Lecture 10

DISCRETE PRIOR PROBABILITIES--THE ENTROPY PRINCIPLE

I would like to return to the job of designing this robot. We've got
part of his brain designed, and we have seen how he would reason in a few
simple problems cof hypothesis testing and estimation. But he is still not a
very versatile reasoning machine, because he has only one means by which he
can translate raw information into numerical values of prcbability; the "prin-
ciple of indifference,” Rule 4. Consistency requires him to recognize the
relevance of prior information, and so in almost every problem he is faced
at the outset with the problem of assigning prior prebabilities. He can use
Rule 4 for this if he can break the situation up into mutually exclusive,
exhaustive possibilities in such a way that no one of them ig preferred to,
any other by the evidence he has. But often he will have prior informatiocn
that does give him some reason for preferring one possibility to another.

What do we do in this case?

10.1 A New Kind of Prior Information.

Let's imagine a certain class of prebklems in which the robot's prior
information consgists of average values of certain things. Suppose, for example,
we tell him that statistics were collected in a recent earthquake and that out
of 100 windows broken, there were 1,000 pieces found. We will state this in
the form: "the average window is breken into 10 pieces." That is the way

it would be reported. Given only that information, what is the probability
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Lecture 10, Section 10.1.

that a window would be broken into exactly m pieces? There is nothing in the
theory so far that will answer that guestion. Let's imagine some other pro-
blems where the same situation would arise. Here's a fairly elaborate one.

Suppose I have a table which I cover with a black cloth, and I have éome
dice, which I am geing to toss onto this table, but for reasons that will be
c¢lear in a minute, let's make these dice black with white spots. I toss a die
onto the black table. Above I have a camera. Every time I toss it, I take
a snapshot. The camera will record only the white spots. Wow I don't change
the film in between, so we end up with a multiple exposure; uniform biackening
of the film after we have done this a few thousand times. From the density
of the film, we can infer the average number of spots which were on top, but
not the frequencies with which wvarious faces came up. Suppose that the aver-
age number of spots on top turned out to be 4 1/2 instead of the 3 1/2 that
we might expsct from an honest die. What probability should our robot assign
to the n'th face coming up?

To give still another example of a problem where the information available
consists of average values, suppose that we have a string of 1,000 cars,
bumper to bumper, and they occupy the full length of say three miles. We
know the total length of this string of cars, and as they drive onte a rather
large ferry boat, the distance that it sinks into the water tells us their
total weight. So we know the average length and the average weight of the
1,000 cars. We can look up statistics from the manufacturers, and find out
how leng the Volkswagen is, how heavy it is; how long a Cadillac is, and how
heavy it is, and so on, for all the other brands. From knowledge only of the
average length and the average weight of these cars, what can we then infer
about the number of cars of esach make that were in the cluster? That iz a

problem where we have two average values given to us.
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Lecture 10, Section 10.1.

Now, it is not at all cbvious how our robot should handle problems of
this sort. So let's think about how we would want him to behave in this
situation. We would not want him to jump to conclusions which are not war-
ranted by the evidence he has. He should always frankly admit the full extent
of his ignorance. We have seen that a uniform probability assignment repre-
sents a state of mind completely noncommittal with regard to all pessibilities;
it favors no one over any other, and thus leaves the entire decision to
subsequent information which the rchot may receive. The knowledge of average
values does give the robot a reason for preferring some possibilities to
others, but we would like him to assign a probability distribution which is,
in some sense, as uniform as it can get while agreeing with the available
information. The most conservative, noncommittal distribution is the one
which is as "spread-out" as possible. 1In particular, the robot must not
ignore any posgsibility=--he must not assign zero probability to any situation
unless his information really rules ocut that situation.

Sc, the aim of aveoiding unwarranted conclusions leads us to ask whether
there is some reasonable numerical measure of how uniform a probability
distribution is, which the robot could maximize subject to constraints which
represent his available information. Let's approach this in the way all
problems are solved; the time-honored method of trial and error. We just
have to invent some measures of uncertainty, and put them to the test to see
what they give us.

One measure of how broad this distribution is would be its variance.
Would it make sense if we build inte the robot the property that whenever he
is given information about average values, he will assign probabilities in
such a way that the variance is maximized subject to that informaticn? Well,
consider the distribution of maximum variance for a given m if the values of

m are unlimited, as in the broken window problem. Then the maximum variance
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Lecture 10, Section 1l0.2.

solution would be just the one where we assign a very large probability for

no breakage at all, and an enormously small preobability for a window to be
broken into billions and billions of pieces. You can get an arbitrarily high
variance this way, while keeping the average at 10. In the dice problem, the
solution with maximum variance would be to assign all the probability to the
one and the six, in such a way that you come cut with the right average.

S0 that, evidently, is not the way we would want our robot to beshave; if he
used the principle of maximum variance, he would be assigning zero probability

to many cases which were not at all impossible on the information we gave him,

10.2. Minimum ZPii.

Ancther kind of measure of how spread out a probability distribution is,
which has been used a great deal in statistics, is the sum of the squares of
the probabilities assigned to each of the possibilities. The distribution
which minimizes this expression, subject to constraints represented by average
values, might be a reasconable way for our robot to behawve. Let's see what

sort of a solution this would lead to. I want to make

z
me
m

a minimumn, subject to the constraints that the sum of all P, shall be unity,
and the average over the distribution is M. A formal solution is obtained by

writing

G{me2—}\fmpm—uzpm}

m m m

=] (2p - Am - w) Sp = 0 (10-1)
I

where A and | are Lagrange multipliers. So P will always be a linear function

of m:

2bm - Am - u = 0.
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Now, 4 and A are found from

Lra=1 . Jmp_ =, (10-2)
I

where T is the average value of m.
Let's investigate this and draw the graph for a simple version. Let's

say that m can take on only the values 1, 2, and 3. Then we easily find that

the formal sclution for minimum z pm2 ig
m
_4_m
P17 37 2
1
p2 E {10=~3)
m 2
P3= 273

In Figure (10.l) these resulits are plotted. This shows that p; and p, become
negative. In these regions let's say we will replace the negative values by
zero and then adjust the other probabilities to agree with the given wvalue of m.

If we do this the results are shown in Figure (10.2}.

1 =
p
3
-
- p2
+
B,
1
0 A 1 1
pl
L.

Figure 10.1. Formal solution for minimum ZPz.
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Figure 10.2.

Corrected formal sclution.

All right, sc that's what this criterion will give to us. Now, is the

robot behaving in a reasonable way if we build this behavior pattern into him?

This is certainly a big improvement over maximum variance, but he is still,

in certain ranges of m, assigning zero probkability
and there is nothing in the data we gave him which
Sc he is still jumping to unjustified conclusions.

still locks like a good one. There should be some

to one of the possibilities,
said one was impossible.
But the idea behind it

consistent measure of the

uniformity, or "amount of uncertainty" of a probability distribution which

we can maximize, subject to constraints, and which will have the property

that it forces the robot to be completely honest about what he knows, and in

particular it deces not permit the robot to draw any conclusions unless those

conclusions are really justified by the evidence he has.
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10.3. Entropy: Shannen's Theorem.

Well, at this stage we turn to the most guoted theorem in Shannon's work
on information theory (Shannon, 1948; Shannon and Weawver, 1949), Thig is the
theorem. If there exists a congistent measure of the "amount of uncertainty"
represented by a prchbability distribution, there are certain conditions it
will have to satisfy. I am going to state them in a way which will remind
you of the arguments we gave in Lecture 3; in fact, this is really a contin-
uation of the basic development of probability theory. Here is the line of
reasoning:

(1) We assume that some numerical measure Hn(pl, Por =ov pn) exists;

i.e., that it is possible to set up some kind of association between
"amount of uncertainty" and real numbers.

(2} We assume a continuity property: Hn is a continuous function of
the P, For otherwise an arbitrarily small change in the proba-
bility distribution would still lead to the same big change in the
amount of uncertainty.

(3) We require that this measure should correspend qualitatively to
common sense in that when there are many possibkilities, we are more
uncertain than when there are few. This condition takes the form

that in case the p; are all equal, the guantity

_ 1 1
hin) = Holgr -« A

shall be a monotonic increasing function of n. This merely esta-
blishes the "sense of direction.”

{4) We reguire that the measure Hn be consistent in the same sense as
before; i.e., 1f there is more than one way of working out its

value, we've got to get the same answer for every possible way.
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Previously, our conditions of consistency took the form of the functional
equations (3-2), (3-7}), (3-11). Now we have instead a hierarchy of functional
equations relating the different Hn to each other. Suppose the robot perceives
two alternatives, to which he assigns probabilities iz and g = 1 - Pqe Thern
the "amount of uncertainty" represented by this distribution is H2(pl, ql.

But now the robot learns that the second alternative really consists of two
possibilities, and he assigns probabilities Pyr Py to them, satisfving

Py + P3 = q. What is now his full uncertainty HB{pl, P, p3) as to all three
possibilities? Well, the process of choosing one of the three can be broken
down into two steps. First, he decides whether the first possibility is or
1s not true; his uncertainty for this decisicn is the original Hz(pl, gl .

Then, with probability g, he encounters an additional uncertainty as to events

2, 3, leading to

p2 pB
H3(pl,p2,p3) = H2(pl,q) + qH2&£_FTE) (10-4)

In general, a function H,  can be broken down in many different ways, relating
it to the lower order functions by a large number of eguations like this.

Note that equaticn (l0-4) says rather more than our previous functional
equations did. It says not only that the Hn are consistent in the afore-
mentioned sense, but also that they are to be additive. So this is really
an additional agssumption which we should have included in our list. The most
general equation of consistency would be a functional equation which is
satisfied by any monotonic increasing function of Hn, but I don't know how
to write it.

At any rate, the next step is perfectly straightforward mathematics;
let's see the full proof of Shannon's theorem, now dropping the unnecessary

subscript on Hp,-

First, let's find the most general form of the composition law (10-4)
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Lecture 10, Section 10, 3.

for the case that there are n mutually exclusive propositions {Al,...,A ) to
I

consider, to which we assign probabilities (pl,...,p } respectively. Instead
n

of giving the probabilities of the (A An) directly, we might first group

lf"‘!

the first k of them together as the proposition denoted by (A1+A2+...+Ak) in
Boolean algebra, and give its probability which by Egq. (3-21) is equal to

«e oA Yo

w) = (p +...+pk); then the next m propositicons are combined inte {Ak+l+ Kt

1

for which we give the probability W, = etc. When this much

I S

has been specified, the amount of uncertainty as to the composite propositions

is H(wl...wr). Next we give the conditional probabilities (pl/wl,...,pk/wl)
of the propositions (Al,...,Ak}, given that the composite proposition

A +...+A ) is true. The additional uncertainty H W_ogen- w_) 1z then
(3, A % {pl/ 1 pk/ 1

encountered with probability Wi Carrying this out for the other composite
propositions (A +...+A )}, etc., we arrive ultimately at the same state
k+1 k+m
of knowledge as if the (pl,...,p J had been given directly; so 1if our measure
n
of "amount of uncerxtainty" is to be consistent, we must obtain the same ulti-
mate uncertalnty no matter how the choices were broken down in this way. Thus
we must have
Hip;-..p) = Hlw ooow ) + wiH{p/wy...,p /W)
+ H PR + ... 10-5
W Py /Y Pran’™) (10-5;

which is the general form of the functional equation (10-4). For example,
H({l/2, 1/3, 1/6) = H{1/2, 1/2) + (1/2) H(2/3, 1/3).

Since H{p ...pn) is to be continuous, it will he sufficient to determine

1

it for all rational values
p‘ = — (10_6)

with n; integers. But then (10-5) determines the function H already in terms
of the guantities hi{n) = H(l/n,...,1/n) which measure "amount of uncertainty"

in the case of n egually likely alternatives. For we can regard a choice of
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Lecture 10, Secticon 10.3.

cne of the alternatives (Al,.-.,A J as the first step in the choice of one of
n
Zn
. n
i=l 1

equally likely alternatives in the manner just described, the second step of
which is also a choice between n; equally likely alternatives. As an example,
with n=3, we might choose n, = 3, n2 = 4, n3 = 2, For this case the compo-

gition law (10-5) bhecomes

3 4 2 3 4 2
h{s} = H(gf G’ 9) + 3 h{3) + 5 hi{d) + §-h(2)
For a general choice of the Ry {10-5) reduces to

h(Ing) = Hipy...py) + X pyh(n;) (10-7)

1

Now we can choose all n: = m; whereupon (10-7) collapses to

i

himn}) = h{m) + hin) (10-8)
Evidently, this is selved by setting

hin) = k log n (10-9)
where k is a constant. But is this solution unique? If m, n were continuous
variables, this would be easy to answer; differentiate with respect to m,
set m = 1, and integrate the resulting differential equation with the initial
condition h(l) = 0 evident from (10-8), and you have proved that (10-9) is
the only sclution. But in our case, (10-8) need hold only for integer values
of m, n; and this elevates the problem from a trivial one of analysis to an
interesting little exercise in number thecry.

First, note that (10-9) is no longer unique; in fact, (l0-8) has an
infinite number of solutions for integer m, n. For, each positive integer W
has a unique decomposition inte prime factors; and so by repeated application
of {10-8) we can express hi(N) in the form Zi mih(qi) where q; are the prime
numbers and m, nen-negative integers. Thus we can specify h(qi) arbitrarily

for the prime numbers - whereupon (10-8) is Jjust sufficient to determine
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Lecture 10, Section 10.3,

h{N) for all positive integexrs.

To get any unique solution for h(n), we have to add our gualitative
requirement that h(n) be monotonic increasing in n. To show this, note first
that (10-8) may be extended by induction:

hi{nmr---} = hi{n) + h{m) + hir) +
and setting the factors equal in the k'th order extension gives
h(nK) = k h(n) (10-10)
Now let t, s be any two integers not less than 2. Then for arbitrarily

large n, we can find an integer m such that

t_l.
o)
]
rt
3
=

=R
1

AN (10-11)

or,

Since h is monotonic increasing,
h(s™ < h(t?) g h(s®1)
or from (10-10),
mhi{s) < n h{(t) £ (mtl) h(s)

which can be written as

=l =

< hit) < mbl (10-12)
h(s) n

Comparing (l0-11), (l0-12}, we see that

hit) _log t| « 1

hi(s) log s| n
or

h(t) _ his) < e _

log t log s| ~ (10-13)
where

_. _hi{s}
n log t

is arbitrarily small. Thus h(t)/leg t must be a constant, and the unigueness
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of (l0-9} is proved.

Now different choices of k amount to the same thing as taking logarithms
to different bases; so if we leave the base arbitrary for the moment, we can
Jjust as well write h(n}) = log n. Substituting this inte (10-7), we have
shannon's theorem: the only function H(pl,...,pn) satisfving the conditions
we have imposed on a reasonable measure of "amount of uncertainty"” is

n
H(pl,...,pn) = - Zi=l p, log p, (10-14)

Accepting this interpretation, it follows that the distribution (pl...pn]
which maximizes (10=-14) subject to constraints imposed by the available
information, will represent the "most honest" description of what we know
about the propositions (Al,...,An). The only arbitrariness is that we have
the option of taking the logarithm to any base we please, corresponding to
a multiplicative constant in H. This, of course, has no effect on the values
of (pl,...,pn) which maximize H.

The function H will be called the entropy of the distribution (pl,...,pn)
from now on. It is a new measure of how uniform a probability distribution
is-—any change in the direction of equalizing the different probabilities will
increase the entropy.

I don't think that either this demonstration or the ones we gave in the
third lecture are anywhere near in satisfactory form vet. In particular,
the functional eguation (10-4) does not seem guite so intuitively compelling
as our previous ones were., You might ask why the factor g must appear in the
last term, and the only answer I can give is that if you leave i1t out, the
solution of the functional equation will collapse to Hn(pl...pn) = (n-1),
independently of the P and you will lose everything we had hoped to get
from this argument. In this case, I think the trouble is just that neither I
nor any other writer known to me has yet learned how to verbalize the argument

leading to (10-4) in a fully convincing manner. Perhaps this will inspire
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you to try your hand at improving the verbiage that I used just before writing
{10-4).

For this reason, it is comforting to know that there are several other
possible arguments which will also lead to the same conclusion {(10-14).
Khinchin (1957) has given a slightly different set of conditions. They are:

(1) For given n, Hn(pl...pn) attains its maximum value when b = {1/n),
k=1, 2, ..., n.

(2) If we include in our enumeration a new situation which is, however,
known to be impossible, our state of uncertainty is not really
changed. Therefore, we should have Hn+l(pl...pn,0) = Hn(pl...pn).

(3} A composition law essentially eguivalent to (10-4) although stated
in slightly different terms.

Khinchin shows that the only continuous functicon satisfying these reguirements

is the entropy expression (10-14}.

10.4., The Wallis Derivation.

Another, and gquite amusing, way of deriving the maximum-entropy principle
resulted from a suggestion made to me by Dr. Graham Wallis {although the
argument to follow differs slightly from his). We are given information I,
which is to be used in assigning probabilities {pl...pm} to m different
possibilities. We have a total amount of probability

}

to allocate among them., Now in judging the reasonableness of any particular

In

C =1
i=1 Fi

allocation we are limited to a congideration of I and the laws of probability
theory; for to call upon any other evidence would be to admit that we had
not used all the available information in the first place.

The problem can also be stated as follows. Choose some integer n »» m,

and imagine that we have n little "gquanta" of probability, each of magnitude
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-1 . . . .
6 =n 7, to distribute in any way we see fit. In order to ensure that we

have a "fair" allocation, in the sense that ncne of the m possibilities shall
knowingly be given either more or fewer of these guanta than it "deserves,"
in the light of the information I, we might proceed as follows.

Suppose we were to scatter these quanta at random among the m choices--
you can make this a blindfolded penny-pitching game into m equal boxes if
you like. If we simply toss these "guanta" of prabability at random, so that
each box has an egual probability of getting them, nobody can claim that any
box is being unfairly favored over any cther. If we do this, and the first
box receives exactly n

guanta, the second n etc., we will say that the

1 2'

random experiment has generated the probability assignment
p, =n, 8 =mn_ /n, i=1,2, ..., m
1 1 i

The probability that this will happen is

Now imagine that a blindfolded friend repeatedly scatters the n quanta at
random among the m possibilities. Each time he does this we examine the
resulting probability assignment. If it happens to conform to the information
I, we accept it; otherwise we reject it and tell him to try again. We continue
until some probability assignment {pl...pm} is accepted.

What is the most likely probability distribution to result from this game?

It is the one which maximizes
W=z —/—— {10-15)

subject to whatever constraints are imposed by the information I. We can
refine this procedure by choosing smaller guanta; i.e. large n. In the limit
we have, by the Stirling approximation

logn! =n logn-n+ /E;;.+ E%H-+ O(%?) {10-16)
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where O(l/nz) denotes terms that tendto zere as n»=, as (l/nz) or faster.

Using this result, and writing n, = np,, we easily find that as n>®, n -, in
i i i

such a way that ni/n - p, = const.,

1
" log W =

B |-

n
[1og n! - Zi=l log (npy)!]

1 n
> logn -1 - o z [npi log (npi) - npi]
i=1

Since Zpi = 1, several terms cancel, and we are left with

1 n
o log W~ - Z'"l Py log p; = H(pl...pn) {10-17)

i=
and so, the most likely probability assignment to result from this game, is
just the one that has maximum entropy subject to the given information I.

You might object that this game is still not entirely "fair," because we
have stopped at the first acceptable result without seeing what other accept-
able ones might also have turned up. In order to remove this objection, we
can consider all possible acceptable distributionsg and choose the average E;
of them. But here the "laws of large numbers" come to our rescue. I leave

it for you to prove that in the limit of large n, the overwhelming majority

of all acceptable prokability allecations that can be produced in this game

are arbitrarily close to the maximum-entropy distribution.

This derivation is, in several respects, the best one vet produced. It
is entirely independent of Shannon's functional egquation {(10-5); it does not
require any postulates about connections between probability and frequency;
nor does it suppose that the different possibilities {1 ... m} are themselves
the result of any repeatable random experiment. Furthermcore, it leads auto-
matically to the prescription that H is to be maximized--and not treated in
somg other way--without the need for any guasi-philosophical interpretation of
H in terms cf such a vague notion as "amount of uncertainty.” Let me stress

this peint. It is a big mistake to try to read too much philosophical signifi-
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cance into theorems which lead to equation (10-14). In particular, the
association of the word "information" with entropy expressions seems in retro-
spect quite unfortunate, because it persists in carrying the wrong connota-
tions to so many people. Shannon himself, with really prophetic insight into
the reception his work would get, tried to play it down by pointing out immed-
iately after stating his theorem, that it was in no way necessary for the
theory to follow. By this he meant that the inequalities which H satisfies
are already quite sufficient to justify its use; it does not really need the
further support of the theorem which deduces it from functional eguations
expressing intuitively the properties of "amcunt of uncertainty." However,
while granting that this is perfectly true, I would like now to try to show
that if we do accept the expression for entropy, very literally, as the
correct expression for the "amount of uncertainty" represented by a probability
distribution, this will lead us to a much more unified picture of probability
theory in general. It will enable us to see that the principle of indifference,
Rule 4, and many frequency connections of probability are special cases of a
single principle, and that statistical mechanics and communication theory are

both instances of a single method of reasoning,

10.5. An Example.

First, let's test this principle and see how it would work out if we ask
the robot to assign probabilities in such a way that the entropy (10-14) is
maximized subject to the available information, in the simple example discussed
in Sec. 10.2, in which m can take on only the values 1, 2, 3 and m is given.

We can use our Lagrange maltiplier argument again to solve this problem;

i.e., as in (10-1),

a[a( )—)\ZB mp - 23 | =
Py+e-Py T T L Py
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23 M, 8 0
= - - I u -
Now,
o 1 1 (10-18)
—— = - O - —
3p g Pm
m
30 our solution is
—AO—Am
p,=e (10-19}

where Ao =z u o+ 1.

So the distribution which has maximum entropy, subject to a given average
value, will always be in exponential form, and we have to fit the constants
Ao and A by forcing this to agree with the constraints that the sum of the
p's must be one and that the average value must be egual to the average T
that we assigned. Well, the mathematics that you have to go through in order
to do this is very straightforward and comes out very beautifully if vou
define a function

23 —-Am

Z{A) e (10-20}

m=1

which we call the partition function. The egquations (10~2). which f£ix our

Lagrange multipliers then take the form

AO = log Z{}) {10-21)
and
mWm= - %X-log Z(x) {10-22)

We find easily that pl(H), pZ(E{), p3(?n") are given in parametric form by

_ expl(2-K))] ) .

Pe =T+ 2cosna @ ®= 12 3 (10-23)
2% A

N e + 2e + 3 (10-24)

o= . -
eZk + el + 1

In a more complicated problem we would just have to leave 1t in parametric

form, but in this particular case we can eliminate the parameter )\ algebra-
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iecally, leading tc the explicit solution

_3—m—p2
Pl = 5
l —
Py, = 31 vVd - 3@m-2)2 - 1 (10-25)
)
3 2

These results are plotted in Figure (10.3}. p2 is the arc of an ellipse
which comes in with unit slope at the ends. Pl and p, are also arcs of
ellipses, but slanted one way and the other.

Let's just notice that we have finally arrived here at a solution which
meets the objecticns we had to the first two criteria. The maximum entropy
distribution automatically has the property P, 2 0 because the logarithm has
a singularity at zero which we could never get past. It has, furthermore,
the property that it never allows the robot to assign zerc probability to any

possibility unless the evidence forces that probability to be zero. The only

1 =
+
P,
1
0 —
1 2 3 m»

Figure 10.3. Maximum-Entropy scolution,
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place where a probability goes to zero is in the limit where the T is exactly
one or exactly three. But of course, in that case, some probabilities did
have to be =zero.

We see the comparison between these two criteria is very interesting.
The criterion that

2 L.
= MlnN1um
L ey
m

gives [Fig. (10.2)j the same value and the same slope as the maximum entropy
solution, at the end points and at the middle. It represents, in a sense,
the best straight-line approximation yvou could have made to the maximum entropy

solution.

10.6. Generalization: A More Rigorous Proof.

The maximum-entropy solution can be generalized in many ways. Suppose a
variable x can take on n different discrete values (xl...xn), which correspond
to the n different:propositions(Al...An) above; and that there are m different
functions of x

fk(x) ‘ l<k<m m<n, (10-26)
for which we know the mean values. What probabilities {pl..-pn) will the
robot assign to the possibilities (xl...xn)? The average of fk{x) is supposed

known for each of the possible values of k, i.e.,

F = <£,00> =) _p. £(x) . (10-27)

and the robot will find the set of pi's which has maximum entropy subject to
all these constraints simultaneously. Iet's see what he'll come out with.
We just have to introduce as many Lagrange multipliers as there are constraints

imposed on the problem.

SIH(p,...p ) = (A -1) § P, Ay § py £y —eaiam AL § p; £,(x))
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= § sp, — (oml) = Ay £10x5) = ..o =y fixg) | py = 0

and so from (10-18) ocur solution is the following:

dlo - Alfl{xi) - el - Amfm(xi)
p, = e . (10-28)

That's the form of the distribution, and we still have to find how he is going
to evaluate these constants. In the first place, the sum of all probabilities
will have to be unity, i.e.,

"Ao "Alfl(xi) —. e Amfm(xi}

1= Z p; = ¢ z e . (10-29}
i i

If we now define a partition function as

A fo (k.Y ol A f (x,)
I ¢ 17171 m m' 1
Z(ay-ah ) = Zi=l e (10-30)
then (10-29) reduces to
A= - -
o log Z(Al Am) {10-31)
The average wvalue (10-27) of fk(x) 1s then
o e—ko z e—klfl(xi) - ea— Amfm(xi) t
k . T R
T
or,
3

What is the maximum value of the entropy that we get from this probability
distribution? After an entropy has been maximized, I will call it §, the way
physicists do, instead of H, the way information theory pecple do:

= -1, )
s = (H}max = =Ly P, log pi nax {(10-33)

From (l0-28) we find that

S=Xi + AF, + ...+, F (10-34)
o) 11 m m

Now these results open up so many new applications that it is important

to have as rigorcus a proof as possible. But to solve a maximization prohlem
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by variational means, as we just did, isn't 100 per cent rigorous. Qur
Lagrange multiplier argument has the nice feature that it gives you the answer
instantanecusly. It has the bad feature that after vou've done it, vou're

not quite sure it is the answer. Suppose we had a function like the one in
Fig (10.4), and cur job was to locate the maximum of it. Well, if we state

it as a variational prcoblem and set the derivative equal to 0, we'll get
solutions at A, B, C, etc. And, of course, we could investigate these sepa-
rately and see which one is really a minimum, which one is a maximum. But
after we prove that A is a local maximum, still we have doubt as to whether
it's an absolute maximum. Maybe there is some other point that is still higher.
Even after we've proved that we have the highest value that can be reached

by variational methods, it is still possible that the function reaches a

still higher value at some cusp E that we can't locate by variational methods.
There would always be a little grain of doubt remaining if we do only the

variational problem.

Figure 10.4.

So, I would like now to give yoﬁ an éntirely different derivation which
is strong just where the variational argument is weak. For this I want a
lemma. Let pi be any set of numbers which could be a possible probability
distribution; in cther words, they add up to one and they are not negative,

1l
Zi=1 p; =1 . p; 2 O (10-35)
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and let Uy be another possible probability distribution,

Lw=1 u; 2 0. (10-36)
i=

Now let's think for a moment about the function log x. The graph of

log % looks like this, Fig. 10.5.

Figure 10.5.

It_passes through the point (1,0) with unit slope. So if I draw a tangent to
it at this point, the straight line has the equation y = x - 1. You see that
log x always has curvature downward and so it stays below the tangent; there-
fere,

log x < (x -~ 1} ., 0 < x < o (10-37)

with equality if and only if x = 1. Therefore,

7 1o ‘_‘i_)
i=1 Pi %9 {p;

1

f.
n i
zi=l Pl (pl - 1) = {3

I

or,
: (l )
Hipy...p,) < §i=1 p; log oy (10-38)

with equality if and only if p; = u i=1, 2, ..., n. This is the lemma

if
we need.
I'm going to simply pull a distribution u; out of the hat;

- 1 _ o )
u, = m1"'3‘m} expi L SC IR kmfm(xi)} . {10-39)

where Z (X ...km) is defined by (10-30). HNever mind why I chose uy this

1
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particular way; we'll see why in a minute. But now let's play with the in-

equality (10-38). We can now write it as

1}
HS ) L Pallog Z i h) + s Ayl (xg)]
i=
ar
H < log Z + Ai<fl(x)> + ...t Am<fm(x)> . (10-40)

Now, let the p; vary over the class of all possible probability distributions
that satisfy the constraints (10-27) of the problem. The right-hand side
of (l0-40) stays constant. Our lemma now says that H attains its absolute
maximum, making {10-40) an equality if and only if the p; are chosen as the
canonical distribution (10-39).

This is the rigorous proof, which is independent of the things that might
happen if you try to do it as a variational problem. This argument is, as
we see, strong just where the variational argument is weak. ©On the other
hand, this argument is weak where the wvariational argument is strong, because
I just had to pull the answer out of a hat in writing (10-22). I had to know
the answer before I could prove it. If you have both arguments side by side,

then you have the whole story.

10.7. Formal Properties of Maximum-Entropy Distributions.

Now I want to put down a list of the general formal properties of this
canonical distribution (10-3%). This is a bhad way of doing it in one sense;
it sounds very abstract and you don't see the connection to any physical
problem vet. On the cother hand, we get all the things we want a lot faster
if we first become aware of all the formal properties that are going to be in
this theory in any application; and then later I'll go inteo specific physical
proklems and we'll see that every one of these formal relations turns out to
have many different useful physical meanings, depending on the particular

problem.
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Now the maximum attainable H that we c¢an get by holding these averages
fixed depends, of course, on the average values we specified,

m
(Hgnax = S(Fl°"Fm) = log 4+ zk=l }\ka (10—41)

H itself we can regard as a measure of the "amount of the uncertainty" in any
probability distributicn. After I have maximized it, it becomes a function of
the definite physical data of the problem, and I'll call it S. It's still a

measure of "uncertainty", but it's uncertainty when all the information we

have consists of just these numbers. It is "subjective" in the sense that it

still measures uncertainty; but it is completely "objective" in the sense that

it depends only on the data of the problem, and not on anybody's personality.

If 2 is to be only a function of (F ...Fm), then in (10-41) the (Al...km)

1
must also be thought of as functicns of (Fl...Fm). At first, the 3A's were
just unspecified constants flapping arcund loose, but eventually we have to
find what they are. If I choose different Ai’ I am writing down different

probability distributions (10-39}; and we saw in (10-32} that the averages

over this distribution agree with the given averages Fk if

3
Fk—<fk>—-ﬁ;(log z) , k=1,2, ..., m (10-42)

So we are now to regard (10-42) as a set of m simultanecus egquations
which are to be solved for the Ai in terms of the given data Fi i at least one
would like to dream about this. Generally, when you get to non-trivial pro-
bhlems, this is so involwved that vou have to leawve the Ai where they are, and
express things in parametric form. If you've got more than about two Ai in
the problem, it is generally impractical to solve for them explicitly. Actual-
ly, this isn't such a tragedy, because the Ai usually turn out to have such
important phygical meanings that we are guite happy to use them as the inde-
pendent variables., However, I would like to show you that if we can evaluate

the function $(F;...F,.), then we can give the A; as explicit functions of the
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given data.
Suppose I take S and differentiate it, I make a small change in one of
the wvalues Fk that we fed into the problem; how does this change the maximum

attainable H? We have from {(10-41},

m

BAj m ar

38 z 3 log 2 J
e T et ieae e T N Fo+ A
9F J=1 BAj BFk i=1 3F, 'k k
which, thanks to (10-42), collapses to
03
= L 10-43
Ak dF ( )

in which Ak is given explicitly.
Compare this eguation with (10-42); one gives Fk explicitly in terms of

the X the othergives the Ak explicitly in terms of the P, . If I specify

k' k

lcg 2 as a function of the hk; or if I gpecify S as a function of the given
data Fk’ these are equivalent in the sense that each gives full information
about the probability distribution. The complete story 1s contained in either
function, and in fact you see that (10-41) is just the Legendre transformation
that takes us from one representative function to another.

We can derive some more interesting laws simply by differentiating the

two we already have. Let me differentiate (10-42) with respect to Aj:

aF 2 aF .

k ad ]
= (log Z) = {10-44)

aAj axjaxk Bkk

since the second cross derivatives of log Z are symmetric in j and k. So
here's a general reciprocity law which will hold in any problem that we do
by maximizing the entropy. Likewise, if I differentiate (10-43) a second
time, I'll have
o
2
okk 2 2g Bkj

5F. OF.0F.  oF
3 j Tk

(10-45)
k

another reciprocity law, which is however not independent of (10-44}), because

if we define the matrices Ajk E-akj/BFk, Bjk = BFj/Blk, you easily see that
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. . -1 -1 . . .
they are inverse matrices: A =B ~, B = A . These reciprocity laws might

appear trivial from the ease with which we derived them here; but when we get
around to applications we'll see that they have highly nontrivial and non-
obvious physical meanings.

Now let's consider the possibility that one of these functions fk(X) has
an extra parameter ¢ in it which can be varied. If you want to think of
applications, you can say fk(xi;a) stands for the i'th energy level of some
system and o represents the volume of the system. The energy levels depend
on the volume, Or, if it's a magnetic resonance system you can say this
represents the energy of the i'th state of the spin system and o represents
the magnetic field that's applied. Very often we want to make a prediction
of how certain quantities change as I change 0. I want to calculate the
pressure; or the susceptibility. ﬁy the criterion of minimum mean sguare srror,
the best estimate I can make of that derivative would be the mean value over

the probability distribution. If I write it out, it will be

3f, N 3t (x, ,a)
k 1 _ _ B _ _ ki
o) ° E’% exp{=d £ (x)=e oA f) (0= h £ () o
which reduces to
Sf
_x =__1_3_Eex{ }
o AL Z Bo P
k i
1 3%
=-=>2% log 7z . 10-46
Y ( )

k

In this derivation, I supposed that this parameter o only shows up in one
function fk' If the same parameter shows up in several different fk, then
I'l1l leave it for you to wverify that this generalizes to

o T I (10-47)
SRN s _
k=1 k da 1) g
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This general rule contains, among other things, the eguation of state of any
system.

When we add a4 to the problem, the maximum entropy 5 is a function not
enly of the specified average wvalues <fk>, but it depends now on o too. Like-

wise, Z depends on a, If we differentiate log Z or 5, we get the same thing:

as g PRy A Loms
30~ Ly 'k \sa / T T bq 109 % 0-48)

with one tricky point that isn't brought ocut too clearly in this notation.

In S the independent variables are {Fk,a}. In other words, 8 = S(F ...Fm;a).

1
But in log Z they are {Ak,a}: log Z = log Z(Al...lm;a). So in (10-48} we

have to understand that in (35/3a) we are holding the F. fixed, while in

k
(o log E/30) we are holding the Ak fixed. The equality of these derivatives
then follows from the Legendre transformation (10-41). Evidently, if there

are gseveral different parameters {ml, "] e ur} in the preobhlem, a relation

ot
of the form (10-48) will hold for each of them.

Now let's note some general "fluctuation laws,” or moment theorems.
First, a comment about notation: we're using the symbols Fk’ <fk> to stand
for the same number. They are equal because I specified that the expectation
values {<f;>...<f >} are to be set equal to the given data {Fy...F_ } of the
problem. When I want to emphasize that these quantities are expectation values
over the canonical distribution (10-39}, I'll use the notation <fk>. When
I want to emphasize that they are the given data, I'l11l call them Fy. At the
moment, I want to do the former, and so the reciprocity law (10-44) can be
written equally well as

2
a<fk> 3<fj> 3

= = Z -
3%, 3A Sx sn to9 (10-48)
J k ik

In varying the A's here, we're changing from one canonical distribution (10-39)

to a slightly different one in which the <fy> are slightly different. Since
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the new distribution corresponding to (kk + dkk) is still of cancnical form,
it is still a maximum—entropy distribution corresponding to slightly different
data {Fk + dFk). Thus we are comparing two slightly different maximum entropy
problems. For later physical applications it will be important to recognize
this in interpreting the reciprocity law (10-48}.

But now I want to show that the quantities in {10-48) also have an
important meaning with reference to a single maximum entropy problem. In
the canonical distributicon (10-39), how are the different gquantities fk(x)
correlated with each other? More specifically, how are departures from their
mean values <f, > correlated? The measure of this is the covariance or second
central moments of the distributiocon:

<(fj - <fj>)(f - <fk>)>

k

= <[fjfk - fj<fk> - <fj>fk + <fj><fk>]>

= <fjfk> - <fj><fk> (10-49)

If a value of fi greater than the average <fi > is likely to be accompanied

.>, the covariance is positive;

. greater than its average <fj

by a value of fj

if they tend to fluctuate in opposite directions, it is negative; and if their
variations are uncorrelated, the covariance is zero. If j = k, this reduces
to the variance:

_ 2. _ 2. _ 2 -
<(fk <fk>) > = <f, <> <fk> > 0 . {10-50)

k

To calculate these guantities directly from the canonical distributicon

(10-39)}, we can first find

1 n
e ] f -x £ -e..=n £
<fjfk> 70, Zi: fj(xi) k(xi) exp{ Ay 1(xi) Ay m(xiJ}
R L O P S S P e
Tz bi=a NI S T TS A T
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1 32z
Tz 3333 (10-51)
Then, using (10-42), the covariance becomes
<F.f > - <F.><F > = 1 9%z l?.ﬁzh_gé_
Jtk ] k yZ axjakk 7, a)\j 3 N
32
= Bagong 09 2 (10-52)

But this is just the gquantity {10-48); therefore the reciprocity law takes on
a bigger meaning,

3<fj> 3<fk>

<fjfk> - <fj><fk> = - =" {10-53)
]

That second derivative of log % which gave us the reciprocity law also gives
us the covariance of fj and fk in cur distribution.

Note that (10-53) is in turn only & special case of a more general
rule: Let g(x) be any function; then the covariance with fk(x) is, as you

easily verify,

g<
<qfy,> - <g<fy> = - HIQZ ’ (10-54)

a relation that I hadn't noticed in several years of using this formalism,
until it was peointed out to me by my former student, Dr. Baldwin Robertson.
From comparing (10-42), (10-48), (10-53) we might expect that still
higher derivatives of log Z would correspeond to higher moments of the distri-
bution {10-39}. This is easily checked; for the third central moments of the

fk we have

<(fj - <fj>)(fk - <fk>)[fr - <fr>)>
= - £ f£> - - + £
<fjfkfr> <fj>< X r} <fk><fjfr> <fr><fjfk> 2<fj>< k><fr»
e 1 (10-55)
= - —— log 7 -
thalkakr
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and in general, all the central momenis are given by

mi m,
<{f,6 - <f =) (£, - <f >} 3--->
i 1 ] ]

e : m-
+
mi mj+ 3 1 5 ]

s log % {10-56)
oA, axjmJ

For noncentral moments, it is customary to define a moment generating

function

¢ (B ...Bm} = <exp[Blfl+...+Bmfm]> (10-57)

1

which evidently has the property

/ I'['li Ilfl:l
m. ms
<, g = 1 e $(By.- B) (10-58)

However, we find from (10-57)

20O =By) s e (A =8 )]

(By...8 ) = (10-59)
JCIPRN TR

50 that the partition function % serves this purpose; instead of {10-58)

we may write equally well,

z (10-60)

which is the generalization of (10-51).

Now, we might ask, what are the covariances of the derivatives of fk

with respect to a parameter o? Let's define

9, = ofy (10-61)

oo

if £, is the energy and o is the volume then -g, is the pressure. The law
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for the fluctuation of these is, by a similar derivation that I'll leave for

vou to work out,

a9 d«g. >
k> - X (10-62)

AL[<g.g. > - <g.¥<q.>»] =
L 1 3[ 5% 957" % : <8a 3o

]:

a very interesting thing. I had found and used special cases of this for
gsome time, before I finally realized it's actually completely general.
Other derivatives of log Z are related to various moments of the fk and

their derivatives with respect to a. For example, closely related to {10-62)

is
32109 2 29y
—7 = ' Ajhk[<gjgk> - <gj><gk>] - E kk<aa {10-63)
jk k
The cross—-derivatives give us a simple and useful relation
32log 2 _ _ 295
Buakk Ao
=¥ < - <f >< - 10-64
) Aj[ fkgj> fk> gj>] <9, {10-64)

J
which also follows from (10-48) and (10-54); and by taking further derivatives
an infinite hierarchy of similar moment relations is obtained. As we will
see later, the above theorems have many applications in calculating the
fluctuations in pressure of a gas or liquid, the voltage fluctuations, or
"noise" generated by a reversible electric cell, etc.
Again, it is evident that if several different parameters {ml...ar}

are present, relations of the above form will hold for each of them; and

new ones like

z
82109‘ z 3 fk Bfk afj Bfk Bfg 10-65
do, o0 l M\sa do. /T 2 Ajkk do, oo,/ \da 3o (10-65)
1 2 k 1 2 ki i 2 1 2

will appear.

Well, these moment theorems are guite numercus, but easy to derive.

Because of the relation (10-41) between log Z(ll...h A

- 1..,um) and
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S(<fl>...<fm>; al...ar), you can see that they can all be stated also in
terms of derivatives (i.e. variational properties) of S. 1In the case of S,
however, there is a still more general and important variational property
that I want to develop.

In (l0-43) we supposed that the definitions cf the functions fk(x) were
fixed once and for all, the variation in <fk> being due only to variations
in the p,- We now derive a more general variational statement in which both
of these guantities are varied. Let 6fk(xi) be specified arbitrarily and
independently for each wvalue of k and i, let 5<fk> be gpecified independently
of the 6fk(xi), and consider the resulting change from one maximum-entropy
Aistribution Py to a slightly different one pi' =p; + ﬁpi, the variations
6p; and §i; being determined in terms of éfk(xi) and 5<fk> through the above
equations. In other words, we are now considering two slightly different
maximum-entropy problems in which all conditions of the problem—-including

the definitions of the functions fk(x) on which it is based--are varied

arbitrarily. The wvariation in log 2 is

1 n m
§ log Z = % Zi=l {Zkzl [“Akéfk(xi) - Gkkfk(xi)]
n )
cexp[- A f.(x)]
Pl By g 2yt
" §a, <f 10-66)
= - Zk=l [ <8 > + §X <£ >] | {10-

and thus from the Legendre transformation (10-41)

8s = = [ A [8<£, > = <8f >]
k
Qr,
§s =} Me 9 (10-87)
k
where

6y = O<fy> - <Of >
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I

1=

This result, which generalizes (10-43), shows that the entropy S is stationary
not only in the sense of the maximization property which led to the canonical
distribution (10-39); it is also stationary with respect to small variations
in the functions fk(xi} if the p; are held fixed.

As a special case of {(10-67}, suppose that the functiens fk contain

parameters {al...ar} as in (10-65), which generate the Gfk{xi) by

r Bfk{xi,u)

5€ = - 10-69
g K00y Zj=1 vas j ( :

While SQk is not in general the exact differential of any function Qk(<fl>...

<fm>;al...ar), Eg. (l0~67) shows that Ay is an integrating factor such that

z Akﬁgk is the exact differential of a "state function" S(<f,>...<f >;o,...a ).

At this point, perhaps all this is beginning to sound vaguely familiar.
Finally, I leave it for you to prove from (10-67) that

BAk

m
£1.> —— = -
Ek=l <> o 0 (10-70)

where <fl>...<fm> are held constant in the differentiation.
Evidently, there's now a large new class of problems which we can ask
the robot to do, which he can solve in rather a wholesale way. He first
evaluates this partition function 7, or better still, log Z. Then just by
differentiating that with respect to everything in sight, he obtains all sorts
of predictions in the form of mean values. This is quite a neat mathematical
procedure, and, of course, you recognize what we have been doing here. These
equations are all just the standard equations cf statistical mechanics, in a
disembodied form with all the physics removed. In the next lecture, we'll

examine that application; but from the way we derived it, it's already clear

that this same mathematics also has a lot of other applications outside of physics.
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10.8. Conceptual Problems--Frequency Correspondence.

The principle of maximum entropy is basically a simple and straight-
forward idea, and in the case that the given information consists of average
values it leads, as we have Jjust seen, to a surprisingly concise mathematical
formalism, since essentially everyvthing is known if we can evaluate a single

function log Z{ll...km;a ...ar). Nevertheless, it seems to generate some

1
serious conceptual difficulties, particularly to people who have been trained
to think of prokabkility only in the frequency sense. Therefore, before turn-
ing to applications, I want to examine, and hopefully resolve, some of these
difficulties.

Here are scome of the objections that have been raised against the princi-
ple of maximum entropy: (A) If the only justification for the canonical

distribution {(10-39) is "maximum uncertainty,” that is a negative thing which
can't possibly lead to any useful predictions; you can't get reliable results
cut of mere ignorance. (B} The probabilities obtained by maximum entropy
cannot be relevant to physical predictions because they have nothing to do
with frequencies—-there is absclutely no reason to suppose that distributions
observed experimentally would agree with ones found by maximizing entropy.

{C) The principle cannot lead to any definite physical results because dif-
ferent people have different information, which would lead to different
distributions—--so the results are basically arbitrary. (D) The principle

is restricted to the cagse where the constraints are average wvalues--but

almost alwavs the given data {Fl...Fn} are not averages over anything. They
are definite measured numbers. When you set them equal to averages, Fk = <fk>,
you are committing a logical contradiction, for the given data said that

£, had the value F, ; vet vou immediately write down a probability distribution

k k

that assigns non-zerc probabilities to values of fk # Fk.
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Objection {A) is, of course, nothing but a play on words. The "uncer-
tainty" was always there. Our maximizing the entropy 4id not create any

"ignorance" or Muncertainty;" it is rather the means for honestly recognizing
the full extent of the uncertainty already present. It is failure to do
this--and as a result using a distribution that implies more knowledge than
we really have——that would lead to dangerously unreliable conclusions,

0f course, the information put into the theory as constraints on our
maximum-entropy distribution, may be so meager that no reliable predictions
can be made from if., But in that case, as we will see later, the theory
automatically tells us this. If we emerge with a very broad probability
distribution for some guantity § of interest (such ag presgsure, magnetization,
electric current density, rate of diffusion, etc.), that is the robot's way
of telling us: "You haven't given me enough information to determine any
definite prediction." But if we get a very sharp distribution for 6 [for
example-—and typical of what does happen in many real problems--if the theory
says the odds on 6 being in the interval §,(1 £ 10-6) are greater than lOlO:l],
then the given information was sufficient to make a very definite prediction.
But in both cases, and in the intermediate ones between these extremes, the

digtribution for 6 tells us just what conclusions we are entitled to draw

about 8, on the basis of the information which was put into the eguations.

Now to answer objection (B), I want to show that the situation is wvastly
more subtle than that. The principle of maximum entrepy has, fundamentally,
nothing to do with any "random experiment," and some of the most important
applications are to cases where the probabilities Py in (10-39} have no fre-
quency connection for just that reason--the X; are simply an enumeration’

of the possibilities, and there are no "random variables" in the problem.

However, nothing prevents us from applying the principle of maximum entropy

also to those cases where the X may be regarded as produced by some random
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experiment; and in this case, the gquestion of the relation between maximum-—
entropy probqbilities amdobser%able:frequencies is capable of mathematical
analysis.

I want to give you this analysis now, and demonstrate that (1)} in this
case the maximum-entropy probabilities do have a precise connection with
frequencies; (2) in most real problems, however, this relation is unnecessary
for the usefulness of the method; (3) in fact, the principle of maximum
entropy is most useful to us in just those cases where the empirical freguency
distribution does not agree with the maximum-entropy probability distribution.

Suppose now that the wvalue of x is determined by some random experiment;
at each repetition of the experiment the final result is one of the values
Xi' i=1, 2, ..., n. But now, instead of asking for the probability Pj
let's ask an entirely different question: on the basis of the available
information, what can we say about the relative frequencies fi with which
the various 2y will occur in the long run?

Let the experiment consist of N trials (we are particularly interested
in the limit ¥ -+ «, because that is the situation contemplated in the usual
frequency theory of probability), and let every conceivable sequence of
results be analyzed. Each trial could give, independently, any one of the
results {xl...xn}; and so there a priori nV conceivable outcomes of the whole
experiment. But many of these will be incompatible with the given information
{(let's suppose again that this consists of average values of serveral functions
fk(x), k=1, 2, ..., m; in the end it will be clear that the final conclusions
are independent of whether it takes this form or some other). We will, of
course, assume that the result of the experiment agrees with this information
-—-if it didn't, then the given information was false and we are doing the
wrong problem. In the whole experiment, the result Xy will be cbtained ny

times, x, will be obtained n, times, etc. Of course,
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n
Zi=1 n; =N (10-71)

and if the specified mean values Fk are in fact obtained, we have the additional

relations

I

}. . n.f (x.) =NF_ , k=1, 2, ..., m (10-72)
i=1

If m « n-1, the relations (10-71), (10-72) are insufficient to determine
the relative frequencies fi = ni/N. Nevertheless, we do have good and strong
grounds for preferring some choices of the fi to others. For, out of the
original ot conceivable outcomes, how many would lead to a given set of sample

numbers {nl, n .o nn}? The answer is, of course, the multinomial coef-

2!
ficient

W N1 N1 (
= = 10-73)
nllnzl...nn! (Nfl}l{Nfz)l...(an)!

The set of frequencies {fl...fn} which can be realized in the greatest number
of ways is therefore the one which maximizes W subject teo the constraints
(10-71), (10-72). Now you see it coming--we can equally well maximize any

1

monotonic increasing function of W, in particular N ~ log W; but as N + «

we have, as we already saw in (10-17),

L 10g W - Zn f, log £, = U (10-74)
y ~°¢ =17 99 5 T Ye

So you see that, in (10-71), (10-72), (10-74) we have formulated exactly
the same mathematical problem as in the maximum=-entropy derivation of Sec. (10.86),
so the two problems will have the same solution. This derivation is mathema-
tically very reminiscent of the Wallis derivation that I gave you a few minutes
ago, but of course the equations now have an entirely different meaning.

You also see that this identity of the mathematical problems will persist
whether or not the constraints take the form of mean wvalues. If the glven

information dees consist of mean value--and I want to say more about that in
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a moment——then the mathematics is particularly neat, leading to the partition
function, ete. But, for given information which places any definite kind of
constraint on the problem, we have the same conclusion: the probability
distribution which maximizes the entropy is numerically identical with the
frequency distribution which can be realized in the greatest number of ways.
The maximum in W is, furthermore, enormously sharp. To show this, let

{f "'fn} be the set of frequencies which maximizes W and has entropy H_;

1 £

and let {fl'...fn'} be any other set of possible frequencies [i.e. a set
which satisfies the constraints (10-71), (10-72)] and has entropy Hf, < Hf.
The ratio (number of ways in which fi could be realized)/(number of ways in

which fi' could bhe realized) grows asymptotically, according to (10-74), as

W
EF‘+-exp{N(Hf—Hf.)} (10-75)
and passes all bounds as N +» », Therefore, the distribution predicted by

maximum entropy can be realized experimentally in overwhelmingly more ways

than can any other.

We have here ancother precise and quite general connection between proba-
bility and frequency; once again, it had nothing to do with the definition
of probability, but emerged as a mathematical consequence of probability
theory, interpreted as the "calculus of inductive reasoning." Two more kinds
of connection between probability and freguency, whose precise mathematical
statements are different in form, but which have the same practical conse-
quences, will appear later, in lectures 12 and 17.

Now let's turn to objection (C) and analyze the situation there. Does
this connection between probability and freguency justify our predicting
that the maximum-entropy distribution will in fact be observed in a real
random experiment? Clearly not, in the sense of deductive proof; for just

as objecticon (C) points out, we have to concede that different people may
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have different amounts of information, which will lead them to writing down
different distributions, and they can't all be right. But let's lock at
this more closely. Consider a specific case: Mr. A knows the mean values
<fl(x}>, <f2{x)>. Mr. B khows in addition <f3(x)>. Each sets up a maximum-
entropy distribution on the basis of his information. Since Mr. B's entropy

igs maximized subject to one further constraint, we will have

H < H (10-76}

Suppose that Mr. B's extra information was redundant, in the sense that
it was only what Mr. A would have predicted from his distribution. Now Mr. 2
has maximized his entropy with respect to all variations of the probability

F

distribution which hold <fl>, <fz> fixed at the specified wvalues Fl, o

Therefore, he has a fortiori maximized it with respect to the smaller class
of variations which also held <f3> fixed at the value finally attained.
Therefore Mr. A's distribution also solves Mr. B's problem in this case;

A3 = 0, and Mr. A and Mr. B have identical probability distributions. 1In
this case, and only in this case, we have equality in {10-76).

FProm this example we learn two things: (1) two people with different
given information do not necessarily arrive at different maximum-entropy
distributions; this is the case only when Mr. B's extra information was
"surprising” to Mr. A. (2) In setting up a maximum-entropy problem, it is
not necessary to determine whether the different pieces of information used
are independent: any redundant information will neot be "counted twice,”
but will drop out of the equations autcmatically.

Now suppose the opposite extreme: Mr. B's extra information was legically
contradictory to what Mr. A knows. For example, it might turn out that

+ 2F.,.

f3(x) = fl(x) + 2f2(x), but Mr. B's data failed to satisfy F3 = Fl 5

Evidently, there is no probability distribution with this property. How
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does our rcbhot tell us this? Mathematically, you will then find that the

equations

3
= -2 log Z(A_,A_, -77
o 109 { 1779 A3) (10 )

Fk
k

have no simultaneocus solution with real Ak. In the example just mentioned,

It
ZO oA, =}, -x_f - -
(2 rhy) Zl=1 exp[- £ (x )=h £ (x)-h £ (x )]
n .
= Xi=l eXP{-(Al+l3)fl(xi}—{A2+2A3)f2(xi}] {10-78)
and so

37 a7 8%
R (10-79)
BAB Bhl 812

and so (10-77) cannot have solutions for Al, 12, h3 unless F3 = Fl + 2F2.

So, when a new piece of information logically contradicts previous information,
the principle of maximum entropy breaks down, as it should, giving us no
distribution at all.

The most interesting case is the intermediate one where Mr. B's extra
information was neither redundant nor contradictory. He then finds a maximum-
entropy distribution differxent from that of Mr. A, and the inequality holds
in (10-76), indicating that Mr. Bfs extra information was "useful” in further
narrowing down the range of possibilities allowed by Mr. A's information.

The measure of this range is just W; and from (10-75) we have

W

2
ﬁ; 4y exp{N(HA - HB)} (10-80)

For large N, even a slight decrease in the entropy leads to an enormous
decrease in the number of possibilities.

Suppose now that we start performing the random experiment with Mr. A
and Mr. B watching. Since Mr. A predicts a mean value <f;> different from

the correct one known to Mr. B, it is clear that the experimental distribution
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cannot agree in all respects with Mr. A's prediction. We cannot be sure in
advance that it will agree with Myx. B's prediction either, for there may be
still further constraints f4(x), f5(x), ..., ctc. operating in the experiment
but unknown to Mr. B.

However, the property demonstrated above does justify the following
weaker statement of frequency correspondence: If the information incorporated
into the maximum-entropy analysis includes all the constraints actually opera-
tive in the random experiment, then the distribution predicted by maximum
entropy is overwhelmingly the most likely to be observed experimentally,
because it can be realized in overwhelmingly the greatest number of ways.

Conversely, 1f the experiment fails to confirm the maximum-entropy
prediction, and this disagreement persists on indefinite repetition of the
experiment, then we will conclude that the physical mechanism of the experi-
ment must contalin additicnal constraints which were not taken into account
in the maximum-entropy calculation. The ohserved deviations then provide a
clue as to the nature of these new constraints. In this way, Mr. A can dis-—
cover empirically that his information was incomplete.

Now the little scenario just described is an accurate model of just what
did happen in one of the most important applications of statistical analysis,
carried out by J. Willard Gibbs. By the year 1901 it was known that in
classical statistical mechanics, use of the canonical ensemble (which Gibbs
derived as the maximum-entropy distribution over classical phase volume,
based on a specified mean value of the energy) failed to predict thermodynamic
properties (heat capacities, equaticons of state, equilibrium constants, etc.)
correctly, Analysis of the data showed that the entropy of a real physical
system was always less than the value predicted. At that time, therefore,
Gibbs was in just the position of Mr. A in the scenarxio, and he drew the

conclusion that the microscomic laws of physics must invelve additional
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constraints not contained in the laws of classical mechanics. Unfortunately,
Gibbs died in 1903 and it was left to others to find the nature of this
constraint; first by Planck in the case of radiation, then by Einstein and
Debye for solids, and finally by Bohr for isolated atoms. The constraint
consisted in the discreteness of the possible energy values, thenceforth called
energy levels., By 1927, the mathematical theory by which these could be
calculated had been developed by Heisenberg and Schrédinger.

Thus it is an historical fact that the first clues indicating the need
for the gquantum theory, and indicating some necessary features of the new
theory, were uncovered by a seemingly "unsuccessful"” application of the
principle of maximum entropy. We may expect that such things will happen
again in the future, and this is the basis of the remark that the principle
of maximum entropy is most useful to us in just those cases where it fails
to predict the correct experimental facts.

Gibbs (1902) wrote his probability density in phase space in the form

wlgy.--q ipy.--p ) = explnig,...p )] (1o-81)

and called the function n the "index of probability of phase.”" He derived
his canonical and grand canonical ensembles from constraints on average energy,
and average energy and particle numbers, respectively, as (loc. cit., p. 143)
"the distribution in phase which without vieolating this condition gives the
least value of the average index of probability of phase ; «..." This is,
cf course, just what we would describe today as maximizing the entropy subject
to constraints.

Unfertunately, Gibbs did not give any clear explanation, and we can
only conjecture whether he possessed one, as to why this particular function

is to be minimized cn the average, in preference to all others. Conseguently,

his procedure appeared arbitrary to many, and for sixty years there was
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controversy over the validity and justification of Gibbs' method. In spite
of its enormous practical success when adapted to guantum statistics, few
attempts were made to extend it beyond problems of thermal equilibrium.

It was not until the work of Shanncon in our own time that the full signi-
ficance of Gibbs' method could be appreciated. Once we had Shannon's theorem
establishing the uniqueness of entropy as an "information measure," it was
clear that Gibbs' procedure was an example of a general method for inductive
inference, whose applicability is in no way restricted to equilibrium thermo-

dynamics or to physics.
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