Lecture 24

IRREVERSIBLE STATISTICAL MECHANICS I: HEIMS PERTURBATION THEORY

Back in Lectures 10 and 11, we saw how the principle of maximum entropy
leads us to the standard Gibbs formalism of equilibrium statistical mechanics,
via arguments very much shorter and simpler than the usual "ergodic' approach
of antiquity. The principle is therefore, at the very least, a useful
pedagogical device, by which known results may be derived more quickly.

But, of course, the real test of any new principle in science is not 1its
ability to re-derive known results, but its ability to give new results,
which could not be (or at least, had not been) derived without it. Since
we agree with standard formalism in all equilibrium problems, the only
place where new results are possible is in the extension to nonequilibrium
problems, where previously no general theory existed.

Another respect in which Lecture 11 was left incomplete, appears as
soon as we try to apply that formalism to real, nontrivial physical problems;
we need more powerful mathematicel toois. It is one of the most satisfying
things about this approach that both these needs--finding a mathematical
technique for complicated equilibrium problems, and setting up a general
formalism for nonequilibrium problems—--are met by a single mathematical
development. I'11 give it in this Lecture, and we'll see its applications

te equilibrium and nonequilibrium problems in the next two lectures.
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24,1 Density Matrix Formulation

So far, 1I've worked up a formalism in which the enumeration of the
possible “states of nature" could take place simply by listing all the
stationary quantum states. In other words, quantities that are constants
of the motion are the only things that T have allowed myself to specify so
far. Evidently, if we are ever going to get to non-equilibrium theory, we
have to generalize this to the case where I'm putting in information about
things which are not constants of the motion, so something can happen when
we let the equations of motion take over. If we started out with the
initial canonical probability asgignments of Lecture 11 and then solved
the Schroedinger equation for the time development, we would find nothing
at all happening. It would just sit there. Of course, that is as it ought
to be for the equilibrium case; but for the non-equilibrium case, we need a
little bit more.

Also, as just noted, even in the equilibrium case, I need to generalize
this before I can actually do the calculation for non-trivial physical
problems, because in practice I don't have the kind of information assumed
above. The thepry given so far presupposes au enumeration of the exact
energy levels in my system to start with, But in a realistic problem, I
can't calculate these. What we know is a Hamiltonian which, in the cases
we can actually solve, can eventually be split into a term Ho which is big

but simple and another term H., which is complicated but small,

1

H=H +H (24~1)

1

Then we have to do some kind of perturbation theory in order to find ap-
proximate values for the energy levels defined by the entire Hamiltonian.

To find them exactly is a problem that we haven't solved.
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It will happen in all non-trivial problems that the H1 simply does not
commute with Ho. So we have to learn how to generalize this mathematical
machine so we can put in information gbout quantities which den't commute
with each other. I can't enumerate states of nature simply by citing energy
levels; in fact, I don't even know the representation in which this would be
possible. For this reascn, In any representation I can find, the relative
phase of these quantum states has to get into the picture even for equilibrium
problems. Well, we know the way to do this is to restate this theory in
terms of the density matrix; let's turn to that now.

First, let's recall our basic definition of the demsity matrix. Again,
this is perfectly standard material which is in fifty textbooks on quantum
theory and statistical mechanics by now. Suppose that 1 have a state of
knowledge about a system; and for the time being, don't worry about how I
got this state of knowledge. I just want to describe it. There are various
states wl’ wz, «++, in which the system might be. I don't kinow which one it
is. All I know is described by assigning some probability v, to it being in
the state wi. Now, if I knew the system was in a definite quantum state $i

I could calculate the expectation value of any operator and come out with

some formula like this,

<F>i = in Fui dr (24-2)

where /dt stands for an integration over all particle co-ordinates and, if
there are spin indices in the probilem, for summation over all those. Now

the N functions that 1 started with are not necessarily orthogonal functioms.
They could be any 0ld set of conceivable states of the system. But each of
them could be expanded in a complete orthogonal set. Let's say that u, are

a complete orthonermal set of functions in which we can expand any state of

this system. TFor the moment, it doesn't matter what states they are; just
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any set that we know is complete. We could expand ¥; in terms of those,

getting some expansion coefficients aﬁl):

and then write

L 5 ()% (1) _
F { = Jlguk a, F(? uj aj )dT . (24-4)

*
Now the a, and aj are constants which can be taken ocutside,

_oT Rd) ()] . _
<F>i = é} a, aj u, F uj d {24-5)

and the integral (or sum)

* —
Juk FudrE, (24-6)

representation, so that

defines the matrix element ij, in the uy

(i)* (1)
<Fr = F.. a a,
i %% ki 'k 3

. (24-7)

The expectation:yalue of any quantity, if I am given the wave function y.,
is a quadratic form in these matrix elements ij. Now if I'm in this fix
where I don't know what the state is, the best expectation value I can
give you is not just one of these, but I ﬁave rto average it also over
these W, which represent my uncertainty as to what the actual state is,

_ _ B} _ (1)y* (i) -
F> = ;wi&F}i —Ziwi leé ij a, aj . (24-8)
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Qur expectation walues are now double averages.

Even if T knew the exact

quantum state, there are still statistical things in quantum theory (or,

to put 1t more cautiously, in the current "Copenhagen" interpretation of

that theory), which would allow me to give only expectation values in general,

I'm not even that well off,

I have to average over that ignorance (Wi) also.

I don't even know what the right state is, so

When you have a thing like (24-8), the only thing you can possibly do

with it is change the order of summations and see what happens.

that;

e (L)* (1)
<F> = Zk ij gwi ak aj .

then

Let me do

(24-9)

(24-10)

The summation over j builds me the matrix product of Fp; and then the sum-

mation over k is the sum of the diagonal elements, which we ¢all the trace.

Or, I could have written the sum with o and F interchanged.

In this

case I would now say the summation over k builds me the matrix product pF,

and then the summation over j gives the trace, so I could write this equally

well as

<Fr = E: Fk' pjk = Tr(Fp) = Tr{pF)

(24-11)
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This matrix p is, of course, called the density matrix, and you see that it

is a Hermitian matrix,

* —
ij = Djk s
or in matrix notation
DJr = pn - (24=-12)

The neat way to develep our quantum statistics, so the phases are
taken into account automatically, is in terms of the demsity matrix.
From now on I will express expectation values of any quantities I want
to talk about in the form (24-11). We started out with a problem of how
you gset up a probability assignmment which describes a certain state of
knowledge: now we've got the problem of setting up a density matrix which
degscribes a certain state of knowledge. Take a specific case; suppose
somebody measures the total magnetic moment of some spin system and they
give me a number M. I want to find a density matrix which describes what
I know about this spin system when you give me just this number; or rather
these three numbers, the three components {MX, My’ Mz}. At the very least

I want my density matrix to satisfy
. (24-~13)

In other words, if I give this density matrix to anybody else, and he tries
to predict the moments from the density matrix, he should be able to get
back the numbers that were given to me, by following the usual rule for
prediction in statistical mechanics. If he couldn't do that, then it
wouldn't make sense to gay that the density matrix "contained” the given
information {MX, My’ Mz}. This is all we are deing when we choose  to

satisfy (24-13},

24-6



In general, there are an infinite number of density matrices which would
all do this. Again, I am faced with the problem of making a free choice of
a dengity matrix, which is "honest" in the sense that it doesn't assume things
that T don't know, and spreads out the probability as evenly as possible over

all possibilities allowed by what I do know. Well, we started out with

w
It

1 "Zi py log py

so, suppose we now take

|75}
I

4= - Lw, logw, (24-14)
i

and we might choose the density matrix which makes SA a maximum. If we took
that as our measure of amount of uncertainty, we would be in a little bit of
trouble. A sort of Gibbs paradox would show up. I said that these initial

states wi that we started out with are not necessarily orthogonal to each

other., In fact, I can have state ¢1 and T give it a probability wl; to the

state ¥, I give probabllity w Now, let's make a continuous change in the

9
problem such that w2==+ ¥y my state of knowledge shades continucusly into:

wl with a probability (Wl+w2). But nothing like that happens to SA' in

log w, — w, log w, would have to be replaced

S, as 1{;2 = tpl the term -w 1 5

A 2

1
suddenly by

—[wl+w2]log[wl+w2]

If we took this quantity S, as the measure of uncertainty about the system,

A
then you would have this phenomenon of sudden discontinuities in my un-
certainty when two wave functions suddenly become exactly equal. But my
intuitive state of knowledge has ne discentinuity when I do that. It goes
continuously from one case to another. That's one thing that would be wrong

if T tried to use this S, as my measure of uncertainty.

A
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There's another thing that would be even worse, and perhaps easler to
see. For a given density matrix, there's no upper limit to the SA that 1
could get. TIf SA is going to be the thing that counts, I'11 say I've got
26 different states, $a to ¥, - They all happen to be equal to ¢l but I

agsign probabilities v, to w, to them. Now, of course, my summation

26

- ;i; W log v,
over the alphabet—-my notation is not quite consistent, but I think you see
the point--my summation over all these terms could be a very large number,
I can introduce thousands of them. There would be no upper limit to the
%Zﬁ log w I could get if 1 used this SA'
Oon the other hand, there's one property that is unique. SA has no upper
bound. SA does have a lower bound. SA for a given density matrix has an

absolute minimum given by

SA > - Tr[plog p] . (24-15)

There's one and only only one way, in general, of setting up these states $i
and corresponding probabilities W, so that this lower bound is reached. When
I say "in general,” I mean if there are no degeneracies in the eigenvalues of
p. I think that I will not bother to give you the proof of this. The proot

is given in this second paper that I had a long time ago [Physical Review 108,

171, (1957)1.
Well, now what does log p mean? I have to do that for the next step.
o is a Hermitian matrix and there's a theorem in matrix theory that says,

there is a matrix S such that
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Sps T = T (24-16)

[ can always find some similarity transformation which would have made this
diagonal. Now, in the representation where p is diagonal, then by log o
I mean the diagonal matrix

log Py
log o,

log p = . {24=17)

-
-

log e

If T choose fot my hbasis Uy the particular set of functions wi for which SA
does reach its absolute minimum value, then the diagonal elements of p are
iust the probabilities W, assigned to these states. In other words, the
choice of possible states $i which makes SA a minimum for a given p, is the
one for which the probabillities W assigned to these states are the eigenvalues
of this matrix p.

The reason we had a Gibbs paradox at the beginning here was that I said
these different states wi that I'm taking into account are not necessarily
orthogonal. If states ¢1 and wz are not orghogomal and you tell me the
system is in state wl’ then, of course, the present Copenhagen interpretation
says: the probability that, if T did a measurement, I would actually find it
in ¢2, is not zero. It's the scalar product squared, [(wl,wz)lz; sometimes
called the transition probability from one state to another. I'm not writing
down the probabilities of mutually exclusive events unless I choose my states

wi to be orthogonal, and that's just what I do by making the choice that
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minimize SA' I'm going to say now that the SI for a density matrix is this

unique minimum value of SA:

51

-Tr(p log p) (24-18)

There are a number of other arguments why you choose (24-18) rather than some
other expressions that you could think of, and they are also given in this
previcusly mentioned paper. I want not to show you some examples of
equilibrium statistical mechanics using this and I want to develop a

general perturbation theory in which, if there's a complicated problem

I can break it down into a simple problem plus a small change. I want to
learn how to expand this density in powers of some small perturbation and

the perturbation theory we get will also be exactly the one we need for our
irreversible theory tomorrow. Now, we are back at the same problem that we

studied in Lecture 10, but the <F » are matrices, and the constraints are

k

<F>, = Tr(pF k=1, 2, ..., m . (24-19)

k k}’

This restricts my density matrix, I must find which density matrix will
maximize SI while agreeing with conditions we have imposed on it. Now,
the formal solution of this goes through in exactly the same way as we did
in Lecture 10. 1In fact, you recall that my proof back then was based

on the fact that when I have an ordinary discrete probability distribution

n n

2\ _
Z{:pi log Py /Py log uy (24-20)
i=1 i=1

the inequality becomes an equality if, and only if, P; = uy- Now, we have
a precisely similar situation here. You can prove that if p and ¢ are any

two density matrices, there is an inequality
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Tr[p log DJ > Tr[p log 0} (24-21)

I1'11 leave this as an "exercise for the reader™ to prove. The argument goes
through precisely the way I did it before. The solution to this problem was
given long ago by von Neumann (GSttinger Nachrichten, 1927).

The mathematical properties that I am talking about have been well

known for a long time; but the new viewpoint about the significance of those

properties is the thing that I'm selling here. These properties provide the
justification for choosing certain distributions in preference to certain
other ones. The density matrix that maximizes SI subject to these constraints
is again given by
N S AF. - - _
n o= 0 ) exp{ lFl ?LmFm} (24-22)
1 m

One would guess, of course, that it generalizes in some such way as thisg,
but T don't think your intuition would tell you whether the proper generaliza-
tion waé exactly this form. All the formal properties that T wrote down this
morning follow from this distribution just the game way that we gave before
with one exception, which I'1l get to after we've developed our mathematics
a little bit more.

Of course the number one must have expectation value of one,
<1* = Tr{pl) = Tr(p) . {(24-23)

This is one more condition just like the one this morning that Py had to be
equal to one. The normalizing factor which will guarantee that the trace of

this thing is one, is evidently
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ZQ0enenid ) = Tx exp[—?&lFl - -;\mym} (24-24)

which is the partition functiom.
Now perhaps I ought to say a word about what is meant by the exponential
of a matrix. If I have any functien eof an ordinary number x that I can expand

in a power series,

[

£(x) = Z a %, (24-25)

n=0
of course, there is nothing to stop me from defining the same funcition of a

matrix by the same power series,

fex]

£(M) = L a M’ . (24-26)

n=0
Then the question arises; does this converge to a definite matrix and if so
does the resultin matrix f(M) have any useful properties? There is a theorem:
if the original power series comverged for x equal to each of the eigenvalues
of the matrix M, then the power series is guaranteed to converge to a definite

matrix f(M). Now in particular the exponential functien,

et = § , (24~27)
1.
n=0

converges so well it has infinite radius of convergence and, therefore, the
exponential of any square matrix with finite elements is guaranteed to exist
and to be a well defined matrix.

The choosing of the Ak is again something which we do in order to make
the expectation values agree with the given data. Again it’s going to turn
out that same formal relations hold when we are talking matrices. Agaln we

have to sclve
_ _ 4 -
<Fk> = M log Z (24-28)
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for the kk. But to prove that this 1s right, we have to give a mathematical
argument that is a little more involved than that needed to prove (
It turns out that this argument 1s also fundamental to everything that I

want to talk about from now om, so let's take time ocut for it now.

24,2 Heims Perturbation Theory

T would like to develop what I call the Heims' perturbation theory.
This was worked out in about 1959 by my former student, Steve Heims, and
we published a very truncated account of it in the appendix to a paper on

gyromagnetic effects [Revs. Mcd. Physics 34, 143 (1962)]. You see we have

always the problem of evaluating exponentials of matrices. First, I would
like to work out the well-known perturbation expansion of this, I have a
matrix A, and the matrix eA is something that I can do. That is simple.

But the thing I really want to evaluate is

e(A+something else)

or
o
=

eA+€B - eA 1+ 2_, En g . (24-29)
n=1 o

And T will indicate that this something else is small by putting ¢ in it and
expanding in powers of . You see this is the typical situation we would have

if we tried to evaluate a density matrix

1
0 = E—exp{—AlFl - Aze — e - hmFm . (24-30)

Some of these operators might be simple so I could evaluate their exponentials:
then some others might be complicated and net commute with the others, and

they would mess up the whole problem. At that point I would resort to ap-

proximations. To put it in general form, let’s talk just A and B for a while,
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Let me form a quantity
-xA x(A+eR)
e e

where x is an ordinary number and by xA I mean the matrix in which every
element is multiplied by . If I let =z go to zero, this goes inte the unit
matrix. But it isn't quite the unit matrix, if ¢ is not zero. But how does
it vary with x? Well, by staring at this power series definition of the
exponential function, you can convince yourself very quickly that the same
rule for differentiating an exponential function works even if a matrix is

in the exponent. I have my choice of writing it either way:

—a = —fAe = —g A . (24=-31)

Therefore,

é%{}—erx(A+EB{i XA AeX(A+&:B) N e—XA(A+€B)eX(A+EB) (24-32)
Now two terms cancel, and € is just a number, so
- . - L
é%{% XAeX(A+CB{} - ®A Bex(A £B) (26-33)

I can't pull that B outside because in general it doesn't commute with
what is either to the left of it or to the right of it, Now that I've
differentiated this thing, let me integrate with respect to x and get it

back again:

g [ XA % (AFeB) -xA x{A+eB)
e e dx = g =] - l
dx J 1
1
© x —XlA XI(A+EB)
= ¢| e Be dxl . (24-34)

Q

24-14



Now let me clean this up. Multiplying both sides by eXA from the left, we
find

X

) -x A )
eX(A+&B) = eXA 1+ E[ e 1 BeX(A+bB) dxl . (24-35)
o

x(A+eB)

This is an integral equation which e satisfies. Well now, if vou have

an integral equation, yvou grind out perturbation sclutions of it simply by
iteration—-i.e., substituting the equation into itself over and over again.

50, let me write this in still easier form,

xl(A+£B)

dx . (24-36)

® -X_A
ex(A+€B) - exA 1+ s[ . 1 Be .

The first iteration gives

1
-x. A x_(A+eR)
eX(A+€B) = exA 1+ chx e 1 Be 1 1+ eJ dxze 2 Be 2 f

0 Q
S

X
1
-x. A x A 2 -x. A (x,-x.0A =x.(A+eB)
= eXA 1 + cldx.e 1 Be 1+e J dx J dx e 1 Be 172 Be 2 s
1 2 10 2 J
)

and by repeated substitution we get

1
eA+EB = EA{; + eJe_XA BEXA dx +
1 Xi' ©
5 -%. A (X]—Xz)A XZA
£ dx1 dxze Be Be +
0 0 1 % %,
(x,.—x.JA x A { ( ( -x,A (x,-x,)A
273 3 | 3 172
Be Be 7 4+... 1 g ) dX]j dx2J dx3e Be . (24-37)
O O Q

We can keep playing this game as long as we please, and so this genecrates an
infinite series in powers of ¢. Or, we can terminate (24-37) at any finite
number of terms, replace A by A + ¢B in the last exponent, and it is an

exact equation. The exponential of any matrix is a well-behaved thing, so
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we can put in any ¢ we please—-large or small-- and the infinite series is
guaranteed to converge to the right thing., O0f course, if we have to take
more than about two terms of the series, then we'll be wound up in another
bad calculation and this whole method will not be too useful.

Let's summarize this: we have found the power series expansion

At+eB A
e ;{j e s (24-38)
n
n=1
in which 1
8, = { e TFB peXA ux (24-39)
o
1 X
1 —xlA (Xl—XZ) sz
82 = dxl dx2 e Be Be (24-40)
Qo [»]
and if we write
_ —XA _ XA
B(x) = e Be (24-41)
the general order term is
1 X ¥n-1
Sn = { dxl J dxz...[ dxn B(XI)B(XZ)"fB(Xn) . {24=-42)
Q o o

Now we have an "unperturbed" density matrix

EA
DO = ‘—m (24—43)
Tr (e
and a "perturbed" ome:
eA+EB
[ (24-44)
Tr |e
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In the unperturbed ensemble, any particular operator C has the expectation

value

<C>O = Tr(DOC) (24-45)
and in the perturbed ensemble, it will be instead,

<C> = Tr(pC) . (24-46)

And what I would really like to get is a power series expansion of <C>. So

let's write out the expansion we would like to get; using (24-38),

+

n

Tr eﬁ+€Bc] 7r () e Tr{eAsnc]

< = =

Tr[eA+€B} Tr(eA] +

En Tr[eAS ]
i=1 "

and divide by Tr(eA] to get, from (24-45),

b
> = “zi (26-47)
3

I've got everything reduced to expectation values calculated in the unperturbed
distribution, which I assumed was gomething simple that I could calculate.

But still this is in a little messy form. I've got the ratio of two infinite
gseries—-1 know they are well-behaved series. Both the numerator and denomi-
nator series have infinite radius of convergence. But, I would like to write
this as a single series over ¢ and get rid of this denominator. TIf I can
invert the power series for this denominator; that is, find the coefficients

a 1in
n
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then we'll have it. This equation is the same as

ll fa )
_ g . _
L=11+ ;;i e'<s > |[1 "t oa

or n-1

1=1+1§1 e <Sn> -a - Z«:Sk‘»oa

o n =1 n-k

Now if a power series in € is to vanish identically (i.e., for all c), the
coefficient of each term must be zero. So, my problem is: choose the a

s0 that

<S8 » = a +L <§. > a . (24-48)

This is a discrete version of a Volterra integral equation, and is solved as

follows. Define a sequence of operators Qn’

0; =8 (24-49)
Qy 7 5y = 5107, (24-50
n-1 _
Q =8, - 8.0 7, » ol (24-51)

=1

Taking the expectation value of (20-51) and comparing with (24-48), you see

that the desired solution is just
a = <Q> (24-52)

Now, returning to (24-47) with this result, we have

. ~ L0 .-k (9.8 m -
<Cx = <C>O + kgl 3 <SkC>O 1 - 21 & <Qn>o . (24-53)
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In expanding this, note that the double sum can be written as

Z: Si k-+m ii n ?if
£ <§, C> <Q » = € <5, C> <Q_ , > (24=54)
=1 =1 ko no ) =1 ko n-ko

and we might as well add the term with n=1, since it vanishes anyway, having

no terms at all. So, we have

= n-1
n
<> = <C>O + 2;& £ <SHC>0 - g;l <SkC>0<Qn_k>O - <Qn>O<C>0 (24-55)

and, comparing with (24-51), we get a pleasant surprise; patience and virtue
are rewarded at last with what we had no¢ right to expect in such a problem;

a neat and simple final result:

o
hn|

n ’ -
<C» = <C>sz;1 £ [<an>o - <Qn>o<c>?} . | (24-56)
The n'th order contribution to <C> is just the covariance, in the unperturbed
ensemble, of Qn with C. The first-order term in (24-56) has long been known;
to the best of my knowledge, Steve Heims was the first person to see that it
can be extended to all orders. In several years of living with this formula,
and seeing what it can do for us, I have come to regard it as easily the most
important general rule of statistical mechanics; almost every "useful"
calculation in the field can be seen as a special case of it,

So, this is the general perturbation expansion that we'll use. Every
caleulation I do from now on will be a special case of the application of
Heims' theorem (24-56). Now, the first order correction of course is alwavys

the most important one. The first order term has a symmetry property which

follows from this cyclic property of the trace, Eq. (24-11); and let me just
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show that to you. To first order, since Ql = Sl’ I have simply

] ]
<(r = <C>O = €r51C>0 - <Sl>0ac>0 (24=57)

but 1

so that

1
<g.> = J dx<e ¥4 poFA,

lo
o
1
[ dx Tr[e(l_x)A B Xﬂ
0
- . (24-58)
Tr[eAJ
Now, as in (24-11), it is true generallv that Tr{(FG) = Tr(GF); and so
o1
J dx Tr(éXA e(l—}{)A % Tr[eAB}
o) L
<g > = - = = <B> , {24-59)
Lo Tr[eA] Tr(eA) °
50 the first-order correction always reduces to
1
<C» — <C> = ¢ ( dx<e_XA BeXAC> - <B» <(C=» . (24-60)
o o o o
o
[At this point, we can verify Eq. (24-28). Make the choices
- - _ - A
A== AF) - .- A F ., eB = - 60 F . Then Z(a;..A ) = Tr(e"] and from
the definition of a deriwvative,
P e - S
> logz |1 |, 2y e A ] - [y ] (2461
T P S
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In the limit ﬁkkéo, only the first~order term survives, and so

Tr[éA S ] <B;*
3 78 X = 3 J\l > ] (24-63)
K k k

But, using (24-59), you see that this is just {(24-28)].

Now I want to show vou a very important symmetry property; if I inter-
change B and C in the right-hand side of (24-60), I don't change it. The
last term I have worked into a form where it 1s obvicus. We still have to

play with the first one a little bit. Again, let's write this as the ratio

of two traces. 1 1
f dx Tr[e(l_x)ﬁ Be™? ¢

1
dxce TR pXA o> - 0 - " J (24-64)
0 Tr ()

Q

This time I choose to interchange matrices as follows,

1 1
.
‘ dx Tr e(l-X)A BeXA C = J dx TrteXA Ce(l_x)A BJ . (24-65)

;

0 0

Now for any f(x}, we have

1 1
[ f(x)dx =J f{l-x)dx (24-66)
0 0

consequently we can write (24-65) as

1
[ dx Tr[e(l_x)A CeXA %} s (24-67)

o]

and writing this back as an expectation

1 l
J dx<e-XA BeXA(3> = J dx<e-XA CeXA B> ) (24-68)
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After all this, the only thing that has happened is that I've interchanged
B and C.

Now this is a very important symmetry property. If I perturb my dengity
matrix by adding in formation about B and I calculate what effect that makes
on my prediction of C, it is the same as if T had perturbed my density matrix
by putting in information about € and calculated what effect that makes on B.
In the next Lecture, I'1l show you a whole string of physical reciprocity
laws that come out of (24-68),

Again, I'm leaving you on a note where we have an enormous amount of
abstract stuff and you haven't seen the physical problem. In the next two

Lectures, we'll make up for that.
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