Lecture 16

THE Ap DISTRIBUTION AND RULE OF SUCCESSION

Up to this point we have given our robot fairly general principles hy
which he can convert information into numerical values of prior probabilities,
and convert posterior probabilities inte definite final decisiocns; so he is
now able to solve lots of preoblems. But he still operates in a rather inef-
ficient way in one respect. When we give him new informaticon and ask him
to reason about it, he has to go back into his memory {(this proposition I
that involves everything that has ever happened to him). He must scan his
entire memory storage reels for anything relevant to the problem before he
can start reasoning on it. Ag the robot gets older this gets to be a more
and more time-consuming process.

Now, human brains don't do this. We have some machinery built into us
which summarizes our past conclusions, and allows us to forget the details
which led us to those conclusions. We want to see whether it's possible to
give the robot a definite mechanism by which he can store conclusions rather

than isclated facts.

16.1. Memory Storage for 0ld Robots.

Let me point out ancther thing, which we will see is closely related
to this problem. Suppose you have a penny and you are allowed to examine it
carefully, convince yourself that it's an honest coin, has a head and tail,

and center of gravity where it ought to be. Then, vou're asked to give the
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probability that this coin will come up heads on the first toss. I['m sure
vou'll say 1/2. Now, suppose vou are asked to assign a probability to the
proposition that there is life on Mars. Well, I don't know what your opinicn
is there, but on the basis of all the things that I have read on the subject,
I would again say about 1/2 for the prcobability. But, even though I hawve
assigned the same probability to them, I have a very differént state of
knowledge about those propositions. To see that, imagine the effect of getting
new information. Suppose we tossed the coin five times and it comes up

tails every time. ¥You ask me what's my probability for heads on the next
throw; I'11 still say 1/2. But if vou tell me one more fact about Mars, I'm
ready to change my probability assignment completely. My state of belief

has a great instability in the case of Mars, but there's something which
makes it wvery stable in the cagse of the penny.

Now, it seemed to me for a long time that this was a fatal objection to
Laplace's form of probabllity theory. We need to associate with a proposition
not just a single number representing plausibility, but two numbers; one
representing the plausibility, and the other how stable it is in the face of
new evidence. 2&And so, a kind of two-valued theory would have to be developed
before it would make any sense. In the early 1950's, I even gave a talk at
one of the Berkeley Statistical Symposiums, expounding this viewpoint. This
is, furthermore, just what Carnap (1952) has done; his continuum of inductiwve

methods consists of a class of probability functions C. (h,e) in which A is

P\
the "stability parameter.™

But now, I think that there's a mechanism by which we can show that our
present theory automatically contains all these things. So far, all the
propositions we have asked the robot to think about are ones which had to

be either true or false. Suppose we bring in new propositions of a different

type. It doesn't make sense to say the proposition is either true or false,
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but still we are going to say the robot assigns credibility to it. Now,
these propositions are sometimes hard to state verbally, and I, at least,
am never able to write a verbal statement that's unambiguous. But you noticed
hefore that we can get around that very nicely by recognizing that if I state
all probabilities conditional on X for a given problem, I've told vou every-
thing abcut X that's relevant to the problem. So, I want to introduce a new
propositicon Ap, defined by
(Ala E) = p (16-1)
P

where E is any additional evidence. If I had to render Ap as a verbal state-
ment, it would come out scomething like this:

"Regardless of anything else you may have been told,

the probability of A is p."

Now, Ap is a strange proposition, but if we allow the xobot to reason
with propositions of this soxrt, Bayes' thecorem guarantees that there's nothing
to prevent him f£rom getting an Ap worked over onto the left side in his
probabilities: (Ap|E}. Mow, what are we doing here? We're talking about
the "probability of a preobability.” I defined Ap by writing an eguation.

You ask me what i1t means, and I reply by writing more eguations. So let's
write the egquations; if X says nothing about A except that it is possible for
A to be true, and also possible for it to be false, then as we saw in the
case of the "completely ignorant population" in Lecture 12,

(Ap[x) =1, 0<pc< 1. (16-2)
The transformation group arguments of Lecture 12 apply to this problem. Aas

seon as we have this, we can use Baves' theorem to get the probability (den-

sity) of Ap, conditicnal on other things. In particular,

(Elap) _ (E|Ap)
(APJE) = (Ap[x] &% - G (16-3)
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Now,
1
(alE)y = (3a_|E) ap (16-4)
0 1%

The propositions Ap are mutually exclusive and exhaustive (in fact, every
Ap flatly and dogmatically contradicts every other Aq), so we can do this.
We're just going to apply all of our mathematical rules with total disregard
of the fact that Ap is a funny kind of proposition. We believe that these
rules form a consistent way of manipulating preopositions; their application
cannot lead to contradictions. (0f course, we haven't really proved that
they are consistent; we have proved only that if we represent degrees of
plausibility by real numbers and require gqualitative agreement with common
sense, any other rules would be inconsistent.) But consistency 1s a purely
structural property of the rules, which could not depend on the particular
semantic meaning you or I might attach to a proposition. So now we can blow

up the integrand of (l6~4) by our Rule 1:

(a|E) = lfl (ala E)(a_lE) ap {16-5)
) P b

But from the definition (16-1) of AP, the first factor is just p, and so

1
(alg) = f (A_|E) p &p {16-6)
o P

The probability which our robot assigns to proposition A is just the

first moment of the distribution of AP. Therefore, the distribution of Ap
should contain an awful lot more information about the robot's state of mind
concerning A, than just the probability of A. I think the introduction of
propogsitions of this sort solves both of the preblems mentioned, and also
gives us a powerful analytical tool for calculating probabilities.

To see why, let's first note some lemmas about relevance. Suppose this
evidence E consists of two parts; E = E By where Ea is relevant to A and,

given E_, E,_ is not relevant:
a b

(a[) = (aleE) = @&alE) (16-7)
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By Bayés' theorem, it follows that, given E_, A must also be irrelevant to

Eb, for

(A|ELE )
(B [2E ) = (B |E) _?ETE;T_ = (B |E) (16-8)

Let's call this property "weak irrelevance." Now does this imply that By,
is irrelevant to AP? Evidently not, for (16-7) savs only that the first
moments of (AP]Ea) and {ApraEb) are the same. But suppose that for a given
Ey (1l6-7) holds independently of what E, might be; call this "strong irrele-

vance.," Then we have

1 1
alE) = jr (2 |EE) pdp = Jf @ |E) p ap. (16-9)
| , @JEE)p@= ) @alz) e

If this is to hold for all (Ap|Ea), the integrands must be the same

(Ap]EaEb) = (Ap[Ea) (16-10)

and from Bayes' theorem it follows as in (16-8) that Ap is irrelevant to By :

(Ey|agE) = (By[E (16-11)

for all E;.
Now, suppose our robot gets a new piece of evidence, F. How does this
change his state of knowledge about A? We could expand directly by Bayes'

theorem, which we have done before, but let's use cur Ap this time,

| 1 | ! | (F[A E)
(aler) = t£ (a ler) p ap = D @, _TFTET" p dp . (16-12)

In this likelihood ratioc, any part of E that is irrelevant to Ap can be struck

out. Because, by Bayes' theorem, it is equal to

(EbIFAPEa)
(F|A_E E) (F|ApEa) (FIA E )
[ P a b _ (Eb|ApEa} - ] p a (16_13)
(F|EE,) : {Eb|FEaJ {F|Ea)
(FIE.) |-
%a) |, fe )

where we have used (16-11). Now if E, still contains a part irrelevant to

Ap, we can repeat this process. Imagine this carried out as many times as
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possible; the part E_a of E that is left contains nothing at all that is
irrelevant to Ap. E,, must then be some statement only about A. But then

by the definition (16-1) of Ap’ we see that Ap automatically cancels out

Eaa in the numerator: (F]APEaa) = (FlAp). and so we have {16-12) reduced to

1 1
(A!EF] = (—F]-Eajfo (Ap|E) (F|Bp) r dp (16-14)

The weak point in this argument is that I haven't proved that it is possible
to resolve E intc a completely relevant part and completely irrelevant part.
However, it is easy to show that in many applications it is possible. So,
let's just say that the following results apply to the case where the prior
information is "completely resolvable.” We don't know whether it is the most
general case; but we do know that it is not an empty one,

Now, (F|Eaa) is a troublesome thing which we would like to get rid of.
It's really just a nermalizing factor, and we can eliminate it the way we
did in Bguation (5-3); by calculating the odds on A instead of the probability.

This is just

1
/{; (Ap[E) (F|Ap) p dp

= 1
1- d
j} (Apr) (F!Ap) (1-p) dp

(a|EF)
(a|FE)

= O(a|EF) {16-15)

The proposition E, which for this problem represents cur prior evidence,

now appears only in the combinatiocn (ApiE). This means that the only property

of E which the robot needs in order to reason out the effect of new informa-

tion 1s this distribution (AP|E). Everything that has ever happened to him
which is relevant to this proposition A may consist of milliens and millieons
of isolated separate facts. Whenever he receives new information, he does
not have to go back and search his entire memory for every little detail of
experience relevant to A. Everything he needs in order to reason about it

is contained summarized in this one function, (AP|E). So, for each proposi-

le-56



tion about which he is going to have to reason, he can store a function like
that in Figure {(16.1). Whanever he receives new information, F, he will be
well advised toc calculate {2& [EF), and he then can erase his previous (APIE)
and for the future store only (AP|EF).

This shows that in a machine which does inductive reasoning, the memory
storage problem is wery much simpler than it is in a machine which does only
deductive reasoning, like this one you have down at the end of the hall.
This doesn't mean that the robot is able to throw away entirely all of his
past experience, because there's always a possibility that some new proposi-

tion will come up which ke has not had to reason about before. And whenever

this happens, then, of course, he will hawve to go back to his original archives

and search for every scrap of information he has relevant to this propesition,

With a little introspecticon, I think we would all agree that that's

exactly what goes on in cur minds. If you are asked how plausible you regard

(Aplm

p -

Figure 16.1
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some proposition, you don't go back and recall all the details of everything
that you evexr learned about this proposition. You recall your previous
state of mind about it. How many of us can still remember the argument

that first convinced us that

d sin x
dx

= oS X ?

Let's look once more at Equation (16-14). If the new information F is
to make any appreciable change in the probkability of A, we can see from this
integral what has to happen. If the distribution of (AP‘E} was already wvery
sharply peaked at one particular value of p, then (FIAP) will have to be even
more sharply peaked at some other value of p, if we are going to get any
appreciable change in the probability. ©On the other hand, 1f the distribution
(APJE) is a very broad one, then, of course, almost any small amount of slope
in (F|Ap) can make a big change in the probability which the robot assigns
to A. 8o, the stability of the robot's state of mind is essentially the
width of the distrxibution (AP‘E). I don't think there's any zingle number
which fully describes this stability. ©On the cother hand, whenever he has
accumulated encugh evidence so that (AP|E) is fairly well sharply peaked
at some value of p, then the variance of that distribution becomes a pretty
good measure of how stable his state of mind is. The greater amount of pre-
vious information he has collected, the narrower his Ap—distribution will
be, and therefore the harder it will be for any new evidence to change that
state ¢of mind.

Now we can see the difference between the penny and Mars. In the case
of the penny, my distribution (Ap[E}, based on my prior knowledge, is repre-
sented by a curve scmething like Figure (l6é.2a). In the case of the question

of life on Mars, my state of knowledge is described by an (Ap|E) distribution

something like Figure (16.2b), qualitatively. The first moment is the same
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Fenny Mars

(A_|E) ——
(o |B) —

p — 1 0 P — 1
{a) {(b)

Figure 16.2

in the two cases. So, I assign probability 1/2 to either one; nevertheless,
there's all the difference in the world between my state of knowledge about
those two propositions, and this difference is represented in the distribution
of (A_|E).

b

Now, incidentally, I might mention an amusing thing. While I was first
working some of this out, a newspaper story showed up from which I would
like to read yvou a few sentences. This is from the Associated Press, Decem-
ber 14, 1957, entitled, "Brain Stockpiles Man's Most Inner Thoughts." It
starts out: "Evervthing yvou have ever thought, done, or said--a complete
record of every conscious moment--is logged in the comprehensive computer of
your brain. You will never be able to recall more than the tinlest fraction
of it to memory, but you'll never lose it either. These are the findings
of Dr. Wilder Penfield, Director of the Montreal Neurclogical Institute, and

a leading Neurosurgeon. The brain's ability tc store experiences, many
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lying belcw consciousness, has been recognized for some time, but the extent
of this function is recorded by Dr. Penfield."

Now there are several examplesgiven, of experiments on patients suffering
from epilepsy. Stimulation of a definite lecation in the brain recalled a
definite experience from the past, which the patient had not been previcusly
able to recall to memory. This has happened many times. I'm sure you have
all read about these things. Here are the concluding sentences of this article.
Dr. Penfield now says, "This is not memory as we usually use the word, although
it may have a relation to it. No man can recall by voluntary effort such a
wealth of detail. A man may learn a song so he can sing it perfectly, but
he cannot recall in detail any one of the many times he heard it. Most things
that a man is able to recall to memory are generalizations and summaries.
If it were not so, we might find curselwvesconfused by too great a richness

of detail."”

16.2. An Application.

Now let's imagine that a "random" experiment is being performed. From
the results of the experiment in the past, we want to do the best jok we can
of predicting results in the future. To make the problem a definite one,
introduce the propositions:

X = "For each trial we admit two prior hypotheses: A true,
and A false, The underlying 'causal mechanism' is
assumed the same at every trial. This means, for example,
that (1) the probability assigned to A at the n'th
trial does not depend on n, and (2) evidence concerning
the results of past trials retains its relevance for
all time; thus for predicting the outcome of trial

1,000, knowledge of the result of trial 1 is just as
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relevant as knowledge of the result of trial 999.
There is no other prior evidence.

Nn = "A true n times in ¥ trials in the past.”

M "A true m times in M trials in the future.”

n

iy

The wverbal statement of X suffers from just the same ambiguities that we
have found before, and which have caused so much trouble and controversy in
the past. One of the important points I want to put across in these talks
is that you have not given any precise description of the prior informatiocn
until you have given, not wverbal statements, but equations, which specify
the prior probabilities to be used. In the present problem, this more precise
statement of X is, as before

(Aplx) =1 , 0<pc<l (16-16)
with the additicnal understanding that the Eggg_ap—distribution is to be
used for calculations pertaining to all trials. What we are after is (Mman).

First, note that by many repetitions of our Rule 1 and Rule 2, in the same

way that we found Equation (5-34), we have the binomial distributions
N) n N-n
ey = (L) p (1-p)

@) pM-pyt (16~17)

It

‘Mm"“*p’

Note that, although Ap sounds like an awfully dogmatic and indefensible
statement to us the way we've introduced it, this is actually the way.in
which probability is introduced in almost all present testbooks. One postu-
lates that an event possesses some intrinsic, "absclute" or "physical" proba-
bility, whose numerical value we can never determine exactly. Nevertheless,
no one gquestions that such an "absolute" probability exists. Cramér (1946,
p. 154}, for example, takes it as his fundamental axiom. That is just as

dogmatic a statement as our Ap; and T think it is, in fact, just our Ap

The eguations you see in current textbooks are ali like the two I have just
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written; whenever p appears as a given number, there's an Ap hiding in the
right-hand of vour probabiliity symbols.

Mathematically, the only difference bhetween what we're doing here and
what is done in current textbooks i1s that we recognize the existence of that
right-hand side for all prcbabilities, and we are not afraid to use Baves'
thecrem to work any proposition whatscever back and forth from one side of
our symbols to the other. I think that in refusing to make free use of
Bayes' theorem, modern writers are depriving themselves of the most powerful
single principle in probability theory. When a problem of statistical inference
is studied long encugh, sometimes for decades, one is always forced eventually
to a conclusion that could have been derived in three lines from Bayes'
theorem. We saw this in the quality-control example and in the case of
decision theory; and we'll see several more examples in the remainder of
these talks.

Now, we need to find the prior probability (Nn]X). This is already
determined from (AP|X), for our trick of resolving a proposition into mutuaily

exclusive alternatiwves gives us

1 1 1
N n N-n
N |x) = NA [%) dp = N la)@a |x) dp = f 1- a
o |x) JE (N p[ } dp LL | o P| ) dp (p) P (1-p) p

The integral we have to evaluate is the complete Beta-function:

1
r 5 r! gl
J; x (1-x) dx = (z+st1) ! (16-18)
Thus, we have
'I\.I__’J_:‘Ir 0 <£n <X
W, [%) = (16-19)

i.e., just the uniform distribution of maximum entropy. (MmiX) is similarly

found. Now we can turn (16-17} around by Bayes' theorem:

v [a))
(3 |8 ) = (& |x) = (N+1) (¥ |2 ) (16~20)
p' n P (N, %) np
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and so finally the desired probability is

1 1
(M [N ) = JC (MmAp]Nn) dp = Jg (MmlApNn)(Ap]Nn) do . (16-21)

Since (Mm[ApNn) = {Mm|Ap} by the definition of Ap, we have everything in the

integrand on the board. Substituting into {(16-21), we have again an Eulerian
integral, and our result is
(n+m) (N+M—n—m )
| ) = n(N+M+?jn (16-22)
M

Note that this is not the same as the hypergeometric distribution {5-23) of
sampling theory. Let's look at this result first in the special case M = m = 1,
It will then reduce to the probability of A being true in the next trial,

given that it had been true n times in the previous N trials. 7The result is

(a[n ) = ; i ; X (16-23)

This is Laplace's rule of succession. It occupies a supreme pogsition in
1%

probability theory; it has been easily the most misunderstood and misapplied
rule in the theory, from the time Laplace first gave it in 1774. In almost
any book on probability you'll find this rule mentioned wvery briefly, mainly
in order to warn the reader not to use it. But we've got to take the trouble
to understand it because in our design of this robot, Laplace's rule of
succession is, 1like Bayes' theorem, one of the most important rules we have.
It is a new rule for converting raw information into numerical wvalues of
probabilities, and it gives us one of the most important connections between

probability and frequency.

16.3. Laplace's Rule of Succession.

Poocr old Laplace has been lampooned for generations because he illustrated
use of this rule by calculating the probability that the sun will rise tomorrow,

given that it has risen every day for the past 5,000 yzars. One gets a
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rather large factor in favor of the sun rising again tomorrow, of course,
With no exceptions at all as far as I know, modern writers on probability
have considered this a pure absurdity. Even Jeffreys and Carnap find fault
with the rule of succession.

I have to confess to you that I am unable to see anything at all absurd
about the rule of succession. I recommend very strongly that yvou do a little
literature searching, and read some of the objections various writers have
to it. I think you will see that in every case the same thing has happened.
First, Laplace was quoted out of context, and secondly, in order to demons trate
the absurdity of the rule of succession, the author applies it to a case where
it was never intended to be applied, because there is additional prior informa-
tion which was not taken into account.

If you go back and read Laplace {1819) himgelf, you will see that in
the very next sentence after this sunrise episode, he points out to the
reader that this is the probability based only on the information that the
event has occurred n times in N trials, and that our knowledge of celestial
mechanics represents a great deal of additional information. Of course,
if you have additional information beyond the numbers n and N, then you ought
to take it into account. You are then considering a different problem, the
rule of succession no longer applies, and you can get an entirely different
answer. This theory gives the results of consistent plausible reasoning on

the basis of the information which was put inte it.

Let me give you three famous examples of the kind of objections to the
rule of succession which you find in the literature. (1) Suppose the solidif-
ication of hydrogen to have been once accemplished. According to the rule
of succession, the probability that it will solidify again if the experiment
is repeated is 2/3. This does not in the least represent the state of belief

of any scientist. (2) A boy is 10 years old today. According to the rule
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of succession, he has the probability 11/12 of living one more year. His
grandfather is 70; and so according to this rule he has the probability
71/72 of living one more vear. The rule violates qualitative common sense!
(3) Consider the case N = n = 0. It then says that any conjecture without
any verification has the prebability 1/2. Thus there is probability 1/2
that there are exactly 137 elephants on Mars. Also there Is probability 1/2
that there are 138 elephants on Mars. Therefore, it is certain that there
are at least 137 elephants on Mars. But the rule says alsc that there is
probability 1/2 that there are no elephants on Mars. The rule is logically
gself-contradictory!

The trouble with examples (1) and (2) is obwvious in view of our earlier
remarks; in each case, an enormous amount of highly relevant prior information,
known to all of us, was simply itrnored, producing a flagrant misuse of the
rule of succession. But let's look a little more closely at example (3).
Wasn't the law applied correctly here? I certainly can't claim that we had
pricr information about elephants on Mars which was ignored, can I? And
even 1f I could, that still wouldn't account for the self-contradiction,
Evidently, if the rule of succession is going to survive example (3}, there
must be some very basic points about the use of probability theory which we
still have to learn.

Well, now, what do we mean when we say that there's no evidence for a
proposition? The question is not what you or I might mean c¢olloquially by
such a statement. The qguestion is, what does it mean to the robot? wWhat
does it mean in terms of probability theory?

The prior information we used in derivation of the rule of succession
was that the robot is told that there are only tweo possibilities: A true,
and A false. His entlire "universe of discourse" consists of only two propo-—

sitions. 1In the case N = 0, we could solve the probklem alsc by direct appli-
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cation of the principle of indifference, Rule 4; and this will of g¢ourse give
the same answer (A|X) = 1/2, that we got from the rule of succession. But

just by noting this, we see what is wrong. Merely by admitting the possibility

of three different propositions being true, instead of only two, we have

already specified prior information different from that used in deriving the

rule of succession.

If the robot is teold to consider 137 different ways in which & couwld
be false, and only one way in which it could be true, then the prior probabi-
lity of A is 1/138, not 1/2. So, we see that the example of the elephants
on Mars was, again, a gross misapplication of the rule of succession.

Moral: Prcbability theory, like any other mathematical theory, cannot
give us a definite answer unless we ask it a definite question. We should
always start a problem with an explicit enumeration of the different proposi-
tions we're going to consider. That is part ¢of the "boundary conditions™
which must be specified before we have a uniquely defined mathematical problem.
If you say, "I don't know what the possible propositions are," that is
mathematically equivalent te saying, "I don't know what proklem I want to
solve." This is just the peint that I have already belabored back in Lecture
7.

In this connection we have to remember thait probakility theoxy never
solves problems of actual practice, because all such problems are infinitely
complicated. We solve only idealizations of the real problem, and the solution
is useful to the extent that the idealization is a good one. In the example
of the solidification of hydrogen, the prior information which our common
sense uses so easily, is actually so complicated that nobody knows how to
convert it into a prior probability assignment. I don't think there is any
reason to doubt that probability theory is, in principle, competent to deal

with such problems; but we have not yet learned how to translate them inte
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mathematical language without oversimplifying so much that the solution is
uselessg.

Laplace's rule of succession provides a definite scolution to a definite
proklem. EBvervbody dencunces it as nonsense because 1t is not also the
solution to some other problem. The case where the problem can be reasonably
idealized to one with only two hypetheses to be considered, a belief in a

t

constant "causal mechanism," and no other prior information, is the only

case where it applies. You can, of course, generalize it to any number of
hypotheses, and let me just give you the result of doing this.

There are K different hypotheses, {Al, Royrenes AK}, a belief that the
"causal mechanism" is constant, and no other prior information. We pexrform

a randem experiment N times, and cbserve Al true ny times, A, true n, times,

2

etec. Of course, z nj
i

N. ©On the basis of this evidence, what is the proba-

bility that in the next M = E m, repetitions of the experiment, By will be
i
true exactly m; times? To find the distribution (ml...mK nl...nK) that

answers this, define the prior knowledge by a K-dimensional uniform prior
distribution

A X) = C +...+p -1} 0 16-24
(B [ %) 8 (p, P P, 2 { )

To find the normalization constant C, we set

dp f dp. (A [x) = 1=¢c1(D (16-25)
j; 1 0 K pl°°'pK

where

Ap ... - 16-2
I(r) £ pl f{;detS(pf +pK T) (16-26)

Direct evaluation of this would be rather messy, sc¢ let's use the following

trick. First, take the Laplace transform of (16-26)

s [ ca —Of.(p +---+p )
- K
e % 1(r) ar = ap. . .. dp, e T - (16-27)
0 0 1 0 K K
68
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Or, inverting the Laplace transform,

1o
ar Ke-1
1 e 1 d or
I{r) = — e da = e
27i f_.m o (K-1) 1 g,K-1
1 a=0
K-1
s a— (16-28)
(K~1) 1
Thus,
c=_1 = (-1 (16-29)
T{1)

By this device, we avoided having to consider complicated details about dif-
ferent ranges of integration over the different Py that would come up if we
tried to evaluate (16-26) directly.

The prior distribution (n ..nK‘X] is then, using the same trick,

1
o o] n n
N! 1 K
{n_....n ‘X) P — Jﬂ dp .../F dp. p .. .p (A Ix)
1 K nl....nK. 0 1 0 K™l K pl...pK
Nl (K-1)!
= I( )' J (1) (16=-30)
nytereng!
where
/00 /oo nl nK
J(r) = dp_... d . 8 +...+p -r) {16-31)
, Ty o Px Py Py (p1 P
which we evaluate as before by taking the Laplace transform:
sl - oot
c/ e—ur Ji{r) dr = ’ 4d er g 1 p nK e a(pl PK)
0 0 Pyeee 0 Py Py Py
n,!
K 1
= Hi=l Y {16-32)
q +
So, as in (l6-28), we have
nyl...ng! ieo oOF aq nyl...ngl! N+K=1 Lom33)
T = "oy i QMK K- (

and
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(n n IX) o MR- o 0, n.+ +n._ = N (16=-34
17"k (N+k-1) 1 i P - )

Therefore, by Baves' theoremn

{n ..nK|Ap D
(a fnl...nK) = (a | %) { [lX K
PPy PyeeePy - - Dy ] X)
n n
_(HK-1) ! 1 K (16-35)
= EIfTTTH;T 1 ...pK 6(pl+. +p_ -1}

and finally

ceen ) = dp....| 4 ...n_|a
(myeeomy nyonony ) fo Py f; P (my-oomy| pl...pK)(Apl...pKInl By

w2 o n._+m n_+m
M1 (N+K-1) 1 f f 1™ K g
= d - d = +-oo -

mot.m o f.on ! Jy t17d, Fr P Py S (Bt ety L)

1 K1 K’
{16-36)
The integral 1s the same as J{l) except for the replacement n, -+ ni+mi.
So, from (16-33),

fn 4+m )!...(n +m J!

(m ...om [n ...n ) = Mt (NtR-DE 1 ] K_K (16-37)
1 K K mlz...mKl nl!...nKl (N+M+K-1) !

or, reorganizing into binomial coefficients,

n,+ +
(nl ml) (nK My
ny Dy

(ml...mK nl...nK) = NTIR=1 {16-38)
M
In the case where we want just the probability that Al will be true on the
next trial, we need this formula with M = ml = 1, all other m, = 0. The
result is the generalized law of succession:
nl + 1
A |n_ ,N,K) = ——— ° 16-39
(& In NR) = = ( )
You see that in the case N = n, = 0, this reduces to the answer provided

1

by the principle cof indifference, Rule 4, which it therefore contains as a
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special case. If K is a power of 2, this is the same as a method of inductive
reasoning proposed by Carnap in 1945, which he denotes as c¢*{(h,e} in his
"Continuum of Inductive Methods."

Now, use of the rule of succession in cases where N is very small is
rather foolish, of course. Not really wrong; just foolish. Because if we
have no prior evidence about A, and we make such a small number of observations
that we get practically no evidence; well, that's just not a very promising
basis on which to do plausible reasoning. We can't expect to get anything
useful out of it. We do, of course, get definite numerical values for the
prokabilities, but these values are wvery "soft," i.e., very unstable, because
the A distribution is still wvery bread for small N. ©QOur common sense tells
us that the evidence Nn for small N provides no reliable bagis for further
predictions, and we'll see in the next lecture that this conclusion also
follows as a conseguence of the theory we're developing here.

The real reason for introducing the rule of succession lies in the
cases where we do get a significant amount of infermation from the random
experiment; i.e., when N is a large number. In this case, fortunately, we
can pretty much forget about these fine points concerning prior evidence.

The particular initial assignment (Apfx) will no longer have much influence
on the results, for the same reason as in the particle-counter problem. This
remains true for the generalized cagse leading to (16-38). You see from
(16-39) that as soon as the number of observations W is large compared to

the number of hypotheses K, then the probability assigned to any particular
hypothesis depends for all practical purposes, only on what we have okserwved,
and not on how many pricr hypotheses there are. If you contemplate this

for ten seconds, I think your commen sense will tell vyou that the criterion

N**K is exactly the right one for this to be so.
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16.4., Confirmation and Weight of Evidence.

Now, I'd like to introduce a few new ideas which are suggested by our
calculations involving Ap. We saw that the stability of probability assign-
ment in the face of new evidence is essentially determined by the width of

the AP distribution. If E is prior evidence and F ig new evidence, then

O (AP]F) (Ap|E) p dp

T
A |F) (A |E) @&
[ oo w

We'll say that F is compatible with E, as far as A is concerned, if having

1
(B|EF) = J; (AP[EF) p dp = (16-40)

the new evidence, F, doesn't make any appreciable change in the probability
of A; 1.e.,

(a]EF) = (A|E) (16-41)
The new ewvidence can make an enormous change in the distribution of Ap with-
out changing the first moment. It might sharpen it up very much, or broaden
it, We could become elither more certain or more uncertain about A, but if
F doesn't change the center of gravity of the Ap distribution, we still end
up assigning the same probability to A.

Now, the stronger property: the new evidence F confirms the previous
probability assignment, if F is compatible with it, and at the same time,
gives us more confidence in it. 1In other words, we exclude one of these
possibilities, and with new evidence F the Ap distribution narrows. Suppose
F consists of performing some random experiment and observing the frequency

with which & is true. In this case F = Nn, and our previous result, Eqg. (16-20),

gives
(N+1} ! n N-n
(Apan} - n!{N-n)! p (1-p)
(p-£) 2
= (constant) *exp - —2—5—— {16-42)
20
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where

o2 = Eiélﬁl (16-43)

and £ = (n/N} is the observed frequency of A. The approximation is derived

by expanding log(a in a Taylor series about its peak value, and is valid

P]Nn)
when n>>1 and (M-n)>> 1. If these conditions are satisfied, then {Ap|Nn) is
very nearly symmetric about its peak value. Then, if the observed frequency
f is close tc the prior probability (AIE), the new evidence Nn will not
affect the first moment of the Ap distribution, but will sharpen it up, and
that will constitute a confirmation as I defined it. This shows one more
connection between probability and frequency. I defined the "confirmation®
of a probability assignment according to entirely different ideas than are
usually used to define it. I defined it in a way that agrees with our in-
tuitive notion of confirmation of a previous state of mind. But it turned
out that the same experimental evidence would constitute confirmation on
either the fregquency theory or our theory.

Now, from this we can see ancther useful notion; which I'11 call weight
of evidence.

ILet's consider Ap, given two different pieces of evidence, E and F.

(A_|EF) = (constant) (A |E)(a |F) (16-44)
p p p

If the distribution (AP|F) was very much sharper than the distribution (AP!E),
then the preduct of the two would still have its peak at practically the

value determined by F. In this case, we would say that the evidence F carries
much greater "welght" than the evidence E. If we have F, it doesn't really
matter much whether we take E into account or not. On the other hand, if

we don't have F, then whatever evidence E may represent will be extremely
significant, because it will represent the best we are able to do. So,

acquiring one piece of evidence which carries a great amount of weight can

16-22



make it, for all practical purposes, unnecessary to continue keeping track
of other pieces of evidence which carry only a small weight.

Of course, this is exactly the way our minds coperate. When we receive
one very significant piece of evidence, we no longer pay so much attention
to vague evidence. In so¢ doing, we are not being very inconsistent, because
it wouldn't make much difference anyway. 50, our intuitive notion of weight
of evidence is bound up with the sharpnass of this Ap distribution., Evidence
concerning A that we consider very significant is not necessarily evidence
that makes a kig change in the prokability of A. It is evidence that makes
a big change in this distributicn of Ap. Now seeing this, we can get a little
more insight into the principle of indifference, Rule 4, and also make contact
between this theory and Carnap's methods of inductive reasoning.

Before we can use the principle of indifference to assign numerical
values of probabilities, there are two different conditions that have to be
satisfied: (1) we have to be able to analyze the situation into mutually
exclusive, exhaustive posgibilities; (2) having done this, we must then find
that the available information gives us no reason to prefer any of the pos-
sibilities to any othexr. 1In practice, these conditicns are hardly ever met
unless there's some evident element of symmetry in the problem. But there
are two entirely different wavse in which condition (2} might be satisfied.

It might be satisfied as a result of ignorance, or it might be satisfied as
a result of positive knowledge about the situation.

To 1llustrate this, let's suppose that a person who is known to be very
dishonest is going to toss a coin and there are two people watching him. Mr.
A is allewed to examine the coln. He has all the facilities of the National
Bureau of Standards at his disposal. He performs thousands of experiments
with scales and calipers and magnetometers and microscopes, X-rays, and

neutron beams, and so on. Finally, he is convinced that the ceoin is perfectly
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honest. Mr. B is not allowed to do this. All he knows is that a coin is
being tossed by a shady character. He suspects the coin is biased, but he
has no idea in which direction.

Condition {2} is satisfied equally well for both of these people. Each
of them would start out by assigning probability one-=half to each face. The
same probability assignment can described a c¢ondition of complete ignorance
or a condition of wvery great knowledge. WNow, this sort of situation has
seemed paradoxical for a long time. Why doesn't Mr, A's extra knowledge
make any difference? Well, of course, it gggg make a difference. It makes
a very important difference, but one that doesn't show up until we start
performing this random experiment. The difference is not in the prokbability
of A, but in the distribution of Ap.

Suppose the first toss is heads. To Mr. B, that constitutes evidence
that the coin is biased to favor heads. aAnd so, on the n=xt toss, he would
assign new probabilities to take that into account. But to Mr. A, the evidence
that the coin is honest carries overwhelmingly greater weight than the evidence
of one throw, and he'll continue to assign a probability of 1/2.

Well, now, you see what's going to happen. To Mr. B, every tosg of the
coin represents new evidence about its bias. Bvery time it's tossed, he will
revise his assignments for the next toss; but after several tosses his assign-—
ments will get more and more stable, and in the limit N + @ they will tend
to the observed fregquency of heads. To observer A, the evidence of symmetry
continues to carry greater weight than the evidence of almost any number of
throws, and he persists in assigning probability 1/2. Each has done consistent
plausible reasoning on the basis of the information avaiiable to him, and our
theory accounts for the behavior of each.

If vou assumed that Mr. & had perfect knowledge of symmetry, vou might

conclude that his Ap distribution is a true éd-function. In that case, his
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mind could never be changed by any amount of new data from the random experi-
ment. Of course, that's a limiting case that's never reached in practice.

Not even the Bureau of Standards can give us evidence that good.

16.5. Carnap's Inductive Methods.

Carnap (1952} gives an infinite family of possible "inductive methods,"
by which one can convert prior information and freguency data into a probability
assignment and an estimate of frequencies for the future. His principle is
that the final probability assignment (AINnX) should be a weighted average
of the prior probability (A[X) and the cbserved frequency, £ = n/N. Assigning
a weight N to the "empirical factor" £, and an arbitrary weight X to the
"logical factor" (A[X) leads to the method which Carnap denotes by cl(h,eJ.
Introduction of the Ap distribution accounts for this in more detail: the
theory developed here includegs all of Carnap's methods as special cases
corresponding to different pricor distributions (Aplx), and leads us to re-
interpret A as the weight of prior evidence. Thus, in the case of two hypo-

theses, the Carnap A-method is the one you can calculate from the prior dis-

tribution (Ap]X} = {const.)-[p(l—p)]r, with 2r = 3»-2. The result is
2n + A (n+r) + 1
N = = -
(AF nX) 2N+ 2) (N+2r) + 2 ) (16-45)

Greatar A thus corresponds to a more sharply peaked {AP|X) distribution.

In our coin-tossing example, the gentleman from the Bureau of Standards
reasong according to a Carnap method with ) of the order of, perhaps, thousands
to millions; while Mr. B, with much less prior knowledge about the coin, would
use a » of perhaps % or 6. (The case )X = 2, which gives Laplace's rule of
succession, is much too broad to be realistic for coin tossing; for Mr. B
surely knows that the center of gravity of a coin can't be moved by more than
half its thickness from the geometrical center. Actually, as we will see in

Lecture 19, this analysis isn't always applicable to tossing of real coins,
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for reasons having to do with the laws of physics.)

From the second way I wrote Equation (16-45), vou see that the Carnap
A-method corresponds to a weight of prior evidence which would be given by
(L~2) trials, in exactly half of which A was obsarved to bhe trues. Can we
understand why the weighting of prior evidence is A = (number of prior trials
+ 2), while that of the new evidence N, is only {(number of new trials) = N?
Well, look at it this way. The appearance of the (+2) is the rocbot's way
of telling us this: prior knowledge that it is possible for A to be either
true or false, is equivalent 0o knowledge that & has been true at least once,
and false at least cnce. This is hardly a derivation; but I think it makes
excellent common sensa.

But let's pursue this line of reasoning a step further. We started with
the statement X: it is possible for A to be either true or false at any
trial; but that is still a socmewhat vague statement. Suppose we interpret
it as measing that A has bheen cbserved true exactly once, and false exactly

cnca. If we grant that this state of knowledge is correctly described by

Laplace's assignment (A |X} = 1, then what was the "pre-pricr" state of
P

knewledge before we had the data ¥7? To answer this, we need only apply Bayes'

theorem backwards, as we did at the beginning of Lecture 7. The result is:
our "pre-prior" Ap—distribution must have been

x| ) ap = ¢ by B (16-46)
o p = {const. o (1-p)

which is the quasi-distribution representing "complete ignorxance," or the
"baslc measure" of our parameter space, that we found by transformation
groups in Lecture 12. So, here is another line of thought that could have
led us to this measure.

It appears, then, that if we have definite prior evidence that it is

possibkble for A to be either true or false on any one trial, then Laplace's
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rule (Ap]X) = 1 is the appropriate one to use. But if initially we are so
completely uncertain that we're not even sure whether it is possible for A
to be true con some trials and false on others, then we should use the prior
(16-46) .

How different are the numerical results which the pre-prior assignment
(le-46) gives us? Repeating the derivation of (16-20) with this pre-prior
assignment we find that, provided n is not zero or N,

W-1) ! nobg Nl (16-47)

(Ap|Nn)|: {n=1) f (N-n-1)! P

which leads, instead of to Laplace's rule of succession, to the mean-value
estimate of p:
1 n

(A[Nn)' = JC (Ap|Nn)‘ pdp = o (16-48)
equal to the observed frequency, and identical with the maximum-1likelihocd
estimate of p. Likewise, provided 0 < n < N, we find instead of (16-22)
the formula

(rrH—n—l) (M—m+N—n-1)
] M-m

(Mman) = (N+M—l) (16-49)
M

81l of these results correspond to having observed one less success and one

less failure.
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