959), consists of a
number of steps each of which appears trivial in itself, but which in their
totality are far from trivial. At this point, note that the transformation
equations (3-24), (3-25) must hold whatever the information B might be; in
particular, however plausible or implausible the propositions Al, A2 might
seem to the robot in problem I.

But now suppose that information B is indifferent between propositicns
Al and A,; i.e., it gives the robot no reason to prefer either over the
other. In this case, problems I and Il are entirely equivalent; i.e., he
is in exactly the same state of knowledge akout the set of propositions
{Al' ... An'} in problem II, including their labeling, as he is about the
set {Al . e An} in problem I.

Now we invoke our requirement of consistency in the sense (b) as given
above (Sec. 2.3). This stated that, in two equivalent procblems, where the
robot has the same state of knowledge, he must assign the same plausibkilities.
In equations, this statement is

p(Ai|B)I = p(a '|B)II, i=1,2,...,n (3-26)

which we will call the eguivalence eguations. But now, combining equations
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(3-24), (3-25), (3-26), we obtain
p(a,[Bl; = p(a,[B), (3-27)

In other words, propositions A; and A, must be assigned equal plausibilities

2

in problem I (and, of course, also in problem II).

At this point, depending on your perscnality and background in this
subject, you will be either greatly impressed or greatly disappointed by
the result (3-27). You recall that I asked you to suppress whatever intuitive
feelings you may have, and allow yourself to be guided solely by the logical
analysis. We will discuss the reasons for this presently; but first let us
extend the result., Mcre generally, let {Al" . An"} be any permutation
of {Al e e e An} and let Problem ITI be that of determining the p(Ai“IB).
If the permutation is such that Ai = Ak”, there will be n transformation
equations of the form

p(A;[B) ;= p(A "B (3-28)

which show how problems I and III are related to each other; and these
relations will hold whatever the given information B.

But if information B is now indifferent between all the propositions
Ai, then the robot is in exactly the same state of knowledge about the set
of propositions {A;" . . . A "} in problem III as he was about the set

{a . An} in problem I; and again our desideratum cf consistency demands

1. -
that he assign equivalent distributions in eguivalent problems, leading to
the n eguivalence equations
(A |B) 1 = P2 |B) 777, k=1, 2, ..., n (3-29)
From {3-28) and (3-29} we obtain n equations of the form
p(a;[B); = p(a [B); (3-30)
Now these relations must hold whatever the particular permutation we

used to define problem III. There are n! such permutations, and so there
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are actually n! equivalent problems in which, for given i, the index k will
range over all of the (n-1) others in (3-30). Therefore, the only possibility
is that all of the p(Ai|B)I be equal (indeed, this 1s required already by
consideration of a single permutation if it is cyclic). Since the {Al ‘e An}
are exhaustive, Eg. (3-22) will hold, and the only possibility is therefore

1

p(a|B = &

i=1, 2, ..., n (3-31)
and we have finally arrived at a set of definite numerical values. We will
call this regult Rule 4.

Perhaps you intuition had already led you to just this conclusion, with-
out any need for the rather tortucous reasoning we have been through. If so,
fine; then vour intuition is consistent with our axioms. But merely writing
down (3-31) intuitively does not give one a full appreciation of the impor-
tance and uniqueness of this result.

To see this importance, note that Eg. (3-31}) actually answers both
of the gquestions posed at the beginning of this Section. It shows--in one
particular case which can be greatly generalized--how the information given
the robot can lead to definite numerical values, so that a calculation can
get started. But it also shows something even more important because it is
not at all cbvious intuitively; the information given the robot determines
the numerical values of the quantities p(Ai]B), and not the numerical values
of the plausibilities (AiIB) that we gstarted with. This, also, will be found
to be true in general. But recognizing this gives us a beautiful answer
to the first question posed at the beginning of this Secticn; after having
found Rules 1, 2, and 3 it still appeared that we had not found any unique
rules of reasoning, because every different choice of a monotcnic function
p(x) would lead to a different set of rules.

But now we see that no matter what function p{x) we choose, we would

still be led to the same result (3-31), and the same numerical value of p.
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Furthermore, the rcbhot's reasoning processes can be carried out entirely by
manipulation of the quantities p, as Rules 1, 2, and 3 show; and the robot's
final conclusions can be stated equally well in terms of the p's instead

of the x's.

So, we now see that different choices of the function p(x) correspond
only to different ways you could design the robot's memory circuits. For
each proposition Ai about which he is to reason, he will need a storage
register in which he enters some number representing the degree of plausi-
bility of Ai, on the basis of all the data he has been given. Of course,
instead of storing the number p he could equally well store any monctonic
function of p. But no matter what function he used internally, the externally
observable behavior of the robot would be exactly the same.

As soon as we recognize this it is clear that, instead of saying that

pl(x) is an arbitrary monctonic function of x, it is much more to the pocint

to turn this around and say that the plausibility x is an arbitrary mono-

tonic function of p, defined in the interval 0 <p £1; it is p that is rigidly

fixed by the data of a problem. The guestion of uniqueness is therefore
disposed of automatically by the result (3-31); in spite of first appearances,
there is actually only one consistent set of rules by which our robot can
do plausible reasoning, and for all practical purposes, the plausibilities
x = (AIB) that we started with have faded entirely cut of the picture!l
We will just have no further use for them.

Having seen that our theory of plausible reasoning can be carried out
entirely in terms of the quantities p, we finally introduce their technical

name; from now on, we will call these quantities probabilities. I have

studiously avoided using the word "probability" in our derivations up to
this point, because while the word does have a colloguial meaning to the

"man on the street,” it is for us a technical term, which ought to have a
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precise meaning. But until it had been demonstrated that these quantities
are uniquely determined by the data of a problem, we had no grounds for
supposing that the guantities p were possessed of any such unique meaning.
We now see that they define a particular scale on which degrees of plausi-
bility can be measured. Out of all possible monotonic functions which could
in principle serve this purpose equally well, we choose this particular one,
not because it is more "correct," but because it is more convenient; i.e.,
it is the quantities p that obey the simplest rules of combination.

This situation is analogous to that in thermodynamics, where out of all
possible temperature scales, which are monotonic functions of each other,
we finally decide to use the Kelvin scale; not because it is more "correct”
than others but because it is more convenient; i.e., the laws of thermo-
dynamics and statistical mechanics take the simplest form in terms of this

particular temperature scale.

3.4 Philoscophical Digression.

For historical reascns, we still need quite a long discussion of Rule 4,
Eg. {(3-31). There seem to be only two kinds of people working in probability
theory: those who consider Rule 4 to be so utterly trivial and cbvious as
to be in no need of any proof; and those who regard it as such a foolish
and unjustified piece of metaphysical nonsense as to discredit anyone who
uses it.

As far as T have been able to determine, there is no middle ground
between these opinions; in the past, every writer on probability theory
has been an extremist on one side or the other. I myself was aﬁ extremist
of the first genre for some twenty vears, and it was only recently that
more mature reflection finally made me realize that Rule 4 is in need of

logical demonstration. More important, it now appears to me that the method
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of reasoning we have used to find Rule 4 is fundamental to all of probability
theory, almost every present application requiring it to give a full logical
justification of the result.

The reascning we have just used is the most rudimentary example of the
general group-theoretical approach which has been used with great success
in theoretical physiecs for some forty years (Wigner, 1959). I had been
teaching the use of group-theoretical methods for finding sclutions of
differential equations and boundary-value problems for sixteen years, without
realizing that this same technigue is the key to several deep unresoclved
issues in probability theory.

Rule 4 is itself fundamental to all of probability theory; although
some will deny it, I don't think I am exaggerating when I assert that there
is no known application of probability theory in which Rule 4 is not needed
at one place or another. Those who profess to dislike it merely find scome
way of disguising the fact that they are using it; I will cite some specific
examples in a later lecture. To understand this, we have to study the history
of probability theory.

Rule 4 appears to have been first stated explicitly by James Bernoulli
at the end of the seventeenth centﬁry {although it was, of course, implicit
in the still earlier work of Cardano and Pascal). In the old literature
it is often called the "Principle of Insufficient Reason,” and it was used
and defended by Laplace on the grounds that, on the given informatioﬁ, there
was "no reason to think otherwise." This terminology and reasoning have
been most unfortunate--I am tempted to say tragic-—for the development of
prokability theory, because it has created a psychological block which has
prevented many from seeing the real point cof Rule 4.

But note that, in view of our derivation, we are asserting the validity

of Rule 4, not for the weak and negative reason given by Laplace, but for
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the strong and positive reason that it is unigquely determined by elementary
requirements of consistency. In the state of knowledge defined by B in (3-31),
if the robot were to assign any preobability distribution other than the
uniform one, then by a mere permutation of lakels we could exhibit a second
problem in which the robot has exactly the same state of knowledge, but in
which he is assigning a different probability distribution. It just would

not make sense, then, to say that the distribution described the robot's state
of knowledge, or to claim that he is behaving in a consistent way.

But there is still a mystery here. For, no matter what method of
reasoning we use, how iz it possible that otherwise raticnal and mathematically
competent people could be in violent disagreement on such an apparently simple
matter és Eguation {(3-31)2? I think that we have been caught in a semantic
trap of our own making; to explain this, let me try to state the position
of both extremists.

The extremist of the first camp says, "If the information B gives the
robot no reason to prefer any of the propositions Ai over any other, then
these propositions must appear equally likely to him; there is cbviously no
cther thing he can possibly do but to assign them equal probabilities by
Eg. (3-31). To do anything else would be to jump to conc¢lusions not war-
ranted by the data."

The extremist of the second camp says, "If the informaticn B merely
gives the robot no reason to prefer any propesition over another, this pro-
vides absolutely no justification for supposing them to be equally likely;
they might not be egually likely at all. Unless the infeormation B contains
positive evidence that they are egually likely, the problem is simply not
well-posed; and to write Eg. (3-31) is to jump to conclusions not warranted

by the data."
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Perhaps I have not, in spite of scome effort, managed to verbalize these
two positions in the most felicltous way; but I think yvou will grant that
a more expert verbalizer could make either of these positions seem highly
convincing, so at least from a psychological standpoint we can understand
how there can be two diametrically opposing camps on this issue.

But, to be mcre constructive, what is the source of the difference?
If you study these two statements, I think you'll agree that it is semantic;
the phrase "equally likely"™ has two entirely different meanings in the two
camps. In camp 2, the statement, "A_, and A2 are equally likely" is taken

1

to describe a property of the propositions which is either true or false in

an objective sense independently of the state of knowledge you or I--or the
robot—-might have about them. With that interpretation, of course, we have
no justification for assuming thils property to exist unless there is positive
evidence for it.

In camp 1, the statement, ”Al and A, are equally likely" is not regarded

2
as describing any property of Al and AZ. In fact, each proposition is, in

an cbjective sense, either true or false; and the only reason for using
probability theoxy is that we are not in a position to say which. In writing

Eg. (3-31), we are asserting nothing whatever about the propositions; we

are describing only the state of knowledge of the robot.

Now you can, if you like, make value judgments as to which of these
interpretaticns is the more desirable. But this has already been done quite
enough to show that arguments on that level are futile. Debate on this issue
has been going on more or less furiously in the literature of probability
theory since the time of Laplace, one camp and then the other gaining a
momentary ascendancy in numbers. But I think you will agree that we have
here an issue that can never be settled by philosophical arguments about the

meaning of words; much less by taking votes., We are in a situation very
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much like the scientist who must decide between two rival theories of physics;
and it has taken the human race thousands of years to realize that the only
real, objective criterion for deciding such matters is the pragmatic one:
casting aside all philoscophical or ideological considerations, which view—

point leads to a theory with the widegt range of useful applications?

Therefore, I don't intend to waste any more time on the issue at this
point; it is a major objective of these lectures to examine the problem on
just the above pragmatic grounds. We are going to study a wide range of
problems, covering almost all present applicaticns of probability theory;
and whenever pessible we will exhibit the actual calculations, and £inal
results, that the two viewpoints lead to.

It is perhaps already clear that viewpoint 1 is more widely applicable;
there are many problems which our robot can undertake at once starting from
Rule 4, but which on viewpoint 2 are ill-posed, offering no basis for applying
probakility theory. Now of course, a human statistician kelonging to camp
2 may simply refuse to work on a problem (possibly at the cost of his job)
if the information available is not as complete as he would like; but our
robot is not free to do this, because the whole point of designing him is
that he is to do the best he can whatever the information at hand. The
issue will then be: in such preblems, doeg the robot arrive at useful and
defensible conclusiocns?

Of course, if the given information is too vague to justify any definite
conclusions, we will want the rcbot to racognize this and tell us that more
data are needed. His way of doing this will ke to give us a final probabi-
lity distribution that is very broad, indicating no strong preference for one
conclusion over ancother. If the data do justify definite conclusions, he
will find very sharply peaked final distributicns, and report, "The data

you gave me point to conclusion C as overwhelmingly the most likely tec ke
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correct." And, of course, the robot shculd have some way of interpolating
between these extremes, where most of the really interesting problems of the
theory lie.

In the theory we are developing, any probabkility assignment is neces-
sarily "subjective" in the sense that it describes only a state of knowledge,
and not anything that could be measured in a physical experiment. But it
is just the function of cur consistency reguirements to make these probability
assignments completely "objective" in the sense that they are independent
of the personality of the user; i.e., they are a means of descriking {or if

you like, of encoding) the given information, independently of whatever

personal feelings you or I might have. Tt is "objectivity" in this sense
that is needed for a scientifically respectable theory of plausible reasoning.

The job before us now is, therefore, not to engage in philoscphical
disputation, but to put our robot to the test by examining just what he will
do if he reasons by applying Rules 1 -~ 4 and their generalizations that we

will develop as needed.
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