Lecture 19

PHYSICS OF "RANDOM" EXPERIMENTS

As we have already noted several times in these lectures, the idea that
probability assignments must be based ultimately con observed frequencies
in randecm experiments is fundamental to almost all recent expositions of
probability theory; which would seem to make it a branch of experimental
science. At the end of Lecture 9 we saw some of the difficulties that this
view leads us to, in that in some real physical experiments the distinction
between random and nonrandom guantities is so ¢obscure and artificial that
you have to resort to black magic in order to force this distinction into
the problem. But in that discussion we didn't really get intc the serious
physics of the situation. In this lecture, I want to take time off from
development of probability theory, and have a little interlude of more physical
considerations that show the fundamental difficulty with the notion of "random"
experiments--even the ones, such as coin tossing, which at first glance seem
most appropriately regarded as "random.”

We have also noted that there have always been dissenters from the
ortheodox view who have maintained, with Laplace, that probability theory is
properly regarded as the "calculus of inductive reasoning,” and is not funda-
mentally related to random experiments at all. According to this second view,

congsideration of random experiments is only one particular application of

prcbability theory f{and not even the most important one); for probability

theory accounts equally well for general inductive inferences where no random
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experiment is involved. But we haven't yet noted that there is an interesting
correlation; those who have advocated the second view have tended to be physi-
cists rather than mathematicians. So, it will be of interest to examine the
hestorical background of this guestion with particular emphasis on the physics
of the situation.

With the rise of the '"Neo-Bayesian" school of thought, this gquestion
has flared up again in the recent literature of statistics. Several partici-
pants have recognized that the issue is not merely one of philosophy or
mathematics; in some way not vet made entirely c¢lear, it alse invelves physies.
The mathematician tends to think of a random experiment as an abstraction--
really nothing more than a segquence of numbers. To define the "nature" of
of the random experiment he introduces statements=--variously termed assumptions,
postulates, or axioms--which specify the sample space and assert the existence,
and certain other properties, of limiting frequencies. In real life, however,
& random experiment is not an abstraction whose properties can be defined
at will; it is surely subject to the laws of physics.

As soon as a specific random experiment is described, it is the nature
of a physicist to start thirnking, not about the abstract sample space thus
defined, but about the physical mechanism of the phenomenon being observed.
The guestion whether the usual postulates of probability theory are compatible
with the known laws of physics is capable of logical analysis, with results
that have a direct bearing on the questiocn, not ¢f the mathematical validity
of frequency and non-freguency theories ¢f probability, but cf their agpplica-
bility to real situations. Any such conclusions have, evidently, a relevance
to the gquestion of orthodox vs. Bayesian statistical methods.

In & recent discussion of these questions Professor G. E. P. Box (196 )
has remarked, "I believe, for instance, that it would be very difficult to

persuade an intelligent physicist that current statistical practice was sensible,
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but that there would be much less difficulty with an approach via likelihoced
and Bayes' theorem." Let's analyze this statement in the light both of

history and of physics.

19.1., Historical Background.

As we know, probability theory started in consideration of gambling
devices by Cardano, Pascal, and Fermat; but its development beyond that level,
in the 18'th and 19'th centuries, was stimulated by applications in physics
and astronomy, and was the work of people--Jacch and Daniel Bernoulli, Laplace,
Poisson, Legendre, Gauss—-most of whom we would describe today as mathematical
physicists.

In the nineteenth century a knowledge of statistical analysis, consisting
largely of the work of Laplace, lLegendre, and Gauss, was considered an essential
part of the training of a scientist. For example, as a yvoung man J. Willard
Gibbs spent three years (1866-69) in post-doctoral study at the Universities
of Paris, Berlin, and Heidelberg; and the most prominent topic mentioned in
the list of lectures he attended was statistical analysis. This study un-
doubtedly contributed to his discovery, 33 years later, of the basic "cancnical
ensemble" formalism of statistical mechanics.

A radical change took place early in this century when a new group of
workers, not physicists, entered the field. They proceeded to reject virtually
everything done by Laplace, and sought to develop statistics anew based on
entirely different principles. This extremely aggressive school soon dominated
the field so completely that its methods have ccme to be known as "orthodox"
statistics.

Simultaneously with this development, the physicists--with Sir Harold
Jaffreys as almost the sole exception--guietly retired from the field, and

statistical analysis disappeared from the physics curriculum. This disappear-
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ance has been so complete that, if today somecne were to take a poll of
physicists, I think he would find that not one in a hundred could identify
such names as Fisher, Nevman, Wald; or such terms as maximum likelihood,
confidence interval, analysis of variance.

This course of events—-the leading role of physicists in development
of the original Bayesian methods, and their later withdrawal from orthodex
statistics--was no accident. &as further evidence that there is some kind of
hasic conflict between orthodox statistical dectrine and physics, we may
note that two of the most eloguent proponents of non-frequency definitions
in this century--Poincaré and Jeffreys--have been mathematical physicists
of the very highest competence, as was Laplace. Professor Box's statement
thus has a clear basis in historical fact.

But what is the nature of this conflict? What 1s there in the physicist's
knowledge that has led him to reject the very thing that the orthodox statisti-
cian regards as conferring "cbjectivity" on his methods? To see where the
difficulty lies, we examine a few simple random experiments from the physicist's
viewpoint. The facts I want to point out are go e€lementary that you can’'t
believe they are really unknown to modern writers on probability theory.

The continual appearance of new statistical textbooks which ignore them merely
illustrates what we physics teachers have always known; you can teach a student
the laws of physics, but vou cannot teach him the art of recognizing the
relevance of this knowledge, much less the habit of applying it, in his

everyday problems.

19.2. How to Cheat at Coin and Die Tossing.

Cramér (1946) takes it as an axiom that "Any random variable has a unigue
probability distribution." From the later context, it is clear that what he

really means is that it has a unique frequency distribution. If one assumes
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that the number obtained by tossing a die is a random variable, thig leads
to the conclusion that the frequency with which a certain face comes up is

a physical property of the die; just as much so as its mass, moment of inertia,

or chemical composition. Thus, Cramér (loc. cit., p. 154) states, "The

numbers o3 should, in fact, be regarded as physical constants of the particular
die that we are using, and the guestion as to their numerical values cannot

be answered by the axioms ¢f probability theory, any more than the size and

the weight of the die are determined by the geometrical and mechanical axioms.
However, experience shows that in a well-made die the frequency of any event

r in a long series of throws usually approaches 1/6, and accordingly we shall
of ten assume that all the p, are equal to 1/6 . . . ."

To a physicist, such an attitude seems to show utter contempt for the
known laws of mechanics. The results of tossing a die many times do not
tell us any definite number characteristic of the die. Thyy tell us something
about the way the die was tossed. If you toss "loaded" dice in different
ways, you can easily alter the relative frequencies of the faces. With more
difficulty, and over a smaller range, vyou can even do this if the die is
perfectly "honest.”

Although the principles will be just the same, it will be simpler to
discuss a random experiment with only two possible cutccmes per itrial. Con-
sider, therefore, a "biased" coin, about which I. J. Good has remarked (Savage,
1962): "Most of us probakly think about a biased coin as if it had a physical
probakility. HNow whether it is defined in terms of frequency or just falls
out of another type of theory, I think we do argue that way. I suspect that
even the most extreme subjectivist such as de Finetti would have toc agree
that he did sometimes think that way, though he would perhaps aveid doing
it in print." 1t is, of course, just the famous theorem of de Finetti that

we studied in Lecture 17, which shows us how to carry out a probability
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analysis of the bilased coin without thinking in the manner suggested (it does
not follow, howewver, that this analysis is applicable to a real biased coin}.
In any event, it is quite easy to show how a physicist would analyze the
problem. Let us suppose that the center of gravity of this coin lies on its
axis, but displaced a distance x from its gecmetrical center. If we agree
that the result of tossing this coin is a "random variable," then according
to the axiom stated by Cramér and hinted at by Good, there must exist a
definite functional relationship between the freguency of heads and x:

py = £(x)
But this assertion goes far beyond the mathematician's traditional range of
freedom to invent arbitrary axioms, and encroaches on the domain of physics;
for the laws of mechanics are gquite competent to tell us whether such a
functional relationship does or does not exist.

The easiest game to analvze turns out to be just the one most often
played to decide such practical matters as the starting side in a football
game. Your opponent first calls "heads" or "tails" at will. You then toss
the coin into the air, catch it in vour hand, and without looking at it, show
it first to your opponent, who wins if he has called correctly. It is further
agreed that a "fair" toss is one in which the coln rises at least nine feet
inte the air, and thus spends at least 1.5 seconds in free flight.

The laws of mechanics now tell us the follegwing. The ellipsoid of
inertia of a thin disc 1z an oblate spheroid of eccentricity l//gl The
displacement x does not affect the symmetry of this ellipseoid, and =so according
to the Poinsot construction, as found in textbooks on rigid dynamics [such
as Routh {192 }], the pclhodeg remain circles concentric with the axis of
the cein. In consequence, the character of the tumbling motion of the coin
while in flight is exactly the same for a biased as an unbiased coin, except

that for the biaSéd one it is the center of gravity, rather than the geo-

12-6



metrical center, which descrikes the parabolic "free particle" trajectory.

An important feature of this tumbling motion is conservation of angular
momentum; during its flight the angular momentum of the coin maintains a fixed
direction in space (but the angular velocity does not; and so the tumbling
may appear chaotic to the eye). Let us denote this direction by the unit
vector n; it can be any direction you choose, and it is determined by the
particular kind of twist you give the coin at the instant of launching.
Whether the coin is biased or not, it will show the same face throughout
the motion if viewed from this direction (unless, of course, n is exactly
perpendicular to the axis of the coin, in which case it shows no face at all).

Therefore, in order to kanow which face will be uppermost in your hand,
you have only te carry out the following procedure. Denote by K a unit vector
passing through the coin along its axis, with its point on the "headsg" side.
Now toss the coin with a twist so that k and n make an acute angle, then
catch it with your palm held flat, in a plane normal to n. On successive
togses, vou can let the directien of n, the magnitude of the angular momentum,
and the angle between n and k, vary widely; the tumbling motion will then
appear entirely different to the eye on different tosses, and it would require
almost superhuman powers of observation to discover your strategy.

Thus, anyone familiar with the law of conservation of angular momentum
can, after some practice, cheat at the uswal coin-toss game and call his
shots with 100 per cent accuracy. You c¢an obtain any freguency of heads you

want; and the bias of the c¢oin has no influence at all on the results!

Of course, as soon as this result is out, somecne will okiject that the
experiment analyzed is too "simple."” In other words, those who have postulated
a "physical" probability for the biased coin have, without stating so, really
had in mind a more complicated experiment in which some kind of "randomness“

has more opportunity to make itself felt.
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While accepting this criticism, I can't suppress the obvious comment:
scanning the literature of probability theory, isn't it curious that so many
mathematicians, usually far more careful than physicists to list all the
gualifications needed to make a statement correct, should have failed to see
the need for any gqualifications here? However, to be more constructive,
we can just as well analyze a more complicated experiment.

Suppose that now, instead of catching the coin in our hand, we toss
it onto a table, and let it spin and bounce in various ways until it comes
to rest. TIs this experiment sufficiently "random" so that the true "physical
probapility" will manifest itself? No doubt, the answer will be that it is
not sufficiently randem if the coin is merely tossed up two inches starting
at the table lewvel, but it will become a "fair" experiment if we toss it up
higher.

Exactly how high, then, must we toss it before the true "physical proba-
bility" can be measured? This is not an easy question to answer, and I cer-
tainly won't make any attempt to answer it here. It would appear, however,
that anyone who asserts the existence of a "physical" probability for the
coin ought to be prepared to answer it; otherwise it is hard to see what
content the assertion has (in the sense of operaticnal verifiability).

I don't deny that the bias of the coin will now have some influence on
the frequency of heads; I claim only that the amount of that influence depends
very much cn how you toss the coin so that, again in this experiment, there
is no definite number Py = f(x) describing a physical property of the coin.
Indeed, even the direction of this influence can be reversed by different
methods of tossing, as follows.

However high we toss the coin, we still have the law of conservation of
angular momentum; and so we can toss it by Method A: to ensure that heads

will be uppermost when the coin first strikes the table, we have only to hold
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it heads up, and toss it so that the total angular momentum is directed
vertically. Again, we can vary the magnitude of the anqgular momentum, and

the angle between n and k, so that the motion appears gquite different to the
eye on different tosses, and it would require very close observétion to notice
that heads remains uppermost throughout the free flight. Although what happens
after the coin strikes the table is complicated, the fact that heads is upper-
most at first has a strong influence on the result, which is more pronocunced
for large angular momentum.

Many people have developed the knack of tossing a coin by Method B:
it goes through a phase of standing on edge and spinning rapidly about a
vertical axis, before finally falling to one side or the other. If you toss
the coin this way, the eccentric position of the center of gravity will have
a dominating influence, and render it practically certain that it will £fall
always showing the same face. Ordinarily, one would suppose that the coin
prefers to fall in the position which gives it the lowest center of gravity;
i.e., 1f the center of gravity is displaced toward tails, then the coin should
have a tendency to show heads. However, for an interesting mechanical reason,
which I leawve for you to work cut, method B produces the opposite influence,
the coin strongly preferring to fall so that its center of gravity is high.

On the other hand, the bias of the coin has a rather small influence
in the opposite direction if we tess it by Method C: the coin rotates about
a horizontal axis which is perpendicular to the axis of the coin, and so
bounices until it can no longer turn over.

In this experiment also, therefore, a perscon familiar with the laws of
mechanics can toss a hiased coin so that it will preduce predominantly either
heads or tails, at will. Furthermore, the effect of method A persists whather
the coin is biased or not; and so one can even do this with a perfectly

"honest" coin. Finally, although we have been considering conly coins, essen-
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tially the same mechanical considerations apply to the tossing of any other
object, such as a die.

Frem the fact that we have seen a strong preponderance of heads, we
cannot legitimately conclude that the coin is biased; it may be biased, or
it may have been tossed in a way that systematically favors heads. Likewise,
from the fact that we have seen egual numbers of heads and tails, we cannot
legitimately conclude that the coin is "honest." It may be honest, or it

may have been tossed in a way that nullifies the effect of its bias.

19.3. Experimental Evidence.

8ince the conclusions just stated are in direct contradiction to what
is postulated, almost universally, in expositions of probability theory,
it is worth noting that anyone can easily verify them for himself, in a few
minutes of experimentation in his kitchen. An excellent "biased cein" is
provided by the metal 1lid of a small pickle jar, of the type which is not
knurled on the outside, and has the edge rolled inward rather than outward,
so that the outside surface is accurately round and smooth, and so symmetrical
that on an edge view cne cannot tell which is the top side.

Suspecting that many people simply would not believe the things just
claimed without experimental proof, I have performed these experiments with
a jar 1id of diameter d = 2 5/8", height h = 3/8". Assuming a uniform thick-
ness for the metal, the center of gravity should be displaced from the geo-
metrical center by a distance x = dh/(2d+8h) = 0.120 inches; and this was
confirmed by hanging the 1lid by its edge and measuring the angle at which
it comes to rest. Ordinarily, one expects this bias toc make the lid prefer
to fall bottom side up; and so this side will be called "heads." The 1lid
was tossed up about 6 feet, and fell onte a smocth linoleum floor. I allowed

myself ten practice tosses by each of the three methods described, and then
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recorded the results of a number of tosses by: method A deliberately favor-
ing heads, method A deliberately favoring tails, method B, and method C, as

glven in Tabkle 19.1.

Method No. of Tosses No. of Heads
A (H) 100 99
A({T) 50 0]
B 100 0
C 100 54

Table 19.1. Results of tossing a "biased coin'" in four
different ways.

In method A the mode of tossing completely dominated the result (the
effect of bias would, presumably, have been much greater is the "coin" were
tossed onto a surface with a greater coefficient of friction). In method
B, the kias completely dominated the result (in about thirty of these tosses
it locked for a while as if the result were going to be heads, as one might
naively expect; but each time the "coin"” eventually righted itself and turned
over, as predicted by the laws of rigid dynamics). In method C, there was
ne significant evidence for any effect of bias.

One can, of course, always claim that tossing the coin in any of the

L1}

four specific ways described is "cheating," and that there exists a "fair"
way of tossing it, such that the "true" probabilities will emerge from the
experiment. But again, the person who asserts this ought to be prepared to
define precisely what this fair method is, ctherwise the assertion is with-
out content. Presumably, a falr method of tossing ought to be scme kind of

random mixture of methods a(H), A(T), B, C, and others; but what is a "fair"

relative weighting to give them? It is difficult to see how one could define
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a "fair"™ method of tossing except by the condition that it should result in
a certain freguency of heads; and so we are involved in a circular argument.
This analysis can be carried much further than we have done here, and I
want to go into it scome more in a minute; but it is perhaps sufficiently
clear already that analysis of coin and die tossing is not a problem of abstract
statistics, in which one is free to introduce postulates about "physical®
probabilities which ignore the laws of physics. It 1s a problem of mechanics,
highly complicated and irrelevant to probability theory except inscfar as
it forces us tec think a little more carefully about how probability theory
must be formulated if it is to be applicable to real situations. Performing
a random experiment with a coin does not tell us what the "physical" probabi-
lity of heads is; it may tell us scomething about the bias, but it also tells
us scmething about how the coin is being tossed. Indeed, unless we know
how it is being tossed, we cannot draw any inferences about its bias from
the experiment.
It may not, however, be clear from the above that conclusions of this
type hold quite generally for random experiments, and in no way depend on the
particular mechanical properties of coing and dies. In order to illustrate

this, let's consider an entirely different kind of random experiment.

19.4. Bridge Hands.

In Lectures 5 and 13, we have already quoted Professor Wm. Feller's
pronouncements on the use of Bayes' thecrem in quality control testing, about
Laplace's rule of succession, and about Daniel Bernoulli's conception of the
utility function for decision theory. He does not fail us here either; in
this interesting textbock (Feller, 1950}, he writes: "The number of possible

distributions of cards in bridge is almost 1030. Usually, we agree to consider

them as egually probable. For a check of this convention more than 1030
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experiments would be reguired ...." Here again, we have the view that bridge
hands possess "physical" probabilities, that the uniform probability assign-

ment is a "convention," and that the ultimate criterion for its correctness
must be observed frequencies in a random experiment.

The thing which is wrong here is that none of us would be willing to use
this criterion in a real-life situation because, if we know that the deck is
an "honest" one, our common sense tells us socmething which carries more

weight than 1030 random experiments do. We would, in fact, be willing to

accept the result of the random experiment only if it agreed with ocur pre-

conceived notion that all distributions are equally likely.

To many of you this last statement may seem like pure blasphemy——it
stands in wviolent contradiction to what we have all been taught. Yet in
order to see why it is true, we have only to imagine that those 1030 axperi-
ments had been performed, and the uniform distribution was not forthcoming.,
We expect, if all distributions of cards have equal frequencieg, that any
combination of two specified cards will appear together in a given hand, on
the average, once in 52+51/13-12 = 17 deals. But suppose that the particular
combination (Jack of hearts--Seven of clubs) appeared together in each hand

three times as often as this. Would we then accept it as an established fact

that this particular combination is inherently more likely than cothers?

We would not. We would say that the cards had not been properly shuffled.
But once again we are involved in a circular argument; hecause there is no
way to define a "p?oper" method of shuffling except by the condition that it
should produce all distributions with equal frequency!

In ¢carrying out a probabllity analysis of bridge hands, are we really
concerned with physical probabilities; or with inductive reasoning? In order
to help answer this, consider the following scenario: T tell an orthodox

statistician that I have dealt at bridge 1000 times, shuffling "fairly" each
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time; and that in every case the seven of clubs was in my own hand. What
will his reaction be? He will, I think, mentally visualize the number
(L)lOOO . 10—602
4
and conclude instantly that I have not told the truth; and no amount of
persuasion on my part will shake that judgment. But what accounts for the
strength of his belief? Obvicusly, it cannot be justified if our assignment
of equal probabilities to all distributions of cards is merely a "convention,”
subject to change in the light of experimental evidence. Even more obviously,
he is not making use of any knowledge about the outcome of an experiment

. . 30 .
invelving 10 bridge hands.

What is the extra evidence he has, which his common sense tells him

carries more weight than any number of random experiments; but whose help

he refuses to acknowledge in expounding probability theory? 1In cxder to

maintain the claim that probability theory is an experimental science, based
fundamentally nct on inductive inference but on frequency in a random experi-
ment, it is necessary to suppress some of the information which is available.
This suppressed information, however, is just what enables inductive reasoning
to approach the certainty of deductive reasoning in this example.

The suppressed evidence is, of course, simply our recognition of the
symmetry of the situation. The only difference between a seven and an eight
is that thexre is a different number printed on the face of the card. Our
common sense tells us that where a card goes in shuffling depends only on
the mechanical forces that are applied to it; and nct on which number is
printed on its face. If we observe any systematic tendency for one card to
appear in the dealer's hand, which persists on indefinite repetitions of the
experiment, we can infer from this only that there is some systematic tendency

in the procedure of shuffling, which alone determines the cutcome of the
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experiment.
Once again, therefore, performing the experiment tells you nothing about
the "physical” probabilities of different hands. It tells you something

about how the cards are heing shuffled.

19.5. General Random Experiments.

In the face of the foregeoing arguments, one can still take the following
pesition (as a member of the audience did after one of my recent lectures):
"You have shown only that coins, dies, and cards represent exceptional cases,
where mechanical considerations cbviate the usual probability postulates;

i.e., they ave not really 'random experiments.' But that is of no importance
because these devices are used only for illustrative purposes; in the more
dignified randem experiments which merit the serious attention of the scientist
or engineer, there is a physical probability.”

Te answer this, note that any specific experiment for which the existence
of a physical probability is asserted, is subject to physical analysis like
the ones just given, which will lead eventually to an understanding of its
mechanism. But as soon as this understanding ig reached, then this new experi-
ment will also appear as an exceptional case where physical considerations
obviate the usual postulates of '"physical" probabilities. For, as soon as
we have understood the mechanism of any experiment E, then there is logically
no room for any postulate that various outcomes possess physical probabilitdes;

"

for the question: "What are the probabilities of wvarious cutcomes Olr 02,...?

then reduces immediately to the guestion: "What are the probabilities of

the corresponding initial conditions Il, Tor ves that lead to these cutcomes?"

We might suppose that the possible initial conditions of experimant E
themselves possess physical probabilities. But then we are considering an

antecedent random experiment E', which produces conditions I, as its possible

k
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outcomes. We can analyze the physical mechanism of E' and as soon as this

is understood, the guestion will revert to: "What are the probabilities

of the various initial conditions I, ' for experiment E'?" Evidently, we

are involved in an infinite regress {E, E', E", ...}; the attempt to introduce
a physical probakility will be frustrated at every level where our knowledge
of physical law permits us to analyze the mechanism involved. The notion of
"ohysical probability" must retreat continually from one level to the next,

as knowledge adwvances.

We are, therefore, in a situwation very much like the "warfare bhetween
science and theology" of earlier times. For several centuries, theologians
ingisted on making factual assertions which encrcached on the domaing of
astronomy, physics, biclogy, and geology—-and which they were later forced
to retract one by one in the face of advancing knowledge.

Clearly, probability theory ought tce be formulated in a way that avoids
factual assertions properly belonging to other fields, and which will later
need to be retracted (as is now the case for many assertions in the literature
concerning coins, dies, and cards). It appears to me that the only formulation
which accomplishes this is the original one given by Laplace and expounded
by Poincaré and Jeffreys, in which probability theory is regarded as the
general "calculus of inductive reasoning," whose validity does not depend
on any assumptions about properties of physical experiments. As we saw back
in Lecture 3, a very important contribution to the logical foundations of this
approach was made recently by R. T. Cox (1848), (1961), who showed that, if
we represent degrees of plausibility by real numbers, then the mathematical
rules for inductive inference are restricied by elementary conditions of
consistency, stated in the form of functional equations whose general soluticns
are readily found. As already noted, it is no accident that all the afore-

mentioned gentlemen are to be classed as physicists, to whom the things I
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have pointed out in this lecture would be cbvious from the start.

The Laplace-Poincaré-Jeffreys-Ceox formulation of probability theory
does not require us to take one reluctant step after another down that infinite
regress; it recognizes that anything which continually recedes from the light
of detailed analysis can exist only in ocur imagination. Performing any of
the so-called random experiments will not tell us what the "physical" proba-

bilities are, because there is no such thing as a "physical" probability.

The experiment tells us, in a very crude and incomplete way, something about
how the initial conditions are varying from one repetition to ancther,

A much more efficient way of obtaining this information would be to
study the initial conditions directly. However, in many cases this is bevond
our present abilities; as in determining the safety and effectiveness of a
new medicine. Here the only fully satisfactory appreoach would be to analyze
the detailed sequence of chemical reactions that follow the taking of this
medicine, in persons of every conceivable state of health. Hawing this
analysis one could then predict, for each individual patient, exactly what
the effect of the medicine will bhe.

Such an analysis being entirely out of the question at present, the only
feasible way of obtalning the information we want is to perform a "random"
experiment. No two patients are in exactly the same state of health; and
for a given dose, the unknown variations in this factor constitute the variable
initial conditions of the experiment, while the sample space comprises the
set of distinguishable reactions to the medicine.

Cur use cf probabllity thecry in this case is an example of inductive
reasoning which amounts to the following: "If the initial conditions of the
experiment continue in the future to vary over the same unknown range as they
have in the past, then I expect that the relative frequencies of various

outcomes will, in the future, approximate those which I have observed in the
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past. In the absence of positive evidence giving a reason why there should
be some change in the future, and indicating in which direction this change
should go, I can only suppose that thiungs will continue in more or less the
same way. As I observe the relative frequencies to remain stable over longer
and longer timeg, I become more and more cenfident about this conclusion.

But still, I am doing ¢nly inductive reasoning—-there is no deductive proof

that fregquencies in the future will not ke entirely different than those in

the past.
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