Lecture 14

DECISION THEORY IN SIGNAL DETECTION

In this Lecture, I want to examine in detail cne of the simplest applica-
tions of the general decision theory just formulated. As I pointed out in
Lecture 6, the problem of detection of signals in noise is really exactly the
same as Laplace's old problem of detecting the presence of unknown systematic
influences in celestial mechanics, and Shewhart's (1931) more recent problem
of detecting a systematic drift in machine characteristics, in industrial
quality control. It is unfortunate that the basic identity of all these
problems hasn't been more widely recognized, because it has forced workers
in several different fields to rediscover the same things, with wvarying
degrees of success, over and over again.

As you know by now, all we really have to do to solve this preblem is
to take the principles developed in Lectures 3, 10, and 12; and supplement
them with the loss function criterion for converting final probabilities
intc decisions, However, the literature of this field has been largely
created from the standpoint of the original decision theory before it was
realized that it was mathematically identical with the original Laplace methods;
or at least before the full implications of this fact had "sunk in." The
exigting literature therefore uses a different sort of vocabulary and set of
concepts than I have been using up to now. Since it exists, we have no choice
but to learn these terms and viewpoints 1f we want to read the literature of

the field. So, I want to give you a wvery rapid, condensed review of the
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literature of the 1950's on these problems. My aim is to expose what is
really essential, stripped of all unnecessary details. This material is also
given in the papers of Middleton and van Meter (1955, 1956) and the treatise
of Middleton (1960), in an enormously expanded form where a beginner can get
lost for months without ever finding the real underlying principles. Just

to have a complete, self-contained summary, I'1ll repeat a littie bit from

previcus lectures,

l4.1. Definitions and Preliminaries.

Notation:
(A’B) = Conditional probability of A, given B
(AB]CD) = Joint conditiecnal probability of A and B, given D and C, . . .,

=heta
FPor our purposes, everything follows from the single fundamental rule of
calculation, which we have called Rule 1:
(aB|C) = (a|BC) (B]C) = (B|AC) (A]Q) (14-1)
If the propositions B, C are not mutually contradictory, this may be rear-

ranged to give the rule of "learning by experience," Bayes' theorem:

{ClAB}
{(CIB)

(B|AC)

o) (A|B)

(a|Bc) = a]lo) {14-2)

If there are several mutually exclusive and exhaustive propositions Bi, then
by summing (14-1) over them, we obtain the chain rule

alcy = § (a]B;0) (B;]O) (14-3a)
i

or, for a simpler notation,
!

(alcy =} (a|Bo) Bl (14-3b)
B

Now let
X = prior knowledge, of any kind whatsoever

S = signal
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N = noise
V = V(8,N) = chserved voltage
D = decision about the nature of the signal

Any probabilities conditicnal on X alone are called prior probabilities.
Thus we have

(s]x)

il

pricr probability of the particular signal S

(NJX) W(N) = pricr probability of the particular sample of noise H.
In a linear system, V = S + N, and

(V]s) = (v|sx) = WV - 8) . (14-4)
You may be disturbed by the absence of density functions, dsS's, d¥N's, etc.,
which might be expected in the case of continucus S, W. HNote, however, that
our equations are homogeneous in these guantities, so they cancel out anyway.
By ZA I mean ordinary summation over some previously agreed set of possible

values if A is discrete, integration with appropriate density functions if

A 1s continuous.

A decision rule (Dilv')' or for brevity just (D[V), represents the
process of drawing inferences about the signal from the observed voltage.
If it is always made in a definite way, then (D]V) has only the values 0, 1
for any choice of D and V; however we may also have a "randomized" decision
rule according to which (D!V) is a true probabllity distribution., Maintaining
this more general view turns out to be a help in formulating the theory.

The essence of any decision rule, and in particular, any one which can
be built inte auvtomatic eguipment, is that the decision must be made on the
bagis of V alone: V is, by definition, the quantity which contains all the
information actually used (in addition to the ever-present X) in arriving
at the decision. Thus, 1f ¥ # D is any cther proposition, we have

(b|v) = (p|vy) . {14-5)
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&n equivalent statement is that D depends on any proposition Y only through
the intermediate influence of ¥ on V:
(ofyv)y = § (o|vy vy (14-6)

v

14,2. BSufficiency and Information.

Eguation (14-5} has interesting consegquences; suppose we wish to judge
the plausibility of some proposition ¥, on the basis of knowledge of V and
D. From (14-1),

(DY|v) = (¥|vD) (D|V) = (B|VY) (Y|W)
and using {14-5), this reduces to
(v|vpy = (x|lw) (14~7)
Thus, if V is known, knowledge of D is redundant and cannot help us in esti-
mating any other quantity. The reverse is not true, however; we could equally
well use {(17-1) in another way:
(vY|D) = (¥|vD) (v|D) = (¥|D) (V]¥D).
Combining this with (14-7), there results the
Thecrem: Let D be a possible decision, given V. Then (VID) # 0, and
(¢|v) = (¥|p) if and only if (V|D) = (V|¥D) (14-8)
In words: knowledge of D is as good as knowledge of V for judgments about ¥
if and only if Y is irrelevant for judgments about V, given D. Stated 4if-
ferently: in the "environment" produced by knowledge of D, the propositions
Y and V appear to be independent, i.e.
(xv|p) = (¥|D) (V|D) (14-9)

In this case, D is said to be a sufficient statistic for judgments about Y.

In the next lecture, we will study the notion of sufficiency from a different
point of wiew. Evidently, a decision rule which makes D a sufficient statistic
for judgments about the signal S is in some sense superior to one without

this property. However, such a rule does not necessarily exist. Eguation
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(14-9}) is a wery restrictive condition, since it must be satisfied for all
values of ¥, V, and all D for which (D’V) # 0.

As you might guess from this, the concept of sufficiency is closely
related to that of information., The definition of sufficiency could equally
well be stated as: D is a sufficient statistic for judgments about Y if it
containg all the information about ¥ which V containsg. Since D i1s determined
from V, if it is not a sufficient statistic, it necessarily centains less
information about ¥ than doces V. In this statement, the term "information™
was used in a loose, intuitive sense; does it remain true if we adopt Shannon's
measure of information? Imagine that there are several mutually exclusive

propositions Yi' one of which must be true. For brevity we use, as above,

il

the notation ZY f{¥} = Z_ f{Yi). Then the entreopy of ¥ with a specific value
i

of D given is

Ho(Y) = - é (Y|D) log (¥|D) {14-10)

and i1ts average over all values of D is

H(Y) = é (D] X} H (¥) {14-11)

If

HC(Y) < HD(Y)

we saf that C contains, on the average, more information about ¥ than deoes D.
Note, however, that it may be otherwise for specific values of C and D.
Roguisition of new information can never increase E: let D, ¥V, ¥ be,

for the moment, any three guantities and form the expression

H(¥) - H (¥) = ] (V[ (¥|DV) log (¥|pV)
VY

- Y wx)@lv) 1og (¥]w)
VY

JOv[) (Y|DV) log [(¥]DV)/(¥|v)]
DVY
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Using the by now familiar fact that log x = (1 - x 1

}, with equality if and
only if x = 1, this becomes

Ho(Y) = H () 2 DéY (ov|x) [(vlovy - (¥[w1 = o (14-13)

Thus, ﬁhv(Y) < E%{Y), with equality if and only if Eq. (14-7) holds for all
D, Vv, and Y for which (DV[X) # 0. Since (14-13) holds regardless of the meaning
of D and V, we can equally well conclude that for all D, Vv, ¥,

HD{Y) z HDV(Y) S HV(Y) .

Now letting D, V, Y resume their original meanings, we have in consequence of
14-7) H_{Y) = H Y so that
{ ) v() DV(),

H_(Y) < H_(Y) (14-14}

with equality if and only if Eq. {14-%) holds, i.e. if and only if D is a
sufficient statistic. Thus, if by "information" we mean minus the average
errtropy of Y over the prior distribution of D or V, zerc information loss in
going from V to D is egquivalent to sufficiency of D. Note that inegualities of
the form {14-13}) hold only for the averages E} not for the H. Acguisition of
a specific piece of information (that an event previously considered improkable
had in fact cccurred) may in some cases increase the entropy of Y. However,
this is an improbable situation and on the average the entropy can only be
lowered by additional information. This shows again that the term "information"
is not a happy choice of word to describe entropy expressions. In spite of

the entropy increase, the situation just described could haxdly be called

one of less information, but rather one of less certainty.

14.3. Loss Functions and Criteria of Optimum Performance.

In order to say that one decision rule is better than ancother., we need
some specific criterion of what we want our detection system to accomplish.

The criterion will vary with the application, and cbvicusly no single decision
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rule can be best for all purposes. A very dgeneral type of critericn is

obtained by assigning a loss function L{D,8) which represents cur judgment

of how serious it is to make decision D when signal S is in fact present.

In case there are only two possible signals; Sy = 0 {(i.e. no signal), and
Sl # 0, and consequently two possible decisions Do’ Dl, there are two types
of error, the false alayrm A = (Dl,so) and the false rest R = (DO,SI). In

some applications, one type of error might be much more serious than the
other. Suppose that a false rest is considered ten times as serious as is
a false alarm, while a correct decision of either type represents no "loss."

We could then take L(DO,SO] = L(Dl,§l} = 0, L(DO,S y = 10, L(Dl,so) =1,

1
Whenever the possible signals and the possible decisions form discrete setsg,
the loss function becomes a loss matrix. In the above example,
0 10
Li.=

] 1 0
The loss matrix plays approximately the same role in detection theory as does
the payoff matrix in game theory. A plaver in a game may choose that strategy
which maximizes his expected gain, and correspondingly we may choose that
decision rule (D[V) which minimizes the expected loss.

Instead of assigning arbitrarily a certain loss value to sach possible

type of detection error, we may consider information loss by the assignment

L{D,S) = - log (SfD). This is somewhat more difficult to manipulate, because
now L(D,S) depends on the decision rule. A decision rule which minimizes
information loss is one which makes the decision in some sense as ¢lose as
possible to being a sufficient statistic for judgments about the signal. In
exactly what sense seems never to have been clarified.

The conditional loss L(S) is the average loss incurred when the gpecific

signal § isg present

L(s) =} L(D,S) (p]s) (14-15)
D
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which may in turn be expressed in terms of the decision rule and the properties

of the noise by using (14-6}. The average loss is the expected value of this

over all pessible signals:

<L> = ) L{8)(8]x) (14-16)
5

Two different criteria of optimum performance now suggest themselves:

The Minimax Criterion. For a given decision rule (D]V), congider the

conditional loss L(8) for all possible signals, and let [L(S}]max be the
maximum value attained by L(S}. We seek that decision rule for which [L(S}]max
is as small as possible. .As we noted in the last lecture, this criterion
concentrates attention on the worst possible case regardlesg of the probability
of occurrence of this case, and it is thus in a sense the most conservative
one. If the worst possible case is extremely unlikely to arise, one would

call it too conservatiwve. It has, however, the practical advantage that it
does not involve the prior probabhilities of the different signals, (S|X},

and therefore it can be applied in cases where the available information about
the signal is of such an indefinite type that we do not know what prior
probabilities to assign.

The Bayes Criterion. We seek that decision rule for which the average

loss <1> is minimized. In order to apply this, a prior distribution (S]XJ
must be available.

Other criteria were proposed before the days of Decision Theory. In the
Neyman-Pearson criterion, we £ix the probability of occurrence of one type
of error at some small value &, and then minimize the probkability of another
type of error subject to this constraint. Siegert's "Ideal Cbhserver" minimizes
the total probability of error regardless of tvpe. However, we will see
below that these are both special cases of the Bayes criterion, for particulaxr

loss functions L{D,S}). The minimax criteriocn may also be considered a special
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case of the Bayes, 1n which we choose the worst possible (S|X), after having
found the decision rule which minimizes <L> for a given (S‘X). The basic
identity of all these criteria came as guite a surprise to the early workers
in this field.

Substituting in succession equations (14-15}, (14-6), and (14-3) into
(14-16) , we obtain for the average loss

<T> =T { 7 L(D,s) vs]|x) | (o|w (14-17)
vl s

If L{D,S) is a definite function independent of (DIV} {this assumption excludes
for the moment the information loss function), there is no function (D’V) for
which this expression is stationary in the sense of calculus of variations.

We then minimize <IL> merely by chocsing for each possible V that decision

D, (V) for which

1

K(D,V) = g L(D,,S) (Vs[x) (14-18)

is a minimum. Thus, we adopt the decision rule

(o|v) = §(D,Dy) - (14-19)
In general there will be only one such Dl, and the best decision rule is
nonrandom. However, in case of “degeneracy," K(Dl,v) = K(Dz,v), any randomized

rule of the form

(plv) = a &(O,py) +bMO,D,) , a+b=1 (14-20)

l) 2
is just as good. This degeneracy occurs at "threshold" wvalues of V, where we

change from cne decision to another.

14.4. A Discrete Example.

Consider the case already mentioned, where there are two possible signals

S Sl' and a leoss matrix

O!’
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where La’ Lr are the losses incurred by a false alarm and a false rest,

regpectively. Then

K(D_,V) =L (VS |X) = L_(vs_|x)
° ot v 1 (14-21)
K(D,V) = L, (V§,|X) = L_{vs |x)
and the decision rule that minimizes <L> is
(vs_|x} L
. 1 a
Choogse D 1f —m™—m—— > —
1 (VSO|X) L
r
{14-22)
(s [x) L
Choogse D if 1 < _a
0 (VSO X) Lr

Choose either at random in case of equality.
In words: 1f the prior probability that the observed wvoltage is due to the
signal exceeds the probability that it is due to noise alone by a factor
greater than the ratio of false alarm loss to false rest loss, we decide that
the gignal is present. If the prior probabkilities of signal and no signal are
(5,]%) =p, (sgl¥y =q=1-p (14-23)

respactively, we have {VSl|X) = (V|Sl)(5 ‘X) = p(V|Sl), etc., and the decision

1

rule becomes

(vs)) qL_

Choose Dl if , eto., (14-24)

(V‘SO) 7 pL,.
The left-hand side of (14-24) is called a likelihood ratic. It depends only
on the statistical properties of the noise, and is the quantity which should
be computed by the optimum receiver according to the Bayes criterion. The
same guantity is the essential one regardless of the assumed loss function
and regardless of the probability of occurrence of the signal; these affect
only the threshold of detection. Furthermore, if the receiver merely computes
this likelihood ratio and deliwvers it at the output without making any deci-

gilon, it provides us with all the information we need to make optimum decisions
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in the Bayes sense. Note particularly the generality of this result, which
is one of the most impeortant ocnes for cur applications; no assumptions are
needed as to the type ©f gsignal, linearity of the system, or statistical
properties of the noise.

We now work out, for purposes of illustration, the decision rules and
their degree of reliability, for several of the above criteria, in the simplest
possible problem that I mentioned back in Lecture 4, to illustrate the prin-
ciple of maximum likelihood. We have a linear system in which the veoltage
is observed at a single instant, and we are to decide whether a signal, which
can have only amplitude Sl, is present in noise, which is gaussian with mean

sguare value <NZ>:

1 N2
W{N) = ¢§;Zﬁg;-expl:— Ezﬁg;] (14-25)
The likelihocd ratio in (14-24) then becomes

(v]s,) WV-s_) Vg -5 2
1 1 . exp 11 (14-286)

V|Sg) WV 2<w%>

and since this is a monctonic function of ¥V, the decision rule can be written

as
D]_ >
choose when V v (14-27)
D < b
0
with
v L
b g9
=1 [2 log| —2 1] + s8] = v {14-28)
<N< > 23 rL b
¥
in which
S
s = 1 is the voltage signal-to-nolse ratio, and
VanZ>
v o= v is the normalized voltage.
LN“ =

Now we find for the probability of a faise rest:
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| %)

1

Y
p L (pglvvlsy) =p AV W(v-8)
v

=p ®lv, - 5 ) (14-29)

(R]%) = (DS,

and for a false alarm,

alx) = (ps4lx) = af yfw vy = qj' av W (V)
v Y

gll - ®{Vb)] . (14-30)

Here ®{x) is the cumulative normal distribution

x 2
1 -t5/2
¢{x) = 7= e dt (14-31)
numerical values of which are given in most mathematical tables. For x > 2,

a good approximation is

—x2/2 .
1 - d(x) =~ S . (14-32)

o

Az a numerical example, if L, = 10 L,r 4= 10 p, these expressions reduce to
10 i)
(a[x) = 10 ®R|x) =37 11 - o(5 s]] (14-33)

The probability of a false alarm is less than 0.027, and of a false rest
=3
less than 0.0027 for s > 4. For s > &, these numbers hecome 1.48 x 10 ~,
-4 .
1.48 x 10 respectively.

Let us see what the minimax criterion would give in this problem. The

conditional losses are

Ls,) = Laé (D |v w]sy) = La‘{’m (Dy |[V) wW(v) av
. (14-34)
B(S;) = L_ é (0| ) (v]s)) = Lr-]:m (DO]V) W(V-5,) av
Writing £(V) = (Dl[V) = 1 - (DO]V}, the only restriction on f£({V) is

0 < £(V) £ 1. Since La’ Lr' and W(V) are all positive, a change §£(V) in

the neighborhcod of any given point V will always increase one of the quanti-

ties (14-34) and decrease the other. Thus when the maximum L(S5) has been
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made as small as possible, we will certainly have L(SO) = L(Sl}, and the

problem is thus to minimize L(SO} gsubject tc this constraint. Suppose that

for some particular (S|X) the Bayes decision rule happened to give L(SO) = L(Sl).
Then this particular solution must be identical with the minimax solutionm,

for with the above constraint, <L> = [L(S)]max, and if the Bayes solution
minimizes <L> with respect to all admissible variations §f(V) in the declsion
rule, it a fortiori minimizes it with respect to the smaller class of variations

which keep L(S ) = L(Sl). Therefore our optimum decision rule will have the

0

same form as before: There is some threshold Vm such that

0, V<Vm
£(V) = {14-36)
L. vV > Vm
Any change in Vo from the value which makes L(SO) = L(Sl) necessarily increases

one or the other of these guantities. The eguation determining Vin is therefore

La-j; W(V) dv = Lr-j;m W(V-S1) Qv
m

or, in terms of normalized quantities,

La[l - @(vm)] = L @{vm - 8) (14-37)

r
Neote that (14-30), (14-31) give the conditional probabilities of false rest
and false alarm for any decision rule of type {14-36), regardless of whether

the threshcld was determined from (14-28) or not; for the arbitrary threshold

v
0

(Rls)) = (v < v [s)) = ety - s)

{14-38}

1 -
(A\SO} (v > vo\so) S - ev)]

From (14-28) we sees that there is always a particular ratio {p/q) which
makes the Bayes threshold Vb equal te the minimax threshold Vm. For values
of (p/q) other than this worst value, the Bayes criterion gives a lower aver-
age loss than does the minimax, although one of the conditional losses L(S

o’
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L{Sl) will be greater than the minimax valus.
These relations and several previous remarks are illustrated in Figure

(14.1), in which we plot the conditional losses L(S.), L(Sl} and the average

loss <L> as functions of the threshold VO' for the case La = %—L , P =g = 1.

0

The minimax threshold is at the common crossing-peoint of these curves, while

the Bayves threshold occurs at the lowest point of the <L> curve. One sees

how the Bayes threshold moves as the ratio {p/g) is varied, and in particular
that the value of (p/g) which makes Vb = Vm also leads to the maximum values

of the <L>min obtained by the Bayes criterion. Thus we could also define a
"maximin" criterion; first find the Bayes decision rule which gives minimum

<L> for a given (S|X)  then wary the prior probabilities (S]X} until the
maximun value of {L>min iz attained. This ig the worst possible (in the

Bayes sense) prior probability, and the decision rule thus obtained is identical

with the one resulting from the minimax criterion.

m‘m

|+

bJ

v 7 g V= Vo/ﬁ<N2> -

Figure 14.1, Conditional and Average Losses as functions of the detection
threshold VO. The L(Sl) curve is symmetric about the point {S,Lr/2}.
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The Neyman-Pearson criterion is easily discussed in this example: Suppose
the conditional probability of a false alarm (leSO) is held fixed at some
small value ¢, and we wish to minimize the conditional probability (DO|Sl)
of a false rest, subject to this constraint. Now the Bayes criterion minimizes
the average loss

<L> = er(DO]sl) + qLa(Dl]SO)
with respect to any admissible wariation G(DIV) in the decision rule, 1In
particular, therefeore, it minimizes it with respect to the smaller class of
variations which hold (D1|SO) constant at the wvalue finally obtained. Thus
it minimizes (Dolsl) with respect to these variations and solves the Neyman-—
Pearson problem; we need only choose the particular value of the ratio
{qLa/er) which results in the assumed value of ¢ according to egquations
(14-28), (14-30).

We find for the Neyman-Pearson threshold, from {14-38)

@(vnp) =1-¢ (14-39)
and the conditional probability of detection is
o fs) =1 - (DO|Sl) =4 - v ) (14-40)
This is the cumulative normal distribution, plotted in Appendix . First
finding from the graph, Vnp for given £, we find thar if ¢ = 10_3, a detection
probability of 99 per cent or better is attained for s > 6.

It is important to note that these numerical examples depend critically
on our assumption of gaussian noise. If the noise 1s not gaussian, the actual
situation may be elther more or lesg favorable than indicated by the above
relations. It is well known that in one sense gaussian noise is the worse
possible kind: because of its maximum entropy properties, gaussian noise can
obscure a weak signal more completely than can any other noisze of the same
average power. On the other hand, gaussian ncise is a very favorable kind

from which to extract a fairly strong signal, because the probability that
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the noise will exceed a few times the RMS value v/<N?> beccmes vanishingly

small, Consequently, the probability of making an incorrect decision on the
presence or absence of a signal goes to zero very rapidly as the signal strength
is increased. The high reliability of operation found akbove for s > 6 would
not be found for noise possessing a probability distribution with wider "tails".

The type of noise distributiocn to be expected in any particular case
depends, of cocurse, on the physical mechanism whichgives rise to the noise.

When the ncise is the resultant of a large number of small, independent
effects, the central limit thecrem of prcbability theory tells us that the
gaussian distribution will be our best bet regardless of the nature of the
individual sources.

Well, as the BBC announcers say, that is the end of my summary. All of
these apparently different criteria lead, when worked out, to a probability
ratio test. In the case of a binary decision, it tock the simple form (14-22).
Of course, any decision process can be broken down into successive binary
decisions, so this case really has the whole story in i1t. All the different
criteria amounted, in the final analysis, only to different philosophies about

how you choose the threshold value at which you change your decision.

14.5. How Would Our ERobot Do It?

Now let's see how this problem appears from the viewpoint of ocur robot.
The rather long argumenés we had to go through above (and even they are very
highly condensed, I assure youl) to get the result are due only to the orthodox
view which insists on looking at the problem backwards, i.e. on concentrating
attention on the final decision rather than on the inductive reascning process
which logically has to precede it. To the robot, if our job is to make the
best possible decision as teo whether the signal is present, the obvicus first

thing we must do is calculate the probability that the signal is present.
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If there are to be only two possibilities, SO, Sl' taken into account, then
after we have seen voltage V, the odds are from (5-5)

(v|sl)

e v (14-41)
(V]SO)

0(8,|Vvx) = o(sy[x)

If we give the robot the loss function (14-21) and ask him to make the decision

which minimizes the expected loss, he will evidently use the decision rule

(sl|v) L
h D if of{s | = =2 14-42
choose D 1 { l| } TEBT§7-> L ( )
etc. But from Rule 1, (VS |X) = (5,[V) (V[x), (Vs |®) = (s,[v)(V[x), and

{14-42) is identical with (14-22). 8o, just from looking at this problem
the other way around, our robot derives the same final result in exactly
two lines!
You see that all this discussion of strategles, admissibility, conditional
losses, etc., wag completely unnecessary. Except for the introduction of
the loss function at the end, there's nothing in decision theory that isn't
already contained in basic probability theory, if we can only free ourselves
from the dogma that "probability statements can be made only about random
variables," and use the theory in the full generality given to it by Laplace.
This comparison shows why the development of decision theory has, more
than any other single factor, led to this revolution in statistical thought.
For about thirty yvears, Jeffreys tried valiantly to explain the Laplace methods
to statisticians, and his efforts met only with a steady torrent of denials
and ridicule. The guotaticn about Bayes' theorem applied to quality-control
testing that I gave you back in Lecture 5 is a relatively mild example; if
you have a taste for such things, you can find, particularly in the works
of Fisher and von Mises, some attacks on the viewpoint of Laplace and Jeffreys
which make my polemics seem rather tame. It is really astonishing how much

emoticnal fervor can be generated by something that outsiders might consider
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a rather dry and dull branch of mathematics.

It is real poetic Jjustice that the work of one of the most respected of
the "orthodox™ statisticians, which was hailed, very properly, as perhaps
the greatest advance in statistical practice vet produced, turned cut to
give, after very long and complicated arguments, exactly the same final results
that the despised Laplace methods give you immediately. The only proper
conclusion, it seems to me, is that the supposed distinction between statistical
inference and probability theory was entirely artificial--a tragic error of
judgment which has wasted perhaps a thousand man-years of our best mathematical
talent in the pursuit of false goals. There is no longer any justification
for trying to make this non-existent distinction.

Suppose that, in the above case of a linear system with gaussian noilse,
we apply Bayves' theorem in the logarithmic form of Lecture 5. If now we let
S. and 5. stand for numerical wvalues giving the amplitudes of the two pessible

0 1

signals, the evidence for the signal is increased by

2 2
(v|sl) v -s)% - (v -s))
log = >
(v]sy) <N
5, - B
= const. + _L_iEJQ-v (14-43)
<N<>

so, the observed voltage is just a linear function of the number of db evi-
dence for Sl.

A funny thing happened in the history of this subject. You know that
electrical engineers started out not knowing anvthing whatsocever about statistics,
They knew about signal to noise ratios. Receiver input circuits were designed
for many years on the basis that signal to noise ratio was maximized. More
specifically, it turned out that if you take the ratio of (peak signal)2 to

mean square noise, and find the design of input stages of the receiver which

will maximize this guantity, this turned out to be a very useful thing. This
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leads teo the solution which is now called the classical matched filter. It
has been discovered independently by at least a dozen people. T helieve the
first person to work out this matched filter theory was the late Professor
W. W. Hansen, in about 1941, I was working with him, beginning in 1942, on
problems of radar detection. He circulated a little memorandum at the time
in which he gave this solution for the design of the optimum response curve
of an IF strip. Years later I was thinking about an entirely different pro-
blem (an optimum antenna pattern), and when I finally got the solution, I
recognized it as exactly the same thing that Bill Hansen had worked cut many
years before. 1I'll give you this theory in a later lecture. Since then I
see, almost every time I open a journal concerned with these problems, that
somebody else has a paper with the same solution in it.

Now, in the 1950's, people got more sophisticated about the way they
handled their detection problems, and they started using this wonderful new
tool, statistical decision theory, to see 1f there were still better ways
of handling these design problems. The strange thing happened that in the
case of a linear system with gaussian noise, the optimum sclution which deci-
sion theory leads vou to, turns out to be exactly the same old classical
matched filter. When I first saw this, T was very surprised that two approaches
so entirely different should lead te the same solution. But, note that our
robot represents a viewpoint from which it is not at all surprising that the
two 1ines of argument would have to give the same result. The best statisti-
cal analysis you can make of the problem will always be one in which you
calculate the probability that the wvarious signals are present by means of
Bayes' theorem. But, in the case of a linear system with gaussian noise, the
observed voltage is itself just a linear function of the posterior probability
measured in db. So, they are egsentially just two different ways of formu-

lating the same problem.
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The different approaches to the theory simply amount to different phile-
scphies of how you choose that value of probability at which vou will change
your decision. Because of the fact that they all lead to the same probability
ratio test, they must necessarily all be derivable from Bayes' theorem, in
agreement with out robot's prediction back in Lecture 4,

The problem just examined by several different decision criteria is,
of course, the simplest possible one. In a more realistic problem we will
observe the voltage v(t) as a function of time, perhaps several vcltages
v (t), v_(t}, ... in several different channels., We may have many different

1 2

possibkble gignals Sa(t), 5. (t) ... to distinguish, or we may need not only to

b
decide whether a given signal is present, but alsc te make the hest estimates
of one or more signal parameters (such as intensity, starting time, frequency,
phase, rate of frequency modulation, etc.). Therefore, just as in the problem
of quality control discussed in Lectures 5, &, the details can become arbi-
trarily complicated. But these extensions are, from the Bayesian viewpoint,
straightforward in that they require no new principles beyond those already
given,

I want to come back to some of these more complicated problems of detec—
tion and filtering toward the end of these lectures; but for now let's look
at another elementary kind of decision problem. In the ones discussed so far,

we used Bayes' theorem, but not maximum entropy. Now I want to show you a

kind of problem where we need maximum entropv. but not Bayes' theoren.

14.6. The Widget Problem.

This problem was first propcunded at a symposium held at Purdue Uni-
versity in November, 1860--at which time, however, the full solution was not
known. This was worked cut later {(Jaynes, 1963c¢), and some numerical approxi-

mations were improved in the computer work of Tribus and Fitts (1568},
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The widget problem has proved to be interegting in more respects than
originally realized. It is a decision problem in which there is no cccasion
toc use Bayes' theorem, because no "new" information is acquired. Thus it
would be termed a "no data" decision problem in the sense of Chernoff and
Moses (1959). However, at successlive stages of the problem we have more and
nore prior information; and digesting it by maximum entropy leads to a sequence
of prior probability assignments, which lead to different decisions. Thus
it is an example of the "pure" use of maximum entropy, as in statistical
mechanics. It is hard to see how the problem could be formulated mathematically
at all without use of maximum entropy, or some other device [like the one
considered in Lecture 10 (Sec. 10.8)] which turns out in the end tc be mathe-
matically equivalent to maximum entropy.

The problem is interesting also in that we can gsee a continuous gradation
from decision problems so simple that common sense tells us the answer instantly
with no need for any mathematical theory, through problems more and more
involved so that common sense has more and more difficulty in making a decision,
until finally we reach a point where ncobhody has vet claimed to be able to
see the right decision intuitively, and we reqguire the mathematics to tell
us what to do.

Finally, it turned cut to be very close to an important real problem
faced by 0il prospectors. The details of the real problem are shrouded in
proprietary caution; but I'm not giving away any secrets if I tell you that,

a few years ago, I spent a week at the research laboratories of one of our
large oil companies, lecturing for over 20 hours on the widget problem. They
made me go through every part of the caleculation in excruciating detail--
much more than we have time for here--with a room full of engineers armed
with slide-rules, checking up on every stage of the numerical work. I'we

often wondered since how far they have extended the theory beyond the original
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problem, and how much it helped them; but I don't expect to find out.

Well, here is the problem. Mr. A is in charge of a Widget factory,
which proudly advertises that it can make delivery in 24 hours on any size
order. This, of course, is not really true, and Mr. A's job is to protect,
as best he can, the Advertising Manager's reputation for veracity. This means
that each morning he must decide whether the day's run of 200 Widgets will
be painted red, yellow, or green. (For complex technological reasons, not
relevant to the present problem, only one color can be produced per day.)

We follow his problem of decision through several stages of increasing know-
ledge.

Stage 1. When he arrives at work, Mr. A checks with the stock room and finds
that they now have in stock 100 red widgets, 150 yellow, and 50 green. His
ignorance lies in the fact that he does not know howmany orders for each

type will come in during the day. Clearly, in this state of ignorance, Mr.

A will attach the highest significance to any tiny scrap of information about
orders likely to come in today; and if no such scraps are to be had, we do
not envy Mr. A his job. Still, if a decision has to be made on no more in-
formation than this, his common sense will probably tell him that he had
better build up that stock of green widgets.

Stage 2. Mr. A, feeling the need for more informaticn, calls up the front
office and asks, "Can yvou give me some idea of how many orders for red,
vellow, and green widgets are likely to come in today?" They reply, "Well,
we don't have the breakdown of what has been happening each day, and it would
take us a week to compile that informaticn from our files. But we do have

a summary of total sales last year. Over the last year, we sold a total of
13,000 red, 26,000 yellow, and 2600 green. Figuring 260 working days, this
means that last year we sold an average of 50 red, 100 vellow, 10 green each

day." If Mr. A ponders this new information for a few seconds, I think he
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will change his mind, and decide to make yellow ones today.

Stage 3. The man in the front office calls Mr. A back to say, "It just occurred
to me that we do have a little more information that might possibly help you.
We have at hand not only the total number of widgets sold last year, but

also the total number of orders we processed. Last year we got a total of

173 orders for red, 2600 for yellow, and 130 for green. This means that
customers who use red widgets ordered, on the average, 13000/173 = 75 widgets
pexr order, while the average orders for yellow and green ware 26000/2600 = 10,
and 2600/130 = 20 respectively." This new data doesn't change‘thé axpected
daily demand; but if Mr. 2 is very shrewd and ponders it very hard, I think
he may change his mind again, and decide to make red ones today.

Stage 4. Mr. A is just about to give the order to make red ones when the
front office rcalls him again to say, "We just got word that a messenger is

on his way here with an emergency order for 40 green widgets." Now, what
should he do? Up to this point, Mr. A's decision problem has been simple
enough so that reasonably good common sense will tell him what to do. But
now, I think he is in trouble; gualitative common sense is just not powerful
enough to solwve his prcblem, and he needs a mathematical theory to determine

a definite optimum decizion,

Let's summarize all the above data in a table:

R Y G De¢ision
1. 1In Stock 100 150 50 G
2. Avg. Daily Order Total 50 100 10 Y
3. Avg. Individual Order 75 10 20 R
4. Specific Order 40 ?

Table 14.1. Summary of four stages of the Widget Problem.
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In the last column I give the decisions that seemed, tc me, to be the
best ones before I had worked §u£ fhe mathematics. Do other beoPle ag?ee
with this intuitive judgment? Professor Myron Tribus has put this to the
test by giving talks about this problem, and taking votes from the audience
before the solution is giwven. Let me quote his findings as given in their

paper (M. Tribus and G. Fitts, 19¢8). They use Dl, D2, D3, D4 to stand for

the optimum decisions in stages 1, 2, 3, 4 respectively:
"Before taking up the formal solution, it may be reported that Jaynes'
widget problem has been presented to many gatherings of engineers who have

been asked to vote on D_, D D

1 X and D,. There is almost unanimous agree-—

37 4
ment about D, . There is about 85 percent agreement on D2‘ There is about

70 percent agreement on D and almost no agreement on Dy- One conclusion

3 r
stands out from these informal tests; the average engineer has remarkably
D

good intuition in problems of this kind. The majority vote for D and

1t T2f

D has always been in agreement with the formal mathematical solution. How-
ever, there has been almest universal disagreement over how to defend the
intuitive soluticn. That is, while many engineers could agree on the best
course of action, they were much less in agreement on why that course was

the best one.”

14.7. Sclution For Stage 2.

How, how are we to set up this problem mathematically? In a real life
situation, evidently, the problem would be a little more complicated than
indicated so far, because what Mr. A does today also affects how serious his
problem will be tomorrow. Mr., A's decision each day should not depend only
on orders expected for that day; they should be based on his best estimates
of orders likely to come in for all future days, and on the conseguences of

failure tc meet all orders not only today but also in the future. That would
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get us into the subject of dynamic programming. But for now, just to keep
the proklem simple, let's solve only the truncated problem in whiech he makes
decisions on a day to day basis with no thought of tomorrow.

We have just to carry out the steps enumerated under "General Decision
Theory" at the end of the last lecture. Since Stage 1 is almost too trivial
to work with, consider the problem of stage 2. First, enumerate the possible
"states of nature" Gj- These correspond to all possible order situations
that could arise; if Mr. A& knew in advance exactly how many red, vellow, and
green widgets would be ordered today, his decision problem would be trivial.
Letn, =0, 1, 2, ... be the number of red widgets that will be ordered today,

1

n, for yellow and green respectively. Then any conceivable

and similarly n,. N

order situation is given by specifying three non-negative integers.{nl,nz,n3}.
Conversely, every ordered triple of non-negative integers represents a con-
ceivable order situation.

Next, we are to assign prior probabilities (lex) = (nlnanIX) to the

states of nature, which maximize the entropy of the distribution subject to
the constraints of our pricr knowledge. We solved this problem generally
in Lecture 10, Egquations (1l0-26)--(10-32); and so we just have to translate

the result into our present notation. The index i on x; in Lecture 10 now

corresponds to the three integers n n n the functions fk{xi) also

17 tor il

correspond to the n;, since the prior information at this stage is that the
expectations <nl>, <n2>, <n3> of orders for red, yellow, and green widgets

are given as 50, 100, 10 respectively. With three average values ¢given,

we will have three Lagrange multipliers ll, lz, h3, and the partition function
{(10-30} becomes

Z(Al,Az,k3)

|
[ |
i
o
g

En _g EXp(=Any = Aon, = Agng)

=MH,_. (1-e ) (14-24)
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The li are determined from (10~32):

3
<n,» = - — log Z
hi Bli
= > L (14-45)
et -1

The maximum-entropy probability assignment (10-28) for the states of nature

Gj = {nl n, n3} therefore factors:
p(nln2n3) = pltnl) p,(n,) p,in,) (14-46)
with
-} =\.n,
i ivi
p,n}y={L--e ) e . . =0,1, 2, ...
i1 1
<n, > Dy
1 i *

= {14-47)
<n.> + 1 <n.>» + 1
i i

Thus in stage 2, Mr. A's state of knowledge about today's orders is given

by three exponential distributions:

_1 /50\"1
pylny) =357 {57

() = -1 100)“2
Pyiigl =

Il

101 \101
1 /10\%3
P3(n3) =7\ {14-42)

which completes step 2., Step 3, application of Bayes' thecorem to digest
new evidence E, 1s absent because there is noc new evidence. Therefore,

the decision must be made directly from the pricr probabilities (14-48), as
is always the case in statistical mechanies. $o, we now proceed to step 4,
enumerate the possible decisions. These are Dy = make red ones today, D, =
make yellow ones, D3 = make green ones. In step 5, we are to introduce a
loss function L(Di,ﬁ.}. Mr. A's judgment is that there is no loss if all

orders are filled today; otherwise the loss will be proporticnal to--and in
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view of the invariance of the decision rule under proper linear transformations
that we noted at the end of Lecture 13, we may as well take it equal to--~the

total number of unfilled orders.

The present stock of red, yellow, and green widgets is Sl = 100, 82 = 150,
53 = 50 respectively. ©On decision Dl(make red widgets) the available stock
Sl will be increased by the day's run of 200 widgets, and the loss will be
L(Dl;nlnan) = g(n1 - Sl - 200} + q(n2 - 52) + g(n3 - SB) (14-49)

where g(x) 1s the ramp function

X, e
gi{x) = (14-50)
0, b4

1w
[

[
o

Likewise, on decision D2, D3 the loss will be
L(D2; nln2n3) = g(nl - Sl) + g(n2 - 82 - 200} + g(n3 - 53) (14-51)

; = - - - - 14-52
L{D3 nln2n3) g(nl l) g(n2 82} + g(n3 53 200) ( )

So, if decision D1 is made, the expected loss will he

<,
Ly

g p[nln2n3) L(Dl;nln2n3)

1
o]

= E l=0 pl(nl) g(nl—Sl—200} + zn2=0 pz(nz) g(nz_sz)

«]

+ - 14-53
En3=0 p3(n3) g(n3 S,) ( )
and gimilarly for D2, D3. The summations are elementary, giving
e s —ll(sl+200) N —XZSZ Vo }e—k383
1 = <npe n>e 3
- - + -
<L>_ = <n_re lls +oLn, re RZ(Sz 00 + <n_ >e R3S3
1 2 3
-A.5 -3 5 -A_ {8 +200)
<L>, = <n,>e + <n,>e 22y nre 303 (14-54)
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or, inserting numerical values

<L>l = 0.131 + 22,480 + 0.085 = 22.70

<Ly, = 6.902 + 3,073 + 0.085 = 10.06

<p>, = 6.902 + 22.480 + 4 x 1079 = 29,38 (14-55)
showing a strong preference for decision Dy = "make yellow ones today,” as

common sense had already anticipated.

You will recognize that Stage 2 of Mr. A's decision problem is mathema-
tically the same as the theory of the harmonic cscillator in quantum seatisti-
cal mechanics. There is still another engineering application of the harmenic
oscillator egquatiocns, in some problems of message encoding, that we'll see
when we take up communication theory. I'm trying to emphasize the generality
of this theory, which is mathematically quite o0ld and well known, but which
has been applied in the past only in seome specialized problems in physics.
Thig general applicability can be seen only after we are emancipated from
the orthodox view that all probability distributicons must be justified in
the frequency sense., Historically, this made it appear to most workers in
statistical mechanics that the methods of Gibbs could be justified only via
unproved "ergodic hypotheses” (in spite of the fact that Gibbs himself never
menticned them). But if we interpret Gibbs' eguations not as assertions
about frequencies but as examples of inductive reasoning based on the principle
of maximum entropy, it is clear that the reasoning doesn't depend on ergodic
properties or any other aspect of the laws of physics--ergo, the canonical
engemble formalism of Gibbs can be applied to any problem of inductive reason-

ing where the given information can be stated in the form of mean wvalues.

14.8. Solution For Stage 3.

In Stage 3 of Mr. A's problem we have some additicnal pieces of informa-

tion giving the average individual orders for red, yellow, and green widgets.
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To take account of this new information, we need to set up a more detailed
enumeration of the states of nature, in which we take into account not only

the total orders for each type, but also the breakdoewn into individual orders.
We could have done this alsc in stage 2, but since at that stage there was

no information available bearing on this breakdown, it would have added nothing
to the problem. However, in the interest of checking the consistency of

this theory, you may find it amusing to retrace stage 2 on this basig and see
how 1t would have led to exactly the same results given above.

In stage 3, a possible state of nature can be described as follows. We
receive uy individual orders for 1 red widget each, u, orders for 2 red widgets
each, ..., ur individual orders for ¥ red widgets each. BAlso, we receive
vy orders for y yellow widgets each, and Wg orders for g green widgets each.
Thus a state of nature is specified by an infinite number of non-negative
inteqgers

B = {ulu2...;vlv2...;wlw2...} (14-56)

and conversely every such set of integers represents a conceivable state of
nature, to which we assign a probability p(ulu2...;Vlvg...;wlwz...).

Today's total demand for red, yellow and green widgets is, respectively

By Er=1 ¥

n, = zy=l ¥ v,
= 14-57
L Eg=l g Wy ( )
the expectations of which were given in stage 2 as <n;> = 50, <ny> = 100,
n,> = 10. The total nuwber of individual orders for red, yvellow, and green

widgets are respectively

= E:|:=]_ Uy
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=]
|

2~ zy=1 Yy

o

m, = W 14-58
Eg=1 . ( )

And the new feature of stage 3 is that <m. >, {m2>, {m3> are also known. For

example, the statement that the average individual order for red widgets iz
75 means that <n1> = 75<ml>,
With six average values given, we will have six Lagramnge multipliers

{4 }. The maximum-entropy probability assignment will have the

LR PR
form

-y m_=i_.n

e WV ee) = @EP(SAgmA 0y SUgRy AR, mU M, A R ol )

1°2° 172

which factors:

p[uluz...;vlvz...;wlwz.,.) = pl(uluz...)pz(vlvz...)p3(wlw2...) {14-59)

The partition funectieon also factors:

Z = Z_ (A Z (A Z (A 14-60
1( 1“1J 2( 2u2} 3( 3u3) ( )
with
[=] [xs)
Z_ (A = PR ~A +2u +3u +...0) - +u +u +...
1y Eulzl Eu231 exp LA, (yF2u +3u b ), (uptu bu e o)
w 1
= 14-61
I =1 “-rh,=U ( )
171
l~ce
with similar expressions for Zos Zy- TO find Al, Wy we apply the general
rule, Egquation (10-32):
-ri_ -
] e 171 © r
<np == ] ) log(l - e ) = lpm1 o (14-62)
1 11
e -1
o A i o
9 1771 v 1
= - = 14-63
“hy” au Z'1:=]_ log(l - e ) Lpr=] rh_+u ( J
1 11 1
e -

Comparing with equations (14-57), (14-58), we see that
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r rAtHg
e -1

(14-64)

and now the secret is out--Stage 3 of Mr. A's decision problem is just the
theory of an ideal Bose-Einstein gas in quantum statistical mechanics!

If we treat the ideal Bose-Einstein gas by the method of the grand
canonical ensemble, we obtain just these equations, in which the number r
corresponds to the r'th single-particle energy level, u,. to the number of
particles in the r'th state, Al and My to the temperature and chemical potential.

In the present problem it is clear that for all r, <ur><<l, and that

<u,> cannot decrease appreciably below <u.> until r is of the order of 75,

1
the average individual order. Therefore, Ul will be numerically large, and
ll numerically small, compared to unity. This means that the series (14-562),
(14-63) converge very slowly and are useless for numerical work unless you

have a big computer. However, we can transform them into rapidly converging

sums as follows:

zm 1 _ Z Em e_n(lr'f'li)
r=1 eAr+u _ r=1 &n=1
-7 e (14-65)
n=1 -ni
1-e
The first term is already an excellent approximation. Similarly,
zm v _ Em e—n()&+p)
= - - £ - 2 14_66
r=1 Jxtu T fnel o O (14-66)
and so (14-62) and (14-63)} become
-1y
e
<n1> o > {14_67)
A
1
-1q
o .
<mg> o= {14-63)
Al
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or

1 L1
A= = — = 0.0133 14-69
1 €n1> 75 ( )
pl <nl>
e = 5 = 112.5 (14-70)
<ine > .
1
uy = 4.722 (14-71)

Tribus and Fitts, evaluating the sums exactly by computer, get Rl = 0,0131,
up = 4.727; so our approximations (14-67), (1L4-68) are very good, at least
in the case of red widgets.
The probability that u, has a particular value is, from (14-5%9) or (14-61},

-ri_-u —{rA_+u_lu
plu) = (1 - e S P (14-72)

which has the mean value {(14-64) and the variance

R , rkl+ul
var(u ) = <u “»-<y >° = —= (14-73)
r r r rkl+ul 5
(e - 1)
The total demand for red widgets
o0
Ny = Jyeq TU, (14-74)

is expressed as the sum of a large number of independent "random variables".

The probability distribution for n, will have the mean value (14-67) and

1
the wvariance
. . o TAytiy
varin.) = Z r2 var{u ) = E < (12-75)
1 r=1 r =1 Yi_+u
171 z
(e - 1)
which we convert into the rapidly convergent sum
o -n {A+ -n {2X+
= 2 —n(ri+p) e n{A+h) + e n{2a+i)
Z nr- e = Z n (14-76)
r,n=1 n=1 -ni, 3
(L - e )

or, approximately,
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1 2
var(n ) = = Z_<n_ > . (14-77)
1 \ Al 1

At this point I have to anticipate some mathematical facts concerning the
Central Limit Theoxem, that we'll study later., Because n, is the sum of a
large number of small terms, the probability distribution for ny will be

very nearly gaussian:

}\l (n1_<nl>) 2
pin.) = A expy- a<ns {14-78)
1

for those values of ny which can arise in many different wavs. For example,

the case n, = 2 can arise in only two ways: u. = 2, or u

1 1 = 1, all other uk

2
being zero. On the other hand, the case n, = 150 can arise in an enormous
number of different ways, and the "smoothing" mechanism of the central Iimit
theorem can operate. Thus, Equaticon (14-78) will be a good enough approxi-

mation for the large wvalues of ny of interest to us, but it may not be for

small K
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