Lecture 4

BAYES' THEOREM AND MAXIMUM LIKELIHOOD

From now on, instead of writing p(AIB), I will often leave off the p,
and write it simply as (A|B). You can interpret this two ways. You can say
I'm changing my notation; since it's always the function p that we're concerned
with, I'll simply understand that it's always that function that is meant.
Or, since it was an arbitrary function anyway, you can say that I've now
adopted the convention that

p(x) = x

by definition. It will make nc difference at all which way vou interpret

this. ©Our fundamental rules of reasoning will then take the form:

rule 1: (aB|C) = (a|BO) (B]C) = (B|AC) (2|C) (4-1)
Rule 2: (A|B) + (a|B) =1 (4-2)
Rule 3: (a+B|C) = (A|c) + (B|©) - (aB|C) (4-3)
Rule 4: If {Al .« v e An} are nmutually exclusive and exhaustive,

and B does not favor any over any other, then

(a;]B) =& , i=1, 2, . . . n. (4-4)

4,1 Prior Probabilities.

Now out of all the propositions that this robot has to think about, there
is one which is always in his mind. By X I mean all of his past experience
since the day he left the factory to the time he started reasoning on the

problem he's thinking about now. That is always part of the information
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which ig available to him, and obviously it would not be consistent
for him to throw away what he knew yesterday in reasoning about his
problems today. If human beings did that, education and civilization
would be impossible. So for this robot there is no such thing as an "abso-
lute" probability. All probabilities are conditional on X at least. X
might be irrelevant to some problem and in that case this postulate would
be unnecessary, but at least harmless. If it's irrelevant, it will cancel
ocut mathematically. Any probabilities which are conditional on X alone we
will call prior probabilities. If there is any additional evidence in addi-
tion to X, which the robot is now reasoning on, we will sometimes leave
off the X. We'll understand that even when we don't write X explicitly,
it's always built inte all expressions:

(a]B) = (a|Bx) .
But in a prior probability, I'll always put in X explicitly:

(alx) .

Because of some strange things that have been written about prior
probabilities in the past, we have to point out that it would be a big
mistake to think of X as some sort of hidden major premise, some universally
valid proposition about nature, or anything of that sort. X is simply what-
ever initial information the robot had available up to the time we gave him
his current problem. When we consider applications, you can think also that
X stands for some set of hypotheses whose consequences we want to find out,
plus the general conditions spe;ified or implied in the statement of the

problem.

4.2 Bayes' Theoren.

By far the most important rule which this robot uses in his everyday

tasks 1s the one we get by dividing through the second equality of Rule 1
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byr say., (B!C) :

(B|AC)
(a|BCy. = (2]c) —m[o (4-5)

This is called Bayes' theorem, or the principle of inverse probability.

You see it represents the process by which the robot learns from experience.
He starts out with the probability of A, on the basis of evidence C; he is
given new evidence B in addition, and this thecrem tells how the prcbability
of A changesg as a result of this new evidence. Bayes' theorem comes from
the fact that Rule 1 was symmetric in propositions A and B, which of course
it had to be in order to be consistent. To this robot it is quite clear
that if he wants to make any judgments about the truth of propositicn A,

the only correct way to do this is to calculate the probability of A, condi-
tional on all the evidence he has. This will almost always mean that he
will have to use Bayes' theorem.

Now let's imagine we let this robot examine scome procedures that are
uged in statistical inference. A very large part of statistical inference
is taken up with problems in which we are given certain evidence, which is
typically the result of some experiment, and from this evidence we are sup-
posed to do the best job we can of estimating some unknown parameter, or
testing cne hypothesgsis against another. All of these represent plausible
reasoning on the basis of new evidence; the evidence of the experiment.
Therefore, to our robot it's perfectly obvious that any such example of
parameter estimation or hypothesis testing must be a special case of the
application of Bayes' thecrem. You see, his brain has been built so that
this is the only possible way he can reason. To him, the fact that all these
procedures nust derive from Bayes' theorem is just as much a necessity of
thought ag the validity of a strong syllogism is to us.

Although this conclusion about Bayes' theorem is cbvious to our robot,
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it has not been at all obvious to most human statisticians. They largely
regard Bayes' theorem as not having any logical kasis except in the case
where every probability in it can be interpreted as a relative freguency
in some "random experiment." In that case, Bayes' theorem can be inter-
preted as selecting out of an original population of events some sub-
population in which the fregquency of event A might be different from the
frequency that it has in the population as a whole. But tc the robot this
is the only possible way of reasoning regardless of whether you can give
the probabilities a frequency interpretation.

To a statistician of the "orthodox" school of thought, to be defined
more completely later, the first thing he must do in solving a problem is to

decide which quantities are "random," and which are not; the procedures he
will use, and the whole way he will set up the problem, depend on which
decision he makes. But our derivation of the rules for plausible reasoning
in the last Lecture made no reference whatsoever to any randem experiment.
Te the robot, therefore, whether any random experiment is or is net involved
in the problem is totally irrelevant to the question of how he should reasocn.
Since this is perhaps the crucial issue in the controversies about
probability theory, and the central point in most of the applications that
I want to talk about later, we have got to meet it sguarely right now. So
let's ask the robot to make a strong, definite, and constructive statement
about it. Here's what he has to say:
"Consider any procedure in statistical inference in which we reason
cn the basis of new information. If this procedure is fully cconsistent and
in full qualitative agreement with common sense, then it 1s necessarily
exactly derivable from Bayes' theorem. Conversely, if it is found to repre-

sent only some approximation to Bayes' theorem, then it follows that
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(1) It is either inconsistent or it does qualitative viclence

to common sense, or both;

(2} These shortcomings can be exhibited by producing special

cases; and

(3) Bayes' theorem will then represent a superior (and often

simpler) way of handling the problem."

That is what the rochot says. We've designed him in just such a way
that it's the only thing he can say. It doesn't mean at all that what he
says is right. We've got to put him to the test. For each particular
procedure, this is a definite issue of fact; and not a vague matter of per-
sonal taste. Either the xobot is right or he's wrong in the above statement,
and it's in our pewer to find ocut whether he's right or wrong. So we'll
browse through the statistical literature, and every time we see an example
where the man says, "I'm not using Bayes' theorem," then we can lock at it
a little more carefully and see whether what he actually does can be derived
from Bayes' theorem; and if not, whether we can exhibit the defects in his

procedure.

4.3 Maximum Likelihocd.

The first example i3 Sir Ronald A. Fisher's method of maximum likelihood.
This is a way of estimating an unknown parameter, and I'll illustrate it
by the problem of estimating the magnitude of a signal which is ocbscured
by noise. You might be interested in scme quotations from Fisher's book

rn

(Fisher, 1952). On page 9, he refers to "...my personal conviction which
I have sustained elsewhere, that the theory of inverse prchability is
founded upcn an errcor, and must be wholly rejected" (inverse probability

and Bayes' theorem are the same thing as far as we're concerned). And later

on he says on page 20 that "maximum likelihood has no real connection with
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inverse probability." Well, let's illustrate the method. Suppose we have
observed a voltage just at one instant, which is the sum of an unknown signal
plus an unknown noise:
V=5+0N (4-6)
Our prior knowledge about the nature of the noise can be described by some
probability distribution; the probability that the noise amplitude is in
the range AN is
(AN|X) = W(N)aN (4-7)
Now if we knew that the signal had a certain value 5, then the proba-
bility of observing a voltage in the range dV would be given by scme relation
of the form
(av|sx) = L(V,s)av (4-8)

where L(V,S) is called the likelihood function. In the present case, from

the linearity of Bq. (4-6), this must be just the probability that the noise
would have made up the difference; and so

L(V,8) = W({W-39). (4~9)
But in the given problem, it's the voltage that's known and the signal that's
unknown. The maximum likelihood estimate of the signal magnitude would then
be the value of 8 which renders this likelihoed function L an absclute maxi-

mum for the observed value of V:

321,
o ! 367 © 0. (4-10)

Qr{ar
i

Stated intuitively, the maximum likelihood estimate is the value according
to which the observed voltage would appear as the least remarkable coinci-
dence.

How would our robot go about handling this problem? To him the way of
reasoning about the unknown signal is, of course, to calculate the probabi-

lity that the signal has a certain amplitude, on the basis of all the avail-
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able evidence. In other words, the robot says we should calculate (dS|VX)
by Bayes' theorem:

(av|sx)

(@s|vx) = (@s|%) “rgylx)

A (ds|X) L(V,s) (4-11)
where A is independent of S. S5So if we ask the robot what is the most prob-
able value of the signal [more precisely, for what value of § is it most
probable that the signal lies in the interval (S, $+dS) for a fixed 48},
he will maximize not L but the product of L with the prior probability. So
you see that if the robot’s prior information didn't give him any reason to
expect one signal magnitude more than ancother [i.e. if the prior probakility
(dS|X) is independent of S in the range of interest], then the robot's esti-
mate would be the same as the maximum likelihood estimate. If the robot has
prior information about the signal, then of course he may easily get a very
different value.

Now I think it's obvious not only to the robot, but also to us, that
if we do have any prior information about the signal, then it would be
screamingly inconsistent for us to refuse to take that information into
account in estimating the magnitude of the signal. You see, we could
describe the maximum likelihood estimate in another way asgs the wvalue which

we would obtain by throwing away all the prior information we had about the

signal, and basing our estimate only on our prior information about the noise.
Suppose you went to a docter and described your symptoms, and you wanted

him to diagnose what was wrong. You tell him that when you raise jour left

arm you feel a pain in your right side and a few things like this, and

the doctor is supposed tc do some plausible reasoning to figure out what

could be causing it. Suppose that after consultation had been underway for

some time you notice that the doctor is not showing any interest in your
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previous medical history. You ask him, "Well, aren't you going to look up

my medical history?" And suppose the doctor said, "Why, no, I must not

lock at your medical history, because that would introduce a bias into my
conclusicns.” What would you say? You'd say that the man is crazy. He
shouldn't be allowed to practice medicine. To refuse to take the pricr
information you have into account in plausible reasoning, is not a consistent
way of doing things.

Now, of course, a human statistician who uses maximum likelihood has
just as much common sense as anybody else; and in a case where we do have
prior information which is clearly relevant to the problem, common sense
will tell all but the most pedantic not to use the method of maximum like-
lihcod. 1In practice, he will avoid the bad errors of reasoning by inventing
a different method when a different kind cf problem comes up. In other
words, he will use his prior information to tell him how to formulate the
problem,* and he prefers tc formulate it so this information no longer appears
explicitly in his equations. The robot, however, doesn't need to invent
a new procedure for every new kind of problem. To him, Bayes' theorem is
always the only way of doing it.

I don't want to go intc more details now because this is close to a
problem which we are going to talk about a great deal later on; but for the
present we'll just note that the robot's prediction was correct. Except in
the case where it's clearly inconsistent, the method of maximum likelihood
is exactly derivable from Bayes' theorem. After all polemics, there remains
the simple fact that, mathematically, it is nothing but Bayes' theorem with

uniform prior probability.

*an example of such a reformulaticon suggested by prior information is given
in Lecture 9, Eguationg (2-18)-(9-22).
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