Lecture 6

MULTIPLE HYPOTHESIS TESTING

Let's suppose something very remarkable happens in the sequential test
just discussed. Suppose we tested fifty diodes and every one turned out to
be bad. According to our equationg, that would give wus 150 db of evidence
for the proposition that we had the bad batch. e(A|E) would end up at
+140 db, which is a probability which differs from 1 by one part in 10",
Now our commen sense rejects this conclusion. If vou test 50 of them and
you find that all 50 are bad, you are not willing to bkelieve that you have
a batch in which conly 1 in 3 are really bad. What is it that went wrong
here? Why doesn’t our robot work in this case?

Our robot is still immature. He is reasoning like a 4-year-old chiild
does. We've probably all had experience in talking to 4-year-old children,
They have enough vocabulary so that you c¢an carry out gquite extended con-
versations with them; they understand the meanings of words. DBut the really
remarkable thing about them is that you can say the most ridiculous things
and they'll accept it all with wide open eyes, open mouth, and it naver
occurs to them to question you. They will believe anything you tell them.
The information which cur robot should have put inteo his brain case was
noet that we had either 1/3 bhad or 1/6 bad. The information he should have
put in was that Mr. Jaynes said we had either 1/3 bad or 1/6 bad. Those

are entirely different propositions.
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Lecture 6, Section 6.1.

6.1. Admitting an Unlikely Hypothesis.

The robot should take into account the fact that the information he had
may not be perfectly reliable to begin with. There is always a small chance
that the whole set of initial data that we've fed into the problem was all
wrong. In every problem of plausible reascning this possibility exists. We

could say that generally every situation of actual practice is infinitely

complicated. There are always an infinite number of possibilities, and if
you start out with dogmatic initial statements which say that there are only
two possikilities, then of course you mustn't expect your eguaticns to make
sense in every case. 8So let's see whether we can, in a rather ad hoc way,
build this fact into our robot just for this particular exampie.

Let's provide the robot with one more possible hypothesis, although
initially a very unlikely one. Let's say proposition A means as before that
we have a box with 1/3 defective, and propeosition B stands for the statement
that we have a box with 1/6 bad. We add a third proposition, D, which will
be the hypothesis that something went entirely wrong with the machine ang
it's turning out 99 per cent defective. Now, we have to adjust our prior
probabilities to take this new possibility into account. I'm going to give

° {-60 db). I could write out

hypothesis D a prior probability (D|X) of 107
X as a verbal statement which would imply this, but I find that when I try to
write a proposition as a verbal statement, there's always someone in the
audience who manages to interpret it in a way which I didn't intend. I seem
to be unable to write verbal statements which are unambiguous. However, I
can tell you what propositicn X is, with no ambiguity at all for purposes of
this problem, simply by giving the probabilities conditicnal on X, of all the
propositions that we're going to use in this proklem. In that way I don't

state everything about X, I state everything about X that is relevant to our

particular problem, So suppose we start out with these initial probabilities:
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1 -6
(alxy =770 - 1078

10 -
(8] x) 7 - 10 '6) {(6-1)

]

(D|%) = 10~
where
A meang 'we have box which has 1/3 defectives”
B means "we have box which has 1/6 defectives" (this one was
formerly called simply a)
D means "machine's putting out 99 per cent defectives.”
The factors (1 - 107%) are practically negligible, and for all practical
purposes, we will start out with the initial values of svidence:
- 10 db for A
+ 10 db for B
- 60 db for D
Proposition E stands for the statement that "m dicdes were tested and every
one was defective." Wow, according to Bayes' theorsm the evidence for
proposition D, given E, is egual to the prior evidence plus 10 times the
logarithm of this probability ratio:

{E|DX)
e(D‘E) = e(DlX} + 10 logig TE%EET {6-2)

{(In this problem, we're saying that these are the only three hypotheses

that are to be considered and, therefore, as far as this problem is concerned,
the denial of D is equivalent to the statement that at least one of the
propositions A and B must be true.} What are these numbers now? From our

discussion of sampling with and without replacement in Lecture 5,

_ [ 99im
(E|Dx) = (m) (6-3)

LY

iz the probability that the first m are all bad, given that 99 per cent

of the machine's output is bad. This is the limiting form of the hyper-
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geometric distribution, under our assumption that the total number in the
box is very large compared to the number m tested.

We also need the probability (E|dX}, which we can evaluate by two appli-
cations of Bayes' theorem:

d|EX
(E[dx) = (E|X) ((d x§ {6-4)

But in this proklem it is dogmatically stated that there are only three
possibilities, and so the statement d = "D is false" implies that either A

or B must be true:

(a|Exy = (a+B|EX)

(A|EX) + (B|EX) (6~5)
where we used Rule 3, the negative term dropping out because A and B are
mitually exclusive. Similarly,

(d|xy = (a|x) + (B[X) (6-6)
Now if we substitute (6-5) into (6-4), Bayes' theorem will be applicable

again in the forms

(E[®) (R]EX) = (A]x) (E]AX)
(6-7)
(E]x) (B|EX) = (B|X) (E|BX)
and so finally we arrive at
(5] ax) - (E|ax) (a]x) + (B]BX) (B]X) (6-8)

alx)y + (B]x)

in which all prebabilities are known from the statement of the problem.
Although we have the desired result (6-8), let's take time to note

that there is another way of deriving it, which is often easier than direct

application of Bayes' theorem. The principle is to resoclve the proposition

whose probability is desired (in this case E} into a set of mutually exclusive

propositions, and calculate the sum of their prcobabilities. We can carry

out this resclution in many different ways by, as Professor Myron Tribus

has called it, "introducing into the conversation" any new set of mutually
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exclusive propositions {P,0,R,...}. But the success of the method depends
on our cleverness at choosing a particular set for which we can complete
the calculation. This means that the propositions introduced have to have
a known kind of relevance to the question being asked.

In the present case, in evaluation of (E’dx), it appears that proposi-
tions A and B have this kind of relevance. Again, we note that proposition

d implies (A+B); and so

(E{ax) = (E(a+B)[dX) = (EA + EB|ax)

(Ealax) + (EB[dX) (6-9)
These probabilities can be factored by Rule 1:

(E|dx) = (E]adx) (a]ax) + (E|BdX) (B|ax) (6-10)
But we can abbreviate {E]Adx) = (E]AX), (E]BdX) = (E]BX) because in the way
we set up this problem, the statement that either A or B is true implies
that D must be false, and so the "d" was redundant. For this same reason,

{d]AX) = 1, and so by Bayes' theorem,

_ @lan  @alx
Ald¥) = (AJX = -
(a]ax (f)(d]) I (6-11)

Substituting these results intoc (6-10) and using (6-6), we again arrive
at (6-8).

I wanted to exhibit these two ways of doing the calculation because
you recall it was one of the conditions of consistency that we imposed on
our rocbot back in Lecture 3, that if there is more than one way of calcu-
lating some probability, every such way must lead to the same result. If
these two avenues had not led to the same result (6-8), we would have found
an inconsistency in our rules, of exactly the sort we sought to guard against
by the functional eguation arguments of Lecture 3. Needless to say, no
case of such an inconsistency has ever been found.

Returning to (6-8), we have the numerical wvalues
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m m
1 1 1 10
(8| ax) = (3> = +(6) o (6-12)
and everything in (6-2) is now at hand. If we put all these things together,

we come out with this expression for the evidence for proposition D:

3
100

TP
11 3 11 \ &

There are some good approxXimations we can make to this. If m is larger

(6-13)

e(D[E) = -60 + 10 log;,

than 5, it's extremely accurate to replace the above by:
e{D|E) = - 49.6 + 4.73 m for m > 5. (6-14)
And if m is less than 3, there's another approximation which is pretty good:
e(D|E) =~ - 59.6 + 7.73 m for m < 3. (6-15)
Let's get some picture of what this looks like. We start out at minus
60 db for the propositicon D. The first few bad ones we find will each give
us about 7 3/4 db of evidence for the proposition, so the graph of e(D|E)
vs. m starts coming up at a slope of 7.7 but then the slope drops, when m
gets greater than five, to 4.7. This curve crosses the axis at 10 1/2 and
continues on up forever at that same slope. So, ten consecutive bad diodes
would be enough to raise this initially very improbable hypothesis up out
of the mud, up 58 db, up to the place where the robot is ready to consider
it very seriously.
In the meantime, what is happening to our propositions A and B? Well,
A starts off at - 10, B starts off at + 10. The plausibility of A starts
going up 3 db per defective dicde just like it did in the first problem.
But after we've gotten too many bad dicdes in a row, we'll hegin to doubt
whether the evidence really supports proposition A after all; proposition
D isg becoming a much easier way to explain what's observed. So at a certain

value of m, the curve for A will stop going up and turn around and go back down.
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Lecture &, Section &.1.

When I gave these talks at Stanford, I asked the audience to make
guesses and test your own plausible reasoning against our robot before
vou know the answer. Under these conditions, how many consecutive bad diodes
would you have to get before you will begin to be wvery troubled about propo-
sition A, and change your mind about whether the evidence really supports
it? Do we have any volunteers? At Stanford I got only one answer, and the
angwer was eilght. The student who gave this is either a mathematical genius
or our robot in the flesh, because the turning point according to our equa-
tions, to the nearest integer, is just eight. After m diodes have been
tested, and all proved to be bad, the evidence for propositions & and B,

and the approximate forms, are as follows:

e (A|E)

Il

- 10+ 10 logjg TNE 11 -6 993m
(E) TIoxl (100

- 104+ 3m form«< 7

= ’ {(6-10)

42,6 - 4.73 m form > 8
LT
) (&)
e(B|EJ =+ 10 + 10 log, ;)m . 11 10—6( 5o\
100

10 - 3 m for m < 10

= (6=17)
59.6 - 7.33 m for m > 11

These results are summarized in Figure (6.1). We can learn guite a

bit about multiple hypothesis testing from studying it. The initial straight
line part represents the solution as we found it before we had intreoduced
this proposition D, and both lines A and B would be straight indefinitely
on the first solutiﬁn. When we have introduced D, starting down here at
minus 60 db, the plausibility of D will increase, with a change in slope
between m = 3 and m = 4, and it continues to increase linearly from then

on. The change in plausibility of propositicns B and A starts off just
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the same as in the previous problem; the effect of propositicn D dees not
appear until we have reached the place where D crosses B. At that point,
suddenly the character of the A curve changes. The & curve, instead of
going on up at this point (at m = 8) has reached its highest value of 10.4 db.
Then, it turns around and comes back down. The B curve continues on linearly
until it reaches the place where A and D have the same plausibility, and
at this peint it has a change in slope. From then on, it falls off more
rapidly.

Now what is going on here? When D has reached the same plausibility
as B, that has a big effect on A. The change in plausibility of A due to
one more test arises from the fact that we are testing hypothesis A against
two alternative hypotheses: B and D. But initially B is so much more
plausible than D, that for all practical purposes, we are simply testing
A against B. After enough evidence has accumulated to bring the plausibility
of D up to the same level as B, then from that point on, A is essentially
being tested against D instead of B, which is a very different situation.
All of these changes in slope can be interpreted in this way. Once we see
this principle, we see the same thing is going to be true no matter how
many hypotheses we have. A change in plausibility of any one hypothesis
will always be approximately the result of a test of this hypothesis against
a single alternative —-the single alternative being that one of the remaining
hypotheses which is most plausible at that time. Whenever the hypotheses
are separated by about 10 db or more, then very accurately, multiple hypothesis
testing reduces to testing each hypothesis against a single alternative.
So, seeing this, you can construct curves of the sort shown in Fig. (6.1)
very rapidly without even bothering to lock at the equations, because what

would happen in the two-hypothesis case is easily seen once and for all.
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Lecture 6, Section 6.1.

All the information needed to construct fairly accurate charts resulting
from any sequence of good and bad tests is contained in the "plausibility
flow diagrams" of Fig. (6.2). They indicate, for example, that finding
a good one rzises the evidence for B by 1 db if B is being tested against
A, and by 19,22 db if it is being tested against D. Similarly, finding
a bad one raises the evidence for A by 3 db if A is being tested against
B, but lowers it by 4.73 db if it is being tested against D. Likewise,
we see that finding a single good one lowers the evidence for D by an amount
that cannot be recovered by two bad ones; so D will never attain an appreciable
probability unless the observed fraction of bad ones remains persistently
greater than 2/3.

Figure (6.1) shows an interesting thing. Suppose we had decided to
stop the test and accept hypothesis A if the evidence for it reached plus
10 dk. You see, it would reach plus 10 db after about six trials. If we

stopped the testing at that point, then of course we would never see the

Good Bad

Figure 6.2. Plausibility flow diagrams.
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rest of this curve and see that it really starts going down. If we had
continued the testing beyond this point, then we would have changed ocur
mind again. At first glance this seems disconcerting, but notice that it
is inherent in all problems of hypothesis testing. If you stop the test
at any finite number of trials, then you can never be absolutely sure that
you have made the right decision. It is always possible that still more
tests would have led you to change vour decision.

Evidently, we could extend this example in many different directicns.
Introducing more "discrete” hypotheses would be perfectly straightforward,
as we have seen. More interesting would be the introduction of a continucus
range of hypotheses, sgsuch as:

Mf = "The machine is putting out a fraction f good." Then instead of
a discrete prior probability distribution, our rcbot would have a continuous
distribution in 0 £ f < 1, and by Bayes' theorem he would calculate the
posterior prokability distribution of £, on the basis of the observed samples,
from which variocus decisions could be made. In fact, let's just take a

glimpse at the equations for that case.

6.2, Testing an Infinite Number of Hypotheses.

We are now testing simultanecusly an infinite number of hypotheses about
the machine, and as often happens in mathematics, this actually makes things
simpler. However, the logarithmic¢ form of Bayes' theorem is now rathesr

awkward, and so we will go back to the original form,

(B|AX)
(a[BX) = (A]%) —ET (6-18)
There is a priocr probability density
(Gf|x) = p(f) af (6-19)

which gives the probability that the fraction of good ones is in the range 4f;

and let E stand for the result thus far of our experiment:
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E = "N dicdes were tested and we found the results GGRGBRG---,
containing in all n good cnes and (N-n) bad ones."

Then the posterior probability density of £ is, by Bayes' theoremn,

(AF|EX) = (Af|%) (E(_ef;{) = P(f) df (6-20}

p(f) = p(f) (EJEL (6-21)
(E[x)

or,

The denominator is just a normalizing constant, which we could calculate
directly; but usually it is easier to determine it (if it is needed at all)
from requiring that the postericor density satisfy the normalization condition

/01 P(f) Af = 1 (6-22)
The evidence of the experiment thus lies entirely in the f-dependence of the
likelihood function [E‘ £3.

Now 1f we are given that £ is the correct fraction of good cnes, then the
probability of getting a good one at each trial is f, and the preobability of
getting a bad one is (1-f)}., The probabllities at different trials are, by
hypothesis {(i.e., one of the many statements hidden there in X), independent,
and so, as in Eg. (b-27),

(E]£) = £ (1-f)N-n (6-23}
(note that the experimental evidence E told us not only how many good and
bad cnes were found, but alsoc the order in which they appeared). Therefore,
we have the posterior distribution

n

E: (1-6""" p(8)
o £ -6V gy ar

P(f) = (6-24)

You may be startled to realize that all of our previous discussion of
gquality control is contained in this simple looking equation, as a special
case. For example, the multiple hypothesis test starting with (6-1) and

including the final results (6-13) - (6-17) is all contained in (6-24)
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corresponding to the particular choice of prior density:

=19 _ 1076 1
p(f) = {301 - 107%) §(f EJ

L~ 1078 -1
+ (- 1078 s{f - =)

3
+ 1078 §(f - 0.99) (6-25)
where §{f) is the Dirac delta-function. The three delta-functions here
correspond to the three discrete hypotheses B, A, D respectively, of that
example, and they appear in the posterior density with altered coefficients
which are just the probabilities given in {&6-13), (&6-1&), (6-17).

Suppose that at the start of this test our robot was fresh from the
factory that made him; he had no prior knowledge about the machines at all,
except for our assuring him that it is possible for a machine to make a good
one, and also possible for it to make a kad cne. In this state of knowledge,
what prior probability density p({f}) should he assign? It seems to me, as
it did to Laplace, that in this case the robot has no basis for assigning
to any particular interval df a higher probability than to any other interval
of the same size; so the only hcnest way he can describe what he knows is to
assign a uniform prior probability density, p{f) = const. To normalize it
coxrectly as in (6-22), we must take

p(f) = 1, 0= £=2 1. {(6-26)
It was Bayes himself who first took this step, in hisg famous work (Baves,
1762} that started this 200-year-c¢ld controversy about probability theory.
The problem he considered was, of course, different in statement than ours;
but they are mathematically equivalent. Bayes' work was published posthumously,
and 1t appears that he felt a little uneasiness about the wvalidity of (6-26).
Laplace tock up the subject at this point, and in a series of memoirs from

1772, developed Bayes' work into a general method of statistical inference.
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From our viewpoint today, we can say that there is nothing wrong with (6-26);
the only wvalid criticism is that neither Bayes nor Laplace specified clearly
the exact state of knowledge in which (6-26) is appropriate. I have tried
to give this here, although at this stage the manner in which the result
(6-26) follows from my verbal statement cannot be clear. This will be shown
later, when we take up transformation groups.

The integral in (6-24) is then the well-known Eulerian integral of the
first kind, today more commonly called the complete Beta-functicen; and {6-24)

reduces to

N-n
£ (1-f) {6-27)

{6—28)

which is the same as the maximum-likelihood estimate of £, and egual to the
frequency with which good ones were ohserved. To find the sharpness of the
peak in (6-27), write

L(f) = log P(E)}) = n log £ + (MN-n) log (L-f} + const. (6-29)
and expand L{f) in a Taylor series about £. The first terms are

N (£-F)2

L) = LD - sy g

+ - - - {&-30)

and so, to this approximation, (6-27) is a gaussian, or normal, distribution

a2
P(f) = A exp|- 15851—4 (6-31)

where
, _ £ (1-%)
N

{6-32)

o

and A is & normalizing constant. I leave it for you to convince yourself
that (6-31) is actually an excellent approximation te (6-27) in the entire

interval 0 < £ < 1, provided that n*>>1 and (N-n)>>1.
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Thus after observing the evidence E = '"n good ones in N trials," the
robot's state of knowledge about £ can be described pretty well by saying that
he considers the most likely value of £ to be just the chserved fraction of
good ones, and he considers the accuracy of this estimate to be such that the
interval f & ¢ is reascnably likely to contain the true wvalue. More precisely,
from numerical analysis of (6-31)}, he says that with 50% probability the true
value is contained in the interval £ * 0.68g; with 20% probability it is
contained in £ + 1.650; and with 99% probability it is contained in £ £ 2.570.
As the number N of tests increases, these intervals shrink, according to

1/2, the usual rule we expect to find in probability

(6-32), proportional to N
theorv.

In this way, we see that the robot starts in a state of "complete igneor-
ance™ about f; but as he accumulates information from the tests, he acquires
more and more definite opinions about f, which correspond very nicely to
common sense (except that common sense will hardly give us a definite numerical
interval such as f + 1.650). One caution; all this applies only to the case
where, although the numerical wvalue of f ig initially unknown, it was known
that £ is not changing with time.

Still more interesting, and more realistic for actual gquality-control
situations, would_be to introduce the possibility that f might vary with time,
and the robot's job is to make the best possible inferences about whether the
machine is drifting out of adjustment, with the hope of correcting trouble
before it became serious. A simple classification of diodes as bad and good
is not too realistic; there is actually a continuous gradation of guality,
and by taking that into account we could refine these methods. There might
be several important properties in addition to the maximum allowabhle inverse
voltage (for example, forward resistance, noise temperature, rf impedance,

low-level rectification efficiency, etc.), and we might also have to control
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the quality with respect to all these. There might be a great many different
machine characteristics, ingtead of just Mf, about which we need plausible
inference.

You see that we could easily spend years on this problem. But let me
Just say that although the details can become arbitrarily complicated, there
is in principle no difficulty in making whatever generalization vou need.

It regquires no new principles bevond what we have already given.

In the problem of detecting a drift in machine characteristics, vou would
want to compare our robot's procedure with the ones described by Shewhart
(1931). ¥You would find that sShewhart's methcds are a pretty good approximation
te what our robot would do; in some of the cases involving a normal distri-
bution they are exactly the same, 1In statisticians' language, the reason for
this is that the mean and variance of a sample drawn from a normal distribu-
tion are "sufficient statistics" for estimation of the mean and variance of
the parent distribution. Translated into our language: in applying Bayes'
theorem, the robot always finds that the mean and variance of the sample are
the only properties of the sample he needs (i.e., all other details are
irrelevant} for making inferences about the machine. These cases are, inci-
dentally, the only ones where Shewhart felt that his procedures were fully
satisfactory.

I don't want to go into this further now, because this is really the
same problem as that of detecting a signal in noise, which we will study later
on. Alsc, 1t is equivalent to the problem of deciding from a set of astrono-
mical observaticns (i.e., positions of the planets) whether there is some
unknown systematic effect, or whether discrepancies should be blamed on errors
of chservation. Laplace was applying this theory from about 1772 in just that
way—--to calculate the prebability that an unknown systematic effect exists,

and thus to help him decide which astronomical problems were worth working on.
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This use of probability theory led him to scme of the most important discov-
eries in celestial mechanics, and his methodology might well be noted by
scientists today.

Of course, I don't mean to set up Laplace as a kind of demigod who could
do no wrong. Today, it is easy enough--in fact, it is child's play--to find
things to criticize in Laplace's work, if you consider that a worthy occupa-
tion. If ancother 150 years of continuous work in this field had not resulted
in any improvement of technigques or clarification of principles, that would
certainly make Laplace unique among all scholars who ever lived. But I think
that the following judgment of the situation is a fair one: for several
generations the dominant school of statisticians has rejected and ridiculed
Laplace's whele conception of probability theory, while they slowly and
laboriously rediscovered his methods. If past efforts to discredit Laplace
had been directed inséead toward understanding his contributions and learning
how toc use them properly, statistical practice would be far more advanced

today than it is.
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