Lecture 13

INTROBUCTION TO DECISION THEORY

"Your act was unwise,"

I exclaimed "as you see
by the outcome." He solemnly eyed me.,
"When choosing the course of my action," said he,

"T had not the outcome to guide me."

-——=Ambrese Bilerce

At this stage we have acaumulated guite a few loose ends, which T would
now like to clear up. In almost every lecture so far, T had to insert one
or more parenthetic remarks to the effect that "there is still an essential
point missing here, which will be supplied when we take up decision theory."
Actually, we began seeing what it is, as soon as we started applying the
theory to our first problem. When we illustrated the use of Baves' theorem
by sequential testing in Lecture 5, we noted that there is nothing in proba-
bility theory pexr se which could tell us where to put the threshold levels
at which we make our decision: whether to accept the batch, reject it, or
make another test. At that time, I said only that the location of this
thresheld level obvicusly depends in some way on our judgment as to what are
the consequences of making wrong decisions, and what are the costs of making
further tests. Qualitatively, this is clear enough; but before we can claim
to have a really complete design for our robot, we must re-state this in

guantitative terms.
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The same situation occurred in Lecture 8 when we studied particle counters,
and the robot was faced with the job of estimating the number of particles
which had passed through the counter under various conditions. Probability
theory told us only the robot's state of knowledge as to the number of parti-
cles; it did not tell us what estimate he should in fact make. We noted at
that time that taking the mean value over the postericor distribution was the
same as making that decision which minimizes the expected sgquare of the error;
and in Lecture 11 we followed the same procedure for statistical mechanics.

In both of those cases, this seems to be a fairly zensible criterion, and
leads to results in good correspondence with common sense. Howsver, why

was 1t the sgquare of the error that we minimized? Why not some other function
of the rrror? The criterion of minimum mean sguare error has obvious mathe-
matical advantages, because the mean value of a distribution is generally

easy to calculate; but in principle it appears to be entirely arbitrary.

You see the common feature of all these problems., In every case, proba-
bility theory can give us only a probability distributicn which represents
the robot's final state of knowledge with all the available data taken into
account; but in practice his jobk is to make a definite decision. He must act
as though one hypothesis were true, he must make a definite numerical estimate

of some parameter, and so on. The essential thing which is still missing in

our design of this robot is the rule by which he converts his final probabi-

lity assignment into a definite course of action.

13.1. Daniel Bernoulli's Suggestion.

As you might expect from the way this situation appeared in the most
elementary applications of probability theory, this problem is by no means
new. It was clearly recognized, and a definite solution offered for a certain

class of problems, by Daniel Bernoulli in the year 1738. 1In a cruder form, the
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same principle had been seen even earlier, at the time when probability theory
was concerned almost exclusively with problems of gambling. The noticn which
gseemed very intuitive to the first workers in probability theory was "expecta-
tion of profit." By this we mean, of course, that I consider each possibility,
i=1, 2, ..., n, assign probabilities Py to them, and also assign numbers Mi
which represent the profit I would obtain if the i'th possibility should in
fact turn put to be true. Then the gquantity

I

<M> = Ei=l p; M; (13-1)

is what we call the "expectation of profit." It seemed obvious to the first
‘workers in probability theory that a gambler acting in pure self-interest
should always bhehave in such a way as to maximize hig expected profit. This,
however, led to scme paradoxes (particularly in the famous St. Petersburg
problem} which led Bernculli to recognize that simple expectation of profit
is not always a sensible criterion of action.

To give a very simple example, suppose that 1 assign probability 0.51 to
heads in a certain slightly biased ¢oin. HNow I am given the choice of two
actions: (1) to bet every cent I have at even money, on heads for the next
toss of this coin; {(2) not to bet at all. According to the criterion of
expectation of profit, I should always choose to gamble when faced with this
choice. My expectation of profit, if I do not gamble, is zero; but if I do
gamble, it is

<M> = 0.51 MO + 0.49 {—Mo) = 0.02 MD > 0 {13-2)
where Mo is the amount I have now. Nevertheless it seemed obvious to BRernoulli,
and I think it deoes also to vou, that very few people would really choose the
first alternative in the problem ag stated. This means that our common sense,
in some cases, rejects the criterion of maximizing expected profit.

Suppose that you are offered the feollowing opportunity. You can bet any
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amount you want on the basis that, with probability (1 - 10_6)Jr vou will lose
your mcney; but with probability 10_6, you will win 1,000,001 times the amount
vou had wagered. Again, the criterion of maximizing expected profit says

that you should bhet all thé money you have. OQur common sense rejects this
sclution even more forcefully: no sane person would risk all his fortune,

which he is practically certain to lose, for an infinitesimal chance of winning
a4 very much larger sum.

Daniel Bernoulll proposed to resolve these paradoxes by recognition that
the true value tec a person, of receiving a certain amount of money, is not
measured simply by the amount received; it depends also upon how much he has
already. 1In other wérds, Bernoulli said that we should recognize that the
mathematical expectation of profit is not the same thing as its "moral expecta-
tion." A4 modern economist is expressing exactly the same idea when he speaks
of the "diminishing marginal utility of money."

The original St. Petersburg game consists of the following--we toss an
honest coin until it comes up heads for the first time., The game is then
terminated. If heads occurs for the first time at the n'th throw, the player
receives 2 dollars. The gquestion is: what igs a "fair" entrance fee for him
to pay, for the privilege of playing this game? If we use the criterion that
a fair game is one where the entrance fee is equal to the expectation of profit,

vou see what happens. This expectation is

(%] o

EK=1 2%y 2% = Z1<=1 1 (13-3)

and this is infinite. MNewvertheless it is clear again that no sane person

would be willing to risk more than a very small part of his fortune for the

privilege of playing this game. Let me guote Laplace (1812) at this point:
"Indeed, it is apparent that one franc has much greater value for him

who possesses only 100 than for a millionaire. We ought then to distinguish
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the absolute value of the hoped-for benefit from its relative value. The
latter is regulated by the motives which make it desirable, whereas the first
i1s independent of them. The general principle for appreciating this relative
value cannct be given, but here i1s one proposed by Daniel Bernoulli which will
serve in many cases: The relative value of an infinitely small sum is equal
to its absclute wvalue divided by the total fortune of the person interested.”
In cther words, Bernoulli proposed that the "moral walue," or what the
modern economist would call the "utility" of money should be taken proportional
to its logarithm. Laplace, in discussing the $t. Petersburg problem and this
criterion, reports the following regult without giving the calculation: a
person whose total fortune is 200 f£rancs ought not reasonably to stake more
than 9 francs on the play of this game. I took the trouble of checking this.
The fair fee £(200) is found by eguating his present utility with his expected
utility if he pavs the fee and plays the game; a computer gives the root of

o

log 200 = Zn:i %-ﬁ— log (200 ~ £ + 2™
as £(200) = 8.7204. Likewise, f(103) = 10,98, f(104) = 14.24 f1106) = 20.87.
It seems to me that this kind of numerical result is entirely reasonable.
However the logarithmic assignment of utility is not to be taken literally
either in the case of extremely small fortunes (as Laplace points out), or
in the case of extremely large ones, as the feollowing example of Savage {1954)
shows. Suppose your total fortune is 10,000,000 dollars; then if vour utility
for money is proportional to the logarithm of the amount, the theory says that
vou should be as willing as not to accept a wager in which, with probability
one-half, vou'll be left with conly 10,000 dollars; and with probability onhe-
half, you will be left with 10,000,000,000 dollars. I think that most of us
would consider such a bet to be distinctly disadvantageous to a perscn with

that initial fortune. This shows that cur intuitive "utility" for money

actually must increase even less rapidly than the logarithm for extremely
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large wvalues. There are some who esven claim that it is bounded.

The gist of Paniel Bernculli's suggestion was therefore that, in the
gambler's problem of decision making under uncertainty, one should act so as
to maximize the expected wvalue, not necessarily of the profit itself, but of
some function of the profit which he called the "moral value". 1In more modern
terminology the optimist will call this "maximizing expected utility," while
the pessimist will speak instead of "minimizing expected loss", the loss
function being taken as the negative of the utility function.

The logarithmic assignment of utility is reasonable for many purposes,
as long as 1t is not pushed to extremes. It is also, incidentally, very
closely connected with the notion of entropy, as shown by an argument of Kelly
(1956) , extended by Bellman and Kalaba {1956). Here, a gambler who receives
advance tips on a game which are only partly reliable, acts (i.e., decides on
which side and how much to bet) so as to maximize the expected logarithm of
his fortune. They show that (1) one can never go broke following this strategy,
in contrast to the strategy of maximizing expected profit, where it is sasily
seen that with probability one this will eventually happen, and (2} the amount
one can reasonably expect to win on any one game is clearly proportional to the
amount Mo he has to begin with, so after n games, one could hope to have an
amount M = Mo eun. With the logarithmic utility function, one acts so as to
maximize the expected value of a. The maximum attainable <a> turns out to be
Just (SO—S), where S is the entropy which describes the gambler's uncertainty
as to the truth of his tips, and So is the maximum possible entropy, if the
tips were completely unreliable. This suggests that, with a little more
development of the theory, entropy might have an important place in guiding
the strategy of a stock market investor.

Daniel Bernoulli's solution to the problem of decision making has suffered

the same fate as did Laplace's scoluticon to the problem of inductive reasoning.

13-6



The "objectivist" or "orthodox" school of thought either ignored it or condemned
it as metaphysical nonsense until just a few vears ago. In one of the best
known books on probability thecxry (Feller, 1950; p. 199), Daniel Bernoulli's
solution of the St. Petersburg paradex is rejected without even being described,
except to assure the reader that he "tried in vain to solve it by the concept

of moral expectation.” Well, we will see next just how vain Daniel Bernoulli's

efforts were.

13.2. The New Formulation of the Decision Problem.

In the late 1940's a general theory of decision making in the face of
uncertainty was developed, largely by Wald (1950) which in its initial stages
had no apparent connection with probability theory. I mentioned it briefly
in Lecture 5, and now I would like to give you a more specific account of
some of the ideas it involved.

We begin by imagining (i.e. enumerating) a set of posasible unknown "states

of nature", {8., 6,,.e., BN} whose number might be finite or infinite. The Bj

1’ 72
might also form a continuum. In the quality-control example of Lecture 5,
the "state of nature" is the unknown number of defectives in the batch, and
the Gj are discrete. 1In the particle-counter problem of Lecture 8, the state
of nature could be taken as the unknown source strength s, and the ej are
continuous.

There are certain illusioné that tend to grow and propagate here. Let
me dispel one right now by noting that, in enumerating the different states
of nature, we are not describing any objective (measurable} property of nature

——for, one and only one of them is in fact true. The enumeration is only a

means of describing our state of ignorance. It is, therefore, meaningless to

ask whether one particular enumeration in "correct" without first asking,

"what is the information that is being described by the set of & ?" Two
J
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observers with different amounts of information may enumerate Bj differently
without either being inconsistent.

The next step in our thecry is to make a similar enumeration of the
posgible decisions {Dl, Dy vee, Dk} that might be made. In the gquality-

2

control example, there were three possible decisions at each stage:

D1 = accept the batch
D, = reject it
D3 = make anocther test {13-4)

In the particle counter problem of Mr. B, where we are to estimate the number
n, of particles passing through the counter in the first second, there are
an infinite number of possible decisions:

D, = ”nl is estimated as equal to 1," 1 =0, 1, 2, ... (13-5)
If we are to estimate the source strength, then there is a continuum of
possible decisions.

This theory is clearly of no use unless by "making a decision" we mean
"deciding to act as if the decision were correct". It 1s idle to "decide"
that n, = 150 is the best estimate unless we are then prepared to act on the
assumption that nl = 150. Thus the enumeration of the Di is a means of
describing our knowledge as to what kinds of actions are feasible; it is idle
to congider any decision which we know in advance corresponds to an impossible
course of action.

There i1z another reason why a particular decision might be eliminated;

even though D. i1z easy to carry out, we might know in adwvance that it would

1
lead to intolerable congequences. An automecbile driver can make a sharp left
turn at any time; but his common sense usually tells him not to. Here we see
two more points: (1) there is a continuous gradation--the consegquences of an

action might be sericus without being abscolutely inteclerable, and (2) the

consequences of an action (=decision) will in general depend on what is the
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true state of nature—-a sharp left turn does not alwavs lead to disaster.

This suggests a third concept we need--the loss function L(Di,Bj), which
is a set of numbers representing our judgment as to the "loss" incurred by
making decgsion Di if 6j should turn out to be the true state of nature. If
the Di and Sj are both discrete, this becomes a loss matrix Lij'

Quite a bit can be done with just the ej, Di, Lij and there is a rather
extensive literature dealing with criteria for making decisions with nc more
than this. The material we need for our purposes has been summarized in a
very readable and entertaining form by Luce and Raiffa (1857), and in the
elementary textbook of Chernoff and Moses (1959). The minimax criterion is
this: for each Di find the maximum possible loss Mi = maxj(Lij); then choose
that D, for which Mi is a minimum. The minimax criterion would be a reasonable
ocne if we regard nature as an intelligent adversary who foresees our decision
and deliberately choosgses the state of nature so as to cause us the maximum
frustration. In the theory of some games, this is not a completely unreal-
istic way of describing the gituation, and conseguently minimax strategies
are of fundamental importance in game thecry. But in the decision problens
of the scientist or engineer the minimax criterion is that of the long-faced
pessimist who concentrates all his attention on the worst possible thing that
could happen, and thereby misses out on the favorable opportunities.

Egually unreasonable for us is the opposite extreme of the starry-eved
optimist who uses this "minimin" criterion: for each Di find the minimum
possible loss mi = minj{Lij) and choose the Di that makes mi a minimum.

Evidently, a reasonable decision criterion for the scientist and engineer
ig, in some gense, intermediate between minimax and minimin. Many other
criteria have been suggested, which go by the names of maximum utility (Wald),

g-cptimism-pessimism (Hurwicz), minimax regret (Savage}, etc. The usual

procedure, as described in detail by Luce and Raiffa, has been to analyze any
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proposed criterion to see whether it satisfies about a dozen gualitative

common-sense conditions such as (1) Transitivity: if Dl is preferred to D2,

and D2 preferred to D3, then Dl must be preferred to D3, and (2) Strong

Domination: 1if for all states of nature ej we have Lij < I, ., then Di should

LS|
always be preferred to Dk. This analysis, although straightforward, can

become tedicous. I will not follow it any further, because the final result

is that there is only one class of decision criteria which passes all the

tests, and this class is obtained more easily by a different line of reasoning.

A full decision theory, of course, cannot concern itself merely with the
ej, Di’ Lij' We also, in typical problems, have additional evidence E, which
we recognize as relevant to the decision problem, and we have to learn how to
incorporate E into the theory. In the quality-control example, E consisted
of the results of the previous tests.

At this point, current decision theory takes a long, and I think unneces-
sary, mathematical detour. One defines a "strategy", which is a set of rules
of the form, "If I recelve new evidence Ei' then I will make decision Dk'"

In principle cone first enumerates all conceivable strategies (whose number is,
however, astronomical even in quite simple problems), and then tries to eliminate
the undesirable cnes by application of various common-sense conditions. This
leads to defining a class of "admissikle" strategies, which consists, crudely
speaking, of all those any sane person would ever consider adopting; a strategy
is admigsible if no other exists which is as good or better for all states of
nature.

A principal object of the theory is then to characterize the class of
admissible strategies in mathematical terms, so that any such strategy can be
found by carrying out a definite procedure. The fundamental theorem bearing

on this is Wald's Complete Class Theorem which establishes a result already

mentioned in Lecture 5. Instead of following this rather difficult argument,
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I would like to make a few more remarks about the nature of the problem, and
then give a different line of reasoning which leads to the same result by
elementary mathematics.

What is it that makes a decision process difficult? Well, if we knew
which state of nature was the correct one, there would be no problem at all;

if 63 is the true state of nature, then the best decision Di is the one which

renders L.13 a minimum. In other words, once the loss functicon has been speci-

fied, our uncertainty as tco the best decision arises solely from our uncex-

tainty as to the state of nature. Whether the decision minimizing Li3 is or
is not best depends entirely on this: How strongly do we believe that 83 is
the true state of nature? How plausible is 93?

To a physicist or engineer it seems like a wvery small step--really only
a rephrasing of the guestion--to ask next, "Conditicnal on all the available
evidence, what is the probability P3 that 83 is the true state of nature?”
Not so to the orthodeox statistician, who regards the word “"probabkility" as
synonomous with-"long-run relative freguency in some random experiment'.
On this definition it is meaningless to speak of the probability of 63,

because the state of nature is not a "random wvariable”. Thus, if we adhere

consistently to the orthodox view of probability, we will have to conclude
that probability theory cannot be applied to the decision problem, at least
not in this direct way.

It was just this kind of reasoning which led statisticians, in the early
part of this century, to relegate problems of parameter estimation and hypo-
thesis testing (which are really decision problems and as such are included
in our general formulation) to a new field, Statistical Inference, which was
regarded as distinct from probabkility theory. But let_us leok in detail at
a typical problem of this type, using the loss function criterion, from the

orthodox wviewpoint. I want to show that a rather simple extension of the usual
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orthedox arguments leads us to the same conclusion that Wald's much deeper
analysis forced him to (very much against his will): that the original methods
propesed by Laplace and Daniel Bernoulli are, in fact, the unique soclution

of the decision problem.

13.3. Parameter Estimation for Minimum Loss.

One of the situations considered in the discussion of particle counters
{Lecture 8) was that of Mr. B, who knew that there was a constant, but unknown,

source strength s. By cbserving the number of counts {c .,cn} in several

e
different seconds, he could make an estimate of the numerical value of s,

which presumably became more and more accurate with inecreasing n. This ig a

typical example of the general problem of parameter estimation.

More generally, suppeose that there 1s ome unknown parameter o, and we
make repeated observations of some guantity, obtaining an observed "sample™,

x = {x ..,xn}. We can interpret the symbol x, without subscripts, as stand-

17
ing for a vector in an n-dimensional "sample space". We will suppose that the
possible results Xy of individual cbservations are real nuwbers. From obser-
vation of the sample x, what can we say about the unknown parameter o?

To state the problem more drastically, suppose that we are compelled to
choose one gpecific numerical value as our "best" estimate of a, on the basis
of the observed sample x, and any other prior information we might hawve. This
is the decision situation which we all face daily, both in our capacity as sci-
entists and engine_rs, and in,éveryday life. The driver approaching a bling
intersection cannot know with certainty whether he will hawve encugh time to
cross it safely; but still he is compelled to make a decision based on_what
he can see, and act on it.

Now it is clear that in estimating o, the observed sample x is of no use

to us unless o exerts some kind of influence on x. In other words, if we
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knew o, but not x, then the probabilities (x‘a) = {x ...xnfu) which we would

1
assign to various samples must depend in scome way on the value of o, If we
consider the different observations as independent, as is almost always done
in the orthedox theory of parameter estimation, then the distribution factors:

(x|o) = (x;fa) oo (x |a) (13-6)

1
However, this vervy restrictive assumption is not necessary (and in fact doesn't
lead to any formal simplification) in discussing the general principles of
parameter estimation from the decision theory standpoint.

Let B = B(Xl...xn) be an "estimator", i.e. any function of the sample
values, proposed as an estimate of a. Also, let L{x,B) be the "loss" incurred

by guessing the value B when o is in fact the true value. Then for any given

estimator the expected loss for a person who already knows the true value of

o, is

L = ‘[L(u,s)(x]a) ax (13-7)

o

Call this the oc-expected loss. By f{ ) dx we mean the n-fold integration

J[ ..:/- { ) dxl...dxn (13-8)

There is no need to gpecify different limits of integration for different
preblems, since if certain ranges of the %, are impossiblie, the factor (x]a)
will be zerc and remove contributions from those ranges. Also, this notation
includes both the continuous and discrete case, since in the latter {xlu] is
a sum of delta-functions.

On the view of one who uses the frequency definition of probability, the

above phrase, "for a person who already knows the true value of o' is mislead-

ing and unwanted. The notion of the probability of sample x for a person with

a certain state of knowledge is entirely foreign to him; he regards {x|a) not

as a description of a mere state of knowledge about the sample, but as an

objective statement of fact, giving the relative frequencies with which dif-
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ferent samples are observed "in the long run". Thus the "freguentist" believes
that LOc is not merely the "mathematical expectation" of loss in the present
situation, but is also, with probability 1, the limit of the average of actual
losses which would be incurred by using the estimator B an indefinitely large
number of times. Furthermore, the idea of finding the estimator which is "best
in the present specific case" is guite foreign to his outlook; because he
regards the notion of probability as meaningful only in the sense of limiting
frequencies, he is forced to speak instead of finding that estimator "which
will prove best in the long run'.

On the frequentist view, therefore, it would appear that the best esti-
mator will be the one that minimizes L&. Is this a variational problem? A

change 68({x) in the estimator produces a change of La of

3L
SL, = }3g (x]a) 8B(x) ax. (13-9)

If we were to regquire this to vanish for all &R (x), this would mean

oL
—E'= ¢ for all possible values of B. (13-10)

Thus the problem as stated has no truly statiocnary solution except in the
trivial case where the loss function is independent of the estimated value B;
the best estimator by the criterion of minimum c-expected loss cannot be found
by variational methods. Nevertheless, we can get some understanding of the
problem by considering (13-7) for some specific choices of loss function,
Suppose we take the guadratic loss function Lig,R) = (o - 8)2. Then (13-7}

reduces to

L, = 02 - 2p<p> + <B2> (13-11)
or,

L, = (o - <83)2 + var (B) ’ (13-12)
where var {(B) = <82> - ﬁB>2 is the wariance, and the n'th moment
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g™ = I[B(x)]n (x|a) dx (13-13)

is the g-expected wvalue of Bn- The g-expected loss is the sum of two positive
terms, and a good estimator by the criterion of minimum w-expected loss has
two properties:

(1} <> = q

(2) wvar (B) is a minimum. (13-14)
These are just the two conditions which orthodox statistics has considered
most important. An estimator with property (1) is called an unblased estimate
[more generally, the function big) = <f> - g is called the bias of the esti-
mator R(x}], and one with both properties (1) and (2) was called efficient by
R. A. Fisher (although this last condition is ambiguous until we specify the
class of functions B(x) to be taken into consideration). Nowadays, it is

often called an unbiased minimum variance (UMV) estimator.

It has always seemed to me that the above reasoning amounts to looking
at the problem backwards. We are descriking the situation as it appears to
‘a person who already knows the correct value of o, but does not know which
specific sample has been observed. The above egquations really refer to only
one value of o, but involve many different possible wvalues of x. But this is
just the opposite of the state of knowledge which we have when we estimate a
parameter; we know x, but not a. Our equations should invelve only one sample,
namely the one actually observed; but sholld take inte account many different
possible wvalues of a.

Our job is always to do the best reasoning we can about the single
situation that exists here and now, on the basis of the knowledge which we
do in fact have; consideration cof how things might seem to a person whose
state of knowledge is different, or what might happen in some other situation

that we are not reasoning about (if some different sample were observed) is
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not relevant to our preoblem. So, we ought to do it the other way around; it is
the expected value of L{x,R) over the posterior distribution (u|x) of o,
conditicnal on knowledge of the sample, that should logically be minimized.
Call this the x-expected loss:

L_(8) =IL(u,B)(aJx) Ao, (13-15)
where (a|x) is cbtained by applying Bayes' theorem. Thus, having observed the
sample X, we should calculate LX(B} and take as our estimate that value of B
which minimizes LX(B). In the continucus case, gubject to some elementary

regularity cconditions, we would use the estimator B(x ..,xn) determined by

17
aLx (B}
= 0 (13-16)
g
521, (B)
—_—— s D (13-17)
ap?

These egquations make no reference to any sample other than the specific one
that has been observed.

But most of the prominent workers in statistics would raise strong objec-
tions to this procedure on philoscphical grounds [you guessed it—-that (u]x) is
meaningless because o 1s not a "random wvariable"]. So, let's go back and
take a closer look at the orthodox formulation of the problem—-is there some
way we could improve it without conflicting with orthodox principles?

We have already seen a practical difficulty faced in the first formulation;
the criterion of minimum o-expected loss does not lead to a variational
problem, and therefore even in the simplest case of a guadratic loss function,
it gives us no analytical method for constructing the "best" estimator
B(xl...xn). In fact, it is clear from (13-14) that the only really correct
solution of the mathematical problem as stated, is B(xl...xn) = o, independent

of the observed sample. This shows again that the criterion of minimum

o~expected loss essentially describes the reasoning of a person who already
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knows the correct value of gy, However, the stubborn fact remains that the
statistician using this criterion does not know o, and so he cannot use the
correct solution of the problem. His estimator must be some function of the
sample values only. Once an estimator has been suggested, it can be tested by
calculating (13-12). But, except for one gpecial class of sampling distribu-
tions (xl...xn!a), which I will consider later, the frequentist has no general
principle like ({13-16), only his judgment and common sense, to tell him which

cnes to try out in the first place.

13.4. Should We Use an Unbiased Estimate?*

What is the relative importance of removing bias and minimizing the
variance? Well, from (13-12) it would appear that they are of exactly equal
importance; there is no advantage in removing the bias (<f> - a) 1f in so
doing we increase wvar () more than enough to compensate. Yet shat is just
what the orthodox statisticlan usually does! Iet me give vou a specific
example of this. Cramér (1946, p. 351) considers the problem of estimating
the wvariance “2 of a distribution (xl[uz):

— 2« 2 - 2 -
Uy = <xl > <xl> <xl > (13-18)

from n independent observations {xl...xn}. We assume, in {(13-18) and in what

follows, that x> o= 0 since a trivial change of variables would in any event

accomplish this. An elementary calculation shows that the sample variance

2
1 -nn 1 -nn
_ = 2 &
My = ol {n Liza xi] (13-19)
has expectation value, over the distribution (xl...xnluz} = (xlluz)...(xn|u2);
of
n-1 '
my> = = Yy (13-20)

*This section is a digression in response to a question from the audience, It
may be skipped without losing the main line of argument; however, it does con-
tain an illustration of an important pcint.
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and thus, as an estimator of ) it has a negative blas. So, goes the argument,

we should correct this by using the unbilesed estimator

n
M2 = -7 My {(13-21)

Now, of course, the only thing that really matters here is the total error of
our estimate; the particular way in which you or I separate error inte two
abstractions labelled "bias" and "variance" is a purely academic matter with
no bearing on the actual quality of the estimator. So, let's lock at the

mean sguare error criterion. Replacement of m2 by M2 removes a term {<m2>'—

u2)2 = uzz/n2 in (13-12); but it also increases the term var{m by a factor

2)
n/fn-1)12, so it seems obvious that, at least for large n, this has made

things worse instead of better. Let's check this more carefully. Suppose

we replace m. by the estimator,

2

Yg = (L +¢) m {13-22)

2

What is the best choice of ? The uz—expected logs (13-12) is now

<(y6 - u2)2> = U22 ~- 2{1+6)u2<m2> + (l+6)2<m22>

[(em,> - u2)2 + var(n}] - <m22>q2 + <m22>(6—q)2 (13-23)
where

2
<TIM F - M <. >
q = 2 2 .2 (13-24)

{m22>

Evidently, the hest estimator in the class Yg is the one with § = q, and the
texm.—<m22>q2 in (13-23} represents the decrease in mean—-square error obtain-
able by using vy instead of m, . From Cramér's result (loc. cit., Bg., 27.4.2)
d
o oem 24 2 _ T3 ~ o fm_2y1 2 -
var(mz} = <m,”> <m,> n (n-1) { {n l)u4 (n 3)u2 ] {13~-25)

where

b L oo b
= - > > = =
Mg (%) = <xp”) *q

is the fourth central moment of (Xl’pz), we find
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n3<m22> = (n-1) [(nz—n+2)u22 + (n-1) var(x?)] (13-26)
03, 2>g = (n-1) [(n-2)u,% - (n-1 2
577g = (n [ {n )u2 (n-1) var(x“)] {(13-271

where var(xz) =¥, —-u22 = 0. {13-28)
We must understand n > 1 in all this, for if n = 1, we have m, = 0; a single
observation gives no information at all about the variance of (x1|u2). But
if n = 2, we have g < 0; instead of removing the bias, we should always increase
it in order to minimize the mean sguare error! More generally, if var(x?) =

Ku22 we have from (13-26), (13-27):

(n~2) - (n—-1) K

(n%-n+2) + (n-1) K (13-29)
and therefore, if K < 1,
2-K
g ; 0 ifn ; Tx {13-30)
while if K > 1, g < 0 for all n.
In the case of a Gaussian distribution,
x12
X ) = A exp| ~ —— 13-31)
({ 1|”2 P 2, (
we have
<x - <x12>2
<X12>2

We will seldom have K < 2, for this would imply that (xl]uz) cuts off even
more rapidly than Gaussian for large xl. If ¥ = 2, (13-29) reduces to

1

9= -1 (13-33)

which again says that rather than removing the bias we should approximately
double it, in order to minimize the expected sqﬁare of the error. How much
better is the estimator Yq than MZ? In the Gaussian case the mean square
error of the estimator Yq is

32 - 2 2 i}
{(Yq u2) = i) p2 {13-34)
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For a general choice of &, it is

Sly. - u2s =2 2, n?-1 (8 +L}2 (13-15)
Tg = M2 = M7 4T ne ntl

The unblased estimator M2 corresponds to the choice

g = (13-36)

1
n-1 d
and thus to the mean sguare error

<(M, - u2)2> = u22 [% + %] (13-37)
which is over twdce the amount incurred by use of yq.

Most distributions which arise in practice, if not gaussian, have wider
"tails" than gaussian so that K > 2., In this case, the difference will be
even greater.

Up to this point, 1t may have seemed that I was quibbling over a very

minor thing--changes in the estimator of one or two parts ocut of n. But now

you see that the difference between (13-34) and {13-37) is not at all trivial.

For example, with Cramér's unbiased estimator M2 you will need n = 203 cbser-

vations in order to get as small a mean-sguare error as the biased estimator

Yg gives you with only 100 observations.

There is a fantastic example in a recent book on econometrics (Valavanis,
1959; p. 60) where the author attaches such great importance to removing bias
that he advocates throwing away practically all the data from the sample, if
necessary, to achieve this. One reason for such an undue emphasis on bias is
the belief that if we draw N successive samples of n observations each and
calculate the estimators Bl...BN, the average §_= N_l ZSi of these estimates
will converge in probability to <Bf> as N » «, and thus an unbiased estimator
will, on sufficiently prolonged sampling, give an arbitrarily accurate esti-
mate of o, Such a belief is almost never justified even for the fairly well

controlled measurements of the physicist or engineer, not only because of
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unknown systematic errcr, but because successive measurements lack the inde-
pendence required for these limit theorems to apply. In such uncontrolled
situations as economics, the situation is far worse.

But unbiased estimators are, even 1f we accept these limit thecorems, not
the only ones which appraach perfect accuracy with indefinitely prolonged
sampling. Many other estimators approach the true value of o in this limit,

and do it more rapidly. Our Yq is a specific example. Furthermore, asymptotic

behavior of an estimator is not really relevant, because the practical problem
is always to do the best we can with a finite sample; therefore the important

guestion is not whether an estimator tends to the true wvalue, but how rapidly

it does so.

I have a dark suspicion that a still more important reason for attaching
such an undeserved importance to blas is simply that we have bheen caught in
a psycho-semantic trap. It is well known to politicians that our thought
processes are influenced to a rather alarming degree by the particular choice
of words we use. When we call the quantity <f>-o the "bias”, tnat makes it sound
like something awfully reprehensible, which we must get rid of at all costs.

If we had called it instead the "component of error orthogonal to the variance",
as suggested by the Pythagorean form of Eg. {(13-12), then it would be clear

to all that these two contributions to the error are on an exactly equal
footing; and that it is folly to decrease one at the expense of increasing

the other.

In the bock of Cherncff and Moses (1959} these points are clearly recog-
nized, and an even more forceful example is given showing what can be wrong
with the criterion of an unbiased estimate. A company 1s laying a telephone
cable across the ocean. They cannot know in advance exactly how much cable
will be required, and so they must estimate. If they overestimate, the loss

will presumably be proportional to the amcunt of excess cabkle to be disposed
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of; but if they underestimate and the cable end falls off inte the water, the
result may be financial disaster. Use of an unbiased estimate herxe could only
be described as foolhardy.

Note, however, that after all this argument, nothing in the above entitles
us to conclude that Yq is the best estimator of oy by the mean-square criterion!
For we hawve considered only the class (13-22) of estimatore constructed by
multiplying the sample variance (13-19) by some preassigned number; we can say
only that Yq is the best one in that class. The question whether some other
function of the sample walues, not a multiple of (13-19), might be still better
by the mean-square error criterion, remains completely open. This weakness
of the orthodox approach to parameter estimation--that it does not tell us how
to find the best estimator, but only how to compare different guesses-—-is due
tc our having "locked at the problem backwards", in the sense I explained a

moment ago. Now I want to show how the trouble can be overcome.

13.5. Reformulation of the Proklem.

It is easy to see why the orthodox criterion of minimum c-expected loss
is bound to get us into trouble and is unakle to furnish any general rule for
constructing an estimator. The mathematical problem was: for given Lo ,B) and
(x|a), what function B(xl...x } will minimize
L, = [L(u,s) (x|a) ax (13-38)
Although this is not a variational problem, it might have a unique soclution;

but the solution will still, in general depend on a. Of course, there may be

(and in fact are) a few exceptional cases where the a-dependence drops out;
but in general the criterion of minimum ac-expected loss leads to an impessible
situation--even if we could solve the mathematical preblem (13-38) and had

before us tne best estimator B (X ..xn) for each wvalue of a, we could use
o

1

the result only if o were already known, in which case we would have no need
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to estimate. We were indeed lcooking at the problem backwards!

This makes it clear that in general we cannot use the criterion (13-38),
or in fact any criterion which makes reference to only a single value of «;
not for philosophical reasons but because any guch criterion is built on self-
contradictory premises. The person who advises us to use (13-38) puts himself
in exactly the position of the shoe clerk who teld a customer, "You will never
be able to get those new boots on until you have worn them a while.™

This also makes it clear how to correct the trouble. It is of no use to
ask what estimatcr is best for some particular value of @, even though the
gquestion might have a definjte answer; the only reason for using an estimator
is that o is unknown. The estimator must therefore be some compromise that
allows for all possibilities within some prescribed range of a; within this

range it must do the best job of protecting against loss no matter what the

true value of o turns out to be.

Thus it is some weighted average of Lu'
<L> = Jff(uj La da {13-39)
that we should really minimize, where the function f(a} > 0, which will be
given a fuller interpretation later, measures in some way the relative import-
ance of minimizing La for various possible values of o.

Merely to recognize this, which amounts to removing a contradiction in
the original formulation, already implies the solution. For the mathematical
character of the problem is completely changed by adopting (13-39) instead of
{(13-38}. We now have a solvable variational problem with a well-behaved

solution. The first variaticon in <L> due to an arbitrary variation 6B (x ...xn)

1

in the estimator is

§<I> = _[E(a} da.[-"',/.dxl"'dxn %%-(xl...xn|a} SB(xl...xn)

which vanishes independently of 68 if
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oz

L
dea £(a) 3p (xq...x.la) =0 (13-40)

for all possible samples {xl...xn}. Equation (13-40) is the fundamental

integral eguation which determines the best estimator.

Taking the second variation, we find the condition that (13-40) shall

yvield a true minimum is

2
J[du £(a) %E%.(xl...xn|u) > 0 (13-41)

Thus a sufficient condition for a minimum is simply

5"2'2 0 (13-42)

but this is far stronger than necessary.
If we take the guadratic loss function L(a,R) = K{a - B)%, eguation
(13-40) reduces to

jdu £a) (o = B) (%y.-.x [a) =0

or, the optimal estimator for quadratic loss is

_]éa Flo) o (xl...xn]a)
B(Xl'”xn) - _f‘da f(u)(xl...xnla)

(13-43)

But, you see, this is just the mean value over the posterior distribution of o:

)G aex o)

] Ela
(a]=,...%) = (13-44)
1% _jrdu

£{a) (%q...%,|0)
given by Baves' theorem if we interpret fla) as a prior probability density!
This example shows us, perhaps more clearly than any I have given so far,

why the mathematical form of Bayes' thecrem is azlways going to be the funda-

mental principle behind parameter estimatiocn, independently of all philoso-

phical arguments about the '"meaning of probability", or about "random variables™.
Let's see what happens for some other loss functions. If we take as a

loss function the absolute error, L{u,B8) = |a - Bi, then the fundamental

equation {13-40) becomes
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[ oo
f_m da £(o) (®...x,]) =ﬁ) de £(o) (xq...x|a)

which states that B(Xl...Xn) is to be taken as the median over the posterior

distribution of a:

3 @ 1
_[;w Ao (a'xl...xn) =.j; Ao (a’xl...an alicy (13-45)

Likewise, if we take a loss function L{c,B) = (o - R)Y, equation (13-40)

leads to an estimator B(xl...xn) which is the real root of

£(8) = B3 - 3082 + 3028 - a2 =0 (13-46)
where
) . n
o =jd05 & (alx,...x) (13-47)
1 n
is the n'th moment of the posterior distribution of w. [That {13-46) has

only one real root is seen on forming the discriminant; the condition f'(R)

> 0 for all real f is just (a2 - o?) > O,

k . . .
If we take L(a,B) = [a - BI , and pass to the limit k =+ 0, or if we just take

L{o,B) = (13-48)
1l, otherwise

Eg. {(13-40) tells us that we should choose B(Xl,..x } as the most probable
n

value, or mode of the posterior distribution (alxl...x }. If f£{e) = const.,
n

this is just Fisher's maximum likelihood estimate.

In this result we finally see just what maximum likelihood accomplishes,
and under what clrcumstances it 1s the optimal method to use. The maximum
likelihood criterion is the one in which we care only about the chances of
being exactly right; and if we are wrong, we don't care how wrong we are.
This is just the situation we have in shooting at a small target, where "a
miss is as good as a mile". But it is clear that there aren't very many
other situations where this would be a rational way to behave; almost always,

the amount of error is of some concern to us, and so maximum likelihood is

not the beet estimation criterion.
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Note that in all these cases it wag the posterior distribution (&[xl...x )
n
that was involved. That this will always be the case ig easily seen by noting

that our "fundamental integral equation" {(13-40} is not so profound after all.

It can equally well be written as
V& £la) Lio,B) (x....x |a) = O
Y ’ IEREE .

but if we interpret f(a) as a prior probability density, this is identical
with (13-16), which we had already derived from much simpler reasoning!

Likewise the condition (13-41}) for a true minimum is identical with (13-17).

13.6. "Objectivity" of Decision Theory.

Decision Theory occupies a unigue position in discussion of the logical
foundations of statistics, because, as we have seen in (13-16) and (13-40),
its procedures can be derived from either of two diametrically opposed view-
points about tﬁe nature of probability theory, and it thus forms a kind of
hridge between them. While there appears o be universal agreement as Lo
the actual procedures that should be followed, there remains a fundamental
disagreement as to the underlying reason for them, having its origin in the
0ld issue of frequency vs. non~frequency definitions of probability.

From a pragmatic standpoint, such considerations may seem at first to
be unimportant., However, in the attempt to apply decision-theory methods in
real problems one learns very guickly that these guestions intrude in the
initial stage of setting up the problem in mathematical terms. In particular,
our judgment as to the generality and range of validity of decision—-theory
methods depends on how these conceptual problems are resolved. My aim is to
expound the viewpoint according to which these methods have the greatest
possible range of application. Now we find that the main source of contro-
versy here 1s on the issue of prior probabilities; on the orthodox viewpoint,

if the problem involwves use of Bayes' theorem then these metheds are just not
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applicable unless the prior probabilities are known freguencies. But to
maintain this position consistently would imply an enormous restriction on
the range of legitimate applications. Therefore, let's see whether the
mathematical form of our final eguations can shed any light on this issue.

Motice that only the product fla)L{x,f) is involved in (13-40) or (13-16);
thus whether we interpret the problem as:

(3) Prior probhability f£(wa), loss function L{y,g) = (g - 3)2 or as
(B) Uniform prior probability, loss function L(a,R) = fla)(a - B)2 or as
(C) Prior probability gla), loss function £(a) (¢ - 8)2/g(a), the solution
is just the same. This is equally true for any loss function.

I emphasize this rather trivial mathematical property because of a curious
psychological phenomenon. In expositions of decision theory written from
the orthodox viewpoint, the writers are always very reluctant to introduce the
notion of prior probability. They postpone it as leng as possible, and fin-
ally give in only when the mathematics forces them to recognize that prior
probabilities form the only basis for choice among the different admisgsible
decisions. Even then, they are so unhappy about the use of prior probabilities
that they feel it necessary always to invent a situation--often highly arti-
ficial--which makes the prior probabilities appear to be frequencies; and
they will not use this theory for any problem where thev don't see how to do
this. But these same writers do not hesitate to pull a completely arbitrary
leoss function out of thin air without any basgis at all, and proceed with the
calculation!

The eguations show that if your final decision depends strongly on which

particular prior probability assignment you use, it is going to depend just

as strongly on which particular loss function you use. If you worry about

arbitrariness in the pricor probabilities, then in order to be consistent, you

ought to worry Just as much about arkbitrariness in the loss functions. IF
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you claim {as most writers on this subject have been doing for decades) that
uncertainty as to the proper choice of pricr probabilities invalidates the
Laplace-Bayes theory, then in order to be consistent, vou must alsc claim
that uncertainty as to the proper choice of loss functions invalidates Wald's
decision theory.

The reason for this strange lopsided attitude is closely connected with
a certain philoscphy varicusly called behavioristic, or positivistic, which
wants us to restrict our statements and concepts to objectively verifiable
things. Therefore the chbservable decision is the thing to emphasize, while
the process of inductive reasoning and the judgment described by a prior
probability must be swept under the rug. But I see no need to do this,
because it seems to me chvious that rational action can come only as the
result of rational thought.

If we refuse to consider the problem of rational thought merely on the
grounds that it is not "objective", the result will not be that we cobtain a
more "objective" theory. The result will be that we have lost the possibility
of getting any satisfactory theory at all, because we have denied ourselves
any way of deseribing what is actually going on in the decision process.

And, of course, the loss function is just the expression of a purely subjective
value judgment, which can in no way be considered any more "objective" than
the prior probabilities.

In fact, I claim that the prior probabilities are usually more objective
than the loss function, beoth in the mathematical theory and in the everyday
decision problems of "real life". In the mathematical theory we have two
quite general formal principles—--maximum entropy and transformation groups--
that completely remove the arbitrariness of prior probabilities for a large
class of important problemg, which includes most of those discussed in statis-

tical text books. Of course, these principles will not solve all problems,
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and undoubtedly there are more such principles waiting to be discovered.

I hope that one result of these talks will be to encourage others to seek

them. To the best of my knowledge, there are as yet no general principles

for determining loss functions--not even where the criterion is purely economic,
because the utility of money remains ill-defined.

In "rxeal life" decision problems, we have a similar situation. Each man
knows, pretty well, what his prior probhabilities are; and because his beliefs
are based on all his past experience, they are not easily changed by one more
experience, so thev are fairly stable things. But in the healt of argument he
may lose sight of his loss function; or he may never have bothered to reason
out the consequences of his actions. Thus the labor mediator must deal with
parties with violently opposing ideologies; policies considered noble by one
party are regarded as reprehensible by the other. The successful labor medi-
ator realizes that mere talk will nct alter prior beliefs; and so his role
mist be to turn the attention of both parties away from this area, and explain
clearly to =sach what his loss function is. In this sense, I think we can
¢laim that in real life decision problems, the leosz function is often far
more "subjective" (in the sense of being less well fixed in our minds) than
the prior probabilities,

O0f course, we have to concede this much to the behaviorists--the final
criterion by which we judge the soundness of any theory must be on the objec-
tive, pragmatic level. After a theory has been constructed, the ultimate
test we apply to it is not whether lts premises are philosophically satisfying,
but how it works out in practice. Indeed, a major objective of these talks
is to show you, in detail, just how the Laplace-Bayes theory deoes work out
in practice and how its results compare with those of the orthodox methods;
because that is something you very seldom find in any of the literature

written from the orthodox viewpoint.
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But in the process of constructing a theory, we must demand the right to

invent and use any concepts we please, whether or not these concepts are

themselves "objectively verifiable". If we deny ourselves this freedom on

the grounds of some philosophical dogma, we are putting ourselves in a strait-
jacket which effectively prevents further progress. In the case of physical
thecries, this point has been stressed repeatedly and strongly by Einstein;
his own work is, of course, the perfect example of what can be accomplished
through the free invention of new concepts.

Now let's see the extent to which varying loss functions lead to varying

decisions, by some numerical examples.

13.7. Effect of Varving Loss Functions.

Suppcse that on the basis of the observed sample X, a parameter o has
the posterior distribution
(a|x) =k e , 0<cg <o (13-49)

This has the n'th moment

< = fo a” (a|x) da =n! k © (13-50)
wWith loss function {o - 8}2, the best estimator i1s the mean value
-1
g = <g> = k . {13-51)

With loss function Ia - 8], the estimator is the median, determined by

ri -
JO (¢|x) @z =1 - e kg (13-52)

E3
2

oY

k™l 1n 2 = 0.693 <g>. (13-53)

oW
|

To minimize <(a - B}4>, we should choose B to satisfy equation (13-46), which
becomes, in this case,
3 _ syl R _
v 3y- + 6Y 6 = 0 (13-54)

with v = kB. The root of this is at vy = 1.59, so the optimal estimator
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with loss function |a - B|L+ is
B = 1.59 sq>. {13-55)

s+1

For the losg function (o - &) with s an odd integer, the fundamental

equation (13-40) is

= —1c0
J; - 8% ™ =0 (13-56)
which reduces *o

5 m
{-kB)
§m=0 my =0 (13-57)

of which (13-5%4} is a gpecial case with s = 3, In the case s = 5, loss function
{x - 3)%, we find
B = 2,025 <g=>. (13-58)
As s » o,f also increases without limit. But the maximum-likelihood estimate,
which corresponds to the loss function
Li{a,B) = - §(a - B)
or egqually well to

lim[a - 8]®
k—+0

is B = 0!

These numerical examples merely illustrate what was already clear intui-
tively; when the posterior distribution (a[x) is not sharply peaked, the best
estimate of o depends very much on which particular loss function we use.

You might suppose that a loss function must always be a monotonically
increasing function of the error [a - B]. In general, of course, this will
be the case, but there is nothing in this theory which restricts us to such
functions. You can think of some rather frustrating situations in which, if
you are going to make an error, you would rather make a large one than a
small one, William Tell was in Jjust that fix. If vou study our equations

for this case, you will see that there is really no very satisfactory decision
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at all; and nothing can be done about it.

Our noting that the final decision depends only on the product of prior
probability and loss function alsc helps to clear up a mystery which has long
been puzzling to RBayesians. As we noted in Lecture 8, Jeffreys (1939) pro-
posed that, in the case of a continucus parameter o known to be positive,
we should express prior ignorance by assigning, not uniform prior probability,
but a prior densgity proporticonal to {(1/a). The theoretical Jjustification
of this rule was long unclear; but it yvields very sensible-looking results
in practice, which led Jeffreys to adopt it as fundamental in his significance
tests., We saw in Lecture 12 that, in the case that o is a scale parameter,
the Jeffreys prior is uniquely determined by invariance under the transforma-
tion group; but now we can see a still more general justification of it.

From the decision-theory viewpoint the thing that matters is not the
prior or loss function separately; only their product enters into the final
decisicn. If we use the abscolute error loss function [B - u' when o is
known te be peositive, then to assign f{a}) = const. in (13-453) amounts to
saying that we demand an estimator which vields, as nearly as possikle, a
constant absolute accuracy for all values of o in 0 < a < «, That is clearly
asking for too much in the case of large g; and we must pay the price in a
poor estimate for small o. But we now see that the median of Jeffreys’
pogterior distribution is mathematically the same thing as the optimal esti-
mator for uniform prior and loss function |B - a[/u; we ask for, as nearly
as possible, a constant percentage accuracy over all values of w. This is,
of course, exactly what we do want in most cases where we know that 0 < o < o,
The reason for the superior performance of Jeffreys' rule is thus made apparent;
and the mystery disappears if we re-interpret it as saying that the (1l/w)

factor is part of the loss function.
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13.8. General Decision Theory.

In the foregoing, I have developed decision theory only in terms of one
particular application; parameter estimation. But we really have the whole
story already; the criterion (13-16) for constructing the optimal estimator
generalizes immediately tc the criterion for finding the coptimal decision of
any kind. The final rules are simply:

(1} Enumerate the possible states of nature ej, discrete or contlnucus,

as the case may be.

(2) Assign prior probabilities (ejIX} which maximize the entropy subiject

to whatever prior information X you have.

{3} Digest any additicnal evidence E by applicaticon of Bayes' theorem,

thus obhtaining the posterior probabilities (BjIEX).

(4} FEnumerate the possible decisions Di.

{5) Specify the loss functicn L(Di,ej) that tells what you want to

accomplish.

(6} Make that decision Di which minimizes the expected loss

<L>, = Zj L(D;,8;) (8j|EX).
That is all there is to it; after all is said and done, the final zxules of
calculation to which the theorems of Cox, Wald, and Shannon lead us are just
the cnes which had already been developed by Bayes, Laplace, and Daniel
Bernoulli in the 18'th century, except that the entropy principle generalizes
the principle of indifference.

These rules either include, or improve upon, practically all known

statistical metheods for hypothesis testing and point estimation of parameters.

If you have mastered them, then vou have just about the entire field at your

fingertips. The most outstanding thing about them is their simplicity--if we
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sweep aside all the polemics and false starts that have c¢luttered up this
field in the past and consider only the constructive arguments that lead
directly to these rulez, it is ¢lear that the underlying rationale could be
fully developed in a one-semester undergraduate course.

However, in spite of the utter simplicity of the rules themselves, really
facile application of them involves intricate mathematics, and fine subtleties
of concept; so much g0 that several generations. of workers in this field mis-
used them and concluded that the rules were all wrong! So, we still need a
good deal of leading by the hand in order to develop facility in using them.
It is a goocd deal like learning how to play a musical instrument--anybody can
make noise with it, but you will not play this instrument well without years
of practice.

As an example——although a rather trivial one--of the little tricks that
help in applying this theory, note that the decision rule is invariant under
any proper linear transformation of the loss function; i.e. 1f L(Di,ej} is
one loss function, then the new one

L'(D,,8.,) = a+ b LD ,0,)
T 3 i 7
where —=» < g < o, 0 < b < =, will lead to the same decision, whatever the
prior probabilities (ﬁjIX) and new evidence E., Thus, in a binary decision

problem, given the logs matrix

10 100
Lij =
19 10
we can equally well use
0 10
L'.. =
i
J 1 0

corresponding to a = -10/9, b = 1/9. This may simplify the calculation of

expected loss quite a bit.
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