Lecture 9

INTERVAL ESTIMATION AND ASYMPTOTIC PROPERTIES

There is still an essential feature missing in the comparison of Mr. A
and Mr. B in our particle-counter problem. We would like to have some measure
of the degree of reliability which they attach to their estimates, especially
in view of the fact that their estimates are so different. Clearly, the best
way of doing this would be to draw the entire probability distributions
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and from this make statements of the form, "90 per cent of the posterior
probability is concentrated in the interval o < ny < g." But, for present
purposes, we will be content to give the standard deviations [i.e., the sguare
root of the wvarilance as defined in Eg. (8-10)] of the warious distributions

we have found. An inequality due to Tchebycheff then asserts that, if ¢ is
the standard deviation, then the amount p of probability concentrated between

the 1limits (nl * to) zsatisfies

(9-1)

qu

p>1-

Thig tells us nothing when t < 1, but it tells us more and more as t increases
beyond unity. For example, at least 3/4 of the probability must be assigned

to the nange n + 2g, and at least 8/9 to the range n *+ 3o.

29.1. Calculation of Varlance.

The variances 02 of all the distributions we have found in the last
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Lecture 9, Section 9.1,

lecture are readily calculated. In fact, the calculation of any moment of

these distributions is easily performed by making use of the general formula

o .
+ n
E mta) nomo < d 1 i IXI <1, (9-2)
m=0 m dx (1-x) atl
which we have already used in calculation of the mean value in (8-21). For

Mr. A and Mr. B, and the Jeffreys prior probability distribution, we find the

variances
(eq+1) (1-a)
Var (njlei¥,) = ———5—— (9-3)
a
2
(cl+cz+l)(l—a )
Var (n1[c2chB) = > (9-4)
4a
cl(l—a)
Var (nl|c1XJ) = —5 (9-5)
a

and the variances for n, are found from symmetry.

This has been a rather long discussion, so let's summarize all cur results
so far in a table. 1I'll give, for problem 1 and problem 2, the most probable
values of number of particles as found by Mr. A and Mr. B, and alsc the (mean
value} * (standard deviation), which provides a reasonable interval estimate.

From this table we see that Mr. B's extra informaticn not only has led
him to change his estimates considerably from those of Mr. A, but it has
enabled him to make an appreciable decrease in his probable error. Prior

information which has nothing to do with frequencies can greatly alter the con-

clusions we draw from a random experiment, and their degree of reliability.

It is also of interest te ask how good Mr. B's estimate of nq would be

if he knew only c¢ and therefore had to use the distribution (8-41) repre-

X
senting reasoning along the route ¢, 0, > s >n, of Fig. (8.2). .From

(8~41) we find the most probable, and the (mean) * (standard deviation)

estimates
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Problem 1 Problem 2
¢, = 10
cq = 10
c, = 16
most prob. 100 100 160
mean * s.d. 109 + 31 109 £ 31 169 *+ 39
most prob. 100 127 133
B
mean * s.d. 109 + 31 131.5 £ 26 137.5 £ 26
most prob. 21
)
mean ¥ s.d. 100 + 30
ho= 22 = 160 (9-6)
S
02+1 V(c2+l)(a+1)
mean ¥ s.d. = 2 + = 170 + 43.3 {(9-7)
a

In this case he would chtain slightly poorer estimate (i.e. a larger probable

error) than Mr. A even if the counts ) = ¢, were the same, because the

variance {(9-3) for the direct route contains a factor (l-a), which gets re-

placed by (l+a) if we have to reason over the indirect route. Thus, if the

counter has low efficiency, the two routes give nearly equal reliability fox

equal counting rates; but if it has high efficiency, a = 1, then the direct

-~ n, is far more reliable.

3 I think your common sense will tell you

route Cl

that this is just as it should be.
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Lecture 9, Section 9,2,

9.2. Generalization and Asymptotic Forms.

Now in the last lecture we conjectured that Mr. B might be helped a good

deal wore in his estimate of n, by acguiring still more data {03, Cprenns cm}.

1
Let's investigate that further. The standard deviation of the distribution
{8-8) in which the source strength was known exactly, is only Vs(l-a) = 10.8
for s = 120; and from the table, Mr. B's standard deviation for his estimate
of ny is now about 2.5 times this value. What would happen if we gave him
more and more data from other time intervals, such that his estimate of s

approached 130? To answer this, note that, if 1 £ k £ m, we have (now dropping

the XB because we will be concerned only with Mr. B from now on):

(nk’cl...cm) = Eﬂ (nks|cl...cm) ds
-
= tL {nk|sck)(s[cl...cm) ds {9-8)
in which we have put (nk|5cl...cm) (nk[sck) because, from Fig. (8.2), if

s ig known, then all the c; with i # k are irrelevant for inference about ny .
The second factor in the integrand of (%-8) can be evaluated by Bayes' theorem:

(cl...cm]s)

(sle....c ) = (s]x)
1 m B (cl...cmle)

= (const.) ~ {S|XB)(C1!SJ(02|s)...(cm!s}

Using {8-5) and normalizing, this reduces to

o+l
{ma) c  -msa
=—3 e

- (9-9)

(sfcl...cm)

where o = cl + ...+ cm is the total number of counts in the m seconds,

Let's note in passing the propertiez of this distribution. The most

prcbable, mean, and variance of the distribution (9-9) are respectively

5= S (9-10)
mas

— +

s-cr i (9-11)
ma
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var({s) = s - g~ = 5 = {9-12)

So it turns out, as we might have expected, that as m - =, the distribution
(s‘cl...cm) becomes sharper and sharper, the most probable and mean value
estimates of s get closer and closer together, and in the 1imit we would have
just a d-function:

(s|c ceec ) > B(s-s")
1 m

where

c, t o, t+ .. + C
1

lim (9-13)
e ma

i)
il

So, in the limit, Mr. B does acquire exact knowledge of the source strength.

Returning to (9-8), both factors in the integrand are now known from

(8-8) and (9-9), and so

® _s(1-a) Mm% o+l
(n |C c ) o= & [s(1-2)] (ma) s e-msa ds
K717 Tm . (nk—ck)! cl
or

n -c

—c +e) ! ct+1l
(n_|c ...c) = P ma) {1-a) (9-14)

K717 T {nk—ck)!cl nk—ck+c+1

{l+ma-a)

which is the promised generalization of (8-35). In the limit m =+ «, ¢ » =,

(c/ma) » s' = const., this goes inte the Poisson distribution
e—s'(l—a) nk—ck
(e leye o) + Tpmgry (s (1-a)] (9-15)
k k'°
which is identical with (8-8). We therefore confirm that, given enough

additional data, Mr. B's standard deviation can be reduced from 26 to 10.8,
compared to Mr. A's 31.
For finite m, the mean value estimate of nk from (9-14) is
n_ =c_+ s(l-a) (9-16)

k k
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where ;'= {ctl) /ma is the mean value estimate of s from (9-11}. Eguation
{9-16), which is to be compared to (8-9), includes (8-21} and (8-38) as
special cases., Likewise, the most probable wvalue of n according to (9-14),
is

+ &(l-a) (9-~17)
where & isg given by (9-10).

Note that Mr. B's revised estimates in problem 2 still lie within the
range of reasonable errcr assigned by Mr. A, It would be rather disconcerting
if this were not the case, as it would then appear that probability theory
is giwving Mr. A an unduly optimistic picture of the reliability of his estimates.
There is, however, no theorem which guarantees this: for example, if the
counting rate had jumped to c2 = 80, then Mr. B's revised estimate of nl
would be far outside Mr. A's limits of reasonable error. But in this case,
Mr. B's common sense would lead him to doubt the reliability of his prior
information XB: we would have ancther example like that in Lecture 6, of a
problem where one of those alternative hypotheses down at -100 db, which we
don't even bother to formulate until they are needed, is resurrected by very

unexpected new evidence.

9.3. Comparison of Bayesian and Orthodox Results.

Well, in the last lecture I sald I was going to compare the results of
Bayveg' theorem with those obtained by the orthodox statistician's methods in
this problem. I have already done that in the case of Mr. A; for his most
probable values of nl and n2 were in all cases just the same as the direct
maximum likelihood estimates. The statistician accepts Bayes' theorem in the
initial example where the source strength was known. He rejects it in the
problem where the source strength was unknown, and says that (Wald, 1941):

"These problems cannot be solved by any theorems of the calculus of probabi-
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lities alone. Their scoluticon requires some additional principles besides the

axioms on which the calculus of probabilities 1s based." The new principle

which he introduces is maximum likelihood; bhut mathematically, he ends up

doing exactly what he would have done if he had stayed with Bayes' thecorem.

In order to form scme idea of the degree of reliability of the estimate, he

introduces still another ad hoc principle, the confidence interval. Our robot

obtains all of these results automatically, by application of a single principle

which is contained in the calculus of probabilities, as formulated by Taplace.
But how does this comparison lock in the case of Mr. B? We have seen how

Bayes' theorem automatically "digests" his gqualitative prior information:

1

X, = "there is a constant but unknown source strength s," and how it enables

B

him to improve his estimates and lower his probable error. How would the
orthodox statistician make use of this information? In the first place, his
ideology forbids him to use any of the egquations (8-22), (8-23), (8-32), (8-36),
(8-41), (9-8), (9-9) which formed the backbone of our various derivations, for
he contends that "Probability statements can be made only ahout random vari-
ables. It i1s meaningless to speak of the probability that s lies in a certain
interval, because s ig not a random variable, but only an unknown constant."
According to his doctrines, the distinction between a "random" and a "non-
randonm" qguantity is very essential; the methods he will use for inference,
{and the conclugions he will arrive at,) depend on his decision as to which
guantities are random, which are not.

T want to point out some difficulties with this position in a minute;
however, right now our job is not to criticize the orthodox statistician's
methods, but to describe them. If he refuses to use Bayes' theorem in the way
ocur robot did, how would he handle it? I can't really be sure; and in fact

I'll wager that different statisticians would handle it in different ways,

because orthodox teaching has just not produced any unique method for such
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problems. But I think I can suggest one ad hoc¢ procedure that he might invent,
and which most of his colleagues would accept. Consider the problem where we
know that Cq 10, ¢y = 16. TIf anyone were to refuse to use the prior infor-
mation XB, on the grounds that it does not consist of freguency data, then he
would have little choice but to estimate ny and n, by direct maximum likeli-
hood, i.e., by maximization of (cl]nl) and (czing): and it would collapse back
to the problem of Mr. A. But, as I said in Lecture 4, if we do have prior
information which is clearly relevant to the problem, commcn sense will tell
all but the most pedantic not to use direct maximum-likelihcod estimation.
Without departing from orthodox principles, cne can use the prior information
XB to formulate the problem in a different way. Here is one possible line of

reascning that he might use.

"The unknown constant s determines the objective statistical properties

of n and c¢; i.e., the relative frequencies with which the random variables

n and ¢ would assume various values in the long run. Therefore, if I knew
the value of s, it would be perfectly legitimate to use Bayes' theorem in the
form

(c.c Inls)

172

{(2-18)
(clc2]s)

(nl|clc2s) = (nl|s)

since every probability here has a clear freguency interpretation. Further-
more, since

|s)

(clc2]nls) = (cl|c2n15)(c2|nls) = (cl[nl)(c2
and
= = , 9-1
(clc2| s) (cl| c2s) {czls) (cl| 8) (02[ s} (9-19}
the calculation would reduce to
(n,|s) e |n)
1 11
= = _20
(n1|clc2s) (0118) (nl|cls) {9-20)

i.e., if s is known, then knowledge of Cqy is not relevant for estimation of nl.
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This leads, according to equation (8-9), to the mean-value estimate

n, = + s(l-a) . {9~-21)

Now if I had a reasonable estimate of s, then substituting it into (9-21)

should give me an estimate of n, which is in some sense equally reasonable.

50, instead of estimating nl by direct maximum-likelihood, I'1l1l use an indirect
method: first estimate g by maximum-likelihood, and use the result in (9-21)."
From {9-19) and (8-5} we have

[s) = (o + ¢y} log s - 2sa + (const.)

log (cl 1

“2

where the (const.) is independent of s. So, the maximum-likelihood estimate

. . a _
of 5, given Cl and c2, igs found from ag-log (ch2|s) = 0, or
) 1 7% 10+ 16 13
$)max. likelihood - 2a ~ 2 xo0.1 - 130
and his estimate of nl is then
Hl = 10 + 130(1 - 0.1) = 127 , (9-22)
which is the same as Mr. B's most probable value (8-37)}! The fact that these

estimates turn out exactly the same is, of course, fortuitous; but we see from
equations (9-10} and (9~17) that in this problem the agreement would still
ol

hold no matter how many counts {c .oy cm} had been observed.

ir T2

This comparison shows how, in practice, the orthodox statistician who
uses a little common sense in formulating the problem, can often manage te get
very acceptable results and make uge of his prior information without ever
using a probabilility for a "nonrandom" quantity. But if now we asked him to
make some definite statements about the reliability of the estimate (9-22), he
would be faced with a gquite sticky problem. He would probably set up a
confidence interval to describe the uncertainty in s; but then he would have
to find some way of "folding" this uncertainty with the uncertainty in nl,

inherent in (9-21) even when s is known exactly. I will not presume to guess

how he would do this; again, since orthodox teaching has produced no unigue
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way of handling such problems, we can be pretty sure that different workers
would do it in different ways, and come out with different conclusions. With
reasonable common sense, however, the orthodox conclusions would not differ
greatly from the ones our robot cbtains from the posterior probability distri-
bution (nllclc2XB). Frem a purely pragmatic standpoint, which sees no value
in the fact that the robot's method comes from a more general and unified set
of basic principles, the robot's procedure still has the advantage that he
obtains all of these results from a single elementary calculation.

There is a further point which should be made on these estimation problems.
We have seen that the most probable walue and the mean value estimates are not
the same in general. Which is besf? The answer, evidently, depends on the
use to be made of the theory, and on the form of the posterior probability
distribution, For example, in Figure (9.la) we have a distribution for which
the most probable value is not only intuitively a poorer estimate than the
mean value, but is also wvery unstable; very small changes in the data could
tilt the curve the other way, making a large change in the estimate, which
seems like a clear violation of common sense. But in Figure (9.1b) we have a
case where the most probable value is quite likely to he the correct one,
while the mean value is known to be an impossible one. In all cases, however,
the mean value is the estimate which minimizes the expected square of the
error. Generally, if the distribution has a single peak, the mean value would
seem preferable. At any rate, any principle which denies ugs the choice
between them cannot possibly be the best in all cases. We are concerned here
with value judgmenits rather than inference; this will be studied in more
detail when we consider decision theory.

In summary, what can we now say about the principle of maximum likelihood?
If yvou ask a statistician about these things, one answer you are likely to get

ig that the real justification of maximum likelihood is not found in problems
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of the sort just examined, but in its asymptotic properties, as we accumulate
more and more random data. But, of course, in that limit the wvariocus "laws
of large numbers" guarantee that all these methods approach the same thing.
Indeed, in the "large sample" limit the evidence stares you in the face, and
anybedy can see what general conclusions are indicated, with hardly any need
for a formal statistical theory. Scientists and engineers have been getting
along fairly well for a long time without statistical training, for just that
reason. It is in the small and medium sample case we consldered here, that
our unaided common sense lacks sufficient discrimination, and we need the
guidance of a mathematical theory in order to make definite and defensible
judgments.

In any event, whatever desirable properties maximum likeliheood might have,
asymptotic or otherwise, are also enjoyed by Bayes' theorem with uniform prior

probabilities, because mathematically they amount to the same thing. But it

+ +
o{n) : p(n)
L ' i .
n n n > n n n -+
(a) (b}
Figure 2.1. (a) A likelihood function for which the maximum-likelihood esti-
mate is not a reasonable one. (b} A case where the maximum-likelihood esti-

mate is more reasonable than the mean value estimate.
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iz still best to interpret the rules as an application of Baves' theorem, for
the fellowing reason. Statisticians are well aware that the maximum-likeli-
hood estimate may be very poor in the small-sample case. But these are just
the cases in which situations like that depicted in Figure (9.la) arise.
In the small sample case, the Bayesian mean-value estimate (i.e., the "center
of gravity" of the likelihood function) is often far more reasonable than the
maximum-likelihood estimate.

It seems to me that we have to conclude from this that there 1s no sound

reason for ever introducing the notion of maximum likelihood as a separate

principle. It is already contained in Bayes' theorem as a special case, and
whenever it is the appropriate method to use, Bayesg' theorem will reduce to

maximum likelihocd. From this point of view, we will see later (when we take
up decision theory) that it is possible to define precisely the conditiocns in

which maximum likelihood is the optimal procedure [see Sec. 13.5.].

9.4, The Trouble with "Random" Variahles.

Now let's take a glimpse at some of the difficulties that face the ortho-
dox statistician because of his belief that use of probability theorv requires
us to distinguish between random and nonrandom quantities. In the example
just studied, he didn't face any serious impediment because in this problem
there was really no difficulty in deciding intuitively that s is a "constant",
while n and ¢ are "random variables™. There is little danger that anyone
would make a different decigicon. But there are other problems of inference
in which it is not at all clear how this distinction is to be drawn. We will
study some cases of this in detail when we take up linear regression (which
means simply: fitting the best straight line to a plot of experimental points}.
This is probably the most common of all statistical problems faced by the

experimental scientist; vet it is in Jjust this problem that the distinection
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between random and nonrandom guantities is so obscure that vou sometimes have
to resort to black magic to draw any distinction at all.

This situation has led to some really hilarious proposals for data
reduction, sclemnly advocated in the orthodox literature. Here is cne way
it can happen: the abscissa of our graph represents some physical guantity
that has a true value ¥; but this is unknown because the wvalue x actually
read from a meter suffers from some experimental error ¢ = x - X. Nobody
ever doubts that ¢ is random; but then which cf the guantities x, ¥ is random?

To change from cne value of X to another, the experimenter typically
turns a knobk on his apparatus. According to some orthodox writers (Berkson,
1950; Mandel, 1964; Chap. 12), if he turns it without particularly noticing
just where the "x-meter" ends up, then X is an unknown constant, and x a
random variable. Orthodox theory then tells us how to analyze the data.

But another experimenter, even though he turns the knecb in exactly the
same way and stops at exactly the same place, does so with the conscious
intention of stopping when the meter reads the walue x. In this case, we are
told, x is the "constant," and X the "random variable". Although there is
absolutely no difference in the physical conditions of the experiment, orthodox
teaching then tells us that we should analyze the data in an entirely different
way, which can lead to different estimates of the slope and intercept of that
line, and to widely different conclusions about the reliability of those
estimates., If this isn't black magic, I would like to know what it is.

If, now, the second experimenter flips a coin to help him decide at what
value of x to set the knob, then koth x and X become random variables; and
orthodox theory says we should use still a third method of data analysis,
leading to a third set of conclusions!

I think most of us are persuaded that the import of the experiment ought

to depend on this: how were the knobs actually turned, and what data resulted?
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It does not depend on what thoughts flitted through anybody's imagination
while turning the knobs; a given experimental procedure and resulting data
have exactly the same import whether the knobs were turned by a man or a
chimpanzee.

Grthodox theory fails to meet this rather elementary desideratum; if you
give an orthodox statistician only the actuval procedure and the actual data,
plus one of the usual hypotheses about the errors, he has no definite way of
getting started on the proklem, because for him it is taboo to write down
any probability distribution p(x) unless it has been established that x is
random; and this information gives him no basis for deciding which guantities
are random. Although common sense tells you it cannot be relevant, he wants
to know also something about the "state of mind" of the experimenter; and his
final conclusions will depend on this. The fact that orthodox practice has
to invoke psychokinesis in order to set up some problems hardly supports the
claim (Bross, 1963) that orthodox methods, unlike Bayesian, are “"objective"
and "fact-oriented."

The Bayesian analysis does conform to our desideratum, because it is
liberated from that taboo, and therefore has no need to draw artificial
distinctions which have nothing to do with the physical conditions of the
experiment. Given the above information, our rcbot can proceed immediately
with definite calculations; he is not afraid to introduce probability distri-
butions for any quantity about which he needs inference, and the gquestion
whether it is or is not "random" just never comes up at all. Because of his
liberation from a taboo that has no justification and serves no purpcse,
probakility theory is, for cur robot, an enormously more powerful mathematical
reasoning device than it is for one whose ideclogy forbids the use of that
mathematics in its full generality. We will see some spectacular examples of

this later when we compare Bayesian and orthodox significance tests and inter-

16l



Lecture 9, Section 9.4.

val estimation methods,

But orthodox taboos can lead to even worse consequences., They force one
to attach such supreme importance to this random-nonrandom distinction that,
in addition to introducing irrelevancies, many writers will not hesitate to
throw away practically all the relevant data of a problem, in order to achieve
the situation of "independent random errors" which their theory presupposes.
For example, in the problem of fitting a straight line to experimental points,
if there is cumulative erroxr (i.e., the error in one value X, is propagated
into all subseguent xj, j » 1) Mandel (1964; Chap. 12) advocates that we
estimate the slope of the line using only the first and last points; and simply
throw away all the intermediate ones! To our robot--and also to the poor
experimenter who labored to get the data--this is a far graver offense against
reascn than merely dabbling in a little black magic. As we will see later,
throwing away the highly relevant evidence of the intermediate points can
increase the probable error of vour estimate by more than an order of magnitude
in real problemnms.

The Bayesian analysis never requires us to do such absurd things, because
it contains no artificial presuppositions about "randomness". If there is
cumulative error, that is just an additional mathematical detail that Bayes'
theorem takes into account without any difficulty, while retaining all of the
relevant evidence.

Yet in spite of all this emphasis on the necessity of specifying the
"random" guantities, no worker in probakility theory, orthodox or otherwise,
has produced any definition of "random variable™ which could actually be
applied in real life situations. Here is, for example, a guotation from the
bock of Savage (1954; p. 45): "The concept of a random variable enters into
almost any discussion of probability. Experts are fairly well agreed on the

following definition. & random variable is a function x attaching a value
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x(s) in some set X to every s in a set S on which a probability measure P is
defined." Definitions essentially equivalent to this can be found in most of
the modern bocks on statistics. While this may be fine for setting up an
abstract mathematical theory, the most obvicus thing about it is that the
definition is absolutely useless in helping us decide whether some specific
guantity, such as the number of beans in a can, is cor is not "random".

If you read the literature carefully, I think vou will see that whenever
the orthedoxz statistician gets down to a wery specific problem, he uses the word
"random" merely as shorthand for "likely to be different in different situa-
tions." In Laplace's theory there is no need to emphasize, or even to define,
any sharp distinction between random and nonrandom quantities, for the common-
sense reason that in the specific problem at hand, the gquantity I am reasoning
about (in the problem just discussed, nl} is always simpiy a definite, but
unknown number. Whether this number would or would not he the same in some
other situation that I am not reasoning about, is just not relevant to my
problem; to adopt different methods on such grounds is to commit the most
obvious incongistency of reasoning.

A1l right, I hope this little excursion into polemics has given you a
clearer understanding of why, in the theory we are developing, the word
"random" just doesn't appear; and of the kind of troubles we would get into
if we did try to use it. In the next lecture, I want to return to the con~

structive development of the theory.
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