Iecture 8

POINT ESTIMATICN WITH BINOMIAL AND POTSSON DISTRIBUTIONS

In the next two lectures, I want to take up some applications of Bayves'

theorem, and comparisons with maximum likelihood, that are less triwvial

mathematically and also correspond guite closely to situations faced by many

experimentalists. The mathematics to be developed is applicable to a large

class of different problems; and let's start by indicating two typical exam-

ples.

(&)

Each week, a large number N of mosquitos is bred in a stagnant
pond near this campus, and we set up a trap on the campus to catch
gsome of them, FEach mosguito lives less than a week, during which
time it has the probability p of flying ontoc the campusg, and once
on the campus, it has the probability "a" of being caught in our

trap. We count the numbers cl, 02, ... caught each week. What

can we then say about the numbers n_, n.,, ... on the campus each

1 2

week, and what can we say about N?

We have a radicactive source (say C060 for example), which is

60

emitting particles of some sort {say the y-rays frem Co ). Each

radiocactive nucieus has the probability p cof sending a particle
through a counter in one second; and each particle passing through
has the prokability "a" of producing a count. From measuring the

nunbexr cl, c2, ... OFf counts in different seconds, what can we say

about the numbers Nyy Dgp o-es actually passing through the counter
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Lecture 8, Section 8.1.

in each second, and what can we say about the strength of the source?

The common feature in these problems is that we have two "random games"
played in succession, and we can observe only the outcome of the last one.
From this, we are to make the best inferences we can about the original cause
and the intermediate conditions, and I want to show how drastically these
problems are changed by various changeg in the prior information. In our
estimates we will want to (1) state the "best" estimate possibkle on the data;
and (2) make a statement about the accuracy of the estimate. These are the
classical problems of "point estimation” and "interval estimation.™ In this
lecture we will confine ocurselves to point estimation, and take up the second
aspect in the next lecture. I will speak in terms of the radiocactive source
problem, but it will be clear enough that the same arguments apply in many

different problems,

8.1. A Simple Bavesian Estimate: Quantitative Prior Information.

First, let's discuss the efficiency of the counter, which I'1ll dencte,

as indicated above, by "a. By this I mean that each particle passing through

the counter has independently the probability "a" of producing a count. The

situation is thexefore wery much like that of sampling with replacement,
discussed in Lecture 5, except that here there is no "urn" to shake, and so

we will not question the validity of equations such as (5-34). From the
logical standpoint, however, we still have to carry out a sort of bootstrap
operation with regard to this guantity; for how is it determined? Intuitively,
of course, vou have no trouble at all in seeing how you could determine "a"
from measurements con the counter. But from the standpoint of strictly logical
development, we need to have the calculation about to be given hefore we can
eztablish the precise connection between the wvalue of "a" and observable

"

guantities. So, for the time being we’'ll just have to suppose that "a" is a
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Lecture 8, Section 8.1.

given number, and later the result of our calculations will show us how it
can be measured.

Now if we knew that n particles had passed thrcugh the counter, the
probability, on this evidence, of getting exactly ¢ counts, is obtained by
repeated applications of our Rule 1 and Rule 2, in a way that is given in all
the textbooks under the heading, "Bernoulli trials.” The result is the
binomial distribution that we have already derived in two ways, Equations

(5-28) and (5-34). In our present notation, this is
(c|n) = (2) a® (1-a)?7C . (8-1)

In practice, there 1s a question of resolving time; if the particles come too
close together we may not be able to see the counts ag separate, either
because of limited bandwidth in the detecting circuits or because the counter
experiences a "dead time" after a count. These effects are important in many
practical situations and there is a voluminous literature on the application
of probability theory to them.* But we'll digregard those difficulties for
this preoblem, and imagine that we have infinitely good resolving time (or,
what 1s really the same thing, that the counting rate is s¢ low that there is
negligible probability of this happening.)

Now let's also introduce a quantity p which is the probabhility, in any
one second, that any particular nucleus will emit a particle passing though
the counter. We'vre going to assume the number of nuclei N so large and the
and the half-life so long, that we don't have to consider N as a variable
for this problem. So there are N nuclei, each of which has independently the
probability p of sending a particle through ocur counter in any one second.
The guantity p is also, for present purposes, just a given number, because

we have not vet seen in terms of probability theory, the line of reasoning

*A bibliography on probability analysis of particle counters is given in
appendix B.
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Lecture 8, Section 8.1.

by which we could convert experimental measurements on COGO

into a numerical
value of p (but again, you see intuitively without any hesitation at all, that
p is a way of describing the half-life of the source).

Suppose we were given N and p; what is the probability, on this evidence,
that in any one second exactly n particles will pass through the counter?

Well, that's exactly the same mathematical problem as the above one, so of

course it has the same answer, the binomial distribution
(n|N,p) = @) " (1-py N (8-2)

But in this case there's a good approximation to the binomial distribution.
Because the number N 1is enormously large and p is enormously small. In the
limit where N+, p>0 in such a way that Np»s = constant, what happens to (8-2)7
To find this, write p = g/N, and pass to the limit N-<w. Then

N n s\0
N-my 1 P = NN-1)...{N-n+1) g

S R R

which goeg into s? in the limit. Likewise,

- N-n -
A

=

and so the binomial distribution {8-2) goes over into the simpler Poisson

distribution:

=8 n
5 S

(njN,p} = (n|s) =~ (8-3)
and it will be handy for us to take this limit. The number s is essentially
what the experimenter would call his "source strength."

Now we have encugh "formalism" to start seolving problems. Suppose we
are not given the number of particles n in the counter, but only the source
strength s. What is the probability, on this evidence, that we will see

exactly ¢ counts in any one second? As we noted in Lecture 6, Eg. (6-9), a
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Lecture 8, Section B.1.

handy trick, which often works in problems of this sort, is to resoclve the
proposition ¢ into a set of mutually exclusive alternatives; then apply Rule
3 as extended to Eg. (3-21}, and then Rule 1. 1In this case, the propositions

¢n for all n form such a set, so we can write

(c|s) = Zn=0 (cnls) Zn_o (c|ns) (n]s)

ano(c]n) (n]s) (8-4)

Evidently, 1if we knew the number of particles in the counter, it wouldn't

matter any more what s was, so (c’ns) = (c|n). This is perhaps made clearer

by drawing a diagram, Fig. (8.1}, which indicates the direction of causal

influences; i.e., s partially determines the value of n, which in turn partially

determines c; but there ig no direct causal influence of s on ¢. 0Or, to put

it still another way, s can influence ¢ only via its intermediate effect on n.
Since we have worked out both (c[n) and {n{s), we just have to substitute

them in, and we get

—O—0O

Figure 8.1. Direction of Figure 8.2. Causal influences
causal influences. in successive measurements.
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c! n=c (n—c) ! a cl
or,
(c|s) = -eji,—(ﬁ)i " (8-5)
[}
This is a Poisson distribution with mean value
¢ = zm ¢ (cls) = sa. (8~6)

c=0

Well, our result is not at all surprising. We have the Poisson distri-
bution with a mean value which is the product of the source strength times
the efficiency of the counter. Without going through the analysis, that's
probably just the guess we would make.

In practice, it is ¢ that is known and n that is unknown. If we Kknew
the source strength s, and also the number of counts ¢, what would be the
prokability, on that evidence, that there were exactly n particles passing
throygh the counter during that second? This is a problem which arises all
the time in physics laboratories, because we may be using the counter as a

fl

"monitor," and have it set up so that the particles, after going through the
counter, then initiate some other reaction which is the one we're really
studying. Not i1f the particles are y-rays, I'm afraid, but with almost every
other kind of particles, this is an arrangement which has been used many times.
It is important to get the best possible estimates of n, because that is one

of the numbers we need in calculating the cross-section of this other reaction.
Well, this is exactly the sort of problem for which Bayes' theorem was invented,
so let's turn it over to our robot and see how he handles it. The probability

he needs is

(c|ns) N (n]s) (c]n)
(cls) 7 {c]s)

(n|cs) = (nls) (8-7)

Again, everything we need for this calculaticon is on the board, so we just
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have to substitute:

-5 n’ \
= s n! s n-c
nl }{ cl (n-c)! & (1-a) }
(n|cs) -sa c
e (sa)
. cl
e—s(l—a) [s (l_a)]n—c

- {n-c)! (8-8)

So you see the interesting thing is that we still have a Poisson distri-
bution, with parameter s{l-a), but shifted upward by c¢; because of course, n
could not be less than c¢. The mean value of this distribution is

n=) n (nles) = c+ s (1-a) (8-9)
n

All right, so what is the best guess the rcbot can make as to the nunber of
particles responsible for these ¢ counts? In all problems of this sort where
you want to make a definite decision, vou want the robot to announce one number.
There is a probkability distribution which describes the robot's state of
knowledge as to the number of particles., The number which he will publicly
announce as his guess will, of course, depend on what are the consequences of
being wrong. We will look at this aspect of the problem more closely later
cn, when we take up decision theory.

For the time being, we might ask the robot to take as a criterion that he
should minimize the expected square of the errcr. If he announces the estimate
n , but the true value is n, his error will be (n - n), whose expected

aest est

square is

{n - = (n? - 2n n + n?
est ) ( est est )
= n? - 2n £_+ H?
est est
= (n_, - )< + (n? - n?) (8-10)

The second term {;2 - Hz) = (n - ﬁ)z is called the variance of the distribu-
tion and it is fixed by (8-8) g0 the robot can do nothing to minimize it. But

he can remove the first term entirely by taking as his estimate just the mean
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value Doy = n that we just calculated in (8-9}.

Evidently, this result holds generally whatever the form of the distri-
bution; the mean square errcor criterion always leads to taking the mean value
T (i.e., the "center of gravity" of the distribution) as his "best" guess.

Or, if we ask him to state the one in which he believes most strongly, then

he will take the most probable value, i.e. the one which maximizes (8-8).

But the difference is negligible in this case, because in a Poilsson distri-
bution the most probable value {which we will denote by fi}) always lies between
n and (E;l). So, let's suppose that the mean value is the cone he is to
announce.

At this point, a statistician of the "orthodox" or "objectivistic" school
of thought pays a visit to our laboratory. We describe the properties of the
counter to him, and invite him to give us his best estimate as to the number
of particles. He will, of course, use maximum likelihood because his text-

books have told him that {Cramer, 1946; p. 498): "From a theoretical point

of view, the most Important general method of estimation so far known is the

method of maximum likelihood." His likelihood function is, in our notation,
(c|n). The wvalue of n which maximizes it is found, within one unit, £from
setting
(c|n) n (1-a)
(c|n-1) = Th-c =1
or
= (8-11)

max. likelihood ~ a

You may find the difference between these two estimates rather startling,
if we put in some numbers. Suppose our counter has an efficiency of 10 per
cent; in other words, a = 0.1, and the source strength is s = 100 particles
per second, so that the expected counting rate according to Eguation (8-6) is

¢ = 10 counts per second. But in this particular second, we got 15 counts.
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What should we conclude about the number of particles? Well, probably the
first answer cne would give without thinking is that, if the counter has an
efficiency of 10 per cent, then in some sense each count must have been due
to about 10 particles; so if there were 15 counts, then there must have been
about 150 particles. That is, as a matter of fact, exactly what the maximum
likelihcod estimate (B-11) would be in this case. But what does the robot
tell us? Well, he says the best estimate is only

n=15+ 100 (1 - 0.1) = 15 + 90 = 105 . (8-12)
More generally, we could write Eguation (8-9) this way:

n=s+ (¢c~c) ; (8-13)

if you see k more counts than you sheould have in one second, according to the
robot that is evidence for only k more particles, not 10k.

This example turned out to be quite surprising to some experimental
physicists engaged in work along these lines. Let's see if we can reconcile
it with our common sense. If we have an average number of counts of 10 per
second with this counter, then we would guess, by rules well known, that a
fluctuation in counting rate of something like the sguare root of this, %3,
would not be at all surprising even if the number of incoming particles per
second stayed strictly constant. On the other hand, if the average rate of
flow of particles is s = 100 per second, the fluctuation in this rate which
would not be surprising is about +/100 = +10. But this corresponds to only
*1 in the number of counts.

This shows that you cannot use a counter to measure fluctuations in the
rate of arrival of particles, unless the counter has a very high efficiency.
If the efficiency is high, then vou know that practically every count cor-
responds to cne particle, and you are reliably measuring the fluctuations in
beam current. If the efficiency is low and you know that there is a definite,

fixed source strength, then fluctuations in counting rate are much more likely
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tc be due to things happening in the counter than to actual changes in the rate
of arrival of particles.
What caused the difference bhetween the Baves and maximum likelihood

solutions? It's due to the fact that we had priocr information contained in

this source strength s. The maximum likelihood estimate simply maximizes the
probability of getting c counts, given n particles, and maximizing that gives
you 150. 1In Bayes' scolution, we wili multiply this by the prior probability,
which represents our knowledge of the laws of radicactivity, before maximizing,

and we'll get an entirely different value for the estimate. Prior information

can make a big change in the conclusions we draw from a random experiment,

Now, we really have to apclogize to the statistician at this point; what
we did was not entirely fair to him. Because, of course, this number "s"
does represent a substantial piece of guantitative information which we didn't
let him use. I think that as soon as this comparison was out, his common
sense would lead him to agree readily enough that in this problem the Baves
estimate was far superior to the maximum likelihood estimate, and he would
not object to the use of Bayes' theorem. He would say that in this case we
did have a good prior probability distribution, with an evident frequency
interpretation (which we have not so far mentioned, because it has no bearing
on the robot's problem), so that Bayes' theorem is perfectly valid.

But now I want to extend this problem a little bit, to a case where
there is no quantitative prior information, but only one qualitative fact.
We are now goling to use Bayes'® theorem in four problems where the "objectivist"
statistician says categorically that use of Bayes' theorxem is nonsensge because
it has no frequency interpretation; and again compare its results with the ones

chtained by the statistician's methods.
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8.2. Effect of Qualitative Prior Information.

Two robots, Mr. A and Mr. B, who have different amounts of prior infor-
mation about the source of the particles, are watching this counter. The
source is hidden in another room which they are not allowed to enter. Mr. A
has no knowledge at all about the source of the particles; for all he knows,
it might be an accelerating machine which is being turned on and off in an
arbitrary way, or the other room might be full of little men who run back and
forth, holding first one radioactive scurce, then another, up to the exit
window. Mr. B has one additional gualitative fact; he knows that the source
is a radiocactive sample of long lifetime, in a fixed position. But he does
not know anything about its source strength (except, of course, that it is
not infinite because, after all, the laborateory is not being vaporized by its
presence. Mr. A is also given assurance that he will not be vaporized during
the experiment). They both know that the counter efficiency is 10 per cent.
Again, we want them to estimate the number of particles passing through the
counter, from knowledge of the number of counts. We dencte their prior
information by X_, XB respectively.

a

all right, we commence the experiment. During the first second, cy = 10

counts are registered. What can Mr. A and Mr. B say about the number n, of

1
particles? Bayes' thecrem for Mr. A reads,
{c,|n.X%,) (n, |X,) {cqIng)
1171 117A 111
(n, e %) = (ng[x) 1t = | | (8-14)
1'"1'a 17 a (c ]X ) (c. [X.)
1% 1%a

The dencminator is just a normalizing constant, and could also be written,
= X . 8-15
(e [x,) nZ(cllnlunll o) (8-15)
1
But now we seem to be stuck, for what is (nl‘XA)? The only information about

ny contained in Xy is that ny is not large enough to vaporize the laboratery.

How can we assign pricr probabilities on this kind of evidence? This has
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been the point of controversy for a good long time, for in any frequency
theory of probability, we certainly have no basis at all for assigning the
prokbabilities (n1|XA).

Now, of course, Mr. A is going to assign a uniform prior probability
here, and our statistician friend will object on the grounds that this is a
completely unwarranted assumption. He will say, "How do you know that all
values of n, are equally likely? They might not be egually likely at all.

You just don't know, and you have no basis for applying Bayes' theorem until
you have found the correct prior probability distributicn." Note that this is
not because our friend has any particular dislike for a uniform distribution;
for he would chject just as strongly {and in fact, I suspect, even more
strongly) to any other prior probability assignment we might propose to use.
It would always seem, to him, like an unwarranted assumption which would
invalidate all our conclusions.

I am belakoring this point because it lies at the heart of the most
persistently held misconception about the Laplace-Baves theory. Unless we
understand clearly what we're doing when we assign a uniform prior probability,
we're going to be faced with tremendous conceptual difficulties from here on.
This is what Mr. A replies to the statistician:

"Your objection shows that the word 'prebability' has entirely different
meanings to you and me. When vou say that I cannot apply Bayes' theorem
until I have determined the 'correct' prior prcbability distribution, you are

implying that the event n. possesses some intringic 'abseolute' prebability.

1
I deny this. nl is what it is; simply an unknown number. The only meaning of
the word 'probability' which makes any sense at all to me, is simply the best
indication of the truth of a proposition, based on whatever evidence we do in

fact have. To me, a probability assignment is not an assertion about experi-

ence, real or potential. When I say, 'the probability of event E is p,' I
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am not describing any property of the event. I am describing my state of
knowledge concerning the event.

"Now, evidently, each of us believes that the other is suffering from a
very fundamental and dangerous confusion about the proper use of probability
theory. But we can never settle this by philosophical arguments about the
meaning of words. The only real way of settling the question, which of these
conceptions of probability is best, is to put them to the test in specific
problems. You say that my uniform prior probability assignment is foolish.

If so, then it ought to lead to at least one foolish result. So I'm just
going to ignore your warning and go ahead with my calculation. If I get a
foolish result, then from studying how it happened, 1 can learn something. But
1f I get a sensible result, then maybe you are the one who can learn something.

"According to Bayes' theorem, I need to find the probability assignment
(n1|XA) which represents my state of knowledge before I observed that ¢y = 10
counts. At that time, nl might hawve been ¢, 1, 137, 2069, or lO5 for all T
knew, There was nothing in my prior knowledge which would Jjustify saying
that any one of those was more likely than any other, and assigning the same
probability to all of them is simply my way of stating that fact. nl might

easily have been as large as 107, for all I knew. But there is some upper
10

limit N, for which I knew that nq < N. Por example, if nl had been lOlO ;
then not only the laboratory, but our entire galaxy, would have been vaporized
by the energy in the beam. I could justify a considerably lower value of N
than that, and if it turns out to make a difference in my conclusions, I'1l
have to think harder about just how low I could take it. But before going to

all that work, I'd better find out whether it does make any difference. So,

I'11l just take

(nl|xAJ = (8-16)
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and see what Bayes' theorem gives me."

Well, Mr. A turns out to be lucky, for nicely enough, the 1/N cancels out

of Equations (8-14), (8-15}, and we are left with
(cl|nl) 0 = N
n, <
N-1 ! =71
ey %) an:Q (cl|nl) (8-17)
0 , N < n,

We have noted, in Equation (8-11), that as a function of n, (c|n) attains its
maximum at n = ¢/a (=100, in this problem). For n large compared to this,
(c|n) falls off like n®(1-a)" = n© ¢™3"
so rapidly that 1if N is as large as a few hundred, there is no appreciable
difference between

N-1 @

z (c|n) and Z (c|n]

n=0 n=0
So, unless the prior information could justify an upper limit N lower than

about 200, the value of N turns out not to make any difference. The sum to

infinity is easily evaluated, and we get the result
i lex) = a (e |n) = | 1) a1 (1-a)™172
R L L e N a - (8-18)

So, to Mr. A, the most probable value of n1 is the same as the maximum-likeli-

hood estimate:

(fi_) =-§ = 100 (8-19)

while the mean value estimate is calculated as follows:

w© n_ 1 a,+1 n.—c
— 1 1
ny - ey = Z _ , o2 {l-a)
n,=c, ¢ (nl—cl— 3l
cl+l - n n,-¢,-1
= a {(1-a) (c.+1 {1-a)
) ( 1 ) zn]-:cl_'_l J_'ll_Cl"l .

The sum is egual to
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mto +1 ¢ =2
=) l [}
) (1-a)™ =77 " b a-a”
m=0 - =0 m
-c,-2 1
= [1 - (1-a}] = ¢_+2 (8-20}
a l
and, finally, we get
—a c,+l-a
(Ny)pg = ¢q + (cq+1) " = a = 109 . (8-21)

Now, how about the other robot, Mr. B? Does his extra knowledge help him
here? He knows that there is some definite source strength s. And, because
the laboratory is not being vaporized, he knows that there is some upper
limit So' Suppose that he assigns a uniform prior probability density for

0 g s < SO. Then he will cobtain

E S
1 o]

(n|x5) 50 (n,[s) (s]X,) ds = = g (n,[s) ds
o]

]

|

{(8-22)
oV 1°

Now, 1f n, i3 appreciably less than SO, the upper limit of integratiocn can for
all practical purposes, be taken as infinity, and the integral is just unity.

S0, we have

= const., if n. « 5 . (8-23})

- .
(nl|XB) = (S[XB) g, 15 %

In putting this into Bayes' theorem with c; = 10, the significant range of

valuezs of n1 will be of the order of 100, and unless SO is leower than about
200, we will have exactly the same situation as before; Mr. B's extra know-
ledge didn't help him at all, and he comes out with exactly the same distri-

bution and the zame estimates:

(i le X} = {nl|chAJ = a (cl[nl) . (8-24)

Jeffreys {(1939; Chap. 3) has proposed a different way of handling this

problem. He suggests that the proper way to express "complete ignorance" of
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a continuous variable known to be positive, is to assign uniform prior proba-
bility to its logarithm; i.e. the prior probability density is
(s]x)) = ¢ (8-25)

Of course, vou can't normalize this, but that doesn't stop vou from using it,
because when we expand the denominator of Bayes' theorem as in (8-15), we see
that the prior prcobability appears in both numerator and dencminator [the
same reason that N cancelled out of (8-17)]. 8o, in applying Bayes' thecrem,
it doesn't really matter whether the pricr probabilities are normalized or not.

Jeffreys justified (8-25) on the grounds of invariance under certain
changes of parameters; i.e. instead of using the parameter s, what prevents

b

us from using t = s, or u = 53?

Evidently, to assign a uniform prior proba-
bility density to s, is not at all the same thing as assigning a uniform prior
probability to t; but if we use the Jeffreys prior, we are saying the same

thing whether we use s or any power sm as the parameter. There is the germ

of an impertant principle here; but it was only recently that the situation

has been falrly well understcod. When we take up the theory of transformation
groups later on, we will see that the real justification of Jeffreys' rule
cannot lie merely in the fact that the parameter is positive; but that our
desideratum of consistency in the sense (b) of Lecture 2 (p. 26) uniguely
determines the Jeffreys rule in the case when s is a "scale parameter." The
question then reduces to whether s can properly be regarded as a scale para-
metexr in this problem. However, this takes us far beyond the present topic,

so I don't want to spend a lot of time now arguing either for or against (8-28);
but, in the spirit of this problem, we can put it to the test and see what it
gives. The calculations are all very easy, and we find these results:

x) =L, (c]%)) = =

[

1 1

(nl

C1
- = . -26
(nl]chJ} - (cllnl) (8 )
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This leads to the most probable and mean value estimates:

c, -1+ a
R 1
(nl}J == = 91 {8=27)
(Hl)J =S =100 . (8-28)
=}

The amusing thing emerges that Jeffreys' prior probability rule just lowers
the most probable and mean value by 9 esach, bringing the mean value right back
to the maximum likelihood estimate!

This comparison is valuable in showing us how little difference there isg
numerically between the consequences of different prior probability assigmments
which are not sharply peaked, and helps to put arguments about them into
proper perspective, We made a rather drastic change in the prior probabilities,
in a problem where there was really very little information contained in the
result of the random experiment, and it still made less than 10 per cent
difference in the result. This is, as we will see in the next lecture, small
compared to the probable errcr in the estimate which was inevitable in any
event. In a more realistic problem where a random experiment is repeated
many times to give us a good deal more information, the difference would be
very much smaller still. So, from a pragmatic standpoint, the arguments
about which prior probabilities correctly express a state of "complete ignor-
ance” usually amount to quibbkling over pretty small peanuts.* From the stand-
point of principle, however, they are very important and have to be thought
about a great deal.

Now we are ready for the interesting part of this problem. For during
the next second, we see ¢, = 16 counts. What can Mr. A and Mr. B now say

2

n c.? Well, Mr, A

about the numbers Bys Dy of particles responsihle for cyr S,

has no reason to expect any relation between what happened in the two time

*Thiz is most definitely not true if the prior prcbabilities are to describe
a definite piece of prior knowledge, as the next example shows.
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intervals, and so to him the increase in counting rate is evidence only of an
increase in the beam intensity. His calculation for the second time interval
is exactly the same as before, and he will give as the most probable value

<2
(). === 160 (8-29)
a

n.) =-————m=169 |, (8-30}

Knowledge of c2 doesn't help him to get any improved estimate of nl, which
stays the same as before.

But now, Mr. B is in an entirely different position than Mr. A; his extra
qualitative information suddenly becomes very important. For knowledge of c,
enables him to improve his previocus estimate cf n,. Bayes' theorem now gives

, (e[ my e %p)
(nlfc2chB) = {nl]cle) _:;;T;Z;;;_

(cz|anB)

X —_— 8-31
1 B) (c2|chB) ( )

(nl[c

Again, the denominator is just a normalizing constant, which we can find by
summing the numerator. We see that the significant thing is (c2|anBJ. Using
our trick of resgolving <, into mutually exclusive alternatives, this is

(czlnle} = j: (c2s|anB) ds = j: (cz[snl)(s‘nl) ds
= 50 (c2]s)(s[nl) ds . (8-32}

We have already found (c2|s) in Equation (3-7), and we need only

(n IS)

1 :
(s|n) = (s|x) = (n,|s) , if n_<<§ (8-33)
1 B (nl XB) 1 1 o
where we have used Equation (8-23). We have found (nl]s} in Equation (8-3),

80 we have

144



Lecture 8, Section B8.2.

[xe] + -
- - +
sa <, s n, n,+c, e,
{sa) e g a
| |
c2. ng! C n,+c.+1

] 2 {1+a)

jo )
451
1]

(c2|anB) (8-34)

Now we just substitute (8-24) and (8-34) into {8-31), carry out an easy sum-

mation to get the denominator, and the result is

C +c +1 |
(2a) L+ 2 (ngte )ty o
e c,.tl (n,—-cy)! | 1+a
+02)! {l-a) ! {1+a) 1l

nj

(ny e, eq%y) = (8-35)

(cl
Note that we could also have derived this by direct application of our

trick:
(nl[czchB) = UL (nls]czchB) ds = JE (nllscl)(S[CZCl) ds . (8-386)

We have already found (nl]scl) in (8-8), and it is easily shown that (s|c

21!
= (const.) x (c2|s)(cl[s), which is therefore given by (8-5). This, of course,
leads to the same result (8-35); this provides another test of the consistency
of our rules, which we sought to ensure by the functional eguation arguments

in Lecture 3.

To £ind Mr. B's new most prokbable value of ny, we set

+ -
(nllczcle) ) nl c2 1 a _,
- - !
(n-1leyeiXg)  ny =1 1 4 4
or,
[
- Tl l-a
(ny)g = t ey, -cy) 53
2
Cl + C2 Cl - C
= +
2a 2
= 127 (8-37)

His new mean-value estimate is also readily calculated, and is egual to

c. + 1 -a
Gy =t (o - ¢ - 1) L- 2
1 B2 a 2a
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o, e, 1 - a c, - «

2a 2

I

131.5 . (8-38)

You see that both estimateg are considerably raised, and the difference between
most probable and mean value is only half what it was before. If we want Mr.
B's estimates for N then from symmetry we just interchange the subscripts 1

and 2 in the above equations. This gives for his most probable and mean value

estimates, respectively,

135 (8-39)}
n2)B = 137.5 {8-40)

Now, can we understand what is happening here? Intuitively, the reason
why Mr. B's extra gualitative prior information makes a difference is that
knowledge of both ¢y and <, enables him to make a bhetter estimate of the
source strength s, which in turn iz relevant for estimating ny- The situation
is indicated more clearly by the diagrams, Fig. {8.2). To Mr. A, each sequence
of events n; > S is entirely independent of the others, so knowledge of one
doesn't help him in reasoning about any other. In each case, he must reason
from =5 directly to ni, and no other route is available. But to Mr. B, there
are two routes; he can reason directly from ¢, to n, as Mr. A deoes, as described

by [nl]chAJ = (nl]chB); but because of his knowledge that there is a fixed

source strength s "presiding over" both n. and n

1 51 he can also reason along

the route <, -+ n, > 5 n, . If this were the only route available to him

{i.e., 1if he didn't know cl), he would obtain the distribution

(nl[c2XB) = j; (nl|S)(S|02XB) ds
o +1
2 fh. + c.)!
_ a L2 (8-41)
c2+1 nl
c2! {1+a} nl! {1+a}
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0 100 200 300
I -

Figure 8.3. The various distributions {8-~18), (8-35), (8-41), showing
the effect of varying prior information.

and, comparing the above relations, we see that Mr. B's final distribution
(8-35) is, except for normalization, just the product of the ones found by
reasoning along his two routes:

(n;|eje %) = (const.) * (ng|ex) (nfe, X)) (8-42)

The information (8-41) about n. obtained by resasoning along the new route

1

Cy Ny > 8 >Ny thus introduces a "correction factor" in the distribution

obtained from the direct route ¢, >0y enabling Mr. B to improve his estimates.

This suggests that, if Mr. B could obtain the number of counts in a great

C

many different seconds, c Cm’ he would be able to do better and

3! 4]’ L 4

better; and perhaps in the limit m -+ = his estimate of n, might become as good

1
as the one we found from Eg. {8-8), in which the gource strength was ceonsidered
known exactly. In the next Lecture we will check this surmise by working out

the degree of reliability of these estimates, and by generalizing these distri-

butions to arbitrary m, from which we can obtain the asymptotic forms.
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