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SUMMARY OF BASIC RULES AND NOTATION

Deductive Logic (Boolean Algebra): Denote propositions by
A, B, etc., their denials by a = "A is false," etc. Define
the logical product and Togical sum by

AB
A+B

"Both A and B are truye."
"At Teast one of the propositions, A, B is true.”

Deductive reasoning then consists of applying relations such
as AA = A; A(B+C) = AB + AC; AB+a = ab+B; if D = ab, then
d = A+B, etc., in which the = sign denotes equal "truth value."

Inductive Logic (probability theory}: This is an extension
of deductive logic, describing the reasoning of an idealized
being {our "robot"), who represents degrees of plausibility
by real numbers:

(AlB) = probability of A, given B.

Elementary requirements of common sense and consistency, such
as: (a) if a conclusion can be reasoned out in more than one
way, every possible way must lead to the same result; and

(b) in two problems where the robot has the same state of
knowledge, he must assign the same probabilities, then uniquely
determine these basic vrules of reasoning (Lect. 3):

Rule 1 (AB|C) ={A[BC)(B|C) = (B|AC}{A]|C)

Rule 2: (A|B) + (a|B) =1 _

Rule 3: (A+B|C) = (A|C) + (B]|C) - (AB|C)
4

Rule If {Ay...Ap} are mutually exclusive and
exhaustive, and information B is indifferent
to them; i.e., if B gives no preference to
one over any other, then

(A;1B) = 1/n, i =1,2, ... ,n

Corollaries: From Rule 1 we obtain Bayes' theorem:

(A[BC) = (A[C) %}%ﬁ—)

From Rule 3, if {A1...An} are mutually exclusive,

n
(Ay + ... + A_[B) = 121(A1|B)
If in addition the A1 are exhaustive, we gbtain the chain rule:

n
(B|C) = f(BAHC) = 2 (BIACY(A,]O)
i=1 =1
These are the relations most often used in practical calculations.

(continued on inside back cover)



DPREFACE

This book has grown cover several yvears from a nucleus
consisting of transcripts of tape recordings of a series
of lectures given at the Field Research Laboratories of the
Socony~Mokil Cil Company in Dallas, Texas, during March,
1958 and June, 1963. The lectures were given also, with
gradually increasing content, at Stanford University in
1958, at the University of Minnesocta in 1959, at the
University of Califcrnia, Los Angeles in 1960 and 1961,
at Purdue University in 1962, at Dartmouth College in 19862
and 1263, at the Standard 0il Company Research Laboratories,
Tulsa, in 1963, at the University of Colorado in 1964, at
the University of Marvland in 1968, and at Washington
University in 1966, 1969, 1970 and 1972. The material of
lectures 1-10 and 16-17 was issued by the Socony-Mobil (il
Company as Number 4 in their series, "Collogquium Lectures
in Pure and Applied Science", and is reproduced here, with
permission, in considerably expanded form.

In editing and adding new material, the informal style
cf the original presentation has been retained. This and
the general format are intended to emphasize that the book
is in no sense a textbook or complete treatise, but only a
series of informal conversations (necessarily rather one-
sided}, concerning the foundations of probability theory
and how to use it for current applications in physics,
chemistry, and engineering. The speaker is simply sharing
his views with the audience, and trying to give some more
or less convincing arguments 1n support of them, Cften,
the trend of a lecture was determined by guestions raised
from the audience.

The material is addressed primarily to scientists and
engineers who are already familiar with applied mathematics
and perhaps with certain special uses of probability theory,
such as statistical mechanics, communication theory, or data
analysis, but who may not have had the time to make an ex-
tensive study of modern statistics. Such persons may be
appalled, as I was when I commenced seriocus study of the
field in 1950, by the encrmous voelume of literature dealing
with statistical problems, and may despair of ever mastering
it--not bhecause it is too advanced, but simply because the
field is too large. There is so0 much diverse and intricate
detail that it is almost impossible to locate the underlyving



principles; and one finally succeeds -only to have them dissolve
in confusion and controversy, no two authors being in agreement
about them.

For such persons, we have good news. .Recently, a great
simplification and unification of this field has become pos-
sible. There is a single very simple set of principles, which
can be stated in a few lines and which, when applied to specific
problems, will be found to give automatically conventional
probability theory, the formalism of equilibrium and nonequili-
brium statistical mechanics, the results of communication theorw
and the newest methods of statistical inference, which represent
a great advance over the "orthodox" methods prevalent in the
pericd 1930-1960.

These principles are summarized on the inside front and
back covers of this book. B&Although at present we are able to
give only heuristic {(but nevertheless convincing) arguments
for their unigqueness, there is no difficulty in demonstrating
that they do include the aforementioned applicaticons as special
cases. Therefore, whatever changes in viewpoint may come in
the future, these principles will retain at least their didactie
value, as a concise summary of presently known statistical
methods.

Current applications have advanced. toc the point where the
perennial ceonfusion surrounding foundations of probability
theory now poses a seriocus threat to further progress. In
particular, we have struggled for over two centuries with con-
centual problems involving the relation between abstract proba-
bility theory and the "real"” world.:. Should we use probability
only in the sense of describing freguencies in some "randon
experiment”, or is it legitimate to interpret the mathematical
rules in the broader Laplace sense of a "calculus of inductive
reasoning?" In my opinion, the: time has come when such gues-
tions must be settled., Until this is done we cannot hope to
resolve the paradoxes ocf quantum. theory and irreversible sta-
tistical mechanics, cor even to justify the use of probability
theory in describing time-dependent phencmena.

Because of conceptual difficulties with Laplace's view-
peint, many attempts have been made to evade the general
problem of inductive reasoning, and to develop probability
theory from more restrictive postulates concerning limiting
freguencies (i.e. the von Mises "collective", etc.). This
approach encountered such great mathematical and logical dif-
ficulties that i1t has been almost completely abandoned; but
strangely encugh, the intclerance of broader views ocf proba-
bility has survived. Thus, today most writers on procbability
and statistics . take the curious position of admitting that a
probability cannot be defined merely as a frequency, but still
insisting that it must always be interpreted as a frequency
in applications. :
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The theory developed here is more general than in conven-
tional expositions because the rules are derived in a way that
makes it clear that neither the notion of probability nor the
mathematical rules of probability theory depend on such concepts
as random variables, random experiments, or relative frequencies.

According teo the viewpoint expounded here, consideration of
random experiments is only one particular applicatien {(and not
even the most important one) of probability theory; the rules
apply equally well to general inductive inferences where no
random experiment is inveolved-in any way. Indeed, most ap-
plications of probability theory can be formulated and carried
to completion without ever introducing the notion of a "random
variable™". This is demonstrated repeatedly in the following
text, particularly in Lectures 5, 6, 8, 8, 11 and 18.

In ocur emphasis on the conceptual, rather than the purely
mathematical, problems we are necessarily dealing almost con-
stantly with controversial aspects of probability theory. One
of the most difficult problems of principle confronting a person
trying to apply the theory (treatment of prior information) has
been debated wvigcerocusly on philoscphical grounds for over a
century, without being brought perceptibly nearer solution.

In this book (particularly, Lectures 10 and 12) we are able

to report some progress in reducing these vague philesophical
guestions to definite and answerable mathematical ones, and in
sufficient. generality to cover most current applications. How-
ever, we make no claim to have fully resolved the situation,
about which L. J. Savage has remarked that "there has seldom
been such complete disagreement and breakdown of communication
since the Tower of Babel.™” Indeed, we make no c¢laim to have
proved anything at all, in a sense which would be accepted as
rigorous by modern mathematician. But the arguments given here
are, I believe, sufficiently compelling to Jjustify a claim that
we have shifted the burden of proof kack to those writers who
persist in asserting that the Laplace viewpoint is nonsense,
and only the strict frequency interpretation isg respectable.

The idea of independent repetitions of a random experiment,
which the "freguentist” usually considers essential to the wvery
notion of probability, is from our standpoint only a very special
case of an exchangeable sequence. We are able to give, in
Lectures 16 and 17, a fairly complete digscussion of connecticns
between probability and frequency in this case, via straight-
forward mathematical deducticn without any appeal to arbitrary
postulates about the relation between them. Similar, and egqually
general, connections arise in nearly every other application.

As a result, we will claim~-nct as a theorem, but as an inductiwve
generalization to which no exception has been found--that there
is never any need to postulate such relations. All the connec-—
tions between probability and freguency that are actually used
in applications, far from conflicting with the Laplace-Bayes
"inductive reasoning” form of probability theory, are derivable
as elementary mathematical consegquences of that theoxry.
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a2 word of explanation and apology to mathematicians who may
‘happen on this beook not written for them:; yvou will find here no
appeal to the notions of Borel fields and Radon~Nikodym deriva-
tives, no use cof sets or measure theory other than an occasiocnal
"almost everywhere" remark, and no Lebesgue-Stieltijes integrals.
I am not opposed to these things, and will gladly use and teach
them as .soon as I find one specific real application where they
are needed; Never having uncovered such a problem, either in
my own work or in all the statistical literature known toc me,
but knowing that their introduction would discourage many from
reading this book, I have decided to forego them. From the
standpoint of probkability theory.as I see it, they add little
rigor to the subject, but gerve rather to generalize and extend
it in a direction different from the one we are traveling. We
get along happily and.without impediment using Riemannian in-
tegrals with integrands interpreted, when convenient, in the
sense of generalized functions. It is well established that,
in fourier analyslis, this procedure ig .actually more powerful
and appropriate. to.the subject than the measure-theoretic ap-
proach. I think a good case can be made for the view that this
holds also in probability theory.

Nec author can hope to give proper acknowledgement to all
those wheo have influenced his thinking: the list would be as
long as the boock. In my own case, however, the greatest debts
must be tc Sir Harold Jeffreys, R, T. Cox, C. E. sShannon, ang
G. Polya, the last three for reasons which will be clear from
the text. In the case of Jeffreys, I would like to recall the
fellowing anecdote.

When, as a student in 1946, T decided that I ought to learn
some probability theory, it was pure chance which led me to take
the book "Theory of Probability" by Jeffreyvs, from the library
shelf, In reading it, I was puzzled by something which, I am
afraid, will also puzzle many who read  the present bock. Why
was he so much on the defensive? It seemed to me that Jeffreys'
viewpoint and moest of his statements were the most cbvious common
sense; I could not imagine any sane person disputing them. Wwhy,
then, did he feel it necessary ko insert so many interludes of
argumentation vigorously defending his viewpeoint? Wasn't he
belaboring a straw man?

This suspicion disappeared quickly a few yvears later when
I consulted another well-known book cn probability (Feller, 1950Q)
and began to realize what a fantastic situation exists in this
field. The whole approach of Jeffreys was sunmmarily rejected
as metaphysical nonsense, without even a description. The author -
assured us that Jeffreysg'® metheods of estimation, which geemed
to me so simple and satisfaetory, were completely erroneous,
and wrote in glowing terms about the success of a "modern theory",
which had abolished all these mistakes.
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Naturally, I was eager to learn what was wrong with Jeffreys'
methods, why such glaring errors had escaped me, and what the new,
improved methods were. But when I tried to find the new methods
for handling estimation problems. (which Jeffreys could formulate
in two or three lines of the most elementary mathematics), T
found that the new book did not contain them. ©On the contrary,
the reader was told that these problems did not belong to proba-
bility . theory at all, but tc a new field, statistical inference,
which was based on entirely different principles, was very ad-
vanced, and should be studied only after one had mastered proba-
bility theory and measure theory.

Throwing caution to the winds, I then took down an armful
of advanced texts in statistics. Here I found an entirely new
vocabulary, new mathematical demonstrations, the most meticulous
attention to minutiae which I could not conceive of as being
relevant to any application, but no underlying unity of method.
I was particularly interested in problems of parameter estimation
of the type which arise in extracting signals from noise; but
instead of giving a single method applicable to all such problemns,
as Jeffreys did, the authors would give several different methods

for treating each individual proklem. They gave demonstrably
different results, and the reader was left with nothing to
choose between them. An "estimator" ought to be, if possible

sufficient, unbiased, efficient, or asymptotically so; but the
reader could find neither a clear statement of the relative im-
pertance of these, nor any general rule by which an estimator
with such properties could be constructed. Instead, the pro-
cedure was merely to guess various functions of the sample values
on intuitive grounds, and then test them for bias, efficiency, etc.

On the other hand, Jeffreys' method (which was, of ccurse,
application of Bayes' theorem in essentially the same way Laplace
had used it) told us at once which estimator should be used. It
was a revelation to me to read Jeffreys' beautifully clear ex-
planation of why the sample mean is not the best estimate of the
pepulation mean except 1n the special case of Gaussian distribu-
tien; in all other cases one should use a weighted average of
the sample values. All of a sudden I could see the justification
for the physicist's common-sense practice of discarding measure-
ments which show a wide deviation, about which mathematical
writers still complain; and a refinement of this in which the
theory tells us just how to assign less weight to more widely
deviating measurements. But none of this was to be found in
the books on statistical inference. Here, for example, authors
quote the well-known proposition that for a Cauchy distribution
the mean of an arbitrarily large. sample is no better estimate
of the populaticn mean (by the criterion of efficiency) than a
single observation, and that the sample median has a rather gocod
asymptotic efficiency: but they do not offer us any reasonable
estimator for the small-sample case. Jeffreys' method determines
a definite weighted average estimator which is better than the
median for any sample size, and much better in the case of small



samples; but I have vet to find an orthodox writer who uses it;
or even acknowledges its existence.

Cbserving these things, I was completely mystified by
every auvthor's contemptuocus dismissal. cf Jeffreys' method,
.which was done invariably on purely philosophical grounds,
without letting the reader see hew it works in even a single
application.

If yousay that method A is better than method B, I think
you cught to mean by this, at the very minimum, that there isg
at least one specific proklem where it leads to a better
answer:; and to prove your point. you need only exhibit that
problem. But I c¢ould not, then or since, find any orthodox
writer who had produced any such example, except for one case
{noted in Lecture 7) where there was an error in the calcula-
tion, and a few others (Lecture .16) based on gross misapplica-
tion of the Bayesian metheod (i.e., taking the solution toc cne
problem and complaining that it is not also the solution to
~an entirely different problem}). Indeed, on working out a few
cases for myself, the ocutcome was invariably the same; when-
ever there was any appreciable difference in the results, it
was. Jeffreys' result which clearly agreed best with common
"gense. Once one understood the mathematical situation, it
was. .easy teo invent problems where the orthodox statisticians'
methods broke down entirely and gave absurd results; but I
- was unable tc produce any case where Jeffreys' methed, properly
.applied, failed to lead to an intuitively reasonable conclusion.

21l this took place just at the time of. appearance of

- Wald's book, "Statistical Decision Functions". It required

. several vears for the full implications. of this monumental
work tc be appreciated, but by now many workers in statistics
have recognized the source of, and remedy for, all this con-
- fusion.

The details og¢cupy much of Lectures 5, 6, 13, 14; but
stated in the briefest terms, the mathematical situation un-
- covered by Wald showed that in all respects that matter in
real applications, Jeffreys was right all along. The most
important. recent advance in statisties has taken us right
back to the methods developed by Baves, Laplace, and Daniel
. Bernoulli in the 18'th century, which generations of statis-
ticians have held to be nonsense. . For twenty years, the
physieist who was fortunate engugh to consult Jeffrevs' book
had at his fingertips statistical methods which were simpler,
more general, and more powerful than anvthing the orthedox
statistician had to offer.

Needless to say, the above assertions are ncot going to
be accepted cvernight in all guarters. If the reader is
puzzled by my repeated lapses into argumentation, I ask him
to realize that I am not only trving tc be constructive and
. give a unified methed, but I am also trving to answer in a
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a single volume all the objections to this method which have
filled the statistical literature for sixty years. In these
sections, T am, in effect, supplying the reader with ammunition
which he will need if he tries to discuss these issues with
colleagues who have been trained only in the "orthodox" point
of view. 1In this connection, I would like to express my grati-
tude to two anonymous reviewers of this book who gave valuable
suggestions on how to strengthen these arguments, and most of
all to a third reviewer, who by his objections reassured me more
than any friendly reviewer could possibly have done, that in
these sections I am not wasting time and space belaboring a
straw man.

The Galileo Strategy. Recently, my attentiocn was callegd
to a remarkable article, "Linguistic Analysis of a Statistical
Controversy", by Irwin D. J. Bross (1963),* which attacks
Bayesian methods in a way that cries out for a constructive
reply. I hope that this boock may serxve that purpose; and to
make it "constructive"” we need to recognize that further debate
cn the philogophical level would be not only fruitless, but it
-would miss the real issue facing us today. As already noted,
we have been debating the philosophical issuve for well over a
century, and perhaps no great harm will be done if it goes on
for another century. But there is a far more important issue
which should, and T think can, be settled guickly.

The question of immediate importance is not whether Bayesian
-methods are 100 per cent perfect, or whether their underlying
philosophy is opprobriocus, but simply whether, at the present
time, they are better or worse than orthodox methods from the
‘standpeint of (a) the actual results they give in practice,

(b} the range of problems where they can be applied, and
(¢) their ease of application.

For example, a large amount of reliability and quality-
control testing is needed in modern technology. In some cases,
particularly, in the aero-space field, acquisition of a single
data point can cost more than the yearly salary of a statisti-
cian. Use of gstatistical methods that fail to extract all the
relevant information from a sample, or fail to make use of
Yelevant pricr information, is therefore not only illegical;
it can lead to staggering economic waste.

As ancther example, statistical methods are destined for
an every-increasing role in helping make fundamental military
and governmental policy decisions. 1In this case, use of methods
that fail to make full use of the available information might
lead to consequences whose magnitude cannot be measured in
economic terms at. all. In a very real sense, statistics has
become too important to allow its methods to be determined
merely by the relative numbers, or aggressiveness, of two
parties in a philosophical dispute.

*Full references are given in Appendix A.
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Tc assert the superiority of either apprcach on grounds.of
scme philosophy about the "true meaning of probability" without
examining the facts concerning performance in specific cases.
would be to cast out everything we have learned about scientific
methodology and to return tcoc the methods of that learned Doctor
of the seventeenth century, who assured the world his theology
had proved there could be no moons about Jupiter, and stead-
fastly refused to look through Galileo's telescope.

Since 1953, I have been making constant routine use of
Bayesian methods.in statistical problems of physics and engi-
neering, and comparing their results with those obtained by
orthodox metheds. As a result, I believe that the practical
issue can be removed entirely from the realm of ideology, and.. .
settled on the level of demonstrable fact. To indicate how this
can be deone, I coffer this bocock as a small, but revealing glimpse
through the Galileo telescope of statistics.

To define cur field of view let us start, as did Bross, by
guoting the words. of J. W. Pratt (1963}: "Now that I have ceased
pretending. to be impartial, .I mavy point out .that no connected
argument leading to. the orthodox methods has ever been advanced. -
Neyman and. Pearson. eonkributed vitally to our understanding by
their formulation of statistical problems, but they have never
claimed their methods were more than ad.hoc procedures with some
pleasant properties. Their methods, while extremely. ingenious
and useful, are not completely satisfactory, let alone uniquely
objective and scientific.”

Unlike Breogs, I am unable to discern any "Neoc-Bayesian Jjargon".
or "incongruencies!” here; only a. clear and accurate statement of
fact. But, since a lengthy attack on this statement has been
published, it will be of interest to see how 1t can be defended. .
Bress particularly objects to the remark that "ne connected
argument"” has.been advanced. for the orthodox methods, and. he.
specifically brings up the matter of significance tests and .
confidence intervals, Therefore, we will give particular sgrutiny
to these topics [as previewed in Jayneg (1973)] when we come to
them in the gourse of. the lectures. In fact, we give a guite
general proof that these methods, when improved to the maximum
possible degree by taking into account all ancillary statistics,
lead finally to just the results that could have been derived in
three lines by the methods of Laplace.

I am indebted to S§. R. Faris, John Heller, L. Massé, 5. M.
Poulks, and many other workers at the Socony-Mobil Field Reseaxrxch
Laboratories in Dallas, for thelr kind hospitality during my two .
vigits, and for undertaking the monumental task of preparing a
typed copy of the lectures, complete with equations, from .the
tape recordings. . Only a person who has done this kind of work
can realize how much labor is invelved.

Many of the details given. in connection with applications in

the last half of the book were worked out by, and appear in the
docteoral theses of, my students, Perry Vartanian, Steve Heims,
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Larry Davis, Ray Nelson, Douglas Scalapino, Baldwin Robertson,
Joel Snow, Wm, C. Mitchell, and Charles Tyler.

I am indebted also. to.several hundred students and colleagues
who have attended these lectures at various places. By their
penetrating questions they have forced me to think much more
carefully about many of the issues raised in .these talks.

Finally, it should be emphasized again.that in most places
the text is a literal transcript of actual lectures, and that
expressions used in speaking are not always those one would use
in writing. 1In particular, the term "statistician" is often used
as an abbreviation for "statistician of the extreme objectivist
school of thought which has dominated the field for several
decades."” In actual fact, many statisticians are well aware
of the points made .here, and would find themselves in agreement
with my arguments. We have noted. the wviews of Pratt; as other
examples one can cite the work of D. V. Lindley (1965} and I. J.
Good (1959) who outlines a "necoclassical"” theory in which "Bayes"
theorem is restored to a primary position from which it had been .
deposed by the orthodox statisticians...™. I heope that statis-
ticians of the neoclassical persuasion {whose numbers are rapidly
increasing} will understand, and not be cffended by, my use of
the term.

E. T. Jaynes
St, Louis, Missocouri

June 1973
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TLecture 1

INTRODUCTION AND BACKGROUND

Let's start out by putting our motto on the board:
"PRCBABILITY THECRY IS NOTHING BUT COMMON SENSE
REDUCED TO CALCULATION" (Laplace).
This is the motto and this is the exact summary of everything I'm going to
tell you in all these talks.
Our main concern is with applications of prcbability theory, but we're
going to have to gspend some time on foundations cof probability théory for
a very simple reason. Before you can apply any theory to any problem, vou
first have to make the decision that the theory applies to the problem. It
turns out that this is not always an easy decisicon to make. In most of the
problems in science and engineering where you might think of using probability
theory, vour decision as to whether its use is really Jjustified can depend
entirely on how you approach the fundamentals of probability theory itself.
In other words, what do we mean by probability? Before we can discuss any
applications, we'll have to make up our minds about that.
My purpose in these talks is To show that, with a little different
approach to fundamentals than the cone usually given nowadays, we can extend
the range of practical problems where probability theory can be used, and

in some known applications we can simplify the calculations.



Lecture 1, Section 1.

1.1 Historical Remarks®

Before going into details a few historical remarks might be of interest,
to show how it could happen that a person who is a rather strange mixture
of theoretical physicist and electrical engineer could get really worried
about the foundations of probability theory. The things that I'm going to
talk about here arose from my attempts,'over a period of ten years, to under-
stand what statistical mechanics is all about and how it is related to com-
munication theory. In 1948 I was very fortunate in being a graduate student
in Princeton, and I tocck a course in statiétical mechanics from Professocr
Bugene Wigner, who went very carefully into the various approaches to statis-
tical mechanics and in particular, pointed cut the unsolved problems that
still existed. I was lmpressed by the fact that everyone who has written
about the fundamentals has a very ready way of resclving all the famcus
paradoxes; but that no two pecple have done this in the same way.

It was just during this year that Shannen's papers (Shannon, 1948} %%,
announcing the birth of information theory, appeared. I discovered them
accidentally in the Princeton library, took them back to my room, and dis-
appeared from the face of the earth for about a week. When I finally came
cut, I ran through the halls of Princeton explaining to anvbody who would
listen to me (and a few who wouldn't) that this was the most important piece
of work done by any scientist since the discovery of the Dirac eguation.

It's almost impossible to describe the psychological effect of seeing our

old familiar expression for entropy derived in a completely new way, and

*This and the following Section describe the histery and motivation of the
work repcrted. The reader who does not care about this and wants to get on
with the constructive development can turn immediately to Lecture 2.

#*Insertions of this type refer to the General Bibliography in Appendix A.



Lecture 1, Section 1.1.

then appiied to problems of engineering which apparently have no relation to
thermodynamics. But all of the inegualities, which are often associated
with the second law of thermodynamics, turn out also to be statements of the
greatest significance in an entirely different context. It seemed to me
that there must be something pretty important that we could learn from this
situation.

This feeling was shared by a number of physicists and there was quite
a rush to exploit all these wonderful new things. But then something went
wrong. Quite a few papers appeared in the physics journals inspired by
Shannon's work, but there was a scarcity of new results useful to physics.‘
This caused a psychological reaction, and by 1956 Information Theory had
acquired a bad reputation among physicists.

I think the time has come now when physicists might find it worthwhile
to take a sober second look at Information Theory and what it can do for them.
And with the benefit of hindsight, we can see what went wrong in those first
few years. The first efforts were based only on a mathematical analogy
kbetween statistical mechanics and communication theory, in which the appear-
ance of the same mathematical expression was the dramatic thing. The essen-
tial link between them—--the thing I want to try teo show here-—-is not one
of mathematics, but something more subtle. Until you see what the link is,
you can't expect to get results out of this situation. Now let's see why
this is so.

The mere fact that a mathematical expression like

Zpi log pi
shows up in two different fields, and that the same inequalities are used,
doesn't in itself establish any connection between the fields. Because

after alil,



ILecture 1, Section 1.1.

e, cos 6, J (z)
o

are expressicns that show up in every part of physics and engineering. Every
place they show up, the same equalities and the same inequalities turn out

to be useful. Ncobody interprets this as showing that there is some deep
profound connection between, say, bridge building and meson thecry. The
reasen for that is the underlying ideas are entirely different.

Now the essential content of both statistical mechanics and communica-
tion theory, of course, does not lie in the eguations; it lies in the ideas
that lead to those equations. And at first glance there doesn't seem to
be any relation at all between the kind of reasoning that the physicists
go through in statistical mechanics and the kind of reasconing that Shannon
went through. We might describe this by paraphrasing a statement of Albert

Einstein (Einstein, 1%4&) that I like wvery much: Science is fully justified

in identifying these fields only after the equality of mathematical methods

has been reduced to an equality of the real nature of the concepts. You

recall that Einstein insisted on exactly this point in connection with gravi-
tational and inertial mass. It had been known, for 200 years befeore Einstein
was born, that gravitational mass and inertial mass were experimentally
proportional to each other; by proper choice of units you can make them
numerically equal. Einstein refused to identifyv them; i.e. to accept this
empirical equality as a general principle of physics, until he could reduce
inertial mass and gravitational mass to the same concept. He had to pay a
rather high price to do this. Before he could find a viewpoint from which
he saw them as special cases of the same idea, he had to invent General
Relativity.

It is interesting to note that this principle was appreciated egually

well by J. Willard Gibbs, many yvears earlier. In his response to the Ameri-
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can Academy of Arts and Sciences of Boston, on the occasion of his being
awarded the Rumford Medal {(January 12, 1881), Gibbs remarked: "Cne of the

principal objects of theoretical research in any department of knowledge is

to find the point of view from whieh the subject appears in its greatest

simplicity." Gibbs had shown in his famous work of 1878 that classical
thermodynamics appears particularly simple if we regard entropy as the funda-
mental quantity; from its dependence on energy, volume, and mole numbers

all thermcdynamic properties of a system are determined.

These examples could be used with profit in all parts of science. We
won't commit any serious error of methodology if we try to follow the examples
of Gibbs and Einstein in our problem, because it's really a very similar
sort of thing. So the job as I saw it was not to try to inveant any new
fancy mathematics. That would presumably come later if we were successful;
but the immediate jok was to try to find a viewpoint from which we cculd see
that the reasoning behinéd communication theory and statistical mechanics
wasg really the same. As it turns out, to do this requires a rather drastic
reinterpretation of both fields; and this reinterpretaticn clears up several
outstanding difficulties in each field.

1.2 The Gibbs Model.

Now to state the prcblem a little more specifically, I'd like to go
very briefly into the version of statistical mechanics that Gikks gave us
{Gibbs, 1902), and try tc show the sense in which my work is not only an
attempt to generalize his theory, but also an attempt to make use of another
legson in methodology which he gave to science.

Most of the discussions about the foundations of statistical mechanics
censist of Mr. A criticizing the basic assumptions of Mr. B and this process

is always fruitless and inconclusive. It never leads to any useful results.
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However, there is one person who has kept free of that, and his name is J.
Wil;ard Gibbs, I think of all people who have written on statistical mecha-~
nics, he is the only person who has stayed above this kind of criticism,

He did this by a very claver trick. He avoided criticism of his assumptions
by not making any assumptions, and by pointing this out to the reader in the
preface to his book.

Gibbs simply constructed models in which he assigned certain prcbhabi-
lities for certain situations, and in introducing them he did not say a word
about why he chose those particular probabilities. In the preface he tells
us that the reason for this has something to do with difficulties which the
theory faced in his day, and in particular he mentioned the fact that the
experimental specific heat of diatomic gases comes out only 5/7 of what he
expected it to be on the basis of his thecory. There are a few other dif-
ficulties. The paradex akout entropy of mixing, for example, and the fact
that his theory failed to predict the actual values of equilibrium constants
and vapor pressures until you added still more assumptions.

I like to think that there is ancther reason why Gibbs operated this
way. 1t was maybe even more compelling that the temporary difficulties.

Of course, all those difficulties we recognize today as signaling the first
cluesg to the guantum theory. We all know that Gibbs was a very shrewd old
gentleman whc was a master of science as it existed in his day. I think he
was equally well a master of psychology. He realized that the physics of
his day and the preobability theory in his day didn't provide any really
convincing arguments to justify the probability assignment of his canonical
ensemble in terms of more fundamental things. 2and yet, his work had shown
that it had all the formal properties which convinced him that it must be

right. It clearly was the neatest, most elegant, and simplest way of des-

cribing thermodynamics.
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Suppecse yvou were in a situation like that. Which is the best way to
proceed? I think Gibbs said to himself, "If I try to say a single word
to justify this canonical distribution, if I try to invent any argument to
back it up, then almost everybody who reads this work will conclude, quite
irrationa}ly, that the validity of my equations depends on the validity of
those arguments. But I know in my bones that this theory is right indepen-
dently of any arguments I am now able to give, because it has formal proper-—
ties which make it superior to any other. So I will say as mach as possible
about what I know, and as little as possible about what I don't know. The
real justification will have to come later." So he simply introduced his
canonical ensemble by entitling a chapter "On the Distribution in Phase
called Cancnical, in which the Tndex of Probability ig a Linear Function
of Energy," and that was it. He goes right on into the discussion.

So you can't say to Gibbs, "How do you know that this is the right
probability distribution?" He'd be perfectly justified by answering some-
thing like this: "I didn't say it was the right probability distribution,
and I'm not sure the guestion has any meaning. I'm simply constructing a
model for my own amusement. My canonical probability assignment is not
derived from anything, it's not an assumption about anything. It's a defi-
nition of which model I propose to study. After this model is set up, we
can compare 1ts predictions with experimental facts and see how far this
model is able to reproduce thermodynamic properties of systems. If the
modeal turns out to be successful, then it will be worthwhile to consider
whether, and in what sense, we might consider it to be correct.”

I think that's a very clever attitude to take - it aveoids so much useless
argumentation. It's a good example also of the methodology we really have

tc use in all theoretical physics. If we had to be sure we were right before

starting a study, we would just never be able te do anything at all. We have
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to start out by arbitrarily inventing something, some model, which we don't
attempt to justify in terms of anything deeper at the time, and see where

it leads us. Every once in a while we find that we can invent a model which
has very great success in reproducing cobserved phenomena, and whenever this
happens we get convinced that there must be some deeper reason why this

model is correct. Then we repeat the process. We try to invent another
model operating at some deeper level, from which we can deduce the features
of cur old model. The exciting thing about this is that when we finally
succead, we always find that the new model ig much simpler than the o¢ld model,
but at the same time is much more general.

There are all sorts of examples of this in the history of science which
vou all know akbout; for example, in electromagnetic theocry, the experimenta-
lists had produced a large number of separate eguations and rules of thumb--
the work of Coulomb, Ampere, Faraday, Henry, and so on. A&And then these were
all summed up in Maxwell's eguations. Maxwell's equations are much simpler
than this series of models which they replaced; but still they are more
general, and predicted new phenomena which the experimentalists hadn't found.
In fact, Maxwell's equations proved toc be so general that to this day, a
century later, they still provide the theoretical basis for all of electrical
engineering.

Perhaps the best example of all is the tremendous complication which
spectroscopy got into by the esarly 1920's. All the rules of thumb that
were developed in predicting what spectral lines would occur and which ocnes
would not, estimating where they would be, and so on. These rules of thumb
were guite successful, of course. You could use them for practical prediction.
But then we have the Schr¥dinger equation, which suddenly in a single dif-

ferential eguation says everything that all these ruleg ever said, and much

mnore; so much more that we are still finding new things from it.
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How has the Gibbs model fared? We'wve had it for 70 years now. It has
fared very well, except for these minor changes which have something to do
with quantum theory. We find that in every case where you can work out the
mathematics, the model has been successful in reproducing cbserved properties
of matter in the limiting case of thermal egquilibrium. There are some equili-~
brium cases where the mathematics is rather resistant to calculation, parti-
cularly the phenomenon of condensation; and we don't really know whether the
Gibbs model exhibits condensation for general attractive forces, in the sense
of being able to prove it rigorcusly. But I den't think anyone doubts that
the Gibbs model would be successful here if we were just better mathematicians
than we are. 3o for the sake of the argument, let's just grant that the
Gibbs model has turned out to be completely successful in reproducing all
features of equilibrium thermodynamics.

Because of its success, naturally, attempts would be made to Jjustify
the Gibbs model in terms of something deeper. Unfortunately, these attempts
do not seem to have been successful; at least I don't think there is a single
one of them which is so considered by any clear majority of the physicists
who worry about these things.

It hasn't been easy to get rid of the idea that the ultimate justifi-
cation of the Gibbs model must be found somehow in the laws of physics.

By this we mean particularly, say, the Schrddinger equation or the Hamil-
tonian equations of motion on a microscoplic level., For this reascon you
have this enormous amount of work that has been expended on "ergodic™
approaches to statistical mechanics, in which we tried to prove that the
time average of some quantity for a single system would, in consequence of
the eguations of motion, be egual to an average over the Gibbs ensemble.

But the results of this apprcach have remalned inconclusive, and it has

done ncthing to extend the Gibbs model to more general situations, as real
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advances in understanding always do.

More specifically, while the ergodic arguments have led to a number of
important theorems (such as reduction of the original problem to that of
metric transitivity), they have led to no definite conclusions proved appli-
cable toc real physical systems even in the eqguilibrium case; and they have
provided no clues as to how a general thecry of irreversible processes might
be set up.

I don't want to go at this point inte any detailed criticism of past
attempts to justify the Gibbs model, because that would take a lot of time
and would again be one of those fruitless and inconclusive kinds of criticism
which leads nowhere. But I'd like to indicate why it seems to me that any
appeal to the laws of physics may miss the point. It is simply that the
problem is not to justify any statement about physics. The problem is to
justify a probability assignment, and you can't deduce probability from
certainty. Nc matter how profound your mathematics is, if you hope to come
out eventually with a probability distribution, then some place you have
to put in a probability distribution; and nothing in the equations of motion
tells you what distribution to put in. They can give you only relations
between probabilities, at different times.

You might note that this argument has nothing to do with whether we're
considering classical or guantum statistical mechanics. In classical theory
we have our precisely defined states where we've specified the value of every
coordinate and every momentum to arbitrary accuracy, and the equations of
motion then determine unigquely what every coordinate and momentum must be
at some other time. In gquantum theory we don't use that method of descrip-
tion, but we still have our precisely defined states. They now are points in

a linear vector space, or Hilbert space, whose motion is uniguely determined

by the SchrBdinger equaticn.
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The analogy goes a good deal deeper; Licuville's theorem in the class-
ical case finds its analog in the fact that in quantum theory the eguatiocns
of motion induce a unitary transformation, which is therefore a measure-
preserving transformation, in the Hilbert space. The fact that the total
phase volume below a certain energy is finite in the classical case, has
its analog in the fact that the linear manifold spanned by all eigenfunctions
of the Hamiltonian with energies below a certain value, is a finite-dimen-
sicnal vector space. These are about the only properties which are actually
used in the ergodic arguments. Therefore practically everything that has
been said about these problems in classical statistical mechanics carries
over immediately to guantum theory.

One of our major obljectives is to justify the Gibbs cancnical probability
distribution in terms of scmething more fundamental. The only thing we could
accomplish by applying the laws of physics is that we could carry out trans-
formations and express the same distribution in terms of some other parameters.
But the distribution of Gibbs is already as simple as any we could hope to
get in this way, and afterwards we would still be faced with exactly the
same problem; to justify some probability assignment.

It seems to me that if we're ever going to justify the Gibbs model in
any meaningful way, we'll have to justify it directly on its own merits,
without considering the laws of physics at all. In other words, the problem
is to find a viewpoint from which we can see that the Gibbs model, and
Shannon's model of a communication process, are special cases of a general

method of reasconing.

In the next twe lectures, we're going te take what may seem like a
rather leng detour, and study the general problem of plausible reasoning--

also known by the more highbrow, and more restrictive, name of inductive

reasoning (I'm not going to bother to distinguish betwesn these terms).

11
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But if you'll bear with me, I think you'll find that we can give, not quite

rigorous theorems, but very powerful heuristic arguments, which indicate

what this more general viewpoint is.



Lecture 2

PLAUSIBLE REASONING

Suppose some dark night a policeman walks down the street, and the
place is completely deserted apparently; but all of a sudden he hears a
burglar alarm, he locks across the street, and seses a jewelry store with a
broken window. Also, there's a gentleman wearing a mask, c¢rawling ocut through
the broken window, carrying a bag which turns cut to be full of watches and
diamond rings. The policeman doesn't hesitate at all in deciding this
gentlieman is dishonest. But by what reasoning process does he arrive at
this conclusion?

2.1 Deductive and Tnductive Reasoning

A moment's thought makes it clear that our policeman's conclusion was
not a logical deduction from the evidence; for there may have been a perfectly
innocent explanation for everything. It ﬂight be, for example, that this
gentleman was the owner of the jewelry store and he was coming home from a
masquerade party, and didn't have the key with him. He noticed that a passing
truck had thrown a stone through the window, and he was merely protecting
his own property. You see, the conclusion which seems so easily made was
certainly not an example of logical deduction.

Now while we agree that the policeman's reasoning process was not an
example of logical deduction, we still will grant that it had a certain
degree of validity. The evidence didn't make the gentleman's dishonesty

certain, but it did make it extremely plausikle. This is an example of the

13



Lecture 2, Section 2.1.

kind of reasoning which we all have to use a hundred times a day. We're
always faced with situations where we don't have encugh information to permit
deductive reasoning, but still we have to decide what to do.

The formation of plausible conclusions ig a very subtle process and
it's been discussed for centuries, and I don't think anvone has ever produced
an analysis of it which anyone else finds completely satisfactory. These
problems haven't been sclved and they're certainly not geoing to be sclved
in these talks; but T do hope that we'll be able to say a few new things
about them.

All discussions of these questions start out by giving examples of the
contrast between deductive reasoning and plausible reasoning. The syllogism
is the standard example of deductive reasoning:

If A is true, then B is true

A is true

Therefore, B is true
oY, its inverse:
If A is true, then B is true

B is false

Therefore, & 1s false
This is the kind of reasoning we'd like to use all the time; but, unfor-
tunately, in almost all the situations we're confronted with we don't have
the right kind of information to allow this kind of reasoning., We fall back
on weaker forms:
If A is true, then B is true

B is true

Therefore, A becomes more plausible

i4
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The evidence doesn't prove that A is true, but verification of one of its
consequences does give us more confidence in A. Another weak syllogism,
still using the same major premise, is:

If A is true, then B is true

A ig false

Therefore, B becomes less plausible

In this case, the evidence doesn't prove that B is false; but one of the
possible reasons for its being true has been eliminated, and so we feel less
confident about B. The reasoning of a scientist, by which he accepts or
rejects his theories, consists almost entirely of syllogisms of the second
and third kind.

Now the reascning of the policeman in this example was not even of the
above types. It 1s best described by a still weaker form:

If A is true, then B hecomes more plausible

B is true

Therefore, A becomes more plausible
In spite of the apparent weakness of this argument, when stated abstractly
in terms of A and B, we recognize that the policeman's conclusion had a very
strong convincing power. There's something which makes us believe that
in this particular case, his arcgument had almost the power of deductive
reasoning.

This shows that the brain, in doing plausible reasoning, not only decides
whether something becomes more plausible or less plausible, but it evaluates
the degree of plausibility in some way. B2And it deces it in some way that
makes use of our past experience as well as the specific data of the problem

we're reascning on. Te¢ illustrate, for example, that the policeman was

making use of the past experience of policemen in general, we have only to
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change that experience., Suppose that these events happened several times
every night to every policeman, and in every case the gentleman turned cut
to be completely innecent. Well, very soon policemen would be ordered to
ignore such trivial things. This shows that in our reasoning we depend
very much on past experience--or as we will pregently call it, on prior
information--to help us in evaluating the degree of plausibility. This
reasoning process goes on unconsciously, almost instantanecusly, and we

conceal how complicated it really is by calling it common sense.

Professor George Polya has written three beccoks on plausikle reasoning
(Polya, 1945, 1954), pointing out all sorts of interesting examples, showing
that there are fairly definite rules by which we do plausible reasoning
(although in his work they remain in gqualitative form). Evidently, the
deductive reasoning described above has the property that you can go through
arbitrarily long chains of reasoning of this type and the conclusions have
just as much certainty as the premises. With the other kinds of reasoning,
the reliability of the conclusion attenuates if you go through several stages.
Polya showed that even a pure mathematician actually uses these weaker kinds
of reasoning most of the time. Of course, when he publishes a new theorem,
he'll be very careful tc invent an argument which uses only the first kind
of reasoning; and his professional reputation depends on his ability to do
this. But the process which led him tc the theorem in the first place almost
always involves one of the weaker forms.

Now the proklem I'm concerned with is this. Is it possible to reduce
this process of plausible reasoning to guantitative terms? The idea of
inventing a mathematical theocxry of reascning, both deductive and inductive,
is a very old cone. Leibnitz had speculated on such a "Characteristica

Universalis,” almost 200 years before Boole's The Laws of Thought (1854)

provided a calculus of deductive reasoning. When the theory of probability

le
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was developed, culminating in Laplace's Theorie Aralytigue (1812), it was

believed to be the long-awaited "calculus of inductive reasoning,” fully
developed. Throughout the 19th century this was the prevailing view, ex-
pounded by such people as Laplace, de Morgan, Maxwell, Poincaré, and many
cthers, And yet, in the 20th century we find that probability theory has
erupted into controversy, almost all of this fruitless, inconclusive kind,
in which one person attacks the assumptions of ancther person.

This issue has been framed rather sharply by Ludwig von Mises (von
Mises, 1957; 1963) who is really violent in dencuncing any idea that proba-
bility theory has anyvthing to do with inductive reasoning. He insists that
it is, instead, "the exact science of mass phenomena and repetitive events.”
On the other hand, Sir Harold Jeffreys (Jeffreys, 1939; 1955) is equally
vigecrous in upholding the opposite view, and insists that probability theory
is exactly what Laplace thought it was: the "calculus of inductive reasconing."”

Well, which is it? I want to point out that it makes a hig difference
in applicaticens. Science and engineering offer many problems where use of
probability theory is entirely legitimate on one interpretation, and entirely
unjustified on the other. Even in cases where both viewpoints would allow
the use of probability theocry, vour decision as to which mathematical pro=-
blems are important and worth working on, can still depend on which view-
peint you adept. (As an example, whose meaning will become clear later:
when approximaticons are necessary, is it the sampling distribution of a
statistic or the posterior distribution of a parameter that should be approx-
imated? The two different schools of thought will give opposite answers
te this; and each regards the mathematical labors of the other as effort
wasted on a false problem.)

Sooner or later, such an unsettled condition in probability theory

couldn't fail to have pretty serious repercussions in thecoretical physics
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and engineering--both of which make more and more use of probability methods.
And so now you see why any serious student of physiecs or engineering must
kecoms werried about this situation., I hope to show in these talks that

some of the outstanding unsolved problems in both physics and communication
theory have their origin in this state of utter confusion which exists in the

foundations of probability theory.

2.2 aAnalogies with Physical Theories

In physics, we guickly learn that the world is toco complicated for
us to analyze it all at once. We can make progress only if we dissect it
into little pieces and study them separately. Sometimes, as I already said,
we can invent a model which reproduces several features of one of these
pieces, and whenever this happens we feel that great progress has been made.
These mathematical mcdels are called physical theories. As knowledge advances,
we are able to invent better and better models, which reproduce more and
more features of the real world. Nobody knows whether there is some natural
end to this process or whether it will go on indefinitely.

In trying to understand common sense, we'll take a similar course.
We won't try to understand it all at once, but we'll feel that progress
has been made if we are able to construct idealized mathematical models
which reproduce a few of its features; that is the methodology of Gibbs.
We expect that any model we are now able to construct will be replaced by
better ones in the future, and we don't know whether there is any natural
end to this process.

The ultimate test of a physical theocry is not, "Can you demeonstrate it
by logic?" but only; "Is it free of cbvious inconsistencies and does it
agree with experiment?" It has taken the human race thousands of years

to comprehend this simple fact. It was utterly unknown to the ancient
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philosophers, and Galileo was the first to demonstrate clearly the advantages
of recognizing it.

It 1s exactly the same in our present problem. The test of any model
of plausible reasoning is not "Can yvou prove that it is correct?" Reszl
life, unfortunately, does not permit such a Utopian program. The only test
which can actually be applied in practice is: "Is it free of inconsistencies
and in agreement with common sense?" It has taken us a long time te realize
this, and I'm sure that there are still many people who will dispute it
vigerously.

The analogy with physical theories goes a lot deeper than a mere analogy
of method. Cften, the things which are most familiar tc us turn out to he the
hardest to understand. Our universities can train people to perform surgery
on the living heart and measure the internal charge distribution of the
proton; but nobody seems to know how to prevent the common cold, and all of
modern science is practically helpless when faced with the complications of
such a commonplace thing as a blade of grass. Accerdingly, we must not
expect too much of our models; we must be prepared to find that some of the
most familiar features of mental activity may be ones for which we have the
greatest difficulty in constructing any adequate model.

There are many more analogies. In physics we are accustomed to find
that any advance in knowledge ultimately leads to consequences of the greatest
practical wvalue, but of a totally unpredictable nature. Roentgen's discovery
of x-rays led to important new possibilities of medical diagnosis; Maxwell's
discovery of one more term in the equation for curl H led to the possibility
of practically instantanecus communication all ovexr the earth.

Our mathematical models for common sense also exhibit, although on a

more modest scale, this feature of practical usefulness. Any successful

model, even though it may reproduce only a very few features of common sense,
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will prove to be a powerful extension of common sense in some field of appli-
cation. Within this field, it enables us to solve problems of plausible
reasoning which are sc involved that we would never attempt to solve them
without its help. Thus the problem of optimum design of an electrical filter
or an antenna (which is just a particular kind of filter, operating in space
instead of in time) can sometimes be solved by applying a model of common
sense. Similarly, we will show that the prediction of the laws of thermo-
dynamics, including all experimentally reproducible features of irreversible
processes, can be viewed as an application of a single, formally very simple
model of common sense.

Models may have practical uses of a guite different type. Many people
are fond of saying, "They will never make a machine to replace the human
mind--it does many things which no machine could ever do." One of the best
answers te this attitude was given by J. von Neumann in a talk on computers
given at the Institute for Advanced Study in Princeton in 1948, which I was
privileged to attend. In reply tc the canonical question from the audience
("But of course, a mere machine can't really think, can it?"), he said:

"Lock hexe. You insist that there is something a machine cannot do. If
vou will tell me precisely what it is that a machine cannot do, then I can
always make a machine which will do just that!"

The only coperations which a machine cannot perform for us are those
which we cannot describe in detail. The only limitations on making "machines
which think" are our own limitations in not knowing exactly what "thinking”
consists of. For further comments on this, see my recent Letter (Jaynes,
1963a). But in cur study of common sense we will be led to some very explicit
ideas about the detailed mechanism of thinking. Every time we can construct
a mathematical model which reproduces a part of common sense by prescribing

a definite set of operations, it becomes a kind of blueprint showing us how
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to build a machine which operates on incomplete data and does plausible
reasoning instead of deductive reasoning. In science fiction, such machines
have been an accomplished fact for many years. In fact, T want to turn
this idea around and instead of asking, "How can we build a mathematical
model of common sense?” I want to ask, "How could we build a machine which

would do plausible reasoning?"

2.3 Intrecducing the Robot

Now the guestion of the process of plausible reascning that actual
human brains use is very charged with emotion and misunderstanding, to the
extent that the only seluticn is to avoid it. Alse, it is so complicated
that we can make no pretense of explaining all its mysteries; and in any
event we are not trying to explain all the abberations and incconsistencies
of human brains. That is an interesting and important subject, but it is not
the subject we are studying here. We are trying rather to understand some
of the good features of human brains.

In order to direct attention to constructive things and away from
controversial things which we can't answer.at present, we will follow the
methodology of Gibbs and invent an imaginary beast. Hig brain is te be
designed by us, so that he reasons according to certain definite rules.

The rules are suggested by preoperties of human brains which we think, or
hope, exist; but by introducing the beast we accomplish the following. You
can't okbject to the thecry on the grounds that we have failed to prove the
"correctness" of the rules, whatever that may mean. We are free to adopt
any rules we please. That's our way of defining which beast we are going
to study. After we've worked out the properties of this beast, we can then
compare the results of his reasoning process with the results of ours. If

yvou find no resemblance between the way the beast reasons and the way you
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reason, then you're free to decide that the beast is nothing but an idle,
useless teoy. But if you find a very strong resemblance, which makes it almost
imposeible to aveid concluding "I am this beast,” then that will be an
accomplishment of the theory, not a premise.

Now, let's take a problem with maybe some science fiction cvertones.
We've been assigned the job of designing the brain case of a robot. This
is supposed to be a very sophisticated robot. He doesn't just receive orders
and carry them out. He also has to have the ability te¢ learn, he has to
be able to make judgments on his own, he has to decide on the best course
of action even when we fail to give him full instructions. This means that
his brain has got to contain some kind of computing machine which will caxry
out plausible reasoning whenever the information we give him is insufficient
to permit deductive reasoning. How shall we design his brain case? This
is a fairly definite engineering problem.

Well, our robot is going to reason about propositions. We dencte various
propositicns by letters A, B, C, and so on, and for the time being we'll have
to require that any proposition we use will have, at least to the robot,
an unambiguous meaning. It must also be of such a "logical type" that it
makes sense to say that the proposition must be either true or false. Of
course, not all propositions are of that type at all. Later cn we'll see
whether there are any possibilities of relaxing that restriction.

Now to each proposition the robot is going to associate some plausikility,
which represents his degree of belief in the truth of the preposition, based
on all the evidence we have given him up to this time. In order that these
plausibilities can be handled in the circuits of his brain, they must be
assoclated with some physical guantity such as voltage or pulse duration

or frequency, and so on, however you want to design him. This means that

there will have to be some kind of association between degrees of plausikility

22



Lecture 2, Section 2.3.

and real numbers. This assumption, you see, is practically forced on us
by the requirement that the robot's brain must operate by the carrying out
of some definite physical process.

Let me emphasize the contrast between such a robot and a human brain.

We have decided that we will attempt to associate mental states with numbers
which are to be manipulated according to definite rules. Now it is clear
that cur attitude toward any given proposition may have a very large number
of different "coordinates." You and I form simultaneous judgments not only
as to whether it is plausible, but alsc whether it is desirakle, whether

it is important, whether it is interesting, whether it is amusing, whether
it is morally right, etc. If we assume that each of these judgments might
be represented by a number, then a fully adequate description of a state

of mind would be represented by a vector in a space of a rather large number
of dimensions.

Not all propositions reguire this. For example, the proposition, "The
refractive index of water is less than 1.3" generates no emotions; consequently
the state of mind which it produces has very few coordinates. On the other
hand, the proposition, "Your mother-in-law just wrecked vour new car" gener-—
ates a state of mind with an extremely large number of coordinates. A moment's
introspection will show that, guite generally, the situations of everyday
life are those inveolving many coordinates. It is just for this reason, I
suggest, that the most familiar examples of mental activity are often the
mest difficult to reproduce by a model.

We might speculate further. Perhaps we have here the reason why science
and mathematics are the most successful of human activities; they deal with
propositions which produce the simplest of all mental states. Such states
would be the ones least perturbed by a given amount of imperfection in the

human mind.
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I interject these remarks te point out that there is a large unexplored
area of possible generalizations and extensions of the thecry to be developed
here; perhaps this may inspire others to try their hand at developing "multi-
dimensional" theories of mental activity, which would more and more resemble
the behavior of actual human brains. Such a theory, if successful, might
have an importance beyond our present ability to imagine.

For the present, however, we will have to be content with a much more
modest undertaking. Is it possible to develop a consistent "one-dimensional”
model of reasoning? Evidently, our problem will be simplest if we can manage
to represent a degree of plausibility uniquely by a single real number, and
ignore the other "cocordinates" just mentioned; and at the risk of belaboring
it, let me stress again: we are in no way asserting that degrees of plausi-
bility in actual human minds have a unique numerical measure. OCur job is
not to postulate any such thing; it is to investigate whether it is possible,
in our robot, to set up such a correspondence without contradictions, If
the attempt to do this should fail, then we will have to consider more com-
plicated kinds of association; but I propose to try out the simplest possi-
bility first.

We'll adopt a convenient but nonessential convention; that this will
be done in such a way that a greater plausibility always corresponds to a
greater number. It will be convenient to assume also a continuity property,
which is hard to state precisely at this stage; but to say it intuitively:
an infinitesimally greater plausibility ought to correspond only to an
infinitegimally greater number.

To state the above ideas more formally, we introduce some notation of
the usual symbolic logic, or Boolean algebra. By the symbolic product

AB

we mean the proposition "both & and B are true." OCbviously, AB and Bh are
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the same proposition. The expression

A+B
stands for the proposition: "at least one of the proposgitions A, B is true,”
and is the same as B+A. The plausibility that the robot asscciates with
proposition A could, in general, depend on whether we told him that some
other proposition B is true. And so we indicate this by the symbol

(a]B) .
I'11 call this the "conditional plausibility of A, given B:;" or just, "A

given B. It stands for some real number. Thus, for example,
(a] BC)
(I'"11l read this as "A given BC"} represents the plausibility that A is true,
given that B and C are true. Or,
(A+B| CD)

represents the plausibility that at least one of the propositions A and B
is true, given that both C and D are true, and so on. Now we've decided
that we're going to associate greater plausibility with greater numbers, so

(a]B)>(c|B)
says that given B, A is more plausible than C.

You know that when a computing machine is asked to divide by zereo, it
develops a psychosis--the poor machine tries its best, but just can't sclve
the problem. On some old kinds of desk calculators the only thing you can
do is to put the machine ocut of its misery by pulling the plug. In the
interest of aveiding impossible problems, we are not going to ask our robot
to undergec the agony of reasoning on the basis of mutually contradictory
propositions, Thus, we make no attempt to define (A]BC) when B and C are

mutually contradictory. Whenever such a symbol appears, we will understand

that B and C are compatible propositions.
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Now we wouldn't want this robot to behave in a way that's very greatly
different from human behavior, because that would make him very hard to
live with and ncbody would want to keep such a robot in his home. So, we'll
want him to reason in a way that is at least gualitatively like the way you
and T reascn, as described by the above weak syllogisms. As a further exam—
ple, if he gets new information which increases the plausibility (AIBC) but
does not affect the plausibility (B’C), this of course can only preduce an
increase, never a decrease, in the plausibility (AB|C) that both A and B
are true. And it can only produce a decrease, not an increase, in the
plausibility that A is false. This gqualitative reguirement simply gives
us the sense of direction in which reasoning gees; it says nothing about
how much the plausikilities change.

Also, it would be nice if we could give this robot a very desirable
property which we don't have; namely, that he always reasons consistently.
By "censistently" I mean three things:

{(a} TIf a conclusion can be reasoned out in more than cne way, then

every possible way must lead to the same result.

(k) If twe problems are entirely equivalent; i.e., if +the robot's

state of knowledge is the same in both, then he must assign
the same plausibilities in both.
(¢} The robot is completely non-ideclegical; if he has several
pleces of evidence relevant to a question, he deoes not
arbitrarily throw out part of his efidence, basing his
conclusions only on what remains; he always takes into
account all of the evidence available to him.
All right. Now I claim something which may seem startling. The condi-

tions that we have imposed are:
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1. Representation of degrees of plausibility by real numbers.

2. Qualitative correspondence with common sense.

3. Consistency.
These requirements, I claim, uniquely determine the rules according to which
this robot must reason; there is only one set of mathematical operations
which has all these properties. In the next Lecture we commence the mathe-

matical development by deducing these rules.
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Lecture 3

TAPLACE'S MODEL OF COMMON SENSE

We have now formulated cur problem, and it ought to be a matter of

straightforward mathematics to work out the consequences of our three

desiderata:
1. Representation of degrees of plausibility by real numbers.
2. Qualitative correspondence with common sensge.
3. Congistency.

This seems in retrospect an cbviocus and natural thing to do; but histori-
cally, the rules we are about to deduce were first stated as arbitrary axioms,
on intuitive grounds, without any attempt to demonstrate their unigueness
or consistency. This, of course, left room for practically endless contro-
versy; 1f the rules are introduced in that way, what right have we to suppose
that they are any better than a hundred cther arbitrary ones we could invent?
It was just this kind of doubt, strengthened by some ridiculous misapplica-
tions, that led many to reject Laplace's work and to deny that probability
theory has any connection with inductive reasoning. As a result, the develop-
ment of statistical theory was delayed for many years, and the very "latest”
advances in this field amount only to a rediscovery of methods thal had been
described and used by Laplace and Daniel Bernoulli in the 18th century.

To the best ¢f my knowledge, the first person to see that there is a

better way of developing the theory was Professor R. T. Cox (Cox, 1946; 1961).

Instead of stating the rules in a way that leaves their consistency and
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uniqueness open to doubt, the requirement that they be consistent can be
imposed from the start as one of the basic conditions of the theory; and then
their unigueness can be deduced mathematically. Cox's argument, which we
follow here, therefore cuts the ground cut from under more than a century

of urnjust criticisms of Laplace's methods.

3.1 Deduction of Rule 1.

We first seek a consistent rule for obtaining the plausibility of AB
from the plausibilities of A and B separately. In particular, let us find
the plausibility (ABIC); on what others must it depend? Now in order for
AB to be a true proposition, it is certainly necessary that B be true; thus
the plausibility {B[C) should be inveolved. In addition, if B is true, it
is further necessary that A should be true; so the plausibility (A]BC) is
also needed. But if B is false, then of course AB is false independently
of anything about A, so if we have (B|C) and (A|BC) we will not need (AIC).
It would tell us nothing about AB that we didn't already have. Similarly,
(A|B) and (B|A) are not needed; whatever plausibility A or B might have in
the absence of data C could not be relevant to judgments of a case in which
we know from the start that C is true.

We could, of course, interchange A and B in the above paragraph, so the
knowledge of (AJC) and (B]AC) would also suffice to determine (BA|C)E(ABJC).
The fact that we must obtain the same value for {ABIC) no matter which pro-
cedure we choose will be one of our conditions of consistency.

We can state this in a more definite form. (AB[C) will be some function
of (B|C) and of (A|BC):

(a|c) = PL(B|C), (A]BO)] (3-1)

Now if the reasoning we went through here is not completely obvious,

let us examine some alternatives. We might suppose, for example, that
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(aB/C) = Fl(a]|c), (B[O)]
might be a permisgssible form. But we can show easily that no relation of this
form could satisfy the conditions that we'wve imposed on our rchot. A might
be very plausibkble given C, and B might be very plausible given C; but AB
could still be very plausible or very implausible. For example, if I'm told
that Mr. Jones lives in Dallas, it might be quite plausible that his eyes
are blue, and it might be guite plausible that his hair is black; and it's
reasonably plausible that both are true. But, if I'm told that Mr. Smith
lives in St. Louils, it is quite plausible that his left eye is blue, and
it's quite plausible that his right eye is hrown; but it's extremely implaus-
able that both of those are true.

We would have no way of taking such influences into account if we tried
to use a formula of this kind. Our robot could not reason the way human
beings do, even qualitatively, with that kind of functional relation.

You might try further a relation of the form

(aB|C) = Fl(alo), (a{B), (BlA), (B|O)]
in which you try to take the above cases inte account by allowing all four
of these simple plausibilities to determine (AB[C). But even here you can
produce counter—examples which show that a function of this form could not
reproduce plausible reasoning even qualitatively like ours.

You can blow this up into a whole research project, if you like. Thus,
introduce the real numbers

u = (aB|CY, v = (a]Q), v = (n|BC), x = (B|Q), w = (B|nQ).
If u is to be expressed as a function of two or more of v, w, %, and v,
there are eleven possibilities. You can write cut each of them, and subject
each one to various extreme conditions, as in the brown and blue eves (which

was the abstract statement: A implies that B is false). Other extreme

conditiong are A = B, A= C, C implies A false, etc., If you do this, Myron
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Tribus has shown (Tribus, 1969) that all but two of the possibilities can
exhibit qualitative violations of common sense in some extreme case. The
two which surviﬁe are u = F(x,v) and u = F{w,v), which are just the two
possibilities already suggested.

Another way cof loocking at this, suggested by Mr. Alfred S. Gilman, may
seem more attractive than this laborious elimination of alternatives, one
by one. We may regard the process of deciding that AB is true as a sequence
of two "mental transitions" in which there are only two possible routes,
illustrated by the decision tree diagram, Fig. 3.1. In order to decide
that AB is true, we

(1) decide that B is true,

(2) having accepted B as true, decide that A is true.
or, we can

(1') decide that a is true,

(2') having accepted A as true, decide that B is true.

Along either route, the state of knowledge in which we decide to make the

next transition is indicated by the plausibility symbols on the arrows,

Fig. 3.1. The possible "mental transitions" in deciding that A and
B are true, given that C is true.
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However you like to view this, I don't think you'll be able to produce
any situation where equation (3-1} does not reproduce cualitatively the way
you would reason about the situation. (If you can, then all I can say is
that your common sense is qualitatively different from mine--and Laplace's——
and you are free to design your own robot!l)

Now let's start imposing our conditions on the form of this function
and see if we can nail down what function it has to be. If anything increases
the plausibility (B|C), then that must produce only an increase, never a
decrease, in the plausibility (AB]C). Similarly, if anything increases
(A|BC), this must also produce an increase, not a dgcrease, in (ABlC). The
only case where it would not produce an increase is where the other inde-
pendent variable happened to represent impossibility; if we know that A is
impossible given C, then, of course, the plausibility of B could increase
without affecting (AB|C). Also, the function F(x,y) must be continuous; for
otherwise we could produce a situation where an arbitrarily small increase
in one of the plausibilities on the right side still results in the same
big increase in (AB‘C).

In summary, F(x,v) must be a continuous monotonic increasing function
of both x and yv. I will assume that it's a differentiable function. The
derivatives cannot be negative, and they can be zero only in the case where
AB is impossible. Now for the condition that it shcould be consistent.

Suppose that I try to find the plausibility (ABCID) that three propo-
sitions would be true simultanecusly. I can do this in two different ways.
If the rule is going to be consistent, we've got to get the same result for
either order of carrying out the operations. I can first say that BC will
be ccnsidered a single proposition, and then apply our rule. This plausi-

bility would then be

(aBC|D) = F[(BC|D), (A|BCD)]
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and now in this plausibility of (BClD) we can again apply the rule to give us
(aBC|D) = F{F[(C|D), (B|CD)]1, (A|BCD)}
But we could equally well have said that AB shall be considered a single
proposition at first. TFrom this we can reason ocut in the other order to

obtain:

(aBC|D) = FI(C|D), (2B{CD)]

F{(c|p), FI(2|cD), (n|BCD}]}.

il

So by doing it in the other order, we come out with a different expression.
If this rule is to represent a consistent way of reascning, these two expres-
sions must always be the same. The condition that our robot will reason
consistently in this case takes the form of a functional eguation,
F[F(x,y),2z] = F[x,F(y,z)]. (3-2)

Conversely, if this functiocnal equation is satisfied, then cur original
rule is automatically consistent for all possible ways of finding the Jjoint
plausibility of any number of propositions; (ABCDEIF), for example. You
can see that there are an enormous number of different ways you can work
this out by successive applications of Equation (3-1). And you can show
by induction that if the functional Eguation (3-2) is satisfied, then you're
guaranteed to get the same answer for every possible way of doing it.

This functional equation is one which has guite a long history in mathe-
matics. The earliest reference to it that I know about goes back to 1826,
and is a paper by N. H. Abel in the first issue of Crelle's journal. A2abel
considered equation (3-2) merely as an amusing exercise, and found the general
solution by reducing it to a differential equation. The sclution has been
rediscovered probably dozens of times since 1826. In particular, this is done
in a paper by R. T. Cox (Cox, 1946} which I rate as one of the most important
ever written on the foundations of probability theory. Cox established the

conditions for consistency of this theory in the sense {a} given above, and
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ny only contribution was to add the gualitative requirements and the other

conditions of consistency, which are needed to make the result unique. 1In

a later book (Cox, 1961) Cox's work is given more fully, with some improve-

ments in the derivations. For an appreciation of the importance of Cox's

contributions to probability theory, see my review of his bock {(Jaynes, 1963b).
A particularly neat mathematical treatment of our functional egquation

(3-2) has been given by J. Aczel in a paper (Aczel, 1948) and in his monu-

mental book on functional equations (Aczel, 1966; Sec. 6.2). He calls it,

"The associativity eguation." Let me just quote you the theorem that Aczel

gives. He says, "Let's let

where

represents any operation which maps z into the same interval with x and y.
In other words, if x is in the interval from a to b, and v is in the interval
from a to b, then this operation is one which will always put z into the
same interval." He gives a theorem which is exactly backwards from the way
we would want it for our applicaticon. He consgidered a formula for the design
of the most general slide rule. The general condition that z could be cal-
culated without ambiguity on a slide rule calibrated with numbers x and y
ig, of course, that there is some monotonic function fi{z) = £({x) + E£(v).
If this is true then you can make a slide rule which gives z in terms of
X and yv. Aczel shows that a necessary and sufficient condition for that is
that the operation x o y must have the following properties:
(1) It must be monotonic: if x'>x, then x'oy>xoy, and similarly for v.
(2} It must be continuous: lim (xoy) = (lim x) o (lim vy).
{(3) Tt must be associative: (xoy)oz = xo(voz).

You see that these are precisely the conditions that we have imposed on ocur
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function z = F(x,y). It had to be a monotonic, continucus cperation in
order to agree gqualitatively with common sense. The condition that it sheould
represent a consistent kind of reasoning was just the condition that it ke
associative. We conclude that the general relation between x, y, =z, implied
by z = F(x,y) must be expressible in the feorm
-1
F(x,y) = £ "[£x) + £(y)], or

f(z)

f(x) + £(vy).
Now, of course, we can write this equally well as a product,
p(z) = p(x) ply),
where p{x) = expl[f(x)] is still an arbitrary continuous monotonic function.
It makes no difference which form we chocose, but the second choice will
prove more convenient later on.
So our rule for finding the plausibility of both A and B takesg the form
p(AB|C) = p(a|BC) p(B|O). (3-3)
The condition that this shall represent reasoning gqualitatively like
ours can tell us scmething more about this function p(x). For example, let's
imagine first that A is certain, given C. What would happen then? Well,
if A is certain given C, then in the "envircnment" produced by knowledge of
C, AB and B are the same proposition, in the sense that one is true if and
only if the other is true. So, the plausibility that AB is true must be

just the plausikility that B is true:

(sl = (B|o).

And also we would have:

(alsc) = (a]|o),
because 1f A is already certain given C, the fact that we may also have B
given would not be relevant; it's still certain. To what is our equaticn

{3~3) reduced in this case? It then says

p(alo = pala pilo,
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and this would have to hold no matter how plausible or implausible B might

be. So our function p(x) has toc have the property that certainty must always

be represented by p = 1.

Now suppose that A is impossible, given C. In this case, the proposition

AB is also impossible given C:

(aBlC) = (alo)
and if A is already impossible given C, then if we had been given B also,
A would still be impossible:

(aleo) = o).
In this case, equation (3-3) reduces to

p(alc) = p(B|C) p(a]Q) (3-4)

and again this equation would have to hold no matter what plausibility B
might have. Well, there are two possible values of p(A]C) that might satisfy
this condition. It could be zero or plus infinity. The choice minus infinity
can be ruled out [see what happens in (3-4) if B alsc becomes impossible],
but at present there's nothing to tell us to choose zero rather than plus
infinity; either one is equally good.

All right, let's sum up what we know about p(x) so far. It is a con-
tinucus monotonic function. It may be either increasing or decreasing. If
it's an increasing function, it must range from zero for impossibility up
to one for certainty; if it's a decreasing function, it must range from
one for certainty up to infinity for impossibility. The way in which it

varies between these limits, of course, cur rule says nothing at all about.

3.2 Deduction of Rules 2 and 3.

Now there are still other conditicns of consistency which these rules
must satisfy. Let me introduce another notation. By a small letter I'll

mean the denial of the kig letter. In other words, proposition a stands
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for the propositicn "A is false." Conversely, A stands for the proposition
"a is false." Most of the literature follows the notation of Boole, who
indicated denial by placing a bar over the letter. This is fine except that
it's a little hard to do reproducibly on a typewriter, so I've taken the
liberty of changing it in a way that makes typed notes easier to preoduce,
and less ambiguous to the reader. Actually, we will have little use for
this notation beyond the present derivation; sc it hardly matters.

Because of the fact that these propositions are of the type which must
be either true or false, we see that the logical product ahd is always false,
and the logical sum atA will always be true. Now the plausibility of a,
given some data B, depends in some reciprocal way on the plausibility of A;
if we define =x = p(A[B), y = p(a]B), then

y = s(x). (3-5)
Evidently, if this is going to agree qualitatively with common sense, the
function S(x) must be some continuous monotonic decreasing function. But
the relation between propositions a and A is a symmetrical one; it
doesn't matter which I choose to call a capital letter and which the small
letter. I can equally well say that

x = 5(y). (3-6)
It would have to be the same function. So S(x) must satisfy a functional
equation that when we apply it twice we get back to where we started:

s[s(x)] = x (3-7)

Now this alone is not enough to tell us much about this function. It says
only that the graph of v = S(x} has mirror reflection symmetry about the
line v = x. Sc now I'd like to give you another argument. There's another
condition which ${x) will have to satisfy in order to represent a consistent
way of reasoning, and for this we already have one rule of calculation

worked out:
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p(aB[C) = p(B|O) p(aA|BO) (3-8)
We'll <all this Rule 1 from now on. Now we can make this step:
p(aR|C) = p(B|C) sip(a|BO)]

but Rule 1 also says that p(aBlC) = p(B|C} p(a|BC}, and so

_ (28] )
pmBlo) = plo) )T (3-9)

This looks like a very strange thing to deo. But notice that the quantity
we started with inveolved A and B in a symmetric way. If I interchange A and
B, I don't change p(AB‘C). Therefore, although it doesn't lock like it at

all, this final expression must also be symmetric in A and B. In other words,

p(alC) s P(kz’i 8} = p{2|Q) S{P(?i 8} (3-10)
D P

These two expressions must be equal no matter whalt propositions A, B, and
C are. In particular, they must be equal when the denial of B is the same
as the proposition "both A and D are true," that is, when b = AD, or
B=a+ d.

But in that particular case, equation (3-10) simplifies. If B has this
meaning, then what is p(bA{C)? Well, b 1ig the statement that & is true and
also that D is true. But this means that bA = ADA = AD = b; the propositions
ba and b are the same, in the sense that they have the same "truth value.”
Cne of them is true if and only if the other is true. Therefore, they must
have the same plausibility:

p(balc) = p(blc) = sipB|cy].
Likewigse, aB = a(at+d) = a + ad = a; in other words, aB and a are the game
propesition in the sense that they have the same truth value, and so

p(aB|C) = pla|C) = slp(a C)]
Substituting these into {3-10), we get a rather awful looking functional

equation:
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S {y) S{x)
x S| | = v s (3-11)

Here is another functional equation which has to be satisfied in order to

have a consistent set of rules for reasoning.

At this peint, we will simply turn again to the paper by R. T. Cox
{Cox, 1946), or to his later book (Cox, 1961), which solves this problem.
He shows that the only twice differentiable function which satisfies all of
our conditions is

sto = (1 - = ™
and you sasily verify that this does satisfy (3-7) and (3-11). This means
that our reciprocal relation between the proposition and its denial would
then have to take the form
p™alB) + p(alm) = 1. (3-12)

m can ke any constant except zero. I might say that I'm not entirely satis-
fied with the argument that we went through to get this; not because I think
it's wrong, but because I think it's too long. The final result we get is
so simple that there must be a simpler way of deriving it; but I haven't
found it.

Now suppose that we make the choice that p = 0 is going to represent
impossibility. In that case, we'll have to choose m as a positive number
in order that (3-12) can be satisfied; but notice that choosing different
values of m is really idle, because the only condition cn this function p
is that it is a continuous monotonic function which increases from zero to
one as we go from impossibility to certainty. But if pl{x) gsatisfies these
conditions, then p2(x) = [pl(x)]m also satisfies them. So the statement
that we could use different values of m doesn't give us any freedom that

we didn't alrsady have in the fact that p(x) was an arbitrary monotonic

function. This means that if I choose to write eguation (3-12) in the form

39



Lecture 3, Section 3.2.

plalB) + p(alB) =1 (3-13)
this is just as general.

On the other hand, we could represent impossikility by p = «, In that
case, we would have to choose m negative. Once again, to say that we can
use different values of m wouldn't say anything that wasn't already implied
by the fact that p was an arbitrary monctonilice function which increased from
cne to infinity as we went from certainty to impossibility. So I could
equally well write this reciprocal law in the form

1 + 1
p(alB) © pl(alB)

= 1.

Now we could go through our entire theory of the design of this robot's
brain with the choice of p = ® to represent impessibility, and we would

not get stopped any place. Everything would go through just fine. We would
end up with equations which don't look guite so familiar to yvou as the ones
that the other choice will give us. But notice that they're not different
thecries, because if pl(x) is a possible choice which goes to plus infinity
to represent impossibility, then

L
- pl(x)

p3(X)
is a function which represents impcssibility by zero, and has all the pro-
perties that we needed. Sc regardless of which choice T make to represent
impossibility, it makes the form of equations lock different but their content
will be exactly the same. ¥You can go from one to the other simply by replac-
ing all p's by the reciprocals of the p's. So if we agree not to use this
choice of p = @ and always to use the cheoice p = 0 tc represent impossibility,
we're not throwing away any possibility of representation as far as content

is concerned. We're just removing a redundancy in how you could have stated

the theory. Let us agree, then, to use the choice:
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0

A

p < 1.
(for impossibility} (for certainty)
You recognize, of course, that this equation (3-13)

plalB) + p(alB) =1

which we henceforth call Rule 2, plus our ERule 1
p(AB|C) = p(B|O) p(alBO)
are actually the fundamental equaticns of probability theory. Evervthing
in preobability theory follows from those by sufficiently complicated arguments.
For example, I'd like to get the formula for
p(a + BlC),

the piausibility that at least one of the propositions A or B would be true,
given C. This follows frcm the rules we already have; we just apply Rule 1

and Rule 2 over and over again:

p(a + BlC) = 1 - plablc)
=1 - p(albc) p(blo)
= 1 - [1 - p(a]pC)] p(b|O)
= p(B|C) + p{ablQ)
= p(B|C) + p(b|aC) p(a]o)
= p(B|C) + p(a|Q) [1 - p(B]aC)].
Finally, we get
o(a + B|C) = p(ajc) + pB|c) - p(aBla). (3-14)

At long last we come out with the above form. 2And it's this result that I
will take as our Rule 3.
We can summarize what we have learned up to this point by writing down

our fundamental rules:

Rule 1: p(AB|C) = p(A[BC) p(B[C) = p(B|AC) p(r[Q) (3-15)
Rule 2: p(A‘B) + p(a|B) =1 (3=-106)
Rule 3: p(A + B|C) = p(A{C) + p(B|]C) - p(aB|0Q) (3-17)

41



Lecture 3, Section 3.3.

Rule 1, of course, involves A and B in a symmetric way and we could have
interchanged A and B in all the argument leading up to it, so we have the

liberty of writing it with A and B interchanged, as shown.

3.3 Deduction of Rule 4.

We've found sc far the most general consistent rules by which our robot
can manipulate plausibilities, granted that he must associate them with
real numbers in some way sc that his brain can operate by the carrying cut
of a definite physical process, and we are encouraged by the familiar appear-
ance of these rules. But there are two evident circumstances which show
that our job isn't yet finished. In the first place, while Rules 1, 2, and
3 show how plausibilities of different propositions must be related to each
other, it would appear that we have not yet found any unique rules, but
rather an infinite number of possible rules by which cur rchot ¢an do plaus-
ible reasoning; corresponding to every different cheice of a monotonic
function p(x), there'd bhe a different gset of rules.

Secondly, nothing given so far tells us what actual numerical values
of plausibility sheculd be assigned at the beginning of a prcblem, sc that
the robot can get started on his calculaticons. How is the robot to make
his initial encoding of the given information, intc definite numerical values
of plausibilities?

The following analysis answers both of these questions, in a way that
I think you will f£ind both interesting and unexpected. Let's ask for the
plausibility (A1+A2+A3IB) that at least one of three propositicns {Al, A, A3}
is true. We can find this by two applications of Rule 3, as follows. The
first application gives

p(Al+A2+A3!B) = p(Al+A2lB) + p(A3[B) - p(AgA, + A2A3|B)

where we first considered (A1+A2) as a single proposition, and used the
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legical relation (A1+A2)A3 = A1A3 + A2A3. Applying Rule 3 again to the first

and third of these expressions, we obtain seven terms which can be grouped
as follows:
p(Al+A2+A3|B) = p(A{|B) + p(A,{B) + p(a,]B)
- p(A2,[B) - p(A2A3fB) - p{a 2 |B) (3~18)
+ p(AlA2A3|B)
Now suppose these propositions are mutually exclusive; i.e., the evidence
B implies that no two of them can be true simﬁltaneously. This means that
p(aga,B) = p(Ai]B)aij (3-19)
where Sij is the Kronecker delta
I, if i =73

S8, = .
1
Jolo, if 1% 3

If the Ai are mutually exclusive, then the last four terms of (3-18) wvanish,
and we have
p(Al+A2+A3IB) = p(AlfB) + p(AZIB) + p(A3|B) (3-20)
Adding more propositions A,, Az, etc., it is easy to show by induction
that 1f we have n mutually exclusive propositions {Al e e An}, (3-20)
generalizes to
m
pag+ . . . +AmlB) =} p(a;[B), mzgn (3-21)
i=1
a rule which we will be using constantly from now on. In cenventional expos-—
itions, Eqg. (3-21) is usually introduced directly as one of the basic axioms
of the theory, without any attempt to demonstrate its unigqueness or consist-
ency. The present approach shows that this rule is deducible from simpler
relaticons, which in essence represent the conditions for this theory to be
consistent in the sense (a) given in Sec. 2.3.

Now suppose that the propositions {Al . e An} are not only mutually

exclusive but also exhaustive; i.e., on data B one and only one of them
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must be true. In that case the sum (3-21) over all ¢f them must be unity:

Zril:lp(Ai[B) =1 (3-22)
This alene is not enough to determine the individual numerical values p(Ai[B).
Depending on further details of the information B, many different choices
might be appropriate, and in general finding the p(Ai|B) can be a difficult
problem.

There is, however, one case in which the answer is particularly simple,
requiring only direct application of principles already given. But we are
now entering a very delicate and crucial area which has caused trouble and
controversy for over a century; so I ask that you suppress all intuitive
feelings that you may have, and contemplate the following logical analysis
minutely. The point we are about to make cannot ke developed too carefully;
and unless it is clearly understood, you will be faced with tremendous
conceptual difficulties from here on.

Consider two different problems. Problem I is the cne just formulated;
we have a given set of mutually exclusive and exhaustive propositions
{Al N An} and we seek to evaluate p(Ai[B). Problem II differs in that
the lakels Al' A, of the first two propeositions have been interchanged.

These labels are, of course, entirely arbitrary; it makes no difference which

proposition we choose to call Ry and which A In problem II, therefore,

5

we alsc have a set of mutually exclusive and exhaustive propositions

{Al'. .. An'}, given by
Al' = A2
A2' = Al (3-23)
Ak' =2Ap, k=3

and we seek to evaluate the guantities p(Ai'lB), i=1, 2, . . ., n.

In interchanging the labels we have generated a different hut closely

related problem. Tt is c¢lear that, whatever state of knowledge the robot
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had about Al in problem I, he must have the same state of knowledge about

A2' in problem II, for they are the same proposition, his given information

B is the same in both problems, and he is contemplating the same totaliity
of propositions {Al e . An} in both problems. Therefore we must have

p{A [B) = p(A)"[B) (3-24)

and similarly

p(a,|B) = pa,'|B) (3-25)

1T

We will call these the transformation eguations. What we have just done

may appear utterly trivial to you, but bear with me; this line of reasoning,
as Professor Eugene Wigner has aptly remarked {Wigner, 1959), consists of a
number of steps each of which appears trivial in itself, but which in their
totality are far from trivial. At this point, note that the transformation
equations (3-24), (3-25) must hold whatever the information B might be; in
particular, however plausible or implausible the propositions Al, A2 might
seem to the robot in problem I.

But now suppose that information B is indifferent between propositicns
Al and A,; i.e., it gives the robot no reason to prefer either over the
other. In this case, problems I and Il are entirely equivalent; i.e., he
is in exactly the same state of knowledge akout the set of propositions
{Al' ... An'} in problem II, including their labeling, as he is about the
set {Al . e An} in problem I.

Now we invoke our requirement of consistency in the sense (b) as given
above (Sec. 2.3). This stated that, in two equivalent procblems, where the
robot has the same state of knowledge, he must assign the same plausibkilities.
In equations, this statement is

p(Ai|B)I = p(a '|B)II, i=1,2,...,n (3-26)

which we will call the eguivalence eguations. But now, combining equations
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(3-24), (3-25), (3-26), we obtain
p(a,[Bl; = p(a,[B), (3-27)

In other words, propositions A; and A, must be assigned equal plausibilities

2

in problem I (and, of course, also in problem II).

At this point, depending on your perscnality and background in this
subject, you will be either greatly impressed or greatly disappointed by
the result (3-27). You recall that I asked you to suppress whatever intuitive
feelings you may have, and allow yourself to be guided solely by the logical
analysis. We will discuss the reasons for this presently; but first let us
extend the result., Mcre generally, let {Al" . An"} be any permutation
of {Al e e e An} and let Problem ITI be that of determining the p(Ai“IB).
If the permutation is such that Ai = Ak”, there will be n transformation
equations of the form

p(A;[B) ;= p(A "B (3-28)

which show how problems I and III are related to each other; and these
relations will hold whatever the given information B.

But if information B is now indifferent between all the propositions
Ai, then the robot is in exactly the same state of knowledge about the set
of propositions {A;" . . . A "} in problem III as he was about the set

{a . An} in problem I; and again our desideratum cf consistency demands

1. -
that he assign equivalent distributions in eguivalent problems, leading to
the n eguivalence equations
(A |B) 1 = P2 |B) 777, k=1, 2, ..., n (3-29)
From {3-28) and (3-29} we obtain n equations of the form
p(a;[B); = p(a [B); (3-30)
Now these relations must hold whatever the particular permutation we

used to define problem III. There are n! such permutations, and so there
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are actually n! equivalent problems in which, for given i, the index k will
range over all of the (n-1) others in (3-30). Therefore, the only possibility
is that all of the p(Ai|B)I be equal (indeed, this 1s required already by
consideration of a single permutation if it is cyclic). Since the {Al ‘e An}
are exhaustive, Eg. (3-22) will hold, and the only possibility is therefore

1

p(a|B = &

i=1, 2, ..., n (3-31)
and we have finally arrived at a set of definite numerical values. We will
call this regult Rule 4.

Perhaps you intuition had already led you to just this conclusion, with-
out any need for the rather tortucous reasoning we have been through. If so,
fine; then vour intuition is consistent with our axioms. But merely writing
down (3-31) intuitively does not give one a full appreciation of the impor-
tance and uniqueness of this result.

To see this importance, note that Eg. (3-31}) actually answers both
of the gquestions posed at the beginning of this Section. It shows--in one
particular case which can be greatly generalized--how the information given
the robot can lead to definite numerical values, so that a calculation can
get started. But it also shows something even more important because it is
not at all cbvious intuitively; the information given the robot determines
the numerical values of the quantities p(Ai]B), and not the numerical values
of the plausibilities (AiIB) that we gstarted with. This, also, will be found
to be true in general. But recognizing this gives us a beautiful answer
to the first question posed at the beginning of this Secticn; after having
found Rules 1, 2, and 3 it still appeared that we had not found any unique
rules of reasoning, because every different choice of a monotcnic function
p(x) would lead to a different set of rules.

But now we see that no matter what function p{x) we choose, we would

still be led to the same result (3-31), and the same numerical value of p.
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Furthermore, the rcbhot's reasoning processes can be carried out entirely by
manipulation of the quantities p, as Rules 1, 2, and 3 show; and the robot's
final conclusions can be stated equally well in terms of the p's instead

of the x's.

So, we now see that different choices of the function p(x) correspond
only to different ways you could design the robot's memory circuits. For
each proposition Ai about which he is to reason, he will need a storage
register in which he enters some number representing the degree of plausi-
bility of Ai, on the basis of all the data he has been given. Of course,
instead of storing the number p he could equally well store any monctonic
function of p. But no matter what function he used internally, the externally
observable behavior of the robot would be exactly the same.

As soon as we recognize this it is clear that, instead of saying that

pl(x) is an arbitrary monctonic function of x, it is much more to the pocint

to turn this around and say that the plausibility x is an arbitrary mono-

tonic function of p, defined in the interval 0 <p £1; it is p that is rigidly

fixed by the data of a problem. The guestion of uniqueness is therefore
disposed of automatically by the result (3-31); in spite of first appearances,
there is actually only one consistent set of rules by which our robot can
do plausible reasoning, and for all practical purposes, the plausibilities
x = (AIB) that we started with have faded entirely cut of the picture!l
We will just have no further use for them.

Having seen that our theory of plausible reasoning can be carried out
entirely in terms of the quantities p, we finally introduce their technical

name; from now on, we will call these quantities probabilities. I have

studiously avoided using the word "probability" in our derivations up to
this point, because while the word does have a colloguial meaning to the

"man on the street,” it is for us a technical term, which ought to have a
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precise meaning. But until it had been demonstrated that these quantities
are uniquely determined by the data of a problem, we had no grounds for
supposing that the guantities p were possessed of any such unique meaning.
We now see that they define a particular scale on which degrees of plausi-
bility can be measured. Out of all possible monotonic functions which could
in principle serve this purpose equally well, we choose this particular one,
not because it is more "correct," but because it is more convenient; i.e.,
it is the quantities p that obey the simplest rules of combination.

This situation is analogous to that in thermodynamics, where out of all
possible temperature scales, which are monotonic functions of each other,
we finally decide to use the Kelvin scale; not because it is more "correct”
than others but because it is more convenient; i.e., the laws of thermo-
dynamics and statistical mechanics take the simplest form in terms of this

particular temperature scale.

3.4 Philoscophical Digression.

For historical reascns, we still need quite a long discussion of Rule 4,
Eg. {(3-31). There seem to be only two kinds of people working in probability
theory: those who consider Rule 4 to be so utterly trivial and cbvious as
to be in no need of any proof; and those who regard it as such a foolish
and unjustified piece of metaphysical nonsense as to discredit anyone who
uses it.

As far as T have been able to determine, there is no middle ground
between these opinions; in the past, every writer on probability theory
has been an extremist on one side or the other. I myself was aﬁ extremist
of the first genre for some twenty vears, and it was only recently that
more mature reflection finally made me realize that Rule 4 is in need of

logical demonstration. More important, it now appears to me that the method
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of reasoning we have used to find Rule 4 is fundamental to all of probability
theory, almost every present application requiring it to give a full logical
justification of the result.

The reascning we have just used is the most rudimentary example of the
general group-theoretical approach which has been used with great success
in theoretical physiecs for some forty years (Wigner, 1959). I had been
teaching the use of group-theoretical methods for finding sclutions of
differential equations and boundary-value problems for sixteen years, without
realizing that this same technigue is the key to several deep unresoclved
issues in probability theory.

Rule 4 is itself fundamental to all of probability theory; although
some will deny it, I don't think I am exaggerating when I assert that there
is no known application of probability theory in which Rule 4 is not needed
at one place or another. Those who profess to dislike it merely find scome
way of disguising the fact that they are using it; I will cite some specific
examples in a later lecture. To understand this, we have to study the history
of probability theory.

Rule 4 appears to have been first stated explicitly by James Bernoulli
at the end of the seventeenth centﬁry {although it was, of course, implicit
in the still earlier work of Cardano and Pascal). In the old literature
it is often called the "Principle of Insufficient Reason,” and it was used
and defended by Laplace on the grounds that, on the given informatioﬁ, there
was "no reason to think otherwise." This terminology and reasoning have
been most unfortunate--I am tempted to say tragic-—for the development of
prokability theory, because it has created a psychological block which has
prevented many from seeing the real point cof Rule 4.

But note that, in view of our derivation, we are asserting the validity

of Rule 4, not for the weak and negative reason given by Laplace, but for
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the strong and positive reason that it is unigquely determined by elementary
requirements of consistency. In the state of knowledge defined by B in (3-31),
if the robot were to assign any preobability distribution other than the
uniform one, then by a mere permutation of lakels we could exhibit a second
problem in which the robot has exactly the same state of knowledge, but in
which he is assigning a different probability distribution. It just would

not make sense, then, to say that the distribution described the robot's state
of knowledge, or to claim that he is behaving in a consistent way.

But there is still a mystery here. For, no matter what method of
reasoning we use, how iz it possible that otherwise raticnal and mathematically
competent people could be in violent disagreement on such an apparently simple
matter és Eguation {(3-31)2? I think that we have been caught in a semantic
trap of our own making; to explain this, let me try to state the position
of both extremists.

The extremist of the first camp says, "If the information B gives the
robot no reason to prefer any of the propositions Ai over any other, then
these propositions must appear equally likely to him; there is cbviously no
cther thing he can possibly do but to assign them equal probabilities by
Eg. (3-31). To do anything else would be to jump to conc¢lusions not war-
ranted by the data."

The extremist of the second camp says, "If the informaticn B merely
gives the robot no reason to prefer any propesition over another, this pro-
vides absolutely no justification for supposing them to be equally likely;
they might not be egually likely at all. Unless the infeormation B contains
positive evidence that they are egually likely, the problem is simply not
well-posed; and to write Eg. (3-31) is to jump to conclusions not warranted

by the data."
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Perhaps I have not, in spite of scome effort, managed to verbalize these
two positions in the most felicltous way; but I think yvou will grant that
a more expert verbalizer could make either of these positions seem highly
convincing, so at least from a psychological standpoint we can understand
how there can be two diametrically opposing camps on this issue.

But, to be mcre constructive, what is the source of the difference?
If you study these two statements, I think you'll agree that it is semantic;
the phrase "equally likely"™ has two entirely different meanings in the two
camps. In camp 2, the statement, "A_, and A2 are equally likely" is taken

1

to describe a property of the propositions which is either true or false in

an objective sense independently of the state of knowledge you or I--or the
robot—-might have about them. With that interpretation, of course, we have
no justification for assuming thils property to exist unless there is positive
evidence for it.

In camp 1, the statement, ”Al and A, are equally likely" is not regarded

2
as describing any property of Al and AZ. In fact, each proposition is, in

an cbjective sense, either true or false; and the only reason for using
probability theoxy is that we are not in a position to say which. In writing

Eg. (3-31), we are asserting nothing whatever about the propositions; we

are describing only the state of knowledge of the robot.

Now you can, if you like, make value judgments as to which of these
interpretaticns is the more desirable. But this has already been done quite
enough to show that arguments on that level are futile. Debate on this issue
has been going on more or less furiously in the literature of probability
theory since the time of Laplace, one camp and then the other gaining a
momentary ascendancy in numbers. But I think you will agree that we have
here an issue that can never be settled by philosophical arguments about the

meaning of words; much less by taking votes., We are in a situation very
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much like the scientist who must decide between two rival theories of physics;
and it has taken the human race thousands of years to realize that the only
real, objective criterion for deciding such matters is the pragmatic one:
casting aside all philoscophical or ideological considerations, which view—

point leads to a theory with the widegt range of useful applications?

Therefore, I don't intend to waste any more time on the issue at this
point; it is a major objective of these lectures to examine the problem on
just the above pragmatic grounds. We are going to study a wide range of
problems, covering almost all present applicaticns of probability theory;
and whenever pessible we will exhibit the actual calculations, and £inal
results, that the two viewpoints lead to.

It is perhaps already clear that viewpoint 1 is more widely applicable;
there are many problems which our robot can undertake at once starting from
Rule 4, but which on viewpoint 2 are ill-posed, offering no basis for applying
probakility theory. Now of course, a human statistician kelonging to camp
2 may simply refuse to work on a problem (possibly at the cost of his job)
if the information available is not as complete as he would like; but our
robot is not free to do this, because the whole point of designing him is
that he is to do the best he can whatever the information at hand. The
issue will then be: in such preblems, doeg the robot arrive at useful and
defensible conclusiocns?

Of course, if the given information is too vague to justify any definite
conclusions, we will want the rcbot to racognize this and tell us that more
data are needed. His way of doing this will ke to give us a final probabi-
lity distribution that is very broad, indicating no strong preference for one
conclusion over ancother. If the data do justify definite conclusions, he
will find very sharply peaked final distributicns, and report, "The data

you gave me point to conclusion C as overwhelmingly the most likely tec ke
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correct." And, of course, the robot shculd have some way of interpolating
between these extremes, where most of the really interesting problems of the
theory lie.

In the theory we are developing, any probabkility assignment is neces-
sarily "subjective" in the sense that it describes only a state of knowledge,
and not anything that could be measured in a physical experiment. But it
is just the function of cur consistency reguirements to make these probability
assignments completely "objective" in the sense that they are independent
of the personality of the user; i.e., they are a means of descriking {or if

you like, of encoding) the given information, independently of whatever

personal feelings you or I might have. Tt is "objectivity" in this sense
that is needed for a scientifically respectable theory of plausible reasoning.

The job before us now is, therefore, not to engage in philoscphical
disputation, but to put our robot to the test by examining just what he will
do if he reasons by applying Rules 1 -~ 4 and their generalizations that we

will develop as needed.
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BAYES' THEOREM AND MAXIMUM LIKELIHOOD

From now on, instead of writing p(AIB), I will often leave off the p,
and write it simply as (A|B). You can interpret this two ways. You can say
I'm changing my notation; since it's always the function p that we're concerned
with, I'll simply understand that it's always that function that is meant.
Or, since it was an arbitrary function anyway, you can say that I've now
adopted the convention that

p(x) = x

by definition. It will make nc difference at all which way vou interpret

this. ©Our fundamental rules of reasoning will then take the form:

rule 1: (aB|C) = (a|BO) (B]C) = (B|AC) (2|C) (4-1)
Rule 2: (A|B) + (a|B) =1 (4-2)
Rule 3: (a+B|C) = (A|c) + (B|©) - (aB|C) (4-3)
Rule 4: If {Al .« v e An} are nmutually exclusive and exhaustive,

and B does not favor any over any other, then

(a;]B) =& , i=1, 2, . . . n. (4-4)

4,1 Prior Probabilities.

Now out of all the propositions that this robot has to think about, there
is one which is always in his mind. By X I mean all of his past experience
since the day he left the factory to the time he started reasoning on the

problem he's thinking about now. That is always part of the information
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which ig available to him, and obviously it would not be consistent
for him to throw away what he knew yesterday in reasoning about his
problems today. If human beings did that, education and civilization
would be impossible. So for this robot there is no such thing as an "abso-
lute" probability. All probabilities are conditional on X at least. X
might be irrelevant to some problem and in that case this postulate would
be unnecessary, but at least harmless. If it's irrelevant, it will cancel
ocut mathematically. Any probabilities which are conditional on X alone we
will call prior probabilities. If there is any additional evidence in addi-
tion to X, which the robot is now reasoning on, we will sometimes leave
off the X. We'll understand that even when we don't write X explicitly,
it's always built inte all expressions:

(a]B) = (a|Bx) .
But in a prior probability, I'll always put in X explicitly:

(alx) .

Because of some strange things that have been written about prior
probabilities in the past, we have to point out that it would be a big
mistake to think of X as some sort of hidden major premise, some universally
valid proposition about nature, or anything of that sort. X is simply what-
ever initial information the robot had available up to the time we gave him
his current problem. When we consider applications, you can think also that
X stands for some set of hypotheses whose consequences we want to find out,
plus the general conditions spe;ified or implied in the statement of the

problem.

4.2 Bayes' Theoren.

By far the most important rule which this robot uses in his everyday

tasks 1s the one we get by dividing through the second equality of Rule 1
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byr say., (B!C) :

(B|AC)
(a|BCy. = (2]c) —m[o (4-5)

This is called Bayes' theorem, or the principle of inverse probability.

You see it represents the process by which the robot learns from experience.
He starts out with the probability of A, on the basis of evidence C; he is
given new evidence B in addition, and this thecrem tells how the prcbability
of A changesg as a result of this new evidence. Bayes' theorem comes from
the fact that Rule 1 was symmetric in propositions A and B, which of course
it had to be in order to be consistent. To this robot it is quite clear
that if he wants to make any judgments about the truth of propositicn A,

the only correct way to do this is to calculate the probability of A, condi-
tional on all the evidence he has. This will almost always mean that he
will have to use Bayes' theorem.

Now let's imagine we let this robot examine scome procedures that are
uged in statistical inference. A very large part of statistical inference
is taken up with problems in which we are given certain evidence, which is
typically the result of some experiment, and from this evidence we are sup-
posed to do the best job we can of estimating some unknown parameter, or
testing cne hypothesgsis against another. All of these represent plausible
reasoning on the basis of new evidence; the evidence of the experiment.
Therefore, to our robot it's perfectly obvious that any such example of
parameter estimation or hypothesis testing must be a special case of the
application of Bayes' thecrem. You see, his brain has been built so that
this is the only possible way he can reason. To him, the fact that all these
procedures nust derive from Bayes' theorem is just as much a necessity of
thought ag the validity of a strong syllogism is to us.

Although this conclusion about Bayes' theorem is cbvious to our robot,
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it has not been at all obvious to most human statisticians. They largely
regard Bayes' theorem as not having any logical kasis except in the case
where every probability in it can be interpreted as a relative freguency
in some "random experiment." In that case, Bayes' theorem can be inter-
preted as selecting out of an original population of events some sub-
population in which the fregquency of event A might be different from the
frequency that it has in the population as a whole. But tc the robot this
is the only possible way of reasoning regardless of whether you can give
the probabilities a frequency interpretation.

To a statistician of the "orthodox" school of thought, to be defined
more completely later, the first thing he must do in solving a problem is to

decide which quantities are "random," and which are not; the procedures he
will use, and the whole way he will set up the problem, depend on which
decision he makes. But our derivation of the rules for plausible reasoning
in the last Lecture made no reference whatsoever to any randem experiment.
Te the robot, therefore, whether any random experiment is or is net involved
in the problem is totally irrelevant to the question of how he should reasocn.
Since this is perhaps the crucial issue in the controversies about
probability theory, and the central point in most of the applications that
I want to talk about later, we have got to meet it sguarely right now. So
let's ask the robot to make a strong, definite, and constructive statement
about it. Here's what he has to say:
"Consider any procedure in statistical inference in which we reason
cn the basis of new information. If this procedure is fully cconsistent and
in full qualitative agreement with common sense, then it 1s necessarily
exactly derivable from Bayes' theorem. Conversely, if it is found to repre-

sent only some approximation to Bayes' theorem, then it follows that
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(1) It is either inconsistent or it does qualitative viclence

to common sense, or both;

(2} These shortcomings can be exhibited by producing special

cases; and

(3) Bayes' theorem will then represent a superior (and often

simpler) way of handling the problem."

That is what the rochot says. We've designed him in just such a way
that it's the only thing he can say. It doesn't mean at all that what he
says is right. We've got to put him to the test. For each particular
procedure, this is a definite issue of fact; and not a vague matter of per-
sonal taste. Either the xobot is right or he's wrong in the above statement,
and it's in our pewer to find ocut whether he's right or wrong. So we'll
browse through the statistical literature, and every time we see an example
where the man says, "I'm not using Bayes' theorem," then we can lock at it
a little more carefully and see whether what he actually does can be derived
from Bayes' theorem; and if not, whether we can exhibit the defects in his

procedure.

4.3 Maximum Likelihocd.

The first example i3 Sir Ronald A. Fisher's method of maximum likelihood.
This is a way of estimating an unknown parameter, and I'll illustrate it
by the problem of estimating the magnitude of a signal which is ocbscured
by noise. You might be interested in scme quotations from Fisher's book

rn

(Fisher, 1952). On page 9, he refers to "...my personal conviction which
I have sustained elsewhere, that the theory of inverse prchability is
founded upcn an errcor, and must be wholly rejected" (inverse probability

and Bayes' theorem are the same thing as far as we're concerned). And later

on he says on page 20 that "maximum likelihood has no real connection with
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inverse probability." Well, let's illustrate the method. Suppose we have
observed a voltage just at one instant, which is the sum of an unknown signal
plus an unknown noise:
V=5+0N (4-6)
Our prior knowledge about the nature of the noise can be described by some
probability distribution; the probability that the noise amplitude is in
the range AN is
(AN|X) = W(N)aN (4-7)
Now if we knew that the signal had a certain value 5, then the proba-
bility of observing a voltage in the range dV would be given by scme relation
of the form
(av|sx) = L(V,s)av (4-8)

where L(V,S) is called the likelihood function. In the present case, from

the linearity of Bq. (4-6), this must be just the probability that the noise
would have made up the difference; and so

L(V,8) = W({W-39). (4~9)
But in the given problem, it's the voltage that's known and the signal that's
unknown. The maximum likelihood estimate of the signal magnitude would then
be the value of 8 which renders this likelihoed function L an absclute maxi-

mum for the observed value of V:

321,
o ! 367 © 0. (4-10)

Qr{ar
i

Stated intuitively, the maximum likelihood estimate is the value according
to which the observed voltage would appear as the least remarkable coinci-
dence.

How would our robot go about handling this problem? To him the way of
reasoning about the unknown signal is, of course, to calculate the probabi-

lity that the signal has a certain amplitude, on the basis of all the avail-
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able evidence. In other words, the robot says we should calculate (dS|VX)
by Bayes' theorem:

(av|sx)

(@s|vx) = (@s|%) “rgylx)

A (ds|X) L(V,s) (4-11)
where A is independent of S. S5So if we ask the robot what is the most prob-
able value of the signal [more precisely, for what value of § is it most
probable that the signal lies in the interval (S, $+dS) for a fixed 48},
he will maximize not L but the product of L with the prior probability. So
you see that if the robot’s prior information didn't give him any reason to
expect one signal magnitude more than ancother [i.e. if the prior probakility
(dS|X) is independent of S in the range of interest], then the robot's esti-
mate would be the same as the maximum likelihood estimate. If the robot has
prior information about the signal, then of course he may easily get a very
different value.

Now I think it's obvious not only to the robot, but also to us, that
if we do have any prior information about the signal, then it would be
screamingly inconsistent for us to refuse to take that information into
account in estimating the magnitude of the signal. You see, we could
describe the maximum likelihood estimate in another way asgs the wvalue which

we would obtain by throwing away all the prior information we had about the

signal, and basing our estimate only on our prior information about the noise.
Suppose you went to a docter and described your symptoms, and you wanted

him to diagnose what was wrong. You tell him that when you raise jour left

arm you feel a pain in your right side and a few things like this, and

the doctor is supposed tc do some plausible reasoning to figure out what

could be causing it. Suppose that after consultation had been underway for

some time you notice that the doctor is not showing any interest in your
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previous medical history. You ask him, "Well, aren't you going to look up

my medical history?" And suppose the doctor said, "Why, no, I must not

lock at your medical history, because that would introduce a bias into my
conclusicns.” What would you say? You'd say that the man is crazy. He
shouldn't be allowed to practice medicine. To refuse to take the pricr
information you have into account in plausible reasoning, is not a consistent
way of doing things.

Now, of course, a human statistician who uses maximum likelihood has
just as much common sense as anybody else; and in a case where we do have
prior information which is clearly relevant to the problem, common sense
will tell all but the most pedantic not to use the method of maximum like-
lihcod. 1In practice, he will avoid the bad errors of reasoning by inventing
a different method when a different kind cf problem comes up. In other
words, he will use his prior information to tell him how to formulate the
problem,* and he prefers tc formulate it so this information no longer appears
explicitly in his equations. The robot, however, doesn't need to invent
a new procedure for every new kind of problem. To him, Bayes' theorem is
always the only way of doing it.

I don't want to go intc more details now because this is close to a
problem which we are going to talk about a great deal later on; but for the
present we'll just note that the robot's prediction was correct. Except in
the case where it's clearly inconsistent, the method of maximum likelihood
is exactly derivable from Bayes' theorem. After all polemics, there remains
the simple fact that, mathematically, it is nothing but Bayes' theorem with

uniform prior probability.

*an example of such a reformulaticon suggested by prior information is given
in Lecture 9, Eguationg (2-18)-(9-22).
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SEQUENTIAT HYPOTHESIS TESTING

Our seccnd example of statements made about Bayes' theorem in the lit-
erature has been provided by Prcocfessor Wm. Feller. On page 85 of his hook
(Feller, 1950) he writes: "Unfocrtunately Bayes' rule has been somewhat
discredited by metaphysical applicaticns of the type described above.* In
routine practice, this kind of argument can be dangerous. A guality control
engineer is concerned with one particular machine and not with an infinite
population of machines from which one was chosen at random. He has been
advised to use Bayes' rule on the grounds that it is logically acceptable
and corresponds to our way of thinking. Plato used this type of argument
to prove the existence of Atlantis, and philosophers used it to prove the
absurdity of Newton's mechanics. TIn our case 1t overlooks the circumstance
that the engineer desires success and that he will do better by estimating
and minimizing the sources of wvarious types ¢f errors in predicting and
guessing. The modern method of statistical tests and estimation is less
intuitive but more realistic. It may be not only defended but also applied.”

Well, that gives us a pretty clear idea of one common attitude toward
Bayes' theorem, at least for problems of gquality contrcol. Now what are the
procedures referred to as the "modern method of statistical testg?” 1 can't

tell of course from reading, but ever since the early days of World War IT

*The reference is to Laplace's law of succession, about which we will have
a lot to say later on in Lecture 16.
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when he invented it, Wald's sequential testing procedure (Wald, 1947) has
been generally considered the optimum one available, optimum according to
several different criteria.

Let's illustrate the problem by considering manufacture of some small
item. Suppose we take crystal dicdes. ©One of the important things about
a crystal diocde is the maximum inverse peak voltage it can stand without
damage. Clearly, the way to find ocut just how good cur diodes are is to
test each one and measure the voltage at which damage occurs. The trouble
is that once we'wve done this the diode is ruined, so we can't test every
one this way. We can test only some fraction of the batch and we would
not want to test a wvery large fraction. So the problem of quality control
in this case is to find some method of plausible reasoning which lets us do
the best possible job of deciding whether we have a good batch or not, with
the smallest number of diodes ruined in testing. I think all statisticians
agree that Wald's method is the optimum one in this sense of requiring, on
the average, fewer tests than any other for a given probability of error.
Wald, in a footnote in his book, says that he conjectures that it's an
optimum test in this sense but didn't succeed in proving it. We'll come
back te that statement a little later.

Just for variety, let's go first into the way the robot would handle
this proklem. We will simply ignore Feller's warning, and see for ourselves
whether Bayes' thecrem c¢an be "applied." After the final comparisons are

at hand, we will also see whether 1t can be "defended."

5.1 Logarithmic Form of Bayes' Theorem.

First, let's manipulate Bayes' theorem a little bit in a manner sug-
gested by I. J. Good (Geod, 1950). Instead of calculating the prchability,

it would be just as good if we'd calculate any monotonic function of the
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probability, if we know what function we've got. So, let's do a little
rebuilding on Bayes' theorem. I'll use E to stand for new evidence,

(E|2%)

(A|EX) = (A'X) B %)

{5-1)

Now we could have written Bayes' theorem for the probability that A ig false

(a|Ex) = (a|x) (E(Eai; ’ (5-2)

and we can take the ratic of the two equations:

given the same evidence,

(a|EX)  @A[x)(E|A) .
(a]EX) = (&[x) (E|ax) (5-3)

In this case, one of our terms will drop out. This doesn't look like any
particular advantage. But the guantity that we have here, the ratio of the
probability that A is true to the probability that it's false, has a technical
name. We call it the "odds" on the proposition A. So 1if T write the "odds
of A, given E and X," as the symbol

o(alEx) = (AEX) (5-4)

(a|EX)

then I can write Bayes' theorem in the following form:

0(A|EX) = O(aX) (E]Ax) (5-5)
(E|aX)

The odds on A are equal to the prior odds multiplied by the ratic of the
probability that E would be seen if A was *true, to the probability that E
would be observed if A was false. The odds are, of course, a monctonic
function of the probability, so we could equally well calculate these
quantities.

In some applications it is even more convenient to take the logarithm
of the odds because of the fact that we can then add up terms--the same
reascn the logarithm was invented in the first place. Now we could take
logarithms to any base we want. What I'm after here is something which is

handy for numerical work, and the base 10 turns out to be easier to use
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than the base e for that purpose, even though it makes our equations look
less elegant. And so I'm going to define a new function which I'11 call
the evidence for A given E:

e(n|EX) = 10 log, 0(alEX) . {5-6)
This is still a monotonic function of the probability. By using the base
10 and putting the factor 10 in front, we've now reached the condition where
we're measuring evidence in decibels! Now what does Bayes' theorem look
like? The evidence for A, given E, is egual to the pricr evidence plus the

number of db provided by working out the probability ratio in the second

e(a|E) = e(al|x) + 20 10910[22 i;}- (5=7)

Now let's suppose that this new information that we got actually con-

term below:

sisted of several different propositions:

E=ElE2E3...

In that case, we could expand this a little more by successive applications

of Rule 1:
[ | (E.|a) (E2|ElA
e{A[E) = e(A|X) + 10 log + 10 log | 7 = + ol (5-8)
10 (El a) ( 5 la J

In a lot of cases, it turns out that the probability of E, is not influenced

by knowledge of E For example, in the case where cne says technically

1°
the prokability is a chance; say the tossing of a coin, where knowing the
result of one toss (if vou know the coin is honest) doesn't influence the
probability you would assign for the next toss. In case these geveral pleces
of evidence are independent, the above egquation becomes:

(€, |2
_ i

e(alE) = e|x) + 10 ], log AR (5-9)
i

where the sum is over all the extra pieces of information we get.
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Now it would be a good idea for us to get some feeling for numerical
values here. So, I'd like to give a table and a graph. We have here three
different ways we can measure plausibility; evidence, odds, or probability;
they're zll monotonic functions of each other. Zerc db of evidence corres-
ponds to odds of 1 or to a probability of 1/2. Now every electrical engi-
neer knows that 3 db means a factor of 2 and 10 db is a factor of 10, and
go if we just go up in steps of 3 db, or 10, why we can write down this

table pretty fast.

e 0 o]

0 1:1 1/2

3 2:1 2/3

6 4:1 4/5

10 10:1 10/11
20 100:1 100/101
30 1000: 1 0.999
40 10%:1 0.9999
- 1/0 i-p

You see here why giving evidence in db is nice. When probabilities get very
close to one or very close to zero, our intuition doesn't work very well.
Does the difference between the probability of 0.999 and 0.999% mean a great
deal to you? It certainly doesn't to me. But after living with this for

a while, the difference between evidence of plus 30 db and plus 40 db does
mean something to me. It's now in a scale which my mind can comprehend.
This is just another example of the Weber-Fechner law. Now let's draw a
graph showing reasonably well the numerical values of evidence versus proba-

bility. This graph is shown in Figure (5.1). The graph is symmetric about
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-30 -25 -20 -15 -10 -5 0 +5 +10 +15 +20 +25 +30
+
Probability Evidence {db) -

Figure 5.1. Probability vs. Evidence.
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the center.

Now let's take our specific example of quality control. I'll assume
nurbers which are not at all realistic in order to bring out some peints
a little hit better., We have eleven automatic machines which are turning
out crystal diodes. This example corresponds to a very early stage in the
development of crystal dicdes, because ten of the machines produce, on the
average, one in six defective. The eleventh machine is even worse; it makes
one in three defective. The output of each machine is collected in an
unlabeled box and stored in the warehouse. We choose one of the boxes and
we test a few of the diodes. Our job is to decide whether we got a box
from the bad machine or not; that is, whether we're going to accept this
batch or reject it. Now we're going to turn this job over to our rcbot and
see how he handles 1it.

He says: "If we want to make judgments about whether we have the
box of defective dicdes, the way to do this is to calculate the probability
that we have the box of defective diodes, conditional on all the evidence
available." Let's say the proposition A shall stand for the statement
"we chose the bad box." All right, what is the initial evidence for propo-

“sition A? The only initial evidence is that there are eleven machines and

we don't know which cne we got; so by Rule 4 (A]X) = 1/11, and by Rule 2
(a|x) =1 - (A]%) = 10/11. Therefore,
— (A X) 1/11
e{A|X) = 10 lo =10 1
| ) glO(a X) OglO 10/11
= - 10 db {(5-10)

Evidently, the only property of X that's going to be relevant to this problem
is just this number, - 10 db. Any cther kind of prior evidence which led
to the same initial probability assignment would give us exactly the same

mathematical problem from this point on. So, it isn't really necessary
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to say we're talking only about a problem where there are eleven machines,
and so on. There might be only one machine, and the prior evidence consists
of our previous experience with it. My reason for stating the problem in
terms of eleven machines was just that we have, so far, only one principle,
Rule 4, by which we can convert raw information into numerical values of
probability. I mention this here only because of Professor Feller's remark
about a single machine. To our robot, it doesn't make any difference how
many machines there are; the only thing that counts is the prior probability,
however arrived at.

Now freom this box we take out a diode and test it to see where it
breaks down. Every time we pull ocut a bad one, what will that do to the
evidence? That will add to this the number

10 log lEEElFiL (5-11)
10 (bad|a)
where (bad|A) represents the probability of getting a bad diode, giwven A,
etc. We have, then, to determine these prcbabilities.

If we have the box in which one in three are bad, what is the proba-
bility that we will draw @ bad one? The final answer is obviocus to all
of us without any calculation, and the argument showing this from the prin-
ciples of probability theory is almost trivial. WNevertheless, I want to
give that argument in full because there is a very important general prin-
ciple lurking here, which will apply in countless other applications of

probability theory.

5.2. Sampling With and Without Replacement.

Consider first the traditional "urn" of probability theory, in which
we have placed N balls, all of the same size, weight, surface texture, etc.,
labeled 1, 2, ..., N. Balls 1, 2, ..., n are black, and the remaining

(N-n) are white. What is the probability of drawing blindfolded any parti-
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cular ball, say the i'th? Rule 4 answers this, for there are N mutually
exclusive possibilities, and the information given provides no justification
for expecting any one of them in preference to any other. In this state
of knowledge, therefore, the probability sought must be p; = 1/M.

Let us recall clearly just what this means. The prcbability assignment
p. = 1/N is not an assertion of any physical property of the balls; it is

1

merely a means of describing the state of knowledge of the robot prior to

the drawing. It is, therefore, utterly meaningless to speak of "verifying"
this probakility assignment by performing any experiment on the balls; that
would be exactly like trying to verify a boy's love for his dog by performing
experiments on the dog. What it does mean was explained in our derivation
of Rule 4; the assignment p;, = 1/N is uniquely determined by the reqguirement
that the robot's reasoning be consistent in the senge that, in two problems
where he has the same state of knowledge, he must assign the same proba-
bilities. If he were to assign anything different from the uniform distri-
bution, then merely by a permutation cof labels we could exhibit a second
problem in which the robot's state of knowledge is exactly the same; but
in which he is assigning a different probability distribution. I have
repeated this argument for emphasis, because to the best of my knowledge,
this point is not recognized in any other work on probability theory.

Now, what is the prcobability that we shall draw a black ball? Since
different balls are mutually exclusive possibilities, Rule 3 as extended

to Eq. (3-21) applies, and the probability of drawing a black one is the sum

n

black|X) = , = N 5-12
(black|x) Zi=l Py n/ { )
i.e., it is just the fraction of black balls in the uxrn. It is, therefore,

also egqual to the relative frequency with which we would draw black balls,

if we took them all out; or as it is usually stated, if we "sampled the

entire population.”
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We have here one of the many different connections between probability
and frequency. In spite of the triviality of its derivation, I ask you to
note carefully just how it came about; because today most writers on proba-~
bility and statistics deny that prokability theory has anything to do with
plausible reasoning, and insist that the only proper meaning of probability
is that of relative frequency in some "random experiment." According to
this school of thought, if a probability is not a fregquency, then it is not

"skjective," and its use is just not scientifically respectable.
On the other hand, I maintain that, as its derivation shows, the relation
(5-12)} has absolutely nothing to do with the definition of probability:
on the contrary, it is an almost triwvial mathematical conseguence of proba-
bility theory interpreted as the "calculus of inductive reasocning." In
fact, by this broader interpretation of the theory, we lose ncone of the
usual connections between probability and frequency; as will become clear
gradually in the remaining lectures, every connection between probability
and frequency that is actually used in applications, is deducible in a
similar way as a consequence of our "inductive reasoning" form of the theory.
At this point, you might ask, "Aren't you making a tempest in a teapot?
Since on either viewpcoint we end up writing down the same equation (5-12},
which was cbvicus intuitively without any derivation at all, what difference
do these philosophical questions make? It seems like pedantic nit-picking.”
Well, it is true that in many problems the connection between probability
and frequency is so close that the notions are easily confused, and this
confusion does no harm in the pragmatic sense that we end up writing down
the same eguations. Usually, the importance of my nit-picking does not
lie at all in the actual equations used; it lies in our judgment about the

range of validity of those equations.
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The point is that many of the most important problems of current science
and engineering are just problems of inductive reasoning, in which no "random
experiment” is involved in any way. If vou insist that a probability is
not respectable unless it is also a frequency, then you will have to conclude
that probability theory is just not applicable to these problems. But I
am going to insist in these lectures that the relations of probability
theory are perfectly valid when used in the Laplace sense of the "calculus

of inductive reasconing," whether or not there is any connection between

probability and frequency. By using the theory in Just this sort of problem,

where the "frequentist" would deny the validity of probability theory, I
hope to show that we can not only obtain important, useful, and nontrivial
results; we can also clear up scme of the paradoxes surrounding present
communication theory, statistical mechanics, and quantum mechanics.

In fact, the problem of guality control, which led us into this little
excursion, provides one of the most striking examples of the value of this
nit-picking. However, I want to postpone discussion of the history of this
preblem until we have the full comparisons at hand; then we will be able
to see how much statistical practice has suffered from the other kind of
nit-picking, which restricts the apparent range of wvalidity of the theory.

Before returning to the gquality-control problem, let's extend the
result (5-12) to get the general relations in sampling from a finite popu-
lation. For this, we need a little more notation; let By stand for the
proposition, "black ball at the k'th draw,” whereupon bk = Wk will stand
for, "white ball at the k'th draw." 2and, let's indicate the prior informa-
tion more explicitly. What I called X in (5-12) contained the statement
that we have a total of N balls, of which n are black, and (W-n) white;
to remind us of this, I will now write Eg. (5-12} in the form

(B1|N,n) = n/N. (5-13)
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Now, what is the probability of drawing two black balls in two draws?
This is, by Rule 1,
(B1B,|N,n) =.(BlfN,n}(B2|Bl,N,n) (5-14)
First, we suppose that a ball drawn is not replaced before drawing the next
one. S0, in evaluating the last factor, the fact that one black one has
already been drawn means that at the second draw we are sampling from a
population of (N-1) balls, of which (n-1) are klack: and so

nin-1) n! (N-2}!
N{N=1) ~ (n-2)! N!

(BlB2[N,n) = (5-15)

Continuing in this way, we see that the probability of drawing r black balls
in succession without replacement, is

n! (N-r}!
(Bl'°'Br|N'n) = )i N1 s rsn (5-16)

The restriction r £ n isn't necessary if we understand that we define factor-
ials by the gamma function relation: n! = I'(n+l}; for then the factorial
of a negative integer is infinite, and (5-16) automatically gives zero when
r > n.

Likewise, the probability of drawing s white balls in succession with-
out replacement is given by a relation of the same form, except that the
roles of n and (N-n) are interchanged:

_ (W-n)! (N-s)!
(Wy...Wg[¥m) = (uTnTeyT w (5-17)

Next, we ask for the probability that in m draws without replacement
we shall obtain r black balls and (m-r) white ones, in a specified order.
Suppose first that black balls are drawn on the first r trials, and white
ones on the remaining {(m-x) trials. Then Rule 1 gives

(Bpo..Byfypqe--Wp|N,n) = (By...B[N,n) (,pq... W |By...B,N,n)  (5-18)
of which the first factor is given by (5-16), and the second by (5-17),

if we note that after r black balls have been drawn, we are then sampling

74



Lecture 5, Section 5.2.

from a population of (N-r) balls ({(instead of N), of which (n-r) are black
(instead of n). Also, the gquantity denoted by s in (5-17) is equal to
(m~r). So, we have

n! (N-r}! (N-n) ! (N-m)!
(n-r)! N! (N-n-m+r}! (N-r)!

(B,---B W W |N,n) = (5-19)

r+1°°"
Although this result was derived for a particular order of drawing black
and white balls, the prcobability actually depends only on the numbers r,
(m-r) drawn; and not on the particular order in which black and white appeared.

To see this, write out the expression (5-19) more fully, in the manner

n!
To-r) 1 = n(n=-1}) (n-2) *- - (n-r+1) (5-20)
and similarly for the two other ratios of factorials in (5-1%9). It then

becomes

n{n-1)--- (n-r+1) {N-n) (N—n-1) * * » (N-n-mér+1)
N{N-1} ** * (N-m+1)

(5-21)

Now suppose that r black balls and {m-r) white ones are drawn, in any other
order. The probability of this is the product of m factors; every time

a black one is drawn there appears a factor: (nuber of black balls in
urn) / (total number of balls); and similarly for drawing a white one. The
total number of balls in the urn decreases by one at each drawing; therefore,
for the k'th drawing a factor (N-k+l) appears in the denominator, whatever
the colors of the first k draws. Just before the k'th black ball is drawn,
whether this occurs on the k'th trial or any later one, there are {n-k+l)
black balls in the urn; so drawing the k'th black one places a factor (n-kt+l}
in the numerator. Just before the k'th white ball is drawn, there are
(N-n-k+1) white balls in the urn; and so drawing the k'th white one places

a factor (¥N-n-k+l) in the numerator regardless of whether this occcurs on
the k'th trial or any later one. Therefore, by the time all m balls have

been drawn, one has accumulated exactly the same factors in numerator and
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and denominator as in (5-21}; different orders of black and white correspond
only to different permutations of the order of factors in the numerator.

The probability of drawing r black kalls in any specified order in m trials,
without replacement, is therefore given by (5-12).

Finally, we ask: what is the probability of drawing exactly r black
balls in m trials without replacement, regardless of their order? Different
orders of drawing are mutually exclusive events, so we must sum over all
possible orders. But since all orders have the same prokability (5-19},

this means that we must multiply (5-19) by the binomial coefficient

m) _ m!
(r Tl (m-r)! (5-22)

which represents the number of different possible orders of drawing r black
balls in m trials. [Question for you to ponder: why isn't this factor
just m!? After all, we started this discussion by saying that all the
balls, in addition to being either black or white, also carried individual
labels i =1, 2, ..., N, so permatations of black balls among themselves
are distinguishable events. A little private thought will enable you to
answer thisg, unless you have had the misfortune of studying Bose and Fermi
statistics in quantum theory from the usual textbook discussions; in that
case you may have some unlearning to deo first. Hint: In (5-19) we are
not specifying which black balls and which white ones are to be drawn; if
we did, (5-19) would collapse to (N-m)!/N!].

Taking the product of (5-22) and (5-19), the many factorials appearing
can be reorganized into three binomial coefficients, and the probability

of r black balls in m trials without replacement becomes

Q)__@;j_ (5~23)

(o)

(r|m,N,n) =
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This is our main result, and it is called the hypergeometric distribution,

because the right-hand side of (5-23) is closely related to the coefficients
in the power series representation of the hypergeometric function. As an
aid to memory, we can put this into a more symmetrical form by adopting

a new notation; the probability of drawing b black and w white balls, with-

out replacement, from a population of B black and W white ones, is

= j;l—ﬁgl (5-24)
o)

and in this form we can generalize still further. We have been considering

(ow | 3W)

an urn with only two kinds of balls: black and white. Suppose there are
alsc red, green, brown, etc. ballspresent; in all,m different colors. I

leave it for you to verify that the probability of drawing n, balls of

1
type 1, n, of type 2, etc., without replacement, from a pepulation of Ny

of type 1, N, of type 2, etc., is

2

(Nl)...(Nm>
(n ...n [N ...N ) = o1 O (5-25)

) m .
IN,
i
in,
i
The hypergeometric distribution (5-23) is rather complicated in its
most general form, but it goes into & simpler distribution in the limit
where the numbers n, (N-n) kecome very large compared to the number m sampled.
Intuitively, this is clear; since then the proportions of bhlack and white
balls in the urn change only negligibly due to the small number drawn, so

the probability of getting a black ball is esgsentially the same at each

drawing. Tc¢ see this mathematically, note that {(5-21) can be written as

T (1—%}(1-%) .. (1-r;l)(1—N}n)(1_NEn>. .. (1_%%)
- LD )

Now let N9, (N-n}=+® in such a way that the ratio p = n/N remains constant.
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A1l the factors in curly brackets in (5-26} tend to unity, and so (5-26)
reduces in the limit to

n¥ (-n) "7 r m-r
——gm __ =p (1-p) (5-27)

This is the prcbability of drawing r black, (m-r) white balls in a specified
order, and you see that it corresponds to a constant probability p of getting
a black ball, (1l-p) of getting a white one, at each trial. The probability
of getting r black in m draws regardless of the order, again regquires the
combinatorial factor (5-22); and so in the limit the hypergeometric distri-
bution goes into
. m -
(r|m,p) = lim (r!m,N,n) = ( ) Pt (1-py™t (5-28)

Moo -

N=11>®

n/N+p

This is the binomial distribution, so called because the function

m 00
£ = r , = m T (1opD-T
(s) zr=0 s (r|m ) Zrzo(r)(sp) (1-p)
= (sp+1-p" (5-29)

is just a representation of Newton's bincmial theorem. F(sg) is called the

generating function of the binomial distribution; we will see later that

generating functions provide a powerful tool for carrying out certain advanced
calculations, as was first shown in Laplace's "Theorie Analytique." Note
that the evident relation £(1) = 1 is just a verification that the proba-
bilities in (5-28) are correctly normalized; i.e.
g lmmpy =1 (5-30)
We can carry out a similar limiting process on the generalized hyper-
geometric distribution (5-25). Again, I leave it for you to verify that

in the limit where all the Ni+m in sguch a way that the fractions

tend to ceonstants, (5-25) goes into the multinomial distribution
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(nl...nm pl...pm) = 1im (nl...nm_Nl...Nm)
N s~pe0
i
n! S ) O
= P P B & (5=-32)
nl!n2!---nm! 1 2 m

where n = Zni. And, as in (5-29), you can define a generating function of
(m-1) variables, from which you can prove that (5-32) is correctly normalized.
Up to now, we have considered only the case where we sample without
replacement; and that is obviously appropriate te our guality-control problem,
where each diode drawn is tested to destruction. But suppose now that we
sample balls, and after noting the color of each, we replace it in the urn
before drawing the next ball. This case, of sampling with replacement, is
enormously more complicated conceptually, but with some assumptions usually
made, ends up being simpler mathematically, than sampling without replacement.
For, let's go back to the probability of drawing two black balls in succes-
gion:
(8B, [N,n) = (Bl]N,n)(lesl,N,n) (5-33)
Evidently, we still have (n/N) for the first factor; but what is the second
one? Answering this would be, in general, an enormously difficult problem,
reguiring a vast amount of additional data before it could be solved. Because,
what happens tec that black ball that we put back in the urn? If we merely
dropped it into the urn, and immediately drew ancther ball, then it was left
lying on the top of the other balls, (or in the top layer of halls); and
so it is more likely to be drawn again than any other specified ball, whose
location in the urn is unknown. But this upsets the whole basis of our
calculation, because the probability of drawing any particular (i'th) ball
is no longer given by Rule 4, which led to (5-12).
Evidently, the probability of drawing any particular ball now depends

on such details as the exact size and shape of the urn, the size of the balls,

79



Lecture 5, Section 5.2.

the exact way in which the first one was tossed back in, the elastic pro-
perties of kalls and urn, the coefficients of friction between balls and
between ball and urn, the exact way you reach in to draw the second ball,
etc, Bven if all these data were at hand, I don't think that a team of the
1,000 best mathematicians in the world, backed up by all the computing faci-
lities in the world, would be able to solve the problem; or would even know
how to get started on it. Still, I don't think it would be guite right to

say that the prcoblem is unsclvable in principle; only so complicated that

it just isn't worth anybedy's time even to think abkout it.

So, what do we do? Well, there's a very clever trick for handling
problems that become too difficult. As far as I know, 1t originated in
probability theory; but it produces such euphoria that it has already spread
to physics, and there is some danger that it may spread also to other fields.

In probability theory, when a problem becomes too hard to solve, we
solve it anyway by:

(1) making it still harder;

(2) redefining what we mean by "solving” it, so that it becomes

something we can do;

{3) inventing a dignified and technical-sounding word to describe

this procedure, which has the psychological effect of concealing
the real nature of what we have done, and making it appear
respectable.

In the case of sampling with replacement, we apply this strategy by
(1) supposing that after tossing the kall in, we shake up the urn. However
complicated the preblem was initially, it now becomes many orders of magnitude
more complicated, because the solution now depends on every detail of the
precise way we shake it, in addition to all the factors mentioned above;

{2} assert that the shaking has somehow made all these details irrelevant,
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so that the problem reverts back to the simple one where Rule 4 applies;

(3) inventing the dignified-scunding word randocmization to describe what

we have done. This term is, evidently, a suphemism whose real meaning is:
deliberately throwing away relevant information when it becomes too compli-
cated for us to handle.

I have described this procedure in laccnic terms, because an antidote
is needed for the impression created by some writers on probability theory,
who attach a kind of mystical significance to it. For socme, declaring a
prcblem to be "randomized" is an incantation with the same purpose and effect
as those uttered by a Priest to convert ordinary water into Holy Water; i.e.,
it sanctifies their subseguent calculations and renders them immune to criti-
cism. We agnostics often envy the sense of security that the True Believer
thus acquires so easily; but which is forever denied to us.

However, in defense of this procedure, we have to admit that it often
leads to a useful approximation to the correct soclution; i.e., that the
complicated details, while undeniably relevant, might nevertheless have little
numerical effect on the answers to certain particularly simpie questions,
such as the probability of drawing r black balls in m trials when m is suf-
ficiently small.

From the standpoint of principle, however, an element of wvagueness
necessarily enters at this point; for while we may feel intuitively that
this leads to a good approximation, nobody has ever produced a proof of this,
much less a reliable estimate of the accuracy of the approximation, which
presumably improves with more shaking. The vagueness is particularly evident
in the fact that different people have widely divergent views about exactly
how much shaking is reguired to Jjustify step (2). [Witness the minor furor
surrounding a recent Govermment-sponsored and naticnally televised game of

chance, when somecone objected that the procedure for drawing numbers from a
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fish bowl to determine the order of call-up of young men for Military Service
was "unfair" because the bowl hadn't been shaken enough to make the drawing

"truly random,"

whatever that means. Yet if anyone had asked the cbjector:

"To whom is it unfair?" he could not have given any answer except, "To those
whose numbers are on top; I don't know who they are." But after any amount

of further shaking, this will still be true!]

Again, you may accuse me of nit-picking, because you know that after
all these polemics, I am just going to go ahead and use the randomized solu-
tion like everybody else does. Note, however, that my objection is not to
the procedure itself, provided that we franhkly acknowledge what we are doing;
i.e., instead of sclving the real problem, we are making a practical compro-
mise and being, of necessity, content with an approximate sclution of unknown
accuracy. That is something we have to do in all areas of applied mathematics,
and there is no reason to expect probability theory to be any different in
this respect.

My objection is to this mystical belief that by "randomization" we
have somehow washed away all our sins, and from that point on we proceed
with exact relations--so exact that we can then subject our solution to all
kinds of extreme conditions and believe the results. The most serious and
mogt common error resulting from this belief is in the derivaticon of limit
theorems (i.e., when sampling with replacement, nothing prevents us from
passing to the limit m+ and obtaining the usual "laws of large numbers").

If we don't recognize the approximate nature of our starting equations, we
delude ourselves intoc believing that we have "proved" things (such as the
rigorous identity of probability and limiting freguency) that are just not

true in real random experiments.

Returning to the equations, what answer can we now give to the guestion
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posed after Eg. (5-33)? The probability (B2[B1,N,n) of drawing a black ball
on the second draw, clearly depends not only on N and n, but also on the

fact that a black one has aiready been drawn and replaced. But this latter
dependence is just so complicated that we can't, in real life, take it into
account; so we shake the urn to “"randomize" the problem, and then declare

Bl to be irrelevant: (B2|B1,N,n) = (BZ|N,n) = n/N. After drawing and replac-
ing the second ball, we again shake the urn, declare it "randomized", and
get (B3|B2,B1,N,n) = (B3IN,n) = n/N, ete. Tn this approximation, the proba-
bility of drawing a black one at any trial, is (n/N), and (N-n}/N is the
probability, at every trial, of drawing a white ball. This leads us to
write the probability of drawing exactly r klack balls in m trials regardless

of crder, as

T \J0-%
(r|m,N,n) = (i) (%) P%;E) (5-34)

which is just the binomial distribution (5-28) with p = n/N.

Evidently, for small m, this approximation will be guite good; but for
large m these small errors can accumulate (depending on exactly how we shake
the urn, etc.) to the point where (5-34) is utterly useless. However, I
think that some workers in probability theory would deny this; so let's
demonstrate it explicitly by a simple, but realistic, extension of the problem.

Suppose that drawing and replacing a black ball actually increases the
prokability of a black one at the next draw by scme small amount €>0, while
drawing and replacing a white one decreases the probability of a black one
at the next draw by a (possibly egual) small guantity &>0; and that the
influence of earliexr draws than the last one is negligible compared to £ ox
§. Then

(B [B,_,/Nom) =p+e (B W, _, W) =p -8

(5-35)

(W, [B_ /M) =1-p-e¢, (W, [W, _ M) =1 -p=+ 8
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where p = n/N. The probability of drawing r black, {(m-r) white balls in
any specified order, is eagily seen to be:

pip+e) P (p-6)° (1-prs) ¥ (1op-e) ™ (5-36)
if the first draw is black, while if the first is white, the first factor in
(5-3¢) should ke (l-p). Here b is the number of black draws preceded by
black ones, k' the number of black preceded by white, w the number of white

draws preceded by white, and w' the number of white preceded by black.

b+ b' = {r'l} , w o+ w'~={ o } (5-37)
r m-r-1

the upper case and lower cases holding when the first draw is black or white,

Evidently,

respectively.
Now it is clear that, when r and (m-r) are small, the presence of ¢
and 6 in (5-36) makes little difference, and it reduces for all practical

purpcses to

-r

P (1-p) ™ (5-38)
as in the binomial distribution {5-34). But as these numbers increase, we
can use relations of the form

b ¢

i [ £b

1+ = = axpl— 5-39

( p) Pkp> ( )
and (5-36) goesg into

— - ) - ]

pr (1 - p)m r exp{eb Sk + 8w ew } (5-40)
p 1-p

The probability of drawing r black, {m-r) white balls now depends on the
order in which black and white appear, and for a given £, when the numbers

b, b', w, w' become sufficiently large, the probability can bescome arbitrarily

large (or small) compared to (5-38).

We see this effect most clearly if we suppose that N = 2n, p = 1/2, in

which case we will surely have € = §. The exponential factor in (5-40) then
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reduces to:
exp {2[(b-b"} + (w-w')1} (5-41)

This shows that, (1) as the number m of draws tends to infinity, the proba-
bility of results containing "long runs"; i.e. long strings of black {or white)
balls in succession, beccmes arbitrarily large compared to the value given
by the "randomized" approximation; (2) this effect becomes appreciable when
the numbers (eb), etc., become of order unity. Thus, if g = 10—3, the
"randomized" approximation can be trusted up te about mvl000; beyond that,
yvou are deluding yourself by using it. In the limit ms<, it cannot be
trusted for any £>0.

All right, we've had a first glimpse at some of the principles and
pitfalls of standard sampling theory, so let's turn back to the guality-

control problem in which the question came up.

5.3. The Robot's Procedure

You recall, we were trying to use Bayes' theorem in the form of the
evidence function:

(E | A)

e(alE) = e(alx) + 10 109, 1oy

(5-42)

toc test hypothesis A = "we have a batch in which 1/3 are bad" against a single
alternative B = "we have a batch in which 1/6 are bad:" The prior evidence

for A was, by (5-10), e(A]X) = -10 db, and we had reached the "problem"

of evaluating the other terms {ElA), (E]a) in (5-9) for the case that the
experimental result was E = "we draw a bad cne on the first draw." What

is the probability of this happening if A is true? Well, if 1/3 of them

are bad, then we are sampling from a population of unknown total N, in

which n = N/3 are bad, {N-n) = 2N/3 good. By (5-12), the probability of
drawing a bad one con the first draw, given &, is of course (bad|A) =n/N = 1/3,

as was obviocus to all from the start. To evaluate (E{a) = {bad|a), ncte
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that in this problem it is part of the prior information X that either
proposition A or B must be true; no other hypothesis about the batch is to
be considered (we will see in Lecture & what happeng if we change this
condition). So, in this problem, a = B; if A is false, then B must be true;
i.e. there are 1/6 bad, and (Efa) = 1./6. Thus, if we draw a bad one on the
first draw, this will increase the evidence for A by

(E|a) _ (1/3) _ .
(B ) 10 loglo - = 10 loglO 2 = 3 db (5-43)

10 logp, (1/6)

What happens now if we draw a second bad one? We are sampling without

replacement, so in the notation of (5-14), this contributes further evidence

10 1o (32 B12) (5-44)
910 ENERY

But (B2FB1A) = (n=-1) /(N-1) now depends on the number N in a batch. To

of

avolid this complicaticn, let's suppose that N, while unknown, is at least
known to be very much larger than any number that we contemplate testing:
i.e. we are going to test such a negligible fraction that the proportion

of bad and good ones in the batch is not changed appreciably by the drawing.
Then the limiting form of the hypergecmetric distribution (5-23) will apply,
namely the bkinomial distribution (5-28). Or, you can say egually well that
in this case sampling without replacement is practically the same thing

as sampling with replacement, leading again to the binomial distribution
(5=-34). In any event, the result is that the probability of drawing a bad
one is the same at every draw, regardiess of what has been drawn previously;
50 Eg. (5-43) now applies for every draw in which we get a bad one. Every
bad one we draw will provide +3 db of evidence in favor of hypothesis A,

the proposition that we had a bad batch. Now suppose we find a good diocde.

We'll get evidence for A of
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{good|R) 2/3
10 log, (good|a) = 10 log; 56 = -0.97 db, {5~45)

but let's call it -1 dbk. Again, this will hold for any draw, if the number
in the batch is sufficiently large. If we have inspected n diodes, of

which we found ny bad ones and n_ good ones, the evidence that we have the

g
bad batch will be
e(A[E) = - 10 + 3nb - ng . {5-46)
You see how sasy this is to do once we've set up the machinery. For example,
if the first twelve we test show up five bad ones, then we'd end up with
e{A|E) = - 10+ 15-7=-24db (5-47)
cr, from Figure (5-1), the probability of a bad hatch is brought up to
(AlE) = 0.4 . (5-48)
In order to get at least 20 db worth of evidence for proposition A, how

many bad ones would we have to find in a certain sequence of tests? Well,

that's not a hard question to answer. If the number of bad ones satisfies

iy =i

p 25+ (5-49)
then we have at least 20 db of evidence for the bad batch above where we
started. Which shows that if we make enough tests, if just slightly more
than a quarter of the cnes tested turn out to be bad, that will giwve us

20 db of evidence that we have the batch in which 1 in 3 are bad.

Now all we have here is the probability or plausibility or evidence,
whatever you wish to call it, of the proposition that we got the bad batch.
Eventually, we have to make a decision. We're going to accept it or we're
going to reject it. How are we going to do that? Well, evidently we have
to decide beforehand: if the probakility of proposition A reaches a certain

level than we'll decide that A is true. If it gets down toc a certain value,

then we'll decide that A is false. There's nothing in probability theory
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which can tell us where to put these threshold levels at which we make our deci-
sion. This has to be kasad on our judgment as to what are the consequences of
making wrong decisions, and what are the costs of making further tests. For ex-
ample, making one kind of error (accepting a bad batch) might be very much more
serious than making the other kind of error (rejecting a gocd batch). That
would have an obvious effect on where we place our threshcld. So we have to
give the rcbot some instructions such as "if the evidence for A gets greater
than +0 db, then we'll reject this batch., If it goes down as low as - 15, then
we'll accept it."

Tet's say that we'd set some threshold limits: we arbitrarily decided that
we will reject the batch if the evidence reaches the upper level, and we will
accept 1t if the plausibility goes down to the lower one. We start doing the
tests, and every time we find a bad ocne the evidence for the bad batch goes up
3 db; every time we find a good one, it goes down 1 db, The tests terminate as
soon as we get into either the accept or reject region for the first time. This
would be the way our robot would do it if we told him to reject or accept on the

basis that the posterior prchability of proposition A reaches a certain level.

We could describe this in terms of a "control chart," where we start at

-10 db at zero number of tests, and plot the result of each test (Fig. 5.2).

5.4. Wald's Probability-Ratio Test.

Now, how does Wald do this? He (Wald, 1947) does not mention Bayes'
theorem. But what he actually does is just the game with the one characteristic
difference which we find in all these comparisons. Like Fisher in the case
of maximum likelihood, he always starts out by throwing away his prior informa-
tion. His graphs always start out at 0 db.

Wald's probability ratio test invelves the calculation of just the last

term of Eguation (5-9), except that he uses natural logarithms. The
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Figure 5.2. A control chart for sequential testing.

. - 2

e{A|E) db ~

name "sequential" describes the fact that the number of tests is not deter-
mined in advance, but depends on what is observed. Thus, at each step of

the seguence of tests we choose one of three alternatives: (1) accept;

(2) reject; (3) make another test. This is the procedure which he con-
jectured represents an optimum procedure in the sense of requiring on the
average fewer tests than any other, but he didn't succeed in proving it.
Several years later, such a proof was offered, by Wald and Welfowitz. We

can well imagine how much mathematical effort has been expended on this
problem. But how does it look to ocur robot? Well, to the robot this problem
doesn't exist at all; it is only a "Scheinprcblem.” To him the fact that

we have derived it from Bayes' theorem is already the proof that the proba-
bility ratio test is the optimum calculation to do, by any sensible criterion
of "optimum." Any criterion which required us to reason in & manner not

reducible to Bayes' theorem would alsc reguireus to be inconsistent in the
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sense discussed earlier, or to violate qualitative common sense. Our robot
would say this: "When you have calculated the probability of propesition
A, conditional on 2ll the available evidence, then you have got everything
bearing on the truth of A that is to be had from the evidernce. Nc¢ method
of analyzing the data can give you more than this, and there is nothing
more to be gaid."

Does anyone incur any serious error by starting out at zero db? In
principle, this is bad in the sense that it is inconsistent if we do have
pricr information. But, of course, in practice the person using the test
still has his common sense; and if he has prior information he will use
that information in deciding where to put the boundaries of the accept and
reject reglons. We cannot remove all the arbitrariness in location of
these boundaries, but we can remove some of it, by taking into account
prior probability. In practice, the orthodox statistician would use his
common sense to take account of his prior information, without ever having
to admit that there is any such thing as a "prior probability."

A particularly frank admission of the relevance of prior information
is given by Lehman (13959; p. 62) in his well-known work on hypothesis testing
according to the "orthodox" viewpeocint. He writes: "Another consideration
that freguently enters into the specification of a significance level [this
is something essentially equivalent to chocsing the threshold values in
our problem] is the atiitude toward the hypothesis before the experiment
is performed. Tf one firmly believes the hypothesis to be true, extremely
convincing evidence will be required before one is willing to give up this
belief, and the significance level will accordingly be set vary low.”
Exactly so! But it is just the prior probability that shows gquantitatively

how this is to be done.
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Of course, there is a great deal more to sequential testing theory
than just applying the probability ratic test. There are many questions
about the procedure that the manufacturer and customer wouid ask, and would
want the statistician to answer. For example, if all batches have a certain
fraction £ defective, and we use a sequential test with specified threshold
levels, o, B what is the expected number of diodes tested per batch? How
does this average sample number depend on {f,a,f}? Or if a fracticn g of
the batches is in fact bad, what fraction do we expect to be rejected on the
average if certain threshold levelg are used?

Questions of this type can be answered by straightforward extensions
of this analysis and there is an extensive literature on them. In these
talks we are concerned only with showing that the rules for plausible reason-
ing which we have built into the robeot's brain will, if applied to this
problem, lead to the same actual procedures as the newest methods developed
by statisticians. Their conceptual basis 1s, however, entirely different.
To the orthodox statistician, the justification of thes seguential probability-
ratio test would probably lie in considerations of average sample numbers
for given probability of errors. To the robot, this is only an incidental
consequence of the fact that this procedure is the one that makes full use
of the available data, because it is derivable from Bayes' theorem.

We see that the robot's prediction has been borne out in one more
example. We are warned not to use Bayes' theorem for guality-control tests,
because 1L was associated with some metaphysical nonsense 150 years ago.

But so was everything else in science. It is even insinuated that Bayes'

theorem cannot be "applied." But the simple fact is that the most powerful
known method of guality control, only recently discovered by statisticians,
is nothing but an application of Bayes' theorem, in exactly the way Laplace

would have handled this problem.
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5.5. The Value of Wit-Picking.

So now we are in a position to discuss the value of my "nit-picking"
abcut the meaning of Eg. (5-12), and see why the problem of gquality contrel
provides a good example of the situation. Basically, of course, it is a pro-
blem of testing one hypothesis {we got a bad batch) against a single alterna-
tive (we got a good batch): and the mathematics we have developed applies just
as well to any such problem of hypothesis testing, such as testing two rival
theories in physics, or blology, or econcmics, against each other.

Now the procedures we are deveéloping in this and the next three lectures,
were used by Laplace in just such problems (although not in the logarithmic
form, which is only a convenient mathematical detail} from about 1774, and
they have been available to anvone wheo had the sense to use them since the

appearance of Laplace's Theorie Analytique in 1812. Yet generations of

statisticians were taught that these methods were wrong, and 1t was only

in the early 1940's--130 years later--that statisticians rediscovered the
procedure in this lecture from an entirely different view point without

at first recognizing it. It was then hailed as a major new advance in
statistical practice, and several more years elapsed before it was generally
realized (Good, 1950; Wald, 1950) that it was mathematically identical with
application of Bayes' theorem in exactly the manner that had long been re-
jected as wrong.

What caused this procedure to be lost to science for 130 years? Just

the point about which I was nit-picking earlier in this lecture; stubborn
adherence to a belief, for which there is no supporting evidence, that the
notion of prcbability can be used only in the sense of "frequency in a
random experiment". From this one concluded that it is meaningless to speak
of the probability that an hypothesis is true, because that is not a "random

variable." On such grounds statistical workers denied themselves use of
g
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the proper statistical methods, and worked instead with a great variety
cf ad hoc approximate methods.
In his later book, "Statistical Decision Functicns" (wWald, 1950},

Wald developed this theory very much further, and here we have one of those
ironical situations where years of the most careful and painstaking work
leads right back to the very thing one had been trying to refute. Wald
sought to develop a general thecry of decision making in the face of uncer-
tainty in a way which avoids the supposed mistakes of Laplace and Bayes,
who with Daniel Bernoulli had already developed such a theory in the 18'th

century. In order to keep the theory completely "objective," the notion
of inductive reasoning, which to Laplace was the central problem of the
theory, was suppressed, and attention was concentrated on the decision
itself. After long mathematical arguments to impose various conditions

of consistency, it finally developed that a class of "admissible" decision
rules, which consists, rcughly speaking, of all those any sane person
would ever consider adopting, is identical with the class derivable by the
methods of Bayes and Laplace, and the conly basis for a choice among them
lay in the prior probabilities! Wald called this class of rules, very
properly, "Bayes strategies.” As a final irony it was shown (Chernoff &
Moses, 1959; Chap. 6), that in practical applications it is only the fact
that these decision rules can be found by repeated application of Bayes'
theorem that makes it feasible to use this thecry at all in nontrivial pro-

blems, where the numnber of conceivable strategies is astronomical. We will

come back to these topics when we take up Decision Theory in Lectures 13, 14.
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Lecture 6

MULTIPLE HYPOTHESIS TESTING

Let's suppose something very remarkable happens in the sequential test
just discussed. Suppose we tested fifty diodes and every one turned out to
be bad. According to our equationg, that would give wus 150 db of evidence
for the proposition that we had the bad batch. e(A|E) would end up at
+140 db, which is a probability which differs from 1 by one part in 10",
Now our commen sense rejects this conclusion. If vou test 50 of them and
you find that all 50 are bad, you are not willing to bkelieve that you have
a batch in which conly 1 in 3 are really bad. What is it that went wrong
here? Why doesn’t our robot work in this case?

Our robot is still immature. He is reasoning like a 4-year-old chiild
does. We've probably all had experience in talking to 4-year-old children,
They have enough vocabulary so that you c¢an carry out gquite extended con-
versations with them; they understand the meanings of words. DBut the really
remarkable thing about them is that you can say the most ridiculous things
and they'll accept it all with wide open eyes, open mouth, and it naver
occurs to them to question you. They will believe anything you tell them.
The information which cur robot should have put inteo his brain case was
noet that we had either 1/3 bhad or 1/6 bad. The information he should have
put in was that Mr. Jaynes said we had either 1/3 bad or 1/6 bad. Those

are entirely different propositions.
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6.1. Admitting an Unlikely Hypothesis.

The robot should take into account the fact that the information he had
may not be perfectly reliable to begin with. There is always a small chance
that the whole set of initial data that we've fed into the problem was all
wrong. In every problem of plausible reascning this possibility exists. We

could say that generally every situation of actual practice is infinitely

complicated. There are always an infinite number of possibilities, and if
you start out with dogmatic initial statements which say that there are only
two possikilities, then of course you mustn't expect your eguaticns to make
sense in every case. 8So let's see whether we can, in a rather ad hoc way,
build this fact into our robot just for this particular exampie.

Let's provide the robot with one more possible hypothesis, although
initially a very unlikely one. Let's say proposition A means as before that
we have a box with 1/3 defective, and propeosition B stands for the statement
that we have a box with 1/6 bad. We add a third proposition, D, which will
be the hypothesis that something went entirely wrong with the machine ang
it's turning out 99 per cent defective. Now, we have to adjust our prior
probabilities to take this new possibility into account. I'm going to give

° {-60 db). I could write out

hypothesis D a prior probability (D|X) of 107
X as a verbal statement which would imply this, but I find that when I try to
write a proposition as a verbal statement, there's always someone in the
audience who manages to interpret it in a way which I didn't intend. I seem
to be unable to write verbal statements which are unambiguous. However, I
can tell you what propositicn X is, with no ambiguity at all for purposes of
this problem, simply by giving the probabilities conditicnal on X, of all the
propositions that we're going to use in this proklem. In that way I don't

state everything about X, I state everything about X that is relevant to our

particular problem, So suppose we start out with these initial probabilities:
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1 -6
(alxy =770 - 1078

10 -
(8] x) 7 - 10 '6) {(6-1)

]

(D|%) = 10~
where
A meang 'we have box which has 1/3 defectives”
B means "we have box which has 1/6 defectives" (this one was
formerly called simply a)
D means "machine's putting out 99 per cent defectives.”
The factors (1 - 107%) are practically negligible, and for all practical
purposes, we will start out with the initial values of svidence:
- 10 db for A
+ 10 db for B
- 60 db for D
Proposition E stands for the statement that "m dicdes were tested and every
one was defective." Wow, according to Bayes' theorsm the evidence for
proposition D, given E, is egual to the prior evidence plus 10 times the
logarithm of this probability ratio:

{E|DX)
e(D‘E) = e(DlX} + 10 logig TE%EET {6-2)

{(In this problem, we're saying that these are the only three hypotheses

that are to be considered and, therefore, as far as this problem is concerned,
the denial of D is equivalent to the statement that at least one of the
propositions A and B must be true.} What are these numbers now? From our

discussion of sampling with and without replacement in Lecture 5,

_ [ 99im
(E|Dx) = (m) (6-3)

LY

iz the probability that the first m are all bad, given that 99 per cent

of the machine's output is bad. This is the limiting form of the hyper-
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geometric distribution, under our assumption that the total number in the
box is very large compared to the number m tested.

We also need the probability (E|dX}, which we can evaluate by two appli-
cations of Bayes' theorem:

d|EX
(E[dx) = (E|X) ((d x§ {6-4)

But in this proklem it is dogmatically stated that there are only three
possibilities, and so the statement d = "D is false" implies that either A

or B must be true:

(a|Exy = (a+B|EX)

(A|EX) + (B|EX) (6~5)
where we used Rule 3, the negative term dropping out because A and B are
mitually exclusive. Similarly,

(d|xy = (a|x) + (B[X) (6-6)
Now if we substitute (6-5) into (6-4), Bayes' theorem will be applicable

again in the forms

(E[®) (R]EX) = (A]x) (E]AX)
(6-7)
(E]x) (B|EX) = (B|X) (E|BX)
and so finally we arrive at
(5] ax) - (E|ax) (a]x) + (B]BX) (B]X) (6-8)

alx)y + (B]x)

in which all prebabilities are known from the statement of the problem.
Although we have the desired result (6-8), let's take time to note

that there is another way of deriving it, which is often easier than direct

application of Bayes' theorem. The principle is to resoclve the proposition

whose probability is desired (in this case E} into a set of mutually exclusive

propositions, and calculate the sum of their prcobabilities. We can carry

out this resclution in many different ways by, as Professor Myron Tribus

has called it, "introducing into the conversation" any new set of mutually
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exclusive propositions {P,0,R,...}. But the success of the method depends
on our cleverness at choosing a particular set for which we can complete
the calculation. This means that the propositions introduced have to have
a known kind of relevance to the question being asked.

In the present case, in evaluation of (E’dx), it appears that proposi-
tions A and B have this kind of relevance. Again, we note that proposition

d implies (A+B); and so

(E{ax) = (E(a+B)[dX) = (EA + EB|ax)

(Ealax) + (EB[dX) (6-9)
These probabilities can be factored by Rule 1:

(E|dx) = (E]adx) (a]ax) + (E|BdX) (B|ax) (6-10)
But we can abbreviate {E]Adx) = (E]AX), (E]BdX) = (E]BX) because in the way
we set up this problem, the statement that either A or B is true implies
that D must be false, and so the "d" was redundant. For this same reason,

{d]AX) = 1, and so by Bayes' theorem,

_ @lan  @alx
Ald¥) = (AJX = -
(a]ax (f)(d]) I (6-11)

Substituting these results intoc (6-10) and using (6-6), we again arrive
at (6-8).

I wanted to exhibit these two ways of doing the calculation because
you recall it was one of the conditions of consistency that we imposed on
our rocbot back in Lecture 3, that if there is more than one way of calcu-
lating some probability, every such way must lead to the same result. If
these two avenues had not led to the same result (6-8), we would have found
an inconsistency in our rules, of exactly the sort we sought to guard against
by the functional eguation arguments of Lecture 3. Needless to say, no
case of such an inconsistency has ever been found.

Returning to (6-8), we have the numerical wvalues
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m m
1 1 1 10
(8| ax) = (3> = +(6) o (6-12)
and everything in (6-2) is now at hand. If we put all these things together,

we come out with this expression for the evidence for proposition D:

3
100

TP
11 3 11 \ &

There are some good approxXimations we can make to this. If m is larger

(6-13)

e(D[E) = -60 + 10 log;,

than 5, it's extremely accurate to replace the above by:
e{D|E) = - 49.6 + 4.73 m for m > 5. (6-14)
And if m is less than 3, there's another approximation which is pretty good:
e(D|E) =~ - 59.6 + 7.73 m for m < 3. (6-15)
Let's get some picture of what this looks like. We start out at minus
60 db for the propositicon D. The first few bad ones we find will each give
us about 7 3/4 db of evidence for the proposition, so the graph of e(D|E)
vs. m starts coming up at a slope of 7.7 but then the slope drops, when m
gets greater than five, to 4.7. This curve crosses the axis at 10 1/2 and
continues on up forever at that same slope. So, ten consecutive bad diodes
would be enough to raise this initially very improbable hypothesis up out
of the mud, up 58 db, up to the place where the robot is ready to consider
it very seriously.
In the meantime, what is happening to our propositions A and B? Well,
A starts off at - 10, B starts off at + 10. The plausibility of A starts
going up 3 db per defective dicde just like it did in the first problem.
But after we've gotten too many bad dicdes in a row, we'll hegin to doubt
whether the evidence really supports proposition A after all; proposition
D isg becoming a much easier way to explain what's observed. So at a certain

value of m, the curve for A will stop going up and turn around and go back down.
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When I gave these talks at Stanford, I asked the audience to make
guesses and test your own plausible reasoning against our robot before
vou know the answer. Under these conditions, how many consecutive bad diodes
would you have to get before you will begin to be wvery troubled about propo-
sition A, and change your mind about whether the evidence really supports
it? Do we have any volunteers? At Stanford I got only one answer, and the
angwer was eilght. The student who gave this is either a mathematical genius
or our robot in the flesh, because the turning point according to our equa-
tions, to the nearest integer, is just eight. After m diodes have been
tested, and all proved to be bad, the evidence for propositions & and B,

and the approximate forms, are as follows:

e (A|E)

Il

- 10+ 10 logjg TNE 11 -6 993m
(E) TIoxl (100

- 104+ 3m form«< 7

= ’ {(6-10)

42,6 - 4.73 m form > 8
LT
) (&)
e(B|EJ =+ 10 + 10 log, ;)m . 11 10—6( 5o\
100

10 - 3 m for m < 10

= (6=17)
59.6 - 7.33 m for m > 11

These results are summarized in Figure (6.1). We can learn guite a

bit about multiple hypothesis testing from studying it. The initial straight
line part represents the solution as we found it before we had intreoduced
this proposition D, and both lines A and B would be straight indefinitely
on the first solutiﬁn. When we have introduced D, starting down here at
minus 60 db, the plausibility of D will increase, with a change in slope
between m = 3 and m = 4, and it continues to increase linearly from then

on. The change in plausibility of propositicns B and A starts off just
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Figure 6.1.
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the same as in the previous problem; the effect of propositicn D dees not
appear until we have reached the place where D crosses B. At that point,
suddenly the character of the A curve changes. The & curve, instead of
going on up at this point (at m = 8) has reached its highest value of 10.4 db.
Then, it turns around and comes back down. The B curve continues on linearly
until it reaches the place where A and D have the same plausibility, and
at this peint it has a change in slope. From then on, it falls off more
rapidly.

Now what is going on here? When D has reached the same plausibility
as B, that has a big effect on A. The change in plausibility of A due to
one more test arises from the fact that we are testing hypothesis A against
two alternative hypotheses: B and D. But initially B is so much more
plausible than D, that for all practical purposes, we are simply testing
A against B. After enough evidence has accumulated to bring the plausibility
of D up to the same level as B, then from that point on, A is essentially
being tested against D instead of B, which is a very different situation.
All of these changes in slope can be interpreted in this way. Once we see
this principle, we see the same thing is going to be true no matter how
many hypotheses we have. A change in plausibility of any one hypothesis
will always be approximately the result of a test of this hypothesis against
a single alternative —-the single alternative being that one of the remaining
hypotheses which is most plausible at that time. Whenever the hypotheses
are separated by about 10 db or more, then very accurately, multiple hypothesis
testing reduces to testing each hypothesis against a single alternative.
So, seeing this, you can construct curves of the sort shown in Fig. (6.1)
very rapidly without even bothering to lock at the equations, because what

would happen in the two-hypothesis case is easily seen once and for all.
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All the information needed to construct fairly accurate charts resulting
from any sequence of good and bad tests is contained in the "plausibility
flow diagrams" of Fig. (6.2). They indicate, for example, that finding
a good one rzises the evidence for B by 1 db if B is being tested against
A, and by 19,22 db if it is being tested against D. Similarly, finding
a bad one raises the evidence for A by 3 db if A is being tested against
B, but lowers it by 4.73 db if it is being tested against D. Likewise,
we see that finding a single good one lowers the evidence for D by an amount
that cannot be recovered by two bad ones; so D will never attain an appreciable
probability unless the observed fraction of bad ones remains persistently
greater than 2/3.

Figure (6.1) shows an interesting thing. Suppose we had decided to
stop the test and accept hypothesis A if the evidence for it reached plus
10 dk. You see, it would reach plus 10 db after about six trials. If we

stopped the testing at that point, then of course we would never see the

Good Bad

Figure 6.2. Plausibility flow diagrams.
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rest of this curve and see that it really starts going down. If we had
continued the testing beyond this point, then we would have changed ocur
mind again. At first glance this seems disconcerting, but notice that it
is inherent in all problems of hypothesis testing. If you stop the test
at any finite number of trials, then you can never be absolutely sure that
you have made the right decision. It is always possible that still more
tests would have led you to change vour decision.

Evidently, we could extend this example in many different directicns.
Introducing more "discrete” hypotheses would be perfectly straightforward,
as we have seen. More interesting would be the introduction of a continucus
range of hypotheses, sgsuch as:

Mf = "The machine is putting out a fraction f good." Then instead of
a discrete prior probability distribution, our rcbot would have a continuous
distribution in 0 £ f < 1, and by Bayes' theorem he would calculate the
posterior prokability distribution of £, on the basis of the observed samples,
from which variocus decisions could be made. In fact, let's just take a

glimpse at the equations for that case.

6.2, Testing an Infinite Number of Hypotheses.

We are now testing simultanecusly an infinite number of hypotheses about
the machine, and as often happens in mathematics, this actually makes things
simpler. However, the logarithmic¢ form of Bayes' theorem is now rathesr

awkward, and so we will go back to the original form,

(B|AX)
(a[BX) = (A]%) —ET (6-18)
There is a priocr probability density
(Gf|x) = p(f) af (6-19)

which gives the probability that the fraction of good ones is in the range 4f;

and let E stand for the result thus far of our experiment:
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E = "N dicdes were tested and we found the results GGRGBRG---,
containing in all n good cnes and (N-n) bad ones."

Then the posterior probability density of £ is, by Bayes' theoremn,

(AF|EX) = (Af|%) (E(_ef;{) = P(f) df (6-20}

p(f) = p(f) (EJEL (6-21)
(E[x)

or,

The denominator is just a normalizing constant, which we could calculate
directly; but usually it is easier to determine it (if it is needed at all)
from requiring that the postericor density satisfy the normalization condition

/01 P(f) Af = 1 (6-22)
The evidence of the experiment thus lies entirely in the f-dependence of the
likelihood function [E‘ £3.

Now 1f we are given that £ is the correct fraction of good cnes, then the
probability of getting a good one at each trial is f, and the preobability of
getting a bad one is (1-f)}., The probabllities at different trials are, by
hypothesis {(i.e., one of the many statements hidden there in X), independent,
and so, as in Eg. (b-27),

(E]£) = £ (1-f)N-n (6-23}
(note that the experimental evidence E told us not only how many good and
bad cnes were found, but alsoc the order in which they appeared). Therefore,
we have the posterior distribution

n

E: (1-6""" p(8)
o £ -6V gy ar

P(f) = (6-24)

You may be startled to realize that all of our previous discussion of
gquality control is contained in this simple looking equation, as a special
case. For example, the multiple hypothesis test starting with (6-1) and

including the final results (6-13) - (6-17) is all contained in (6-24)
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corresponding to the particular choice of prior density:

=19 _ 1076 1
p(f) = {301 - 107%) §(f EJ

L~ 1078 -1
+ (- 1078 s{f - =)

3
+ 1078 §(f - 0.99) (6-25)
where §{f) is the Dirac delta-function. The three delta-functions here
correspond to the three discrete hypotheses B, A, D respectively, of that
example, and they appear in the posterior density with altered coefficients
which are just the probabilities given in {&6-13), (&6-1&), (6-17).

Suppose that at the start of this test our robot was fresh from the
factory that made him; he had no prior knowledge about the machines at all,
except for our assuring him that it is possible for a machine to make a good
one, and also possible for it to make a kad cne. In this state of knowledge,
what prior probability density p({f}) should he assign? It seems to me, as
it did to Laplace, that in this case the robot has no basis for assigning
to any particular interval df a higher probability than to any other interval
of the same size; so the only hcnest way he can describe what he knows is to
assign a uniform prior probability density, p{f) = const. To normalize it
coxrectly as in (6-22), we must take

p(f) = 1, 0= £=2 1. {(6-26)
It was Bayes himself who first took this step, in hisg famous work (Baves,
1762} that started this 200-year-c¢ld controversy about probability theory.
The problem he considered was, of course, different in statement than ours;
but they are mathematically equivalent. Bayes' work was published posthumously,
and 1t appears that he felt a little uneasiness about the wvalidity of (6-26).
Laplace tock up the subject at this point, and in a series of memoirs from

1772, developed Bayes' work into a general method of statistical inference.
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From our viewpoint today, we can say that there is nothing wrong with (6-26);
the only wvalid criticism is that neither Bayes nor Laplace specified clearly
the exact state of knowledge in which (6-26) is appropriate. I have tried
to give this here, although at this stage the manner in which the result
(6-26) follows from my verbal statement cannot be clear. This will be shown
later, when we take up transformation groups.

The integral in (6-24) is then the well-known Eulerian integral of the
first kind, today more commonly called the complete Beta-functicen; and {6-24)

reduces to

N-n
£ (1-f) {6-27)

{6—28)

which is the same as the maximum-likelihood estimate of £, and egual to the
frequency with which good ones were ohserved. To find the sharpness of the
peak in (6-27), write

L(f) = log P(E)}) = n log £ + (MN-n) log (L-f} + const. (6-29)
and expand L{f) in a Taylor series about £. The first terms are

N (£-F)2

L) = LD - sy g

+ - - - {&-30)

and so, to this approximation, (6-27) is a gaussian, or normal, distribution

a2
P(f) = A exp|- 15851—4 (6-31)

where
, _ £ (1-%)
N

{6-32)

o

and A is & normalizing constant. I leave it for you to convince yourself
that (6-31) is actually an excellent approximation te (6-27) in the entire

interval 0 < £ < 1, provided that n*>>1 and (N-n)>>1.
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Thus after observing the evidence E = '"n good ones in N trials," the
robot's state of knowledge about £ can be described pretty well by saying that
he considers the most likely value of £ to be just the chserved fraction of
good ones, and he considers the accuracy of this estimate to be such that the
interval f & ¢ is reascnably likely to contain the true wvalue. More precisely,
from numerical analysis of (6-31)}, he says that with 50% probability the true
value is contained in the interval £ * 0.68g; with 20% probability it is
contained in £ + 1.650; and with 99% probability it is contained in £ £ 2.570.
As the number N of tests increases, these intervals shrink, according to

1/2, the usual rule we expect to find in probability

(6-32), proportional to N
theorv.

In this way, we see that the robot starts in a state of "complete igneor-
ance™ about f; but as he accumulates information from the tests, he acquires
more and more definite opinions about f, which correspond very nicely to
common sense (except that common sense will hardly give us a definite numerical
interval such as f + 1.650). One caution; all this applies only to the case
where, although the numerical wvalue of f ig initially unknown, it was known
that £ is not changing with time.

Still more interesting, and more realistic for actual gquality-control
situations, would_be to introduce the possibility that f might vary with time,
and the robot's job is to make the best possible inferences about whether the
machine is drifting out of adjustment, with the hope of correcting trouble
before it became serious. A simple classification of diodes as bad and good
is not too realistic; there is actually a continuous gradation of guality,
and by taking that into account we could refine these methods. There might
be several important properties in addition to the maximum allowabhle inverse
voltage (for example, forward resistance, noise temperature, rf impedance,

low-level rectification efficiency, etc.), and we might also have to control
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the quality with respect to all these. There might be a great many different
machine characteristics, ingtead of just Mf, about which we need plausible
inference.

You see that we could easily spend years on this problem. But let me
Just say that although the details can become arbitrarily complicated, there
is in principle no difficulty in making whatever generalization vou need.

It regquires no new principles bevond what we have already given.

In the problem of detecting a drift in machine characteristics, vou would
want to compare our robot's procedure with the ones described by Shewhart
(1931). ¥You would find that sShewhart's methcds are a pretty good approximation
te what our robot would do; in some of the cases involving a normal distri-
bution they are exactly the same, 1In statisticians' language, the reason for
this is that the mean and variance of a sample drawn from a normal distribu-
tion are "sufficient statistics" for estimation of the mean and variance of
the parent distribution. Translated into our language: in applying Bayes'
theorem, the robot always finds that the mean and variance of the sample are
the only properties of the sample he needs (i.e., all other details are
irrelevant} for making inferences about the machine. These cases are, inci-
dentally, the only ones where Shewhart felt that his procedures were fully
satisfactory.

I don't want to go into this further now, because this is really the
same problem as that of detecting a signal in noise, which we will study later
on. Alsc, 1t is equivalent to the problem of deciding from a set of astrono-
mical observaticns (i.e., positions of the planets) whether there is some
unknown systematic effect, or whether discrepancies should be blamed on errors
of chservation. Laplace was applying this theory from about 1772 in just that
way—--to calculate the prebability that an unknown systematic effect exists,

and thus to help him decide which astronomical problems were worth working on.
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This use of probability theory led him to scme of the most important discov-
eries in celestial mechanics, and his methodology might well be noted by
scientists today.

Of course, I don't mean to set up Laplace as a kind of demigod who could
do no wrong. Today, it is easy enough--in fact, it is child's play--to find
things to criticize in Laplace's work, if you consider that a worthy occupa-
tion. If ancother 150 years of continuous work in this field had not resulted
in any improvement of technigques or clarification of principles, that would
certainly make Laplace unique among all scholars who ever lived. But I think
that the following judgment of the situation is a fair one: for several
generations the dominant school of statisticians has rejected and ridiculed
Laplace's whele conception of probability theory, while they slowly and
laboriously rediscovered his methods. If past efforts to discredit Laplace
had been directed inséead toward understanding his contributions and learning
how toc use them properly, statistical practice would be far more advanced

today than it is.
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QUEER USES FOR BAYES' THEOREM

I. J. Good {(Good, 1950} has shown how we can use Bayves' theorem backwards
Lo measure our own strengths of belief about propozsiticns. For example,

how strongly do you believe in extrasensory perception?

7.1. Extrasensory Perception.

What preobability would you assign to the proposition that Mr. Smith
has perfect extrasensory perception? He can guess right every time which
number you are thinking of. Well now, to say zero--that, of course, 1is
dogmatic, According to our theory, if yvou start out at -« db, this means
that you are never going to allow your mind to be changed by any amount
of evidence, and you don't really mean that. But where is our strength
of belief in a propocsition like this? Our brains work pretty much the way
this robot werks, but we have an intuitive feeling for plausibility only
when it's not too far from 0 db. We feel that something is more than likely
to be so or less than likely to be so. We get fairly definite feelings
about that. So the trick is to imagine an experiment. How much evidence
would it take to bring my state of belief up to the place where T felt
very perplexed and unsure about it? Not to the place where I believed it--
that weuld overshoot the mark, and again we'd lose our resolving power.

How much evidence would it take to bring vou just up to the peint where

you were keginning to consider the possibility seriously?
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We take this man who says he has extrasensory perception, and we will
write down some numbers from 1 to 10 on a piece of paper and ask him to
guess which numbers we've written down. We'll take the usual precautions
to make sure against other ways of finding out. All right, if he guesses
the first number correctly, of course we'll say "vou're a very lucky person,
but I don't believe it." And if he guesses two numbers correctly, we'll
say "vou're a very lucky person, but I don't believe it." By the time he's
guegsed four numbers correctly--well, T still wouldn't believe it. So my
state of belief is certainly lower than -40 db. How many numbers would he
have to guess correctly before you would really seriously consider the
hypothesis that he has extrasensory perception? In my own case, I think
gsomewhere around l0. My personal state of belief is, therefore, about
-100 @b, You could talk me into a +10 change fairly easily, and perhaps

+20; but not much more than that.

7.2. Bayesian Juxisprudence.

It is interesting also to apply Bayes' theorem to various situations
in which we can't really reduce it to numbers very well, but still it shows
avtomatically what kind of information weuld be relevant to help us do
plausible reasoning. Suppose somecne in New York City has committed a wmurder,
and vou don't know at first who it is. Suppose there are 10 million people
in New York City. On the basis of no knowledge but this, e(Guilty]X) = =70 db
is the plausibility that any particular perscn is the guilty one.

How much positive evidence is necessary before we decide some man should
be put away? Maybe +40 db, although your first reaction may be that this
is not safe encugh, and the figure ought to be higher. If we raise this
figure, we give increased protection to the innocent, but at the cost of

making it more difficult to convict the guilty; and at some point the
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interests of society as a whole must take precedence over sentiment.

For example, if a thousand guilty men are set free, we know from only
too much experience that two or three hundred of them will immediately
proceed to inflict still more crimes upon society, and their escaping justice
will encourage a hundred more to take up crime. So, I think it is clear
that the damage done to society as a whole by allowing a thousand guilty
men to go free, is far greater than that caused by falsely convicting one
innocent man. If you have a sentimental reaction against this statement,

I ask you to think: if you were a judge, would vou rather face one man
whom you had convicted falsely; or a hundred Victims of crimes resulting
from your lenience? Setting the threshold at +40 db will mean, crudely,
that on the average not more than one conviction in ten thousand will be

in error; a judge following this rule will probably not make one false
conviction in a working lifetime on the bench. It seems to me that this

is a reascnable figure that we can accept. Obviously, however, this matter
ought to be researched much more carefully than we can do here.

So, i1f we took +40 db starting out from -70, this means that in order
to get conviction you would have to produce about 110 @b of evidence in
favor of the guilt of this particular person.

Suppose now we learn that this person had a motive., What does that do
to the plausibility of his guilt? Well, Bayes' theorem says

{Motive|Guilty)
(Motive|Not Guilty)

e(Guilty|Motive) = e(Guilty|X) + 10 logy 4 (7-1)

12

- 70 - 10 log (Motive [Not Guilty)
10

12

since (Motive|Guilty) 1; i.e., we consider it gquite unlikely that the
crime had no motive at all. Thus, the significance of learning that the

person had a motive depends almost entirely on the prcobability (Motive|Not

Guilty) that an innocent person would alsc have a motive. This evidently
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agrees exactly with our common sense; if the deceased were kind and loved

by all, hardly anyone would have had@ a motive to do him in. Learning that,
nevertheless, our suspect did have a motive, would then be very significant
information. If the victim had been an unsavory character, who took great
delight in all sorts of foul deeds, then a great many people would have a
motive, and learning that our suspect was one of them, is not so significant.
The point of thig is that we don't really know what to make of the information
that our suspect had a motive, unless we also know something about the
character of the deceased. But how many members of juries would realize

that, unless it was specifically peinted out to them?

Suppose that a very enlightened judge, with powers not given to judges
under present law, had perceived this fact and, when testimony about the
motive was introduced, he directed his assistants to obtain for the jury
the most reliable data possible on the number of people in New York City
who had a motive. This number was N . Then

N, - 1 ;
(Motive|Not Guilty) = = 1077 (N - 1)

(number of people in New Yoxrk) - 1 m

and equation (7-1) reduces, for all practical purposes, to

e(Guilty|Motive) * - 70 + 10 log {107/(N, - 1}] = - 10 log (Ny-1). (7-2)
You see that the population of New York has cancelled out of the eguation;
as soon as we know the number of people who had a motive, then it doesn’'t
matter any more how large the city was.

Well, you can go on this way for a long time, and I think you will find
it both enlightening and entertaining to do so. PFor example, we now learn
that the suspect had bought a gun the day before the crime. Or that he
was seen at the scene of the crime shortly before. If you have ever been
teld not to trust Bayes' theorem, you should follow a few examples like

this a good deal further, and see how infallibly it tells vou what information
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would be relevant, what irrelevant, in plausible reasoning. Even in situa-
tions where we would be quite unable to say what numerical values should
be used, it still reproduces gualitatively just what your common sense

(after perhaps a little meditation) tells vou.

7.3. Testing Scientific Theories.

Another class of applications of Bayes' theorem, which has been dis-
cussed vigorously by philosophers of science for over a century, concerns
the reasoning process of a scientist, by which he accepts or zejects his
thecories in the light of the observed facts. I menticned in the second

lecture that this consists largely of the use of two forms of syllogism,

If A, then B If A, then B
one strong: B false , and one weak: B true
2 false A more plausible

We see that these correspond to the use of Bayes' theorem in the forms

_ (b|2) , (BiA)
(alp) = alx (—b‘x—) @B = &|x Gy

respectively., It is at once obvious that Bayes' theorem accounts for the
strong syllogism; for if (B|A) = 1, Bayes' theorem gives (&|b) = 0; our
rules for plausible reasoning include those of deductive reascning as a
special case.

Interest here centers on the question whether the second form of Bayes'
thecrem gives a satisfactory quantitative version of the weak syllogism.
Let us consider a specific example given by Professor George Polya [Polya,
1954; Vel, II, pp. 130-132]. The planet Uranus was discovered by Herschel
in 1781. Within a few decades (i.e. by the time Uranus had traversed about
cone third of its orbit), it was clear that it was not following exactly the
path prescribed for it by the Newtonian theory (laws of mechanics and
gravitation). At this peint, a naive applicaticon of the strong syllogism

might lead one to conclude that the Newtonian theory was demolished. However,

115



Lecture 7, Section 7.3.

its many other successes had established the Newtonian theory so firmly
that to the French astroncmer Leverrier, an alternative hypothesis was
rendered more plausible: there must be still another planet bevond Uranus,
whose gravitational pull is causing the discrepancy.

Working backwards, Leverrier computed the masz and orbit of a planet
which could produce the ohserved deviation and predicted where the new
planet would be found. B2An observatory recelved Leverrier's prediction on
September 23, 1846, and on the evening of the same day, the new planet
(Neptune) was discovered within one degree of the predicted position!

Instinctively, we feel that the plausibility of the Newtonian theory
was increased by this little drama. The question is, how much? The attempt
to apply Bayes' theorem to this problem will give us a good example of the
complexity of actual situations faced by scientists, and also of the caution
which must be exercised in reading the rather confused literature on these
problems,

Following Polya's ncotation, let T stand for the Newtonian theory, N
for the part of Leverrier's prediction that was wverified. Then Bayes' theocrem
gives for the posterior probability of T,

(N|TX) .

(T[M) = (T|X) %) (7-3)
Suppeose we try to evaluate (NIX). This is the prior probability of W,
regardless of whether T is true or not. Since N = N(T+t) = NT + Nit, we
have, by applying Rule 3, then Rule 1,
(N|X) = (NT + Nt|X) = (NT[X) + (t]X)
= (N|TX) (T]X) + ] ex) (£|%) (7-4)

and you see that {N|tx) has intruded itself into the problem. But in the

problem as stated this quantity is not defined; the statement t = "Newton's

theory is false" has no definite implications until we specify what alterna-
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tive we have to put in place of Newton's theory.

For example, if there were only a single possible alternative according
te which there could be no planets beyond Uranus, then (N|tX) = 0, and Bayes'
thecrem would again reduce to deductive reasoning, giving (T|N} = 1, indepen-
dently of the prior probability (T[X). On the other hand, if Einstein's
theory were the only possible alternative, its predictions do not differ
appreciably from those of Newton's theory for this phenomenon, and we would
have (N|tX) = (T|X), whereupon Bayes' theorem reduces to (T|N) = (T|x).
Verification of Leverrier's prediction might elevate the Newtonlan theory
to certainty, or it might have no effect at all on its plausibility! It

depends entirely on this: Against which specific alternatives are we testing

Newton's theory?

Now tc a scientist who is judging his theories, this conclusion is the
nost obvious exercise of common sense. Yet statisticians have developed
criteria for accepting or rejecting theories (Chi-squared test, etc.) which
make no reference to any alternatives. A practical difficulty of this
was polnted out forcefully by Sir Harold Jeffreys {(Jeffrevs, 1939); there
is not the slightest use in rejecting any hypothesis H unless we can do it
in favor of some definite alternative H' which better fits the facts.*

Bayes' theorem tells us much more than this: unless the observed facts

are absolutely impossible on hypothesis H, it is meaningless to ask how

much those facts tend "in themselves" to confirm or refute H. WNet only

the mathematics, but also our common sense (if we think about it for a

minute) tells us that we have not asked any definite, well-posed question

*I don't mean to argue against the use of the Chi-squared test itself:
later in these lectures, when we take up significance tests, we will see
that in some cases it 1s very nearly the right test toc answer a different
gquestion, namely: "Within a certain specified class of alternatives H',
do any exist which better f£it the facts, and how much improvement in fit
is possible?"
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until we specify the possible alternatives to H.
Of course, as the obserwved facts approach impossibility on hypothesis
H, we are led to worry more and more about H; but mere imprcbability, however
great, cannot in itself be the reason for doubting H. For example, 1f I
toss a coin 1000 times, then no matter what the result is, the specific

observed sequence of heads and tails has a probability of only 2_1000,

or
minus 3000 decibels, on the hypothesis that the coin is honest., If, after
having tossed it 1000 times, I still believe that the coin is honest, it

can be only because the chserved sequence 1s even more improbable on any
alternative hypothesis that I am willing to consider seriously. This situa-
tion will be analyzed more deeply later on, where it will lead to a general
formulation of significance tests.

We see here that, even when the application is only qualitative, classi-
cal probability theory is still useful te us in a normative sense; it iz the
test by which we can detect inconsistencies in our own reasoning. Some
authors have argued strongly against the use of Bayes' theorem for testing
hypotheses. But when we take the trouble to learn what it actually says,
we find that Baves' theorem tells immediately what is needed before we
have any rational criterion for testing hypotheses.

This brings us to some comparisons with the literature. In Polya's
discussion of Bayes' theorem applied to the status of Newton's theory before
and after Leverrier's feat, no specific alternative to Newton's theory is
stated; but from the numerical ﬁalues used (loc. cit., p. 131) we can infer
that the alternative H' was one according to which it was known that one
more planet existed beyond Uranus, but all directions on the celestial
sphere were considered equally likely. Unfortunately, in the calculation
no distinction was made between (N|X} and (N|tx); and consequently the

quantity which Polya interprets as the ratio of posterior to prior probabi-
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lities of Newton's theory, is actually the ratio of posterior to prior

odds. This is, in our notation, (N|TX)/(N|tX) = (N|TX)/(N|H'®) = 13,000.

The conclusicns are much more satisfactory when we notice this. What-
ever prior probability (T|X) we imagine Newton's theory to have, if H' is
the only alternative considered, then verification of Leverrier's prediction
increased the evidence for Newton's thecry by 10 logy4(13,000) = 41 decibels.
Actually, if there were a new planet, it would be reasonable to adopt a
different alternative hypothesis H", according to which its orbit would lie
in the plane of the ecliptic, as Polya points out. If, on hypethesis H",
all values of longitude are considered equally likely, we might reduce this
figure to about 10 log;o[ M|TX)/M|H"X)] = 10 log,,(180) = 23 decibels.

In view of the great uncertainty as to just what the alternative is, it
seems to me any value between these extremes is more or less reasonable.

There was a difficulty {which Polya interpréted as revealing an incon-
gistency in Bayes' theorem), that if the probability of Newton's theory
were increased by a factor of 13,000, then the prior probability was neces-
sarily lower than (1/13,000}; but this contradicts common sense, because
Newton's theory was already very well established before Leverrier was
born. Recognitien that we are, in the above numbers, dealing with odds
rather than probabilities, completely removes this objection and makes
Bayes' theorem appear guite satisfactory in describing the inductive reason-
ing of a scientist. This is a good example of the way in which objections
to the Bayes-Laplace methods which you find in the literature, disappear
when you look at the problem more carefully.

But the example also shows clearly that in practice the situation
faced by the scientist is so complicated that there is little hope ef apply-
ing Bayes' theorem to give gquantitative results about the relative status

of theories. Also there is no need to do this, because ths real difficulty
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of the scientist is not in the reasoning process itself; his common sense

is guite adequate for that. The real difficulty is in learning how to
formulate new alternatives which better fit the facts. Usually, when one
succeeds in doing this, the evidence for the new theory scon becomes so
overwhelming that no one needs probability theory to tell him what conclusions

teo draw. So, I would say that in principle the application of Bayes' theorem

in the above way is perfectly legitimate; but in practice it is of very

little use to a scientist.

7.4. Different Views on Prchability Theory.

Professor L. J. Savage (Savage, 1954) has written an excellent survey
of the foundations of statistics, in which he clearly recognizes, and gives
a rigorous discussion of, many of the points that I am trving to put across
here in a more informal way. He gives a broad classification of attitudes
toward probability theory into three different camps:

(a} Obijectivistic. Probability has nothing whatsocever to do with

"degree of reasonable bhelief" or inductive reasoning. By
"probability” we must mean only observable frequencies in inde-
pendent repetitions of a random experiment.

(b} Personalistic. Probability can be used legitimately to describe

the degree of confidence that a particular individual has in
the truth of a proposition, but probability assignments are not
unigue; two individuals having the same prior evidence may assign
different probakilities without either being unreascnable.

(¢) '"Necessary views hold that probability measures the extent to
which one set of propositions, out of logical necessity and apart
from human opinion, confirms the truth of another. They are

generally regarded by their holders as extensions of logic, which
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tells when one set of propositions necessitates the truth of
another."

Here I have merely summarized Savage's description of cbjectivistic
and personalistic views, but quoted his statement about "necessary" views
in full. This is the view which he lmputes to Laplace; or more accurately,
Laplace's view is described (p. 278) as a "naive necessary one,"

I want to say something about each of these adjectives, because I am
expounding a viewpoint which I believe is the same as Laplace's (although
from this distance in time, there is no way to be sure of that in every
detail) . Since the term "necessary" was coined by Savage, we have to accept
its definition as given above; but we can still ask whether the definition
properly describes Laplace's view (or the one I am developing, if there is
any difference). Now in order to answer this, it would clearly be absurd
to try to consult every statement about probability made by, or in the name
of, Laplace. We have to distinguish clearly between probability theory
and things that have been said about probability theory; too often, they
are entirely different. The only way to find out what Laplace's form of
probability theory "really says" about some question is to look at the
eguations Laplace gave us, in some specific case where the question comes up.

Now, where is an eguation which says that probability measures the
extent to which one set of propositions, out of logical necessity, confirms
the truth of another? Where, indeed, is the relation in logic which tells
when one set of propositions necessitates the truth of another? The relations
of logic are of the form, "If A implies B, and iﬁ B implies ¢, then ...."
There is nothing in logic which tells us whether A does in fact imply B.

In other words, the relations of logic are only rules for the consistent

manipulation of implications; they do not tell us whether some proposed impli-

cations are correct, but only whether they are mutually consistent,
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It is exactly the same in probability theory. The basic equations are

simply,

(aB|C) = (a|BC) (B|CQ)

(alsy + (alB) =1
These, vou see, are again statements of the form, "If C implies B to the
extent (B|C), and if BC implies A to the extent (A!BC), then ...." There is
nothing which tells whether C does in fact imply B to the extent (B]C). In
other words, the relations of probability theory are only rules for the

consistent manipulation of partial implications; they do not tell us whether

some proposed prokability assignments are correct, but only whether they are
mutually consistent.

If, on meditation, I decide that my personal probabilities are [B|C) =
3/4, (a[BC) = 4/5, (AB|C) = 1/2, then probability theory tells me that I am
reasoning inconsistently. It does not tell me how to resolve that inconsist-
ency.

But we can, in the case of probhability theory, make a much stronger
statement. What did we just learn? How much did verification of Leverrier's
predicticn N, cut cof logical necessity, confirm the truth of Newton's theory
T? Bayes' theorem not only did not answer this, but it explicitly stated

the opposite of the "necessary" view: Unless N is absolutely impossible on

hypothesis T, it is meaningless to ask how much N, in itself, confirms the

truth of T.

How about Rule 47 Isn't that an equation that tells us that one propo-
sition does, out of logical necessity, confirm the truth of ancther to a
definite extent? No, it isn't. Mathematically, the rule asserts one thing,
and one thing conly: 1if the sum of N equal numbers is unity, then each of the

1

numbers must be N . Rule 4 assigns definite numerical values to probabilities

only after we have arbitrarily specified the set of propositicns ByeanBy that

122



Lecture 7, Secticon 7.4.

we're going to consider. Nothing in probability theory tells us that this
specific set of propositions was the right szet to introduce.

Congider two different problems; in problem (1) we have W different
propositions, Al vas AN. In problem {2) we have one more proposlition AN+1
that must be taken into account. In general, for a given specific piece of
evidence E, the probability (Al]E) will be different in the two problems.

We saw this in detail when we studied multiple hypothesis testing in Lecture
6; additicn of hypothesis D to the problem completely changed the numerical
value of (A|E).

Probability theory not only does not say that evidence E confirms the
truth of & to scme definite extent; it explicitly denies that any such rela-
tion exists. The probability (A|EJ dees neot depend only on A and E; it
depends alsc on which alternatives to A we are considering, and it is mathe-
matically indeterminate until those alternatives have been specified.

So, I think we have to plead "not guilty" to any charge that Laplace's
formulation of probability theory is a "necessary" one. Indeed, 1f anyone
is guilty of supposing that one proposition confirms the truth of another to
any unigue extent, it is the "objectivist" who teaches his students how to
accept or reject hypotheses without considering the alternatives. Laplace's
theory will not allow us to commit that error of reasoning.

Why have I answered this cbjection at such great, and repetitious, length?
For several decades, authors of works on probability and statistics have
been repeating the charge that Laplace's theory is nonsense because it supposes
that for any two propositions A, B, there is a definite numerical value of
(A[B). The most casual glance at Laplace's eguations shows that this is
simply not true.

I think the trouble comes ultimately from some unfortunate historical

accidents. After Laplace's death, some nineteenth~century philosophers made
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ridiculous misapplications of probability theory, asserted that their non-
sensical conclusions were "mathematically proved," and invoked the authority
of Laplace to back them up. No man's reputation ever suffered more from the
antics of enthusiastic but uncritical friends. The rise of the "objectivist"
viewpeint in the twentieth century is an understandable, but misdirected,
reaction against this lunacy. Instead of analyzing the transgressions and
learning how to avoid such mistakes in the future, it was much easier to
attack Laplace.

On the other hand, isn't it perfectly obviocus that probability theory

is an extension of legic, in exactly the sense alluded to by Savage? Proba-
bility theeory fills in the gap between logical proof and disproof and shows

us how to reascn consistently in the intermediate region where, of necessity,
virtually all of our actual reasoning takes place. It clearly includes
deductive logic as a special case. I am continually amazed at the caution
with which mathematicians approach this issue, and at their extreme reluctance
to take the problem of inductive reasoning seriously. One gets the impression
that an extension of logic is some enormously difficult, and probably impos-
sible, problem which crdinary mortals had better leave alone.

Part of our communication gap here lies in the fact that no one has ever

given an explicit answer to this question: What is it that we should prove
about a propesed extension of logic before mathematicians will take it
seriously? What are the tests that it has to pass? If vou demand a proof
that Laplace's theory is "correct," then I'm afraid I don't know what the
questlon means. If you want to see a proof that it is the only possible
extension of logic, then I would reply that it is surely not unigue. But I
think we have given fairly convincing arguments for the view that it is the
only possible extension of logic which ig internally congistent and represents

s

degrees of plausibility by real numbers. You can, of course, hope to sec
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more rigorous and more general arguments than I have given; and I hope that
you will. 1In this connecticn, let me just mention that the book of Savage
(Savage, 1954) contains a great deal of this more refined analysis using
measure theory, which is applicable to ocur problem.

How about other kinds of extensions of logic, in which we don't repre-
sent plausibility by real numbers? The possibilities of such "lattice
theories" seem endless, and I want to say a little more about them in the
last lecture. However, before dashing off to explore them, one should
realize this: unless and until some specific failure of Laplace's theory
is discovered, we have no rational basis for saying that a different theory
is any better than the one we already have, and no clue to tell us in what
way we should want another theory to be any different.

S0, I would like to propose this as a working procedure. Let's take
the good points of Savage's definition of "personalistic” and "necessary"
views and combine them into a single definition; and above all, let's acknow-
ledge their proper source:

(d) Laplace's Theory. Probability theory is an extension of logic

which describes the consistent inductive reasoning of an idealized
being who represents degrees of plausibility by real numbers.

The numerical value of any probability (A’B) will in general

depend not only on A and B, but also con the entire background

of other propositicns that this being is taking inte account. &
probability assignment is "subjective" in the sense that it describes
a state of knowledge rather than anything which could be measured

in an experiment; but it is completely "objective" in the sense

that it is independenp of the perscnality of the user; two beings
with the same total background of knowledge must assign the same

prebabilities.
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Now for that other adjective, "naive". This is more difficult to discuss,
becaugse it is vague. A dictionary definition of naive is: "of unaffected
simplicity.” To call any mathematical theory naive in that sense is, I think,

very great praise; and praise of which Laplace's theory is fully deserving.
But I don't think Savage meant it in that way. I think he meant that Laplace
did not hesitate to apply probability theory in all sorts of problems where

a modern statistician would fear to tread. Our little excursion intc juris-
prudence is, no doubt, a good example. But, of course, if probability theory
really is an extension of logic, there shouldn't be any restriction on the
kind of problem treated; in principle, we ought to be able to apply it to
any situation where plausible inference is needed. The only way of judging
whether this is so, 1s simply to apply Laplace's theory to many specific

situations, particularly those where the objectivists have warned us not

to use it, and see for ourszelves just how naive the results are, and whether
the objectivist can produce any better results. We have already done some
of this in the last three lectures, and many more examples will come up in

later ones.
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POINT ESTIMATICN WITH BINOMIAL AND POTSSON DISTRIBUTIONS

In the next two lectures, I want to take up some applications of Bayves'

theorem, and comparisons with maximum likelihood, that are less triwvial

mathematically and also correspond guite closely to situations faced by many

experimentalists. The mathematics to be developed is applicable to a large

class of different problems; and let's start by indicating two typical exam-

ples.

(&)

Each week, a large number N of mosquitos is bred in a stagnant
pond near this campus, and we set up a trap on the campus to catch
gsome of them, FEach mosguito lives less than a week, during which
time it has the probability p of flying ontoc the campusg, and once
on the campus, it has the probability "a" of being caught in our

trap. We count the numbers cl, 02, ... caught each week. What

can we then say about the numbers n_, n.,, ... on the campus each

1 2

week, and what can we say about N?

We have a radicactive source (say C060 for example), which is

60

emitting particles of some sort {say the y-rays frem Co ). Each

radiocactive nucieus has the probability p cof sending a particle
through a counter in one second; and each particle passing through
has the prokability "a" of producing a count. From measuring the

nunbexr cl, c2, ... OFf counts in different seconds, what can we say

about the numbers Nyy Dgp o-es actually passing through the counter
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in each second, and what can we say about the strength of the source?

The common feature in these problems is that we have two "random games"
played in succession, and we can observe only the outcome of the last one.
From this, we are to make the best inferences we can about the original cause
and the intermediate conditions, and I want to show how drastically these
problems are changed by various changeg in the prior information. In our
estimates we will want to (1) state the "best" estimate possibkle on the data;
and (2) make a statement about the accuracy of the estimate. These are the
classical problems of "point estimation” and "interval estimation.™ In this
lecture we will confine ocurselves to point estimation, and take up the second
aspect in the next lecture. I will speak in terms of the radiocactive source
problem, but it will be clear enough that the same arguments apply in many

different problems,

8.1. A Simple Bavesian Estimate: Quantitative Prior Information.

First, let's discuss the efficiency of the counter, which I'1ll dencte,

as indicated above, by "a. By this I mean that each particle passing through

the counter has independently the probability "a" of producing a count. The

situation is thexefore wery much like that of sampling with replacement,
discussed in Lecture 5, except that here there is no "urn" to shake, and so

we will not question the validity of equations such as (5-34). From the
logical standpoint, however, we still have to carry out a sort of bootstrap
operation with regard to this guantity; for how is it determined? Intuitively,
of course, vou have no trouble at all in seeing how you could determine "a"
from measurements con the counter. But from the standpoint of strictly logical
development, we need to have the calculation about to be given hefore we can
eztablish the precise connection between the wvalue of "a" and observable

"

guantities. So, for the time being we’'ll just have to suppose that "a" is a
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given number, and later the result of our calculations will show us how it
can be measured.

Now if we knew that n particles had passed thrcugh the counter, the
probability, on this evidence, of getting exactly ¢ counts, is obtained by
repeated applications of our Rule 1 and Rule 2, in a way that is given in all
the textbooks under the heading, "Bernoulli trials.” The result is the
binomial distribution that we have already derived in two ways, Equations

(5-28) and (5-34). In our present notation, this is
(c|n) = (2) a® (1-a)?7C . (8-1)

In practice, there 1s a question of resolving time; if the particles come too
close together we may not be able to see the counts ag separate, either
because of limited bandwidth in the detecting circuits or because the counter
experiences a "dead time" after a count. These effects are important in many
practical situations and there is a voluminous literature on the application
of probability theory to them.* But we'll digregard those difficulties for
this preoblem, and imagine that we have infinitely good resolving time (or,
what 1s really the same thing, that the counting rate is s¢ low that there is
negligible probability of this happening.)

Now let's also introduce a quantity p which is the probabhility, in any
one second, that any particular nucleus will emit a particle passing though
the counter. We'vre going to assume the number of nuclei N so large and the
and the half-life so long, that we don't have to consider N as a variable
for this problem. So there are N nuclei, each of which has independently the
probability p of sending a particle through ocur counter in any one second.
The guantity p is also, for present purposes, just a given number, because

we have not vet seen in terms of probability theory, the line of reasoning

*A bibliography on probability analysis of particle counters is given in
appendix B.
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by which we could convert experimental measurements on COGO

into a numerical
value of p (but again, you see intuitively without any hesitation at all, that
p is a way of describing the half-life of the source).

Suppose we were given N and p; what is the probability, on this evidence,
that in any one second exactly n particles will pass through the counter?

Well, that's exactly the same mathematical problem as the above one, so of

course it has the same answer, the binomial distribution
(n|N,p) = @) " (1-py N (8-2)

But in this case there's a good approximation to the binomial distribution.
Because the number N 1is enormously large and p is enormously small. In the
limit where N+, p>0 in such a way that Np»s = constant, what happens to (8-2)7
To find this, write p = g/N, and pass to the limit N-<w. Then

N n s\0
N-my 1 P = NN-1)...{N-n+1) g

S R R

which goeg into s? in the limit. Likewise,

- N-n -
A

=

and so the binomial distribution {8-2) goes over into the simpler Poisson

distribution:

=8 n
5 S

(njN,p} = (n|s) =~ (8-3)
and it will be handy for us to take this limit. The number s is essentially
what the experimenter would call his "source strength."

Now we have encugh "formalism" to start seolving problems. Suppose we
are not given the number of particles n in the counter, but only the source
strength s. What is the probability, on this evidence, that we will see

exactly ¢ counts in any one second? As we noted in Lecture 6, Eg. (6-9), a
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handy trick, which often works in problems of this sort, is to resoclve the
proposition ¢ into a set of mutually exclusive alternatives; then apply Rule
3 as extended to Eg. (3-21}, and then Rule 1. 1In this case, the propositions

¢n for all n form such a set, so we can write

(c|s) = Zn=0 (cnls) Zn_o (c|ns) (n]s)

ano(c]n) (n]s) (8-4)

Evidently, 1if we knew the number of particles in the counter, it wouldn't

matter any more what s was, so (c’ns) = (c|n). This is perhaps made clearer

by drawing a diagram, Fig. (8.1}, which indicates the direction of causal

influences; i.e., s partially determines the value of n, which in turn partially

determines c; but there ig no direct causal influence of s on ¢. 0Or, to put

it still another way, s can influence ¢ only via its intermediate effect on n.
Since we have worked out both (c[n) and {n{s), we just have to substitute

them in, and we get

—O—0O

Figure 8.1. Direction of Figure 8.2. Causal influences
causal influences. in successive measurements.
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c! n=c (n—c) ! a cl
or,
(c|s) = -eji,—(ﬁ)i " (8-5)
[}
This is a Poisson distribution with mean value
¢ = zm ¢ (cls) = sa. (8~6)

c=0

Well, our result is not at all surprising. We have the Poisson distri-
bution with a mean value which is the product of the source strength times
the efficiency of the counter. Without going through the analysis, that's
probably just the guess we would make.

In practice, it is ¢ that is known and n that is unknown. If we Kknew
the source strength s, and also the number of counts ¢, what would be the
prokability, on that evidence, that there were exactly n particles passing
throygh the counter during that second? This is a problem which arises all
the time in physics laboratories, because we may be using the counter as a

fl

"monitor," and have it set up so that the particles, after going through the
counter, then initiate some other reaction which is the one we're really
studying. Not i1f the particles are y-rays, I'm afraid, but with almost every
other kind of particles, this is an arrangement which has been used many times.
It is important to get the best possible estimates of n, because that is one

of the numbers we need in calculating the cross-section of this other reaction.
Well, this is exactly the sort of problem for which Bayes' theorem was invented,
so let's turn it over to our robot and see how he handles it. The probability

he needs is

(c|ns) N (n]s) (c]n)
(cls) 7 {c]s)

(n|cs) = (nls) (8-7)

Again, everything we need for this calculaticon is on the board, so we just
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have to substitute:

-5 n’ \
= s n! s n-c
nl }{ cl (n-c)! & (1-a) }
(n|cs) -sa c
e (sa)
. cl
e—s(l—a) [s (l_a)]n—c

- {n-c)! (8-8)

So you see the interesting thing is that we still have a Poisson distri-
bution, with parameter s{l-a), but shifted upward by c¢; because of course, n
could not be less than c¢. The mean value of this distribution is

n=) n (nles) = c+ s (1-a) (8-9)
n

All right, so what is the best guess the rcbot can make as to the nunber of
particles responsible for these ¢ counts? In all problems of this sort where
you want to make a definite decision, vou want the robot to announce one number.
There is a probkability distribution which describes the robot's state of
knowledge as to the number of particles., The number which he will publicly
announce as his guess will, of course, depend on what are the consequences of
being wrong. We will look at this aspect of the problem more closely later
cn, when we take up decision theory.

For the time being, we might ask the robot to take as a criterion that he
should minimize the expected square of the errcr. If he announces the estimate
n , but the true value is n, his error will be (n - n), whose expected

aest est

square is

{n - = (n? - 2n n + n?
est ) ( est est )
= n? - 2n £_+ H?
est est
= (n_, - )< + (n? - n?) (8-10)

The second term {;2 - Hz) = (n - ﬁ)z is called the variance of the distribu-
tion and it is fixed by (8-8) g0 the robot can do nothing to minimize it. But

he can remove the first term entirely by taking as his estimate just the mean
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value Doy = n that we just calculated in (8-9}.

Evidently, this result holds generally whatever the form of the distri-
bution; the mean square errcor criterion always leads to taking the mean value
T (i.e., the "center of gravity" of the distribution) as his "best" guess.

Or, if we ask him to state the one in which he believes most strongly, then

he will take the most probable value, i.e. the one which maximizes (8-8).

But the difference is negligible in this case, because in a Poilsson distri-
bution the most probable value {which we will denote by fi}) always lies between
n and (E;l). So, let's suppose that the mean value is the cone he is to
announce.

At this point, a statistician of the "orthodox" or "objectivistic" school
of thought pays a visit to our laboratory. We describe the properties of the
counter to him, and invite him to give us his best estimate as to the number
of particles. He will, of course, use maximum likelihood because his text-

books have told him that {Cramer, 1946; p. 498): "From a theoretical point

of view, the most Important general method of estimation so far known is the

method of maximum likelihood." His likelihood function is, in our notation,
(c|n). The wvalue of n which maximizes it is found, within one unit, £from
setting
(c|n) n (1-a)
(c|n-1) = Th-c =1
or
= (8-11)

max. likelihood ~ a

You may find the difference between these two estimates rather startling,
if we put in some numbers. Suppose our counter has an efficiency of 10 per
cent; in other words, a = 0.1, and the source strength is s = 100 particles
per second, so that the expected counting rate according to Eguation (8-6) is

¢ = 10 counts per second. But in this particular second, we got 15 counts.
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What should we conclude about the number of particles? Well, probably the
first answer cne would give without thinking is that, if the counter has an
efficiency of 10 per cent, then in some sense each count must have been due
to about 10 particles; so if there were 15 counts, then there must have been
about 150 particles. That is, as a matter of fact, exactly what the maximum
likelihcod estimate (B-11) would be in this case. But what does the robot
tell us? Well, he says the best estimate is only

n=15+ 100 (1 - 0.1) = 15 + 90 = 105 . (8-12)
More generally, we could write Eguation (8-9) this way:

n=s+ (¢c~c) ; (8-13)

if you see k more counts than you sheould have in one second, according to the
robot that is evidence for only k more particles, not 10k.

This example turned out to be quite surprising to some experimental
physicists engaged in work along these lines. Let's see if we can reconcile
it with our common sense. If we have an average number of counts of 10 per
second with this counter, then we would guess, by rules well known, that a
fluctuation in counting rate of something like the sguare root of this, %3,
would not be at all surprising even if the number of incoming particles per
second stayed strictly constant. On the other hand, if the average rate of
flow of particles is s = 100 per second, the fluctuation in this rate which
would not be surprising is about +/100 = +10. But this corresponds to only
*1 in the number of counts.

This shows that you cannot use a counter to measure fluctuations in the
rate of arrival of particles, unless the counter has a very high efficiency.
If the efficiency is high, then vou know that practically every count cor-
responds to cne particle, and you are reliably measuring the fluctuations in
beam current. If the efficiency is low and you know that there is a definite,

fixed source strength, then fluctuations in counting rate are much more likely

135



Lecture 8, Section 8.1.

tc be due to things happening in the counter than to actual changes in the rate
of arrival of particles.
What caused the difference bhetween the Baves and maximum likelihood

solutions? It's due to the fact that we had priocr information contained in

this source strength s. The maximum likelihood estimate simply maximizes the
probability of getting c counts, given n particles, and maximizing that gives
you 150. 1In Bayes' scolution, we wili multiply this by the prior probability,
which represents our knowledge of the laws of radicactivity, before maximizing,

and we'll get an entirely different value for the estimate. Prior information

can make a big change in the conclusions we draw from a random experiment,

Now, we really have to apclogize to the statistician at this point; what
we did was not entirely fair to him. Because, of course, this number "s"
does represent a substantial piece of guantitative information which we didn't
let him use. I think that as soon as this comparison was out, his common
sense would lead him to agree readily enough that in this problem the Baves
estimate was far superior to the maximum likelihood estimate, and he would
not object to the use of Bayes' theorem. He would say that in this case we
did have a good prior probability distribution, with an evident frequency
interpretation (which we have not so far mentioned, because it has no bearing
on the robot's problem), so that Bayes' theorem is perfectly valid.

But now I want to extend this problem a little bit, to a case where
there is no quantitative prior information, but only one qualitative fact.
We are now goling to use Bayes'® theorem in four problems where the "objectivist"
statistician says categorically that use of Bayes' theorxem is nonsensge because
it has no frequency interpretation; and again compare its results with the ones

chtained by the statistician's methods.
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8.2. Effect of Qualitative Prior Information.

Two robots, Mr. A and Mr. B, who have different amounts of prior infor-
mation about the source of the particles, are watching this counter. The
source is hidden in another room which they are not allowed to enter. Mr. A
has no knowledge at all about the source of the particles; for all he knows,
it might be an accelerating machine which is being turned on and off in an
arbitrary way, or the other room might be full of little men who run back and
forth, holding first one radioactive scurce, then another, up to the exit
window. Mr. B has one additional gualitative fact; he knows that the source
is a radiocactive sample of long lifetime, in a fixed position. But he does
not know anything about its source strength (except, of course, that it is
not infinite because, after all, the laborateory is not being vaporized by its
presence. Mr. A is also given assurance that he will not be vaporized during
the experiment). They both know that the counter efficiency is 10 per cent.
Again, we want them to estimate the number of particles passing through the
counter, from knowledge of the number of counts. We dencte their prior
information by X_, XB respectively.

a

all right, we commence the experiment. During the first second, cy = 10

counts are registered. What can Mr. A and Mr. B say about the number n, of

1
particles? Bayes' thecrem for Mr. A reads,
{c,|n.X%,) (n, |X,) {cqIng)
1171 117A 111
(n, e %) = (ng[x) 1t = | | (8-14)
1'"1'a 17 a (c ]X ) (c. [X.)
1% 1%a

The dencminator is just a normalizing constant, and could also be written,
= X . 8-15
(e [x,) nZ(cllnlunll o) (8-15)
1
But now we seem to be stuck, for what is (nl‘XA)? The only information about

ny contained in Xy is that ny is not large enough to vaporize the laboratery.

How can we assign pricr probabilities on this kind of evidence? This has
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been the point of controversy for a good long time, for in any frequency
theory of probability, we certainly have no basis at all for assigning the
prokbabilities (n1|XA).

Now, of course, Mr. A is going to assign a uniform prior probability
here, and our statistician friend will object on the grounds that this is a
completely unwarranted assumption. He will say, "How do you know that all
values of n, are equally likely? They might not be egually likely at all.

You just don't know, and you have no basis for applying Bayes' theorem until
you have found the correct prior probability distributicn." Note that this is
not because our friend has any particular dislike for a uniform distribution;
for he would chject just as strongly {and in fact, I suspect, even more
strongly) to any other prior probability assignment we might propose to use.
It would always seem, to him, like an unwarranted assumption which would
invalidate all our conclusions.

I am belakoring this point because it lies at the heart of the most
persistently held misconception about the Laplace-Baves theory. Unless we
understand clearly what we're doing when we assign a uniform prior probability,
we're going to be faced with tremendous conceptual difficulties from here on.
This is what Mr. A replies to the statistician:

"Your objection shows that the word 'prebability' has entirely different
meanings to you and me. When vou say that I cannot apply Bayes' theorem
until I have determined the 'correct' prior prcbability distribution, you are

implying that the event n. possesses some intringic 'abseolute' prebability.

1
I deny this. nl is what it is; simply an unknown number. The only meaning of
the word 'probability' which makes any sense at all to me, is simply the best
indication of the truth of a proposition, based on whatever evidence we do in

fact have. To me, a probability assignment is not an assertion about experi-

ence, real or potential. When I say, 'the probability of event E is p,' I

138



Lecture 8, Section 8.2.

am not describing any property of the event. I am describing my state of
knowledge concerning the event.

"Now, evidently, each of us believes that the other is suffering from a
very fundamental and dangerous confusion about the proper use of probability
theory. But we can never settle this by philosophical arguments about the
meaning of words. The only real way of settling the question, which of these
conceptions of probability is best, is to put them to the test in specific
problems. You say that my uniform prior probability assignment is foolish.

If so, then it ought to lead to at least one foolish result. So I'm just
going to ignore your warning and go ahead with my calculation. If I get a
foolish result, then from studying how it happened, 1 can learn something. But
1f I get a sensible result, then maybe you are the one who can learn something.

"According to Bayes' theorem, I need to find the probability assignment
(n1|XA) which represents my state of knowledge before I observed that ¢y = 10
counts. At that time, nl might hawve been ¢, 1, 137, 2069, or lO5 for all T
knew, There was nothing in my prior knowledge which would Jjustify saying
that any one of those was more likely than any other, and assigning the same
probability to all of them is simply my way of stating that fact. nl might

easily have been as large as 107, for all I knew. But there is some upper
10

limit N, for which I knew that nq < N. Por example, if nl had been lOlO ;
then not only the laboratory, but our entire galaxy, would have been vaporized
by the energy in the beam. I could justify a considerably lower value of N
than that, and if it turns out to make a difference in my conclusions, I'1l
have to think harder about just how low I could take it. But before going to

all that work, I'd better find out whether it does make any difference. So,

I'11l just take

(nl|xAJ = (8-16)
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and see what Bayes' theorem gives me."

Well, Mr. A turns out to be lucky, for nicely enough, the 1/N cancels out

of Equations (8-14), (8-15}, and we are left with
(cl|nl) 0 = N
n, <
N-1 ! =71
ey %) an:Q (cl|nl) (8-17)
0 , N < n,

We have noted, in Equation (8-11), that as a function of n, (c|n) attains its
maximum at n = ¢/a (=100, in this problem). For n large compared to this,
(c|n) falls off like n®(1-a)" = n© ¢™3"
so rapidly that 1if N is as large as a few hundred, there is no appreciable
difference between

N-1 @

z (c|n) and Z (c|n]

n=0 n=0
So, unless the prior information could justify an upper limit N lower than

about 200, the value of N turns out not to make any difference. The sum to

infinity is easily evaluated, and we get the result
i lex) = a (e |n) = | 1) a1 (1-a)™172
R L L e N a - (8-18)

So, to Mr. A, the most probable value of n1 is the same as the maximum-likeli-

hood estimate:

(fi_) =-§ = 100 (8-19)

while the mean value estimate is calculated as follows:

w© n_ 1 a,+1 n.—c
— 1 1
ny - ey = Z _ , o2 {l-a)
n,=c, ¢ (nl—cl— 3l
cl+l - n n,-¢,-1
= a {(1-a) (c.+1 {1-a)
) ( 1 ) zn]-:cl_'_l J_'ll_Cl"l .

The sum is egual to
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mto +1 ¢ =2
=) l [}
) (1-a)™ =77 " b a-a”
m=0 - =0 m
-c,-2 1
= [1 - (1-a}] = ¢_+2 (8-20}
a l
and, finally, we get
—a c,+l-a
(Ny)pg = ¢q + (cq+1) " = a = 109 . (8-21)

Now, how about the other robot, Mr. B? Does his extra knowledge help him
here? He knows that there is some definite source strength s. And, because
the laboratory is not being vaporized, he knows that there is some upper
limit So' Suppose that he assigns a uniform prior probability density for

0 g s < SO. Then he will cobtain

E S
1 o]

(n|x5) 50 (n,[s) (s]X,) ds = = g (n,[s) ds
o]

]

|

{(8-22)
oV 1°

Now, 1f n, i3 appreciably less than SO, the upper limit of integratiocn can for
all practical purposes, be taken as infinity, and the integral is just unity.

S0, we have

= const., if n. « 5 . (8-23})

- .
(nl|XB) = (S[XB) g, 15 %

In putting this into Bayes' theorem with c; = 10, the significant range of

valuezs of n1 will be of the order of 100, and unless SO is leower than about
200, we will have exactly the same situation as before; Mr. B's extra know-
ledge didn't help him at all, and he comes out with exactly the same distri-

bution and the zame estimates:

(i le X} = {nl|chAJ = a (cl[nl) . (8-24)

Jeffreys {(1939; Chap. 3) has proposed a different way of handling this

problem. He suggests that the proper way to express "complete ignorance" of
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a continuous variable known to be positive, is to assign uniform prior proba-
bility to its logarithm; i.e. the prior probability density is
(s]x)) = ¢ (8-25)

Of course, vou can't normalize this, but that doesn't stop vou from using it,
because when we expand the denominator of Bayes' theorem as in (8-15), we see
that the prior prcobability appears in both numerator and dencminator [the
same reason that N cancelled out of (8-17)]. 8o, in applying Bayes' thecrem,
it doesn't really matter whether the pricr probabilities are normalized or not.

Jeffreys justified (8-25) on the grounds of invariance under certain
changes of parameters; i.e. instead of using the parameter s, what prevents

b

us from using t = s, or u = 53?

Evidently, to assign a uniform prior proba-
bility density to s, is not at all the same thing as assigning a uniform prior
probability to t; but if we use the Jeffreys prior, we are saying the same

thing whether we use s or any power sm as the parameter. There is the germ

of an impertant principle here; but it was only recently that the situation

has been falrly well understcod. When we take up the theory of transformation
groups later on, we will see that the real justification of Jeffreys' rule
cannot lie merely in the fact that the parameter is positive; but that our
desideratum of consistency in the sense (b) of Lecture 2 (p. 26) uniguely
determines the Jeffreys rule in the case when s is a "scale parameter." The
question then reduces to whether s can properly be regarded as a scale para-
metexr in this problem. However, this takes us far beyond the present topic,

so I don't want to spend a lot of time now arguing either for or against (8-28);
but, in the spirit of this problem, we can put it to the test and see what it
gives. The calculations are all very easy, and we find these results:

x) =L, (c]%)) = =

[

1 1

(nl

C1
- = . -26
(nl]chJ} - (cllnl) (8 )
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This leads to the most probable and mean value estimates:

c, -1+ a
R 1
(nl}J == = 91 {8=27)
(Hl)J =S =100 . (8-28)
=}

The amusing thing emerges that Jeffreys' prior probability rule just lowers
the most probable and mean value by 9 esach, bringing the mean value right back
to the maximum likelihood estimate!

This comparison is valuable in showing us how little difference there isg
numerically between the consequences of different prior probability assigmments
which are not sharply peaked, and helps to put arguments about them into
proper perspective, We made a rather drastic change in the prior probabilities,
in a problem where there was really very little information contained in the
result of the random experiment, and it still made less than 10 per cent
difference in the result. This is, as we will see in the next lecture, small
compared to the probable errcr in the estimate which was inevitable in any
event. In a more realistic problem where a random experiment is repeated
many times to give us a good deal more information, the difference would be
very much smaller still. So, from a pragmatic standpoint, the arguments
about which prior probabilities correctly express a state of "complete ignor-
ance” usually amount to quibbkling over pretty small peanuts.* From the stand-
point of principle, however, they are very important and have to be thought
about a great deal.

Now we are ready for the interesting part of this problem. For during
the next second, we see ¢, = 16 counts. What can Mr. A and Mr. B now say

2

n c.? Well, Mr, A

about the numbers Bys Dy of particles responsihle for cyr S,

has no reason to expect any relation between what happened in the two time

*Thiz is most definitely not true if the prior prcbabilities are to describe
a definite piece of prior knowledge, as the next example shows.
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intervals, and so to him the increase in counting rate is evidence only of an
increase in the beam intensity. His calculation for the second time interval
is exactly the same as before, and he will give as the most probable value

<2
(). === 160 (8-29)
a

n.) =-————m=169 |, (8-30}

Knowledge of c2 doesn't help him to get any improved estimate of nl, which
stays the same as before.

But now, Mr. B is in an entirely different position than Mr. A; his extra
qualitative information suddenly becomes very important. For knowledge of c,
enables him to improve his previocus estimate cf n,. Bayes' theorem now gives

, (e[ my e %p)
(nlfc2chB) = {nl]cle) _:;;T;Z;;;_

(cz|anB)

X —_— 8-31
1 B) (c2|chB) ( )

(nl[c

Again, the denominator is just a normalizing constant, which we can find by
summing the numerator. We see that the significant thing is (c2|anBJ. Using
our trick of resgolving <, into mutually exclusive alternatives, this is

(czlnle} = j: (c2s|anB) ds = j: (cz[snl)(s‘nl) ds
= 50 (c2]s)(s[nl) ds . (8-32}

We have already found (c2|s) in Equation (3-7), and we need only

(n IS)

1 :
(s|n) = (s|x) = (n,|s) , if n_<<§ (8-33)
1 B (nl XB) 1 1 o
where we have used Equation (8-23). We have found (nl]s} in Equation (8-3),

80 we have
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[xe] + -
- - +
sa <, s n, n,+c, e,
{sa) e g a
| |
c2. ng! C n,+c.+1

] 2 {1+a)

jo )
451
1]

(c2|anB) (8-34)

Now we just substitute (8-24) and (8-34) into {8-31), carry out an easy sum-

mation to get the denominator, and the result is

C +c +1 |
(2a) L+ 2 (ngte )ty o
e c,.tl (n,—-cy)! | 1+a
+02)! {l-a) ! {1+a) 1l

nj

(ny e, eq%y) = (8-35)

(cl
Note that we could also have derived this by direct application of our

trick:
(nl[czchB) = UL (nls]czchB) ds = JE (nllscl)(S[CZCl) ds . (8-386)

We have already found (nl]scl) in (8-8), and it is easily shown that (s|c

21!
= (const.) x (c2|s)(cl[s), which is therefore given by (8-5). This, of course,
leads to the same result (8-35); this provides another test of the consistency
of our rules, which we sought to ensure by the functional eguation arguments

in Lecture 3.

To £ind Mr. B's new most prokbable value of ny, we set

+ -
(nllczcle) ) nl c2 1 a _,
- - !
(n-1leyeiXg)  ny =1 1 4 4
or,
[
- Tl l-a
(ny)g = t ey, -cy) 53
2
Cl + C2 Cl - C
= +
2a 2
= 127 (8-37)

His new mean-value estimate is also readily calculated, and is egual to

c. + 1 -a
Gy =t (o - ¢ - 1) L- 2
1 B2 a 2a
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o, e, 1 - a c, - «

2a 2

I

131.5 . (8-38)

You see that both estimateg are considerably raised, and the difference between
most probable and mean value is only half what it was before. If we want Mr.
B's estimates for N then from symmetry we just interchange the subscripts 1

and 2 in the above equations. This gives for his most probable and mean value

estimates, respectively,

135 (8-39)}
n2)B = 137.5 {8-40)

Now, can we understand what is happening here? Intuitively, the reason
why Mr. B's extra gualitative prior information makes a difference is that
knowledge of both ¢y and <, enables him to make a bhetter estimate of the
source strength s, which in turn iz relevant for estimating ny- The situation
is indicated more clearly by the diagrams, Fig. {8.2). To Mr. A, each sequence
of events n; > S is entirely independent of the others, so knowledge of one
doesn't help him in reasoning about any other. In each case, he must reason
from =5 directly to ni, and no other route is available. But to Mr. B, there
are two routes; he can reason directly from ¢, to n, as Mr. A deoes, as described

by [nl]chAJ = (nl]chB); but because of his knowledge that there is a fixed

source strength s "presiding over" both n. and n

1 51 he can also reason along

the route <, -+ n, > 5 n, . If this were the only route available to him

{i.e., 1if he didn't know cl), he would obtain the distribution

(nl[c2XB) = j; (nl|S)(S|02XB) ds
o +1
2 fh. + c.)!
_ a L2 (8-41)
c2+1 nl
c2! {1+a} nl! {1+a}
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0 100 200 300
I -

Figure 8.3. The various distributions {8-~18), (8-35), (8-41), showing
the effect of varying prior information.

and, comparing the above relations, we see that Mr. B's final distribution
(8-35) is, except for normalization, just the product of the ones found by
reasoning along his two routes:

(n;|eje %) = (const.) * (ng|ex) (nfe, X)) (8-42)

The information (8-41) about n. obtained by resasoning along the new route

1

Cy Ny > 8 >Ny thus introduces a "correction factor" in the distribution

obtained from the direct route ¢, >0y enabling Mr. B to improve his estimates.

This suggests that, if Mr. B could obtain the number of counts in a great

C

many different seconds, c Cm’ he would be able to do better and

3! 4]’ L 4

better; and perhaps in the limit m -+ = his estimate of n, might become as good

1
as the one we found from Eg. {8-8), in which the gource strength was ceonsidered
known exactly. In the next Lecture we will check this surmise by working out

the degree of reliability of these estimates, and by generalizing these distri-

butions to arbitrary m, from which we can obtain the asymptotic forms.
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INTERVAL ESTIMATION AND ASYMPTOTIC PROPERTIES

There is still an essential feature missing in the comparison of Mr. A
and Mr. B in our particle-counter problem. We would like to have some measure
of the degree of reliability which they attach to their estimates, especially
in view of the fact that their estimates are so different. Clearly, the best
way of doing this would be to draw the entire probability distributions

n [cc X)) and (n [c C
1L 2

X}
T2t 1A B

1

and from this make statements of the form, "90 per cent of the posterior
probability is concentrated in the interval o < ny < g." But, for present
purposes, we will be content to give the standard deviations [i.e., the sguare
root of the wvarilance as defined in Eg. (8-10)] of the warious distributions

we have found. An inequality due to Tchebycheff then asserts that, if ¢ is
the standard deviation, then the amount p of probability concentrated between

the 1limits (nl * to) zsatisfies

(9-1)

qu

p>1-

Thig tells us nothing when t < 1, but it tells us more and more as t increases
beyond unity. For example, at least 3/4 of the probability must be assigned

to the nange n + 2g, and at least 8/9 to the range n *+ 3o.

29.1. Calculation of Varlance.

The variances 02 of all the distributions we have found in the last
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lecture are readily calculated. In fact, the calculation of any moment of

these distributions is easily performed by making use of the general formula

o .
+ n
E mta) nomo < d 1 i IXI <1, (9-2)
m=0 m dx (1-x) atl
which we have already used in calculation of the mean value in (8-21). For

Mr. A and Mr. B, and the Jeffreys prior probability distribution, we find the

variances
(eq+1) (1-a)
Var (njlei¥,) = ———5—— (9-3)
a
2
(cl+cz+l)(l—a )
Var (n1[c2chB) = > (9-4)
4a
cl(l—a)
Var (nl|c1XJ) = —5 (9-5)
a

and the variances for n, are found from symmetry.

This has been a rather long discussion, so let's summarize all cur results
so far in a table. 1I'll give, for problem 1 and problem 2, the most probable
values of number of particles as found by Mr. A and Mr. B, and alsc the (mean
value} * (standard deviation), which provides a reasonable interval estimate.

From this table we see that Mr. B's extra informaticn not only has led
him to change his estimates considerably from those of Mr. A, but it has
enabled him to make an appreciable decrease in his probable error. Prior

information which has nothing to do with frequencies can greatly alter the con-

clusions we draw from a random experiment, and their degree of reliability.

It is also of interest te ask how good Mr. B's estimate of nq would be

if he knew only c¢ and therefore had to use the distribution (8-41) repre-

X
senting reasoning along the route ¢, 0, > s >n, of Fig. (8.2). .From

(8~41) we find the most probable, and the (mean) * (standard deviation)

estimates
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Problem 1 Problem 2
¢, = 10
cq = 10
c, = 16
most prob. 100 100 160
mean * s.d. 109 + 31 109 £ 31 169 *+ 39
most prob. 100 127 133
B
mean * s.d. 109 + 31 131.5 £ 26 137.5 £ 26
most prob. 21
)
mean ¥ s.d. 100 + 30
ho= 22 = 160 (9-6)
S
02+1 V(c2+l)(a+1)
mean ¥ s.d. = 2 + = 170 + 43.3 {(9-7)
a

In this case he would chtain slightly poorer estimate (i.e. a larger probable

error) than Mr. A even if the counts ) = ¢, were the same, because the

variance {(9-3) for the direct route contains a factor (l-a), which gets re-

placed by (l+a) if we have to reason over the indirect route. Thus, if the

counter has low efficiency, the two routes give nearly equal reliability fox

equal counting rates; but if it has high efficiency, a = 1, then the direct

-~ n, is far more reliable.

3 I think your common sense will tell you

route Cl

that this is just as it should be.
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9.2. Generalization and Asymptotic Forms.

Now in the last lecture we conjectured that Mr. B might be helped a good

deal wore in his estimate of n, by acguiring still more data {03, Cprenns cm}.

1
Let's investigate that further. The standard deviation of the distribution
{8-8) in which the source strength was known exactly, is only Vs(l-a) = 10.8
for s = 120; and from the table, Mr. B's standard deviation for his estimate
of ny is now about 2.5 times this value. What would happen if we gave him
more and more data from other time intervals, such that his estimate of s

approached 130? To answer this, note that, if 1 £ k £ m, we have (now dropping

the XB because we will be concerned only with Mr. B from now on):

(nk’cl...cm) = Eﬂ (nks|cl...cm) ds
-
= tL {nk|sck)(s[cl...cm) ds {9-8)
in which we have put (nk|5cl...cm) (nk[sck) because, from Fig. (8.2), if

s ig known, then all the c; with i # k are irrelevant for inference about ny .
The second factor in the integrand of (%-8) can be evaluated by Bayes' theorem:

(cl...cm]s)

(sle....c ) = (s]x)
1 m B (cl...cmle)

= (const.) ~ {S|XB)(C1!SJ(02|s)...(cm!s}

Using {8-5) and normalizing, this reduces to

o+l
{ma) c  -msa
=—3 e

- (9-9)

(sfcl...cm)

where o = cl + ...+ cm is the total number of counts in the m seconds,

Let's note in passing the propertiez of this distribution. The most

prcbable, mean, and variance of the distribution (9-9) are respectively

5= S (9-10)
mas

— +

s-cr i (9-11)
ma
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var({s) = s - g~ = 5 = {9-12)

So it turns out, as we might have expected, that as m - =, the distribution
(s‘cl...cm) becomes sharper and sharper, the most probable and mean value
estimates of s get closer and closer together, and in the 1imit we would have
just a d-function:

(s|c ceec ) > B(s-s")
1 m

where

c, t o, t+ .. + C
1

lim (9-13)
e ma

i)
il

So, in the limit, Mr. B does acquire exact knowledge of the source strength.

Returning to (9-8), both factors in the integrand are now known from

(8-8) and (9-9), and so

® _s(1-a) Mm% o+l
(n |C c ) o= & [s(1-2)] (ma) s e-msa ds
K717 Tm . (nk—ck)! cl
or

n -c

—c +e) ! ct+1l
(n_|c ...c) = P ma) {1-a) (9-14)

K717 T {nk—ck)!cl nk—ck+c+1

{l+ma-a)

which is the promised generalization of (8-35). In the limit m =+ «, ¢ » =,

(c/ma) » s' = const., this goes inte the Poisson distribution
e—s'(l—a) nk—ck
(e leye o) + Tpmgry (s (1-a)] (9-15)
k k'°
which is identical with (8-8). We therefore confirm that, given enough

additional data, Mr. B's standard deviation can be reduced from 26 to 10.8,
compared to Mr. A's 31.
For finite m, the mean value estimate of nk from (9-14) is
n_ =c_+ s(l-a) (9-16)

k k
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where ;'= {ctl) /ma is the mean value estimate of s from (9-11}. Eguation
{9-16), which is to be compared to (8-9), includes (8-21} and (8-38) as
special cases., Likewise, the most probable wvalue of n according to (9-14),
is

+ &(l-a) (9-~17)
where & isg given by (9-10).

Note that Mr. B's revised estimates in problem 2 still lie within the
range of reasonable errcr assigned by Mr. A, It would be rather disconcerting
if this were not the case, as it would then appear that probability theory
is giwving Mr. A an unduly optimistic picture of the reliability of his estimates.
There is, however, no theorem which guarantees this: for example, if the
counting rate had jumped to c2 = 80, then Mr. B's revised estimate of nl
would be far outside Mr. A's limits of reasonable error. But in this case,
Mr. B's common sense would lead him to doubt the reliability of his prior
information XB: we would have ancther example like that in Lecture 6, of a
problem where one of those alternative hypotheses down at -100 db, which we
don't even bother to formulate until they are needed, is resurrected by very

unexpected new evidence.

9.3. Comparison of Bayesian and Orthodox Results.

Well, in the last lecture I sald I was going to compare the results of
Bayveg' theorem with those obtained by the orthodox statistician's methods in
this problem. I have already done that in the case of Mr. A; for his most
probable values of nl and n2 were in all cases just the same as the direct
maximum likelihood estimates. The statistician accepts Bayes' theorem in the
initial example where the source strength was known. He rejects it in the
problem where the source strength was unknown, and says that (Wald, 1941):

"These problems cannot be solved by any theorems of the calculus of probabi-
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lities alone. Their scoluticon requires some additional principles besides the

axioms on which the calculus of probabilities 1s based." The new principle

which he introduces is maximum likelihood; bhut mathematically, he ends up

doing exactly what he would have done if he had stayed with Bayes' thecorem.

In order to form scme idea of the degree of reliability of the estimate, he

introduces still another ad hoc principle, the confidence interval. Our robot

obtains all of these results automatically, by application of a single principle

which is contained in the calculus of probabilities, as formulated by Taplace.
But how does this comparison lock in the case of Mr. B? We have seen how

Bayes' theorem automatically "digests" his gqualitative prior information:

1

X, = "there is a constant but unknown source strength s," and how it enables

B

him to improve his estimates and lower his probable error. How would the
orthodox statistician make use of this information? In the first place, his
ideology forbids him to use any of the egquations (8-22), (8-23), (8-32), (8-36),
(8-41), (9-8), (9-9) which formed the backbone of our various derivations, for
he contends that "Probability statements can be made only ahout random vari-
ables. It i1s meaningless to speak of the probability that s lies in a certain
interval, because s ig not a random variable, but only an unknown constant."
According to his doctrines, the distinction between a "random" and a "non-
randonm" qguantity is very essential; the methods he will use for inference,
{and the conclugions he will arrive at,) depend on his decision as to which
guantities are random, which are not.

T want to point out some difficulties with this position in a minute;
however, right now our job is not to criticize the orthodox statistician's
methods, but to describe them. If he refuses to use Bayes' theorem in the way
ocur robot did, how would he handle it? I can't really be sure; and in fact

I'll wager that different statisticians would handle it in different ways,

because orthodox teaching has just not produced any unique method for such
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problems. But I think I can suggest one ad hoc¢ procedure that he might invent,
and which most of his colleagues would accept. Consider the problem where we
know that Cq 10, ¢y = 16. TIf anyone were to refuse to use the prior infor-
mation XB, on the grounds that it does not consist of freguency data, then he
would have little choice but to estimate ny and n, by direct maximum likeli-
hood, i.e., by maximization of (cl]nl) and (czing): and it would collapse back
to the problem of Mr. A. But, as I said in Lecture 4, if we do have prior
information which is clearly relevant to the problem, commcn sense will tell
all but the most pedantic not to use direct maximum-likelihcod estimation.
Without departing from orthodox principles, cne can use the prior information
XB to formulate the problem in a different way. Here is one possible line of

reascning that he might use.

"The unknown constant s determines the objective statistical properties

of n and c¢; i.e., the relative frequencies with which the random variables

n and ¢ would assume various values in the long run. Therefore, if I knew
the value of s, it would be perfectly legitimate to use Bayes' theorem in the
form

(c.c Inls)

172

{(2-18)
(clc2]s)

(nl|clc2s) = (nl|s)

since every probability here has a clear freguency interpretation. Further-
more, since

|s)

(clc2]nls) = (cl|c2n15)(c2|nls) = (cl[nl)(c2
and
= = , 9-1
(clc2| s) (cl| c2s) {czls) (cl| 8) (02[ s} (9-19}
the calculation would reduce to
(n,|s) e |n)
1 11
= = _20
(n1|clc2s) (0118) (nl|cls) {9-20)

i.e., if s is known, then knowledge of Cqy is not relevant for estimation of nl.
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This leads, according to equation (8-9), to the mean-value estimate

n, = + s(l-a) . {9~-21)

Now if I had a reasonable estimate of s, then substituting it into (9-21)

should give me an estimate of n, which is in some sense equally reasonable.

50, instead of estimating nl by direct maximum-likelihood, I'1l1l use an indirect
method: first estimate g by maximum-likelihood, and use the result in (9-21)."
From {9-19) and (8-5} we have

[s) = (o + ¢y} log s - 2sa + (const.)

log (cl 1

“2

where the (const.) is independent of s. So, the maximum-likelihood estimate

. . a _
of 5, given Cl and c2, igs found from ag-log (ch2|s) = 0, or
) 1 7% 10+ 16 13
$)max. likelihood - 2a ~ 2 xo0.1 - 130
and his estimate of nl is then
Hl = 10 + 130(1 - 0.1) = 127 , (9-22)
which is the same as Mr. B's most probable value (8-37)}! The fact that these

estimates turn out exactly the same is, of course, fortuitous; but we see from
equations (9-10} and (9~17) that in this problem the agreement would still
ol

hold no matter how many counts {c .oy cm} had been observed.

ir T2

This comparison shows how, in practice, the orthodox statistician who
uses a little common sense in formulating the problem, can often manage te get
very acceptable results and make uge of his prior information without ever
using a probabilility for a "nonrandom" quantity. But if now we asked him to
make some definite statements about the reliability of the estimate (9-22), he
would be faced with a gquite sticky problem. He would probably set up a
confidence interval to describe the uncertainty in s; but then he would have
to find some way of "folding" this uncertainty with the uncertainty in nl,

inherent in (9-21) even when s is known exactly. I will not presume to guess

how he would do this; again, since orthodox teaching has produced no unigue
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way of handling such problems, we can be pretty sure that different workers
would do it in different ways, and come out with different conclusions. With
reasonable common sense, however, the orthodox conclusions would not differ
greatly from the ones our robot cbtains from the posterior probability distri-
bution (nllclc2XB). Frem a purely pragmatic standpoint, which sees no value
in the fact that the robot's method comes from a more general and unified set
of basic principles, the robot's procedure still has the advantage that he
obtains all of these results from a single elementary calculation.

There is a further point which should be made on these estimation problems.
We have seen that the most probable walue and the mean value estimates are not
the same in general. Which is besf? The answer, evidently, depends on the
use to be made of the theory, and on the form of the posterior probability
distribution, For example, in Figure (9.la) we have a distribution for which
the most probable value is not only intuitively a poorer estimate than the
mean value, but is also wvery unstable; very small changes in the data could
tilt the curve the other way, making a large change in the estimate, which
seems like a clear violation of common sense. But in Figure (9.1b) we have a
case where the most probable value is quite likely to he the correct one,
while the mean value is known to be an impossible one. In all cases, however,
the mean value is the estimate which minimizes the expected square of the
error. Generally, if the distribution has a single peak, the mean value would
seem preferable. At any rate, any principle which denies ugs the choice
between them cannot possibly be the best in all cases. We are concerned here
with value judgmenits rather than inference; this will be studied in more
detail when we consider decision theory.

In summary, what can we now say about the principle of maximum likelihood?
If yvou ask a statistician about these things, one answer you are likely to get

ig that the real justification of maximum likelihood is not found in problems

157



Lecture 9, Section 2.3.

of the sort just examined, but in its asymptotic properties, as we accumulate
more and more random data. But, of course, in that limit the wvariocus "laws
of large numbers" guarantee that all these methods approach the same thing.
Indeed, in the "large sample" limit the evidence stares you in the face, and
anybedy can see what general conclusions are indicated, with hardly any need
for a formal statistical theory. Scientists and engineers have been getting
along fairly well for a long time without statistical training, for just that
reason. It is in the small and medium sample case we consldered here, that
our unaided common sense lacks sufficient discrimination, and we need the
guidance of a mathematical theory in order to make definite and defensible
judgments.

In any event, whatever desirable properties maximum likeliheood might have,
asymptotic or otherwise, are also enjoyed by Bayes' theorem with uniform prior

probabilities, because mathematically they amount to the same thing. But it

+ +
o{n) : p(n)
L ' i .
n n n > n n n -+
(a) (b}
Figure 2.1. (a) A likelihood function for which the maximum-likelihood esti-
mate is not a reasonable one. (b} A case where the maximum-likelihood esti-

mate is more reasonable than the mean value estimate.
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iz still best to interpret the rules as an application of Baves' theorem, for
the fellowing reason. Statisticians are well aware that the maximum-likeli-
hood estimate may be very poor in the small-sample case. But these are just
the cases in which situations like that depicted in Figure (9.la) arise.
In the small sample case, the Bayesian mean-value estimate (i.e., the "center
of gravity" of the likelihood function) is often far more reasonable than the
maximum-likelihood estimate.

It seems to me that we have to conclude from this that there 1s no sound

reason for ever introducing the notion of maximum likelihood as a separate

principle. It is already contained in Bayes' theorem as a special case, and
whenever it is the appropriate method to use, Bayesg' theorem will reduce to

maximum likelihocd. From this point of view, we will see later (when we take
up decision theory) that it is possible to define precisely the conditiocns in

which maximum likelihood is the optimal procedure [see Sec. 13.5.].

9.4, The Trouble with "Random" Variahles.

Now let's take a glimpse at some of the difficulties that face the ortho-
dox statistician because of his belief that use of probability theorv requires
us to distinguish between random and nonrandom quantities. In the example
just studied, he didn't face any serious impediment because in this problem
there was really no difficulty in deciding intuitively that s is a "constant",
while n and ¢ are "random variables™. There is little danger that anyone
would make a different decigicon. But there are other problems of inference
in which it is not at all clear how this distinction is to be drawn. We will
study some cases of this in detail when we take up linear regression (which
means simply: fitting the best straight line to a plot of experimental points}.
This is probably the most common of all statistical problems faced by the

experimental scientist; vet it is in Jjust this problem that the distinection
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between random and nonrandom guantities is so obscure that vou sometimes have
to resort to black magic to draw any distinction at all.

This situation has led to some really hilarious proposals for data
reduction, sclemnly advocated in the orthodox literature. Here is cne way
it can happen: the abscissa of our graph represents some physical guantity
that has a true value ¥; but this is unknown because the wvalue x actually
read from a meter suffers from some experimental error ¢ = x - X. Nobody
ever doubts that ¢ is random; but then which cf the guantities x, ¥ is random?

To change from cne value of X to another, the experimenter typically
turns a knobk on his apparatus. According to some orthodox writers (Berkson,
1950; Mandel, 1964; Chap. 12), if he turns it without particularly noticing
just where the "x-meter" ends up, then X is an unknown constant, and x a
random variable. Orthodox theory then tells us how to analyze the data.

But another experimenter, even though he turns the knecb in exactly the
same way and stops at exactly the same place, does so with the conscious
intention of stopping when the meter reads the walue x. In this case, we are
told, x is the "constant," and X the "random variable". Although there is
absolutely no difference in the physical conditions of the experiment, orthodox
teaching then tells us that we should analyze the data in an entirely different
way, which can lead to different estimates of the slope and intercept of that
line, and to widely different conclusions about the reliability of those
estimates., If this isn't black magic, I would like to know what it is.

If, now, the second experimenter flips a coin to help him decide at what
value of x to set the knob, then koth x and X become random variables; and
orthodox theory says we should use still a third method of data analysis,
leading to a third set of conclusions!

I think most of us are persuaded that the import of the experiment ought

to depend on this: how were the knobs actually turned, and what data resulted?
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It does not depend on what thoughts flitted through anybody's imagination
while turning the knobs; a given experimental procedure and resulting data
have exactly the same import whether the knobs were turned by a man or a
chimpanzee.

Grthodox theory fails to meet this rather elementary desideratum; if you
give an orthodox statistician only the actuval procedure and the actual data,
plus one of the usual hypotheses about the errors, he has no definite way of
getting started on the proklem, because for him it is taboo to write down
any probability distribution p(x) unless it has been established that x is
random; and this information gives him no basis for deciding which guantities
are random. Although common sense tells you it cannot be relevant, he wants
to know also something about the "state of mind" of the experimenter; and his
final conclusions will depend on this. The fact that orthodox practice has
to invoke psychokinesis in order to set up some problems hardly supports the
claim (Bross, 1963) that orthodox methods, unlike Bayesian, are “"objective"
and "fact-oriented."

The Bayesian analysis does conform to our desideratum, because it is
liberated from that taboo, and therefore has no need to draw artificial
distinctions which have nothing to do with the physical conditions of the
experiment. Given the above information, our rcbot can proceed immediately
with definite calculations; he is not afraid to introduce probability distri-
butions for any quantity about which he needs inference, and the gquestion
whether it is or is not "random" just never comes up at all. Because of his
liberation from a taboo that has no justification and serves no purpcse,
probakility theory is, for cur robot, an enormously more powerful mathematical
reasoning device than it is for one whose ideclogy forbids the use of that
mathematics in its full generality. We will see some spectacular examples of

this later when we compare Bayesian and orthodox significance tests and inter-
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val estimation methods,

But orthodox taboos can lead to even worse consequences., They force one
to attach such supreme importance to this random-nonrandom distinction that,
in addition to introducing irrelevancies, many writers will not hesitate to
throw away practically all the relevant data of a problem, in order to achieve
the situation of "independent random errors" which their theory presupposes.
For example, in the problem of fitting a straight line to experimental points,
if there is cumulative erroxr (i.e., the error in one value X, is propagated
into all subseguent xj, j » 1) Mandel (1964; Chap. 12) advocates that we
estimate the slope of the line using only the first and last points; and simply
throw away all the intermediate ones! To our robot--and also to the poor
experimenter who labored to get the data--this is a far graver offense against
reascn than merely dabbling in a little black magic. As we will see later,
throwing away the highly relevant evidence of the intermediate points can
increase the probable error of vour estimate by more than an order of magnitude
in real problemnms.

The Bayesian analysis never requires us to do such absurd things, because
it contains no artificial presuppositions about "randomness". If there is
cumulative error, that is just an additional mathematical detail that Bayes'
theorem takes into account without any difficulty, while retaining all of the
relevant evidence.

Yet in spite of all this emphasis on the necessity of specifying the
"random" guantities, no worker in probakility theory, orthodox or otherwise,
has produced any definition of "random variable™ which could actually be
applied in real life situations. Here is, for example, a guotation from the
bock of Savage (1954; p. 45): "The concept of a random variable enters into
almost any discussion of probability. Experts are fairly well agreed on the

following definition. & random variable is a function x attaching a value
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x(s) in some set X to every s in a set S on which a probability measure P is
defined." Definitions essentially equivalent to this can be found in most of
the modern bocks on statistics. While this may be fine for setting up an
abstract mathematical theory, the most obvicus thing about it is that the
definition is absolutely useless in helping us decide whether some specific
guantity, such as the number of beans in a can, is cor is not "random".

If you read the literature carefully, I think vou will see that whenever
the orthedoxz statistician gets down to a wery specific problem, he uses the word
"random" merely as shorthand for "likely to be different in different situa-
tions." In Laplace's theory there is no need to emphasize, or even to define,
any sharp distinction between random and nonrandom quantities, for the common-
sense reason that in the specific problem at hand, the gquantity I am reasoning
about (in the problem just discussed, nl} is always simpiy a definite, but
unknown number. Whether this number would or would not he the same in some
other situation that I am not reasoning about, is just not relevant to my
problem; to adopt different methods on such grounds is to commit the most
obvious incongistency of reasoning.

A1l right, I hope this little excursion into polemics has given you a
clearer understanding of why, in the theory we are developing, the word
"random" just doesn't appear; and of the kind of troubles we would get into
if we did try to use it. In the next lecture, I want to return to the con~

structive development of the theory.
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DISCRETE PRIOR PROBABILITIES--THE ENTROPY PRINCIPLE

I would like to return to the job of designing this robot. We've got
part of his brain designed, and we have seen how he would reason in a few
simple problems cof hypothesis testing and estimation. But he is still not a
very versatile reasoning machine, because he has only one means by which he
can translate raw information into numerical values of prcbability; the "prin-
ciple of indifference,” Rule 4. Consistency requires him to recognize the
relevance of prior information, and so in almost every problem he is faced
at the outset with the problem of assigning prior prebabilities. He can use
Rule 4 for this if he can break the situation up into mutually exclusive,
exhaustive possibilities in such a way that no one of them ig preferred to,
any other by the evidence he has. But often he will have prior informatiocn
that does give him some reason for preferring one possibility to another.

What do we do in this case?

10.1 A New Kind of Prior Information.

Let's imagine a certain class of prebklems in which the robot's prior
information consgists of average values of certain things. Suppose, for example,
we tell him that statistics were collected in a recent earthquake and that out
of 100 windows broken, there were 1,000 pieces found. We will state this in
the form: "the average window is breken into 10 pieces." That is the way

it would be reported. Given only that information, what is the probability
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that a window would be broken into exactly m pieces? There is nothing in the
theory so far that will answer that guestion. Let's imagine some other pro-
blems where the same situation would arise. Here's a fairly elaborate one.

Suppose I have a table which I cover with a black cloth, and I have éome
dice, which I am geing to toss onto this table, but for reasons that will be
c¢lear in a minute, let's make these dice black with white spots. I toss a die
onto the black table. Above I have a camera. Every time I toss it, I take
a snapshot. The camera will record only the white spots. Wow I don't change
the film in between, so we end up with a multiple exposure; uniform biackening
of the film after we have done this a few thousand times. From the density
of the film, we can infer the average number of spots which were on top, but
not the frequencies with which wvarious faces came up. Suppose that the aver-
age number of spots on top turned out to be 4 1/2 instead of the 3 1/2 that
we might expsct from an honest die. What probability should our robot assign
to the n'th face coming up?

To give still another example of a problem where the information available
consists of average values, suppose that we have a string of 1,000 cars,
bumper to bumper, and they occupy the full length of say three miles. We
know the total length of this string of cars, and as they drive onte a rather
large ferry boat, the distance that it sinks into the water tells us their
total weight. So we know the average length and the average weight of the
1,000 cars. We can look up statistics from the manufacturers, and find out
how leng the Volkswagen is, how heavy it is; how long a Cadillac is, and how
heavy it is, and so on, for all the other brands. From knowledge only of the
average length and the average weight of these cars, what can we then infer
about the number of cars of esach make that were in the cluster? That iz a

problem where we have two average values given to us.
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Now, it is not at all cbvious how our robot should handle problems of
this sort. So let's think about how we would want him to behave in this
situation. We would not want him to jump to conclusions which are not war-
ranted by the evidence he has. He should always frankly admit the full extent
of his ignorance. We have seen that a uniform probability assignment repre-
sents a state of mind completely noncommittal with regard to all pessibilities;
it favors no one over any other, and thus leaves the entire decision to
subsequent information which the rchot may receive. The knowledge of average
values does give the robot a reason for preferring some possibilities to
others, but we would like him to assign a probability distribution which is,
in some sense, as uniform as it can get while agreeing with the available
information. The most conservative, noncommittal distribution is the one
which is as "spread-out" as possible. 1In particular, the robot must not
ignore any posgsibility=--he must not assign zero probability to any situation
unless his information really rules ocut that situation.

Sc, the aim of aveoiding unwarranted conclusions leads us to ask whether
there is some reasonable numerical measure of how uniform a probability
distribution is, which the robot could maximize subject to constraints which
represent his available information. Let's approach this in the way all
problems are solved; the time-honored method of trial and error. We just
have to invent some measures of uncertainty, and put them to the test to see
what they give us.

One measure of how broad this distribution is would be its variance.
Would it make sense if we build inte the robot the property that whenever he
is given information about average values, he will assign probabilities in
such a way that the variance is maximized subject to that informaticn? Well,
consider the distribution of maximum variance for a given m if the values of

m are unlimited, as in the broken window problem. Then the maximum variance
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solution would be just the one where we assign a very large probability for

no breakage at all, and an enormously small preobability for a window to be
broken into billions and billions of pieces. You can get an arbitrarily high
variance this way, while keeping the average at 10. In the dice problem, the
solution with maximum variance would be to assign all the probability to the
one and the six, in such a way that you come cut with the right average.

S0 that, evidently, is not the way we would want our robot to beshave; if he
used the principle of maximum variance, he would be assigning zero probability

to many cases which were not at all impossible on the information we gave him,

10.2. Minimum ZPii.

Ancther kind of measure of how spread out a probability distribution is,
which has been used a great deal in statistics, is the sum of the squares of
the probabilities assigned to each of the possibilities. The distribution
which minimizes this expression, subject to constraints represented by average
values, might be a reasconable way for our robot to behawve. Let's see what

sort of a solution this would lead to. I want to make

z
me
m

a minimumn, subject to the constraints that the sum of all P, shall be unity,
and the average over the distribution is M. A formal solution is obtained by

writing

G{me2—}\fmpm—uzpm}

m m m

=] (2p - Am - w) Sp = 0 (10-1)
I

where A and | are Lagrange multipliers. So P will always be a linear function

of m:

2bm - Am - u = 0.
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Now, 4 and A are found from

Lra=1 . Jmp_ =, (10-2)
I

where T is the average value of m.
Let's investigate this and draw the graph for a simple version. Let's

say that m can take on only the values 1, 2, and 3. Then we easily find that

the formal sclution for minimum z pm2 ig
m
_4_m
P17 37 2
1
p2 E {10=~3)
m 2
P3= 273

In Figure (10.l) these resulits are plotted. This shows that p; and p, become
negative. In these regions let's say we will replace the negative values by
zero and then adjust the other probabilities to agree with the given wvalue of m.

If we do this the results are shown in Figure (10.2}.

1 =
p
3
-
- p2
+
B,
1
0 A 1 1
pl
L.

Figure 10.1. Formal solution for minimum ZPz.
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Figure 10.2.

Corrected formal sclution.

All right, sc that's what this criterion will give to us. Now, is the

robot behaving in a reasonable way if we build this behavior pattern into him?

This is certainly a big improvement over maximum variance, but he is still,

in certain ranges of m, assigning zero probkability
and there is nothing in the data we gave him which
Sc he is still jumping to unjustified conclusions.

still locks like a good one. There should be some

to one of the possibilities,
said one was impossible.
But the idea behind it

consistent measure of the

uniformity, or "amount of uncertainty" of a probability distribution which

we can maximize, subject to constraints, and which will have the property

that it forces the robot to be completely honest about what he knows, and in

particular it deces not permit the robot to draw any conclusions unless those

conclusions are really justified by the evidence he has.

169



Lecture 10, Section 10.3.

10.3. Entropy: Shannen's Theorem.

Well, at this stage we turn to the most guoted theorem in Shannon's work
on information theory (Shannon, 1948; Shannon and Weawver, 1949), Thig is the
theorem. If there exists a congistent measure of the "amount of uncertainty"
represented by a prchbability distribution, there are certain conditions it
will have to satisfy. I am going to state them in a way which will remind
you of the arguments we gave in Lecture 3; in fact, this is really a contin-
uation of the basic development of probability theory. Here is the line of
reasoning:

(1) We assume that some numerical measure Hn(pl, Por =ov pn) exists;

i.e., that it is possible to set up some kind of association between
"amount of uncertainty" and real numbers.

(2} We assume a continuity property: Hn is a continuous function of
the P, For otherwise an arbitrarily small change in the proba-
bility distribution would still lead to the same big change in the
amount of uncertainty.

(3) We require that this measure should correspend qualitatively to
common sense in that when there are many possibkilities, we are more
uncertain than when there are few. This condition takes the form

that in case the p; are all equal, the guantity

_ 1 1
hin) = Holgr -« A

shall be a monotonic increasing function of n. This merely esta-
blishes the "sense of direction.”

{4) We reguire that the measure Hn be consistent in the same sense as
before; i.e., 1f there is more than one way of working out its

value, we've got to get the same answer for every possible way.

170



Lecture 10, Section 10.3.

Previously, our conditions of consistency took the form of the functional
equations (3-2), (3-7}), (3-11). Now we have instead a hierarchy of functional
equations relating the different Hn to each other. Suppose the robot perceives
two alternatives, to which he assigns probabilities iz and g = 1 - Pqe Thern
the "amount of uncertainty" represented by this distribution is H2(pl, ql.

But now the robot learns that the second alternative really consists of two
possibilities, and he assigns probabilities Pyr Py to them, satisfving

Py + P3 = q. What is now his full uncertainty HB{pl, P, p3) as to all three
possibilities? Well, the process of choosing one of the three can be broken
down into two steps. First, he decides whether the first possibility is or
1s not true; his uncertainty for this decisicn is the original Hz(pl, gl .

Then, with probability g, he encounters an additional uncertainty as to events

2, 3, leading to

p2 pB
H3(pl,p2,p3) = H2(pl,q) + qH2&£_FTE) (10-4)

In general, a function H,  can be broken down in many different ways, relating
it to the lower order functions by a large number of eguations like this.

Note that equaticn (l0-4) says rather more than our previous functional
equations did. It says not only that the Hn are consistent in the afore-
mentioned sense, but also that they are to be additive. So this is really
an additional agssumption which we should have included in our list. The most
general equation of consistency would be a functional equation which is
satisfied by any monotonic increasing function of Hn, but I don't know how
to write it.

At any rate, the next step is perfectly straightforward mathematics;
let's see the full proof of Shannon's theorem, now dropping the unnecessary

subscript on Hp,-

First, let's find the most general form of the composition law (10-4)
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for the case that there are n mutually exclusive propositions {Al,...,A ) to
I

consider, to which we assign probabilities (pl,...,p } respectively. Instead
n

of giving the probabilities of the (A An) directly, we might first group

lf"‘!

the first k of them together as the proposition denoted by (A1+A2+...+Ak) in
Boolean algebra, and give its probability which by Egq. (3-21) is equal to

«e oA Yo

w) = (p +...+pk); then the next m propositicons are combined inte {Ak+l+ Kt

1

for which we give the probability W, = etc. When this much

I S

has been specified, the amount of uncertainty as to the composite propositions

is H(wl...wr). Next we give the conditional probabilities (pl/wl,...,pk/wl)
of the propositions (Al,...,Ak}, given that the composite proposition

A +...+A ) is true. The additional uncertainty H W_ogen- w_) 1z then
(3, A % {pl/ 1 pk/ 1

encountered with probability Wi Carrying this out for the other composite
propositions (A +...+A )}, etc., we arrive ultimately at the same state
k+1 k+m
of knowledge as if the (pl,...,p J had been given directly; so 1if our measure
n
of "amount of uncerxtainty" is to be consistent, we must obtain the same ulti-
mate uncertalnty no matter how the choices were broken down in this way. Thus
we must have
Hip;-..p) = Hlw ooow ) + wiH{p/wy...,p /W)
+ H PR + ... 10-5
W Py /Y Pran’™) (10-5;

which is the general form of the functional equation (10-4). For example,
H({l/2, 1/3, 1/6) = H{1/2, 1/2) + (1/2) H(2/3, 1/3).

Since H{p ...pn) is to be continuous, it will he sufficient to determine

1

it for all rational values
p‘ = — (10_6)

with n; integers. But then (10-5) determines the function H already in terms
of the guantities hi{n) = H(l/n,...,1/n) which measure "amount of uncertainty"

in the case of n egually likely alternatives. For we can regard a choice of
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cne of the alternatives (Al,.-.,A J as the first step in the choice of one of
n
Zn
. n
i=l 1

equally likely alternatives in the manner just described, the second step of
which is also a choice between n; equally likely alternatives. As an example,
with n=3, we might choose n, = 3, n2 = 4, n3 = 2, For this case the compo-

gition law (10-5) bhecomes

3 4 2 3 4 2
h{s} = H(gf G’ 9) + 3 h{3) + 5 hi{d) + §-h(2)
For a general choice of the Ry {10-5) reduces to

h(Ing) = Hipy...py) + X pyh(n;) (10-7)

1

Now we can choose all n: = m; whereupon (10-7) collapses to

i

himn}) = h{m) + hin) (10-8)
Evidently, this is selved by setting

hin) = k log n (10-9)
where k is a constant. But is this solution unique? If m, n were continuous
variables, this would be easy to answer; differentiate with respect to m,
set m = 1, and integrate the resulting differential equation with the initial
condition h(l) = 0 evident from (10-8), and you have proved that (10-9) is
the only sclution. But in our case, (10-8) need hold only for integer values
of m, n; and this elevates the problem from a trivial one of analysis to an
interesting little exercise in number thecry.

First, note that (10-9) is no longer unique; in fact, (l0-8) has an
infinite number of solutions for integer m, n. For, each positive integer W
has a unique decomposition inte prime factors; and so by repeated application
of {10-8) we can express hi(N) in the form Zi mih(qi) where q; are the prime
numbers and m, nen-negative integers. Thus we can specify h(qi) arbitrarily

for the prime numbers - whereupon (10-8) is Jjust sufficient to determine
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h{N) for all positive integexrs.

To get any unique solution for h(n), we have to add our gualitative
requirement that h(n) be monotonic increasing in n. To show this, note first
that (10-8) may be extended by induction:

hi{nmr---} = hi{n) + h{m) + hir) +
and setting the factors equal in the k'th order extension gives
h(nK) = k h(n) (10-10)
Now let t, s be any two integers not less than 2. Then for arbitrarily

large n, we can find an integer m such that

t_l.
o)
]
rt
3
=

=R
1

AN (10-11)

or,

Since h is monotonic increasing,
h(s™ < h(t?) g h(s®1)
or from (10-10),
mhi{s) < n h{(t) £ (mtl) h(s)

which can be written as

=l =

< hit) < mbl (10-12)
h(s) n

Comparing (l0-11), (l0-12}, we see that

hit) _log t| « 1

hi(s) log s| n
or

h(t) _ his) < e _

log t log s| ~ (10-13)
where

_. _hi{s}
n log t

is arbitrarily small. Thus h(t)/leg t must be a constant, and the unigueness
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of (l0-9} is proved.

Now different choices of k amount to the same thing as taking logarithms
to different bases; so if we leave the base arbitrary for the moment, we can
Jjust as well write h(n}) = log n. Substituting this inte (10-7), we have
shannon's theorem: the only function H(pl,...,pn) satisfving the conditions
we have imposed on a reasonable measure of "amount of uncertainty"” is

n
H(pl,...,pn) = - Zi=l p, log p, (10-14)

Accepting this interpretation, it follows that the distribution (pl...pn]
which maximizes (10=-14) subject to constraints imposed by the available
information, will represent the "most honest" description of what we know
about the propositions (Al,...,An). The only arbitrariness is that we have
the option of taking the logarithm to any base we please, corresponding to
a multiplicative constant in H. This, of course, has no effect on the values
of (pl,...,pn) which maximize H.

The function H will be called the entropy of the distribution (pl,...,pn)
from now on. It is a new measure of how uniform a probability distribution
is-—any change in the direction of equalizing the different probabilities will
increase the entropy.

I don't think that either this demonstration or the ones we gave in the
third lecture are anywhere near in satisfactory form vet. In particular,
the functional eguation (10-4) does not seem guite so intuitively compelling
as our previous ones were., You might ask why the factor g must appear in the
last term, and the only answer I can give is that if you leave i1t out, the
solution of the functional equation will collapse to Hn(pl...pn) = (n-1),
independently of the P and you will lose everything we had hoped to get
from this argument. In this case, I think the trouble is just that neither I
nor any other writer known to me has yet learned how to verbalize the argument

leading to (10-4) in a fully convincing manner. Perhaps this will inspire
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you to try your hand at improving the verbiage that I used just before writing
{10-4).

For this reason, it is comforting to know that there are several other
possible arguments which will also lead to the same conclusion {(10-14).
Khinchin (1957) has given a slightly different set of conditions. They are:

(1) For given n, Hn(pl...pn) attains its maximum value when b = {1/n),
k=1, 2, ..., n.

(2) If we include in our enumeration a new situation which is, however,
known to be impossible, our state of uncertainty is not really
changed. Therefore, we should have Hn+l(pl...pn,0) = Hn(pl...pn).

(3} A composition law essentially eguivalent to (10-4) although stated
in slightly different terms.

Khinchin shows that the only continuous functicon satisfying these reguirements

is the entropy expression (10-14}.

10.4., The Wallis Derivation.

Another, and gquite amusing, way of deriving the maximum-entropy principle
resulted from a suggestion made to me by Dr. Graham Wallis {although the
argument to follow differs slightly from his). We are given information I,
which is to be used in assigning probabilities {pl...pm} to m different
possibilities. We have a total amount of probability

}

to allocate among them., Now in judging the reasonableness of any particular

In

C =1
i=1 Fi

allocation we are limited to a congideration of I and the laws of probability
theory; for to call upon any other evidence would be to admit that we had
not used all the available information in the first place.

The problem can also be stated as follows. Choose some integer n »» m,

and imagine that we have n little "gquanta" of probability, each of magnitude
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-1 . . . .
6 =n 7, to distribute in any way we see fit. In order to ensure that we

have a "fair" allocation, in the sense that ncne of the m possibilities shall
knowingly be given either more or fewer of these guanta than it "deserves,"
in the light of the information I, we might proceed as follows.

Suppose we were to scatter these quanta at random among the m choices--
you can make this a blindfolded penny-pitching game into m equal boxes if
you like. If we simply toss these "guanta" of prabability at random, so that
each box has an egual probability of getting them, nobody can claim that any
box is being unfairly favored over any cther. If we do this, and the first
box receives exactly n

guanta, the second n etc., we will say that the

1 2'

random experiment has generated the probability assignment
p, =n, 8 =mn_ /n, i=1,2, ..., m
1 1 i

The probability that this will happen is

Now imagine that a blindfolded friend repeatedly scatters the n quanta at
random among the m possibilities. Each time he does this we examine the
resulting probability assignment. If it happens to conform to the information
I, we accept it; otherwise we reject it and tell him to try again. We continue
until some probability assignment {pl...pm} is accepted.

What is the most likely probability distribution to result from this game?

It is the one which maximizes
W=z —/—— {10-15)

subject to whatever constraints are imposed by the information I. We can
refine this procedure by choosing smaller guanta; i.e. large n. In the limit
we have, by the Stirling approximation

logn! =n logn-n+ /E;;.+ E%H-+ O(%?) {10-16)
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where O(l/nz) denotes terms that tendto zere as n»=, as (l/nz) or faster.

Using this result, and writing n, = np,, we easily find that as n>®, n -, in
i i i

such a way that ni/n - p, = const.,

1
" log W =

B |-

n
[1og n! - Zi=l log (npy)!]

1 n
> logn -1 - o z [npi log (npi) - npi]
i=1

Since Zpi = 1, several terms cancel, and we are left with

1 n
o log W~ - Z'"l Py log p; = H(pl...pn) {10-17)

i=
and so, the most likely probability assignment to result from this game, is
just the one that has maximum entropy subject to the given information I.

You might object that this game is still not entirely "fair," because we
have stopped at the first acceptable result without seeing what other accept-
able ones might also have turned up. In order to remove this objection, we
can consider all possible acceptable distributionsg and choose the average E;
of them. But here the "laws of large numbers" come to our rescue. I leave

it for you to prove that in the limit of large n, the overwhelming majority

of all acceptable prokability allecations that can be produced in this game

are arbitrarily close to the maximum-entropy distribution.

This derivation is, in several respects, the best one vet produced. It
is entirely independent of Shannon's functional egquation {(10-5); it does not
require any postulates about connections between probability and frequency;
nor does it suppose that the different possibilities {1 ... m} are themselves
the result of any repeatable random experiment. Furthermcore, it leads auto-
matically to the prescription that H is to be maximized--and not treated in
somg other way--without the need for any guasi-philosophical interpretation of
H in terms cf such a vague notion as "amount of uncertainty.” Let me stress

this peint. It is a big mistake to try to read too much philosophical signifi-
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cance into theorems which lead to equation (10-14). In particular, the
association of the word "information" with entropy expressions seems in retro-
spect quite unfortunate, because it persists in carrying the wrong connota-
tions to so many people. Shannon himself, with really prophetic insight into
the reception his work would get, tried to play it down by pointing out immed-
iately after stating his theorem, that it was in no way necessary for the
theory to follow. By this he meant that the inequalities which H satisfies
are already quite sufficient to justify its use; it does not really need the
further support of the theorem which deduces it from functional eguations
expressing intuitively the properties of "amcunt of uncertainty." However,
while granting that this is perfectly true, I would like now to try to show
that if we do accept the expression for entropy, very literally, as the
correct expression for the "amount of uncertainty" represented by a probability
distribution, this will lead us to a much more unified picture of probability
theory in general. It will enable us to see that the principle of indifference,
Rule 4, and many frequency connections of probability are special cases of a
single principle, and that statistical mechanics and communication theory are

both instances of a single method of reasoning,

10.5. An Example.

First, let's test this principle and see how it would work out if we ask
the robot to assign probabilities in such a way that the entropy (10-14) is
maximized subject to the available information, in the simple example discussed
in Sec. 10.2, in which m can take on only the values 1, 2, 3 and m is given.

We can use our Lagrange maltiplier argument again to solve this problem;

i.e., as in (10-1),

a[a( )—)\ZB mp - 23 | =
Py+e-Py T T L Py
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23 M, 8 0
= - - I u -
Now,
o 1 1 (10-18)
—— = - O - —
3p g Pm
m
30 our solution is
—AO—Am
p,=e (10-19}

where Ao =z u o+ 1.

So the distribution which has maximum entropy, subject to a given average
value, will always be in exponential form, and we have to fit the constants
Ao and A by forcing this to agree with the constraints that the sum of the
p's must be one and that the average value must be egual to the average T
that we assigned. Well, the mathematics that you have to go through in order
to do this is very straightforward and comes out very beautifully if vou
define a function

23 —-Am

Z{A) e (10-20}

m=1

which we call the partition function. The egquations (10~2). which f£ix our

Lagrange multipliers then take the form

AO = log Z{}) {10-21)
and
mWm= - %X-log Z(x) {10-22)

We find easily that pl(H), pZ(E{), p3(?n") are given in parametric form by

_ expl(2-K))] ) .

Pe =T+ 2cosna @ ®= 12 3 (10-23)
2% A

N e + 2e + 3 (10-24)

o= . -
eZk + el + 1

In a more complicated problem we would just have to leave 1t in parametric

form, but in this particular case we can eliminate the parameter )\ algebra-
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iecally, leading tc the explicit solution

_3—m—p2
Pl = 5
l —
Py, = 31 vVd - 3@m-2)2 - 1 (10-25)
)
3 2

These results are plotted in Figure (10.3}. p2 is the arc of an ellipse
which comes in with unit slope at the ends. Pl and p, are also arcs of
ellipses, but slanted one way and the other.

Let's just notice that we have finally arrived here at a solution which
meets the objecticns we had to the first two criteria. The maximum entropy
distribution automatically has the property P, 2 0 because the logarithm has
a singularity at zero which we could never get past. It has, furthermore,
the property that it never allows the robot to assign zerc probability to any

possibility unless the evidence forces that probability to be zero. The only

1 =
+
P,
1
0 —
1 2 3 m»

Figure 10.3. Maximum-Entropy scolution,
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place where a probability goes to zero is in the limit where the T is exactly
one or exactly three. But of course, in that case, some probabilities did
have to be =zero.

We see the comparison between these two criteria is very interesting.
The criterion that

2 L.
= MlnN1um
L ey
m

gives [Fig. (10.2)j the same value and the same slope as the maximum entropy
solution, at the end points and at the middle. It represents, in a sense,
the best straight-line approximation yvou could have made to the maximum entropy

solution.

10.6. Generalization: A More Rigorous Proof.

The maximum-entropy solution can be generalized in many ways. Suppose a
variable x can take on n different discrete values (xl...xn), which correspond
to the n different:propositions(Al...An) above; and that there are m different
functions of x

fk(x) ‘ l<k<m m<n, (10-26)
for which we know the mean values. What probabilities {pl..-pn) will the
robot assign to the possibilities (xl...xn)? The average of fk{x) is supposed

known for each of the possible values of k, i.e.,

F = <£,00> =) _p. £(x) . (10-27)

and the robot will find the set of pi's which has maximum entropy subject to
all these constraints simultaneously. Iet's see what he'll come out with.
We just have to introduce as many Lagrange multipliers as there are constraints

imposed on the problem.

SIH(p,...p ) = (A -1) § P, Ay § py £y —eaiam AL § p; £,(x))

182



Lecture 10, Section 1l0.6.

= § sp, — (oml) = Ay £10x5) = ..o =y fixg) | py = 0

and so from (10-18) ocur solution is the following:

dlo - Alfl{xi) - el - Amfm(xi)
p, = e . (10-28)

That's the form of the distribution, and we still have to find how he is going
to evaluate these constants. In the first place, the sum of all probabilities
will have to be unity, i.e.,

"Ao "Alfl(xi) —. e Amfm(xi}

1= Z p; = ¢ z e . (10-29}
i i

If we now define a partition function as

A fo (k.Y ol A f (x,)
I ¢ 17171 m m' 1
Z(ay-ah ) = Zi=l e (10-30)
then (10-29) reduces to
A= - -
o log Z(Al Am) {10-31)
The average wvalue (10-27) of fk(x) 1s then
o e—ko z e—klfl(xi) - ea— Amfm(xi) t
k . T R
T
or,
3

What is the maximum value of the entropy that we get from this probability
distribution? After an entropy has been maximized, I will call it §, the way
physicists do, instead of H, the way information theory pecple do:

= -1, )
s = (H}max = =Ly P, log pi nax {(10-33)

From (l0-28) we find that

S=Xi + AF, + ...+, F (10-34)
o) 11 m m

Now these results open up so many new applications that it is important

to have as rigorcus a proof as possible. But to solve a maximization prohlem
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by variational means, as we just did, isn't 100 per cent rigorous. Qur
Lagrange multiplier argument has the nice feature that it gives you the answer
instantanecusly. It has the bad feature that after vou've done it, vou're

not quite sure it is the answer. Suppose we had a function like the one in
Fig (10.4), and cur job was to locate the maximum of it. Well, if we state

it as a variational prcoblem and set the derivative equal to 0, we'll get
solutions at A, B, C, etc. And, of course, we could investigate these sepa-
rately and see which one is really a minimum, which one is a maximum. But
after we prove that A is a local maximum, still we have doubt as to whether
it's an absolute maximum. Maybe there is some other point that is still higher.
Even after we've proved that we have the highest value that can be reached

by variational methods, it is still possible that the function reaches a

still higher value at some cusp E that we can't locate by variational methods.
There would always be a little grain of doubt remaining if we do only the

variational problem.

Figure 10.4.

So, I would like now to give yoﬁ an éntirely different derivation which
is strong just where the variational argument is weak. For this I want a
lemma. Let pi be any set of numbers which could be a possible probability
distribution; in cther words, they add up to one and they are not negative,

1l
Zi=1 p; =1 . p; 2 O (10-35)
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and let Uy be another possible probability distribution,

Lw=1 u; 2 0. (10-36)
i=

Now let's think for a moment about the function log x. The graph of

log % looks like this, Fig. 10.5.

Figure 10.5.

It_passes through the point (1,0) with unit slope. So if I draw a tangent to
it at this point, the straight line has the equation y = x - 1. You see that
log x always has curvature downward and so it stays below the tangent; there-
fere,

log x < (x -~ 1} ., 0 < x < o (10-37)

with equality if and only if x = 1. Therefore,

7 1o ‘_‘i_)
i=1 Pi %9 {p;

1

f.
n i
zi=l Pl (pl - 1) = {3

I

or,
: (l )
Hipy...p,) < §i=1 p; log oy (10-38)

with equality if and only if p; = u i=1, 2, ..., n. This is the lemma

if
we need.
I'm going to simply pull a distribution u; out of the hat;

- 1 _ o )
u, = m1"'3‘m} expi L SC IR kmfm(xi)} . {10-39)

where Z (X ...km) is defined by (10-30). HNever mind why I chose uy this

1
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particular way; we'll see why in a minute. But now let's play with the in-

equality (10-38). We can now write it as

1}
HS ) L Pallog Z i h) + s Ayl (xg)]
i=
ar
H < log Z + Ai<fl(x)> + ...t Am<fm(x)> . (10-40)

Now, let the p; vary over the class of all possible probability distributions
that satisfy the constraints (10-27) of the problem. The right-hand side
of (l0-40) stays constant. Our lemma now says that H attains its absolute
maximum, making {10-40) an equality if and only if the p; are chosen as the
canonical distribution (10-39).

This is the rigorous proof, which is independent of the things that might
happen if you try to do it as a variational problem. This argument is, as
we see, strong just where the variational argument is weak. ©On the other
hand, this argument is weak where the wvariational argument is strong, because
I just had to pull the answer out of a hat in writing (10-22). I had to know
the answer before I could prove it. If you have both arguments side by side,

then you have the whole story.

10.7. Formal Properties of Maximum-Entropy Distributions.

Now I want to put down a list of the general formal properties of this
canonical distribution (10-3%). This is a bhad way of doing it in one sense;
it sounds very abstract and you don't see the connection to any physical
problem vet. On the cother hand, we get all the things we want a lot faster
if we first become aware of all the formal properties that are going to be in
this theory in any application; and then later I'll go inteo specific physical
proklems and we'll see that every one of these formal relations turns out to
have many different useful physical meanings, depending on the particular

problem.
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Now the maximum attainable H that we c¢an get by holding these averages
fixed depends, of course, on the average values we specified,

m
(Hgnax = S(Fl°"Fm) = log 4+ zk=l }\ka (10—41)

H itself we can regard as a measure of the "amount of the uncertainty" in any
probability distributicn. After I have maximized it, it becomes a function of
the definite physical data of the problem, and I'll call it S. It's still a

measure of "uncertainty", but it's uncertainty when all the information we

have consists of just these numbers. It is "subjective" in the sense that it

still measures uncertainty; but it is completely "objective" in the sense that

it depends only on the data of the problem, and not on anybody's personality.

If 2 is to be only a function of (F ...Fm), then in (10-41) the (Al...km)

1
must also be thought of as functicns of (Fl...Fm). At first, the 3A's were
just unspecified constants flapping arcund loose, but eventually we have to
find what they are. If I choose different Ai’ I am writing down different

probability distributions (10-39}; and we saw in (10-32} that the averages

over this distribution agree with the given averages Fk if

3
Fk—<fk>—-ﬁ;(log z) , k=1,2, ..., m (10-42)

So we are now to regard (10-42) as a set of m simultanecus egquations
which are to be solved for the Ai in terms of the given data Fi i at least one
would like to dream about this. Generally, when you get to non-trivial pro-
bhlems, this is so involwved that vou have to leawve the Ai where they are, and
express things in parametric form. If you've got more than about two Ai in
the problem, it is generally impractical to solve for them explicitly. Actual-
ly, this isn't such a tragedy, because the Ai usually turn out to have such
important phygical meanings that we are guite happy to use them as the inde-
pendent variables., However, I would like to show you that if we can evaluate

the function $(F;...F,.), then we can give the A; as explicit functions of the
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given data.
Suppose I take S and differentiate it, I make a small change in one of
the wvalues Fk that we fed into the problem; how does this change the maximum

attainable H? We have from {(10-41},

m

BAj m ar

38 z 3 log 2 J
e T et ieae e T N Fo+ A
9F J=1 BAj BFk i=1 3F, 'k k
which, thanks to (10-42), collapses to
03
= L 10-43
Ak dF ( )

in which Ak is given explicitly.
Compare this eguation with (10-42); one gives Fk explicitly in terms of

the X the othergives the Ak explicitly in terms of the P, . If I specify

k' k

lcg 2 as a function of the hk; or if I gpecify S as a function of the given
data Fk’ these are equivalent in the sense that each gives full information
about the probability distribution. The complete story 1s contained in either
function, and in fact you see that (10-41) is just the Legendre transformation
that takes us from one representative function to another.

We can derive some more interesting laws simply by differentiating the

two we already have. Let me differentiate (10-42) with respect to Aj:

aF 2 aF .

k ad ]
= (log Z) = {10-44)

aAj axjaxk Bkk

since the second cross derivatives of log Z are symmetric in j and k. So
here's a general reciprocity law which will hold in any problem that we do
by maximizing the entropy. Likewise, if I differentiate (10-43) a second
time, I'll have
o
2
okk 2 2g Bkj

5F. OF.0F.  oF
3 j Tk

(10-45)
k

another reciprocity law, which is however not independent of (10-44}), because

if we define the matrices Ajk E-akj/BFk, Bjk = BFj/Blk, you easily see that
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. . -1 -1 . . .
they are inverse matrices: A =B ~, B = A . These reciprocity laws might

appear trivial from the ease with which we derived them here; but when we get
around to applications we'll see that they have highly nontrivial and non-
obvious physical meanings.

Now let's consider the possibility that one of these functions fk(X) has
an extra parameter ¢ in it which can be varied. If you want to think of
applications, you can say fk(xi;a) stands for the i'th energy level of some
system and o represents the volume of the system. The energy levels depend
on the volume, Or, if it's a magnetic resonance system you can say this
represents the energy of the i'th state of the spin system and o represents
the magnetic field that's applied. Very often we want to make a prediction
of how certain quantities change as I change 0. I want to calculate the
pressure; or the susceptibility. ﬁy the criterion of minimum mean sguare srror,
the best estimate I can make of that derivative would be the mean value over

the probability distribution. If I write it out, it will be

3f, N 3t (x, ,a)
k 1 _ _ B _ _ ki
o) ° E’% exp{=d £ (x)=e oA f) (0= h £ () o
which reduces to
Sf
_x =__1_3_Eex{ }
o AL Z Bo P
k i
1 3%
=-=>2% log 7z . 10-46
Y ( )

k

In this derivation, I supposed that this parameter o only shows up in one
function fk' If the same parameter shows up in several different fk, then
I'l1l leave it for you to wverify that this generalizes to

o T I (10-47)
SRN s _
k=1 k da 1) g
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This general rule contains, among other things, the eguation of state of any
system.

When we add a4 to the problem, the maximum entropy 5 is a function not
enly of the specified average wvalues <fk>, but it depends now on o too. Like-

wise, Z depends on a, If we differentiate log Z or 5, we get the same thing:

as g PRy A Loms
30~ Ly 'k \sa / T T bq 109 % 0-48)

with one tricky point that isn't brought ocut too clearly in this notation.

In S the independent variables are {Fk,a}. In other words, 8 = S(F ...Fm;a).

1
But in log Z they are {Ak,a}: log Z = log Z(Al...lm;a). So in (10-48} we

have to understand that in (35/3a) we are holding the F. fixed, while in

k
(o log E/30) we are holding the Ak fixed. The equality of these derivatives
then follows from the Legendre transformation (10-41). Evidently, if there

are gseveral different parameters {ml, "] e ur} in the preobhlem, a relation

ot
of the form (10-48) will hold for each of them.

Now let's note some general "fluctuation laws,” or moment theorems.
First, a comment about notation: we're using the symbols Fk’ <fk> to stand
for the same number. They are equal because I specified that the expectation
values {<f;>...<f >} are to be set equal to the given data {Fy...F_ } of the
problem. When I want to emphasize that these quantities are expectation values
over the canonical distribution (10-39}, I'll use the notation <fk>. When
I want to emphasize that they are the given data, I'l11l call them Fy. At the
moment, I want to do the former, and so the reciprocity law (10-44) can be
written equally well as

2
a<fk> 3<fj> 3

= = Z -
3%, 3A Sx sn to9 (10-48)
J k ik

In varying the A's here, we're changing from one canonical distribution (10-39)

to a slightly different one in which the <fy> are slightly different. Since
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the new distribution corresponding to (kk + dkk) is still of cancnical form,
it is still a maximum—entropy distribution corresponding to slightly different
data {Fk + dFk). Thus we are comparing two slightly different maximum entropy
problems. For later physical applications it will be important to recognize
this in interpreting the reciprocity law (10-48}.

But now I want to show that the quantities in {10-48) also have an
important meaning with reference to a single maximum entropy problem. In
the canonical distributicon (10-39), how are the different gquantities fk(x)
correlated with each other? More specifically, how are departures from their
mean values <f, > correlated? The measure of this is the covariance or second
central moments of the distributiocon:

<(fj - <fj>)(f - <fk>)>

k

= <[fjfk - fj<fk> - <fj>fk + <fj><fk>]>

= <fjfk> - <fj><fk> (10-49)

If a value of fi greater than the average <fi > is likely to be accompanied

.>, the covariance is positive;

. greater than its average <fj

by a value of fj

if they tend to fluctuate in opposite directions, it is negative; and if their
variations are uncorrelated, the covariance is zero. If j = k, this reduces
to the variance:

_ 2. _ 2. _ 2 -
<(fk <fk>) > = <f, <> <fk> > 0 . {10-50)

k

To calculate these guantities directly from the canonical distributicon

(10-39)}, we can first find

1 n
e ] f -x £ -e..=n £
<fjfk> 70, Zi: fj(xi) k(xi) exp{ Ay 1(xi) Ay m(xiJ}
R L O P S S P e
Tz bi=a NI S T TS A T
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1 32z
Tz 3333 (10-51)
Then, using (10-42), the covariance becomes
<F.f > - <F.><F > = 1 9%z l?.ﬁzh_gé_
Jtk ] k yZ axjakk 7, a)\j 3 N
32
= Bagong 09 2 (10-52)

But this is just the gquantity {10-48); therefore the reciprocity law takes on
a bigger meaning,

3<fj> 3<fk>

<fjfk> - <fj><fk> = - =" {10-53)
]

That second derivative of log % which gave us the reciprocity law also gives
us the covariance of fj and fk in cur distribution.

Note that (10-53) is in turn only & special case of a more general
rule: Let g(x) be any function; then the covariance with fk(x) is, as you

easily verify,

g<
<qfy,> - <g<fy> = - HIQZ ’ (10-54)

a relation that I hadn't noticed in several years of using this formalism,
until it was peointed out to me by my former student, Dr. Baldwin Robertson.
From comparing (10-42), (10-48), (10-53) we might expect that still
higher derivatives of log Z would correspeond to higher moments of the distri-
bution {10-39}. This is easily checked; for the third central moments of the

fk we have

<(fj - <fj>)(fk - <fk>)[fr - <fr>)>
= - £ f£> - - + £
<fjfkfr> <fj>< X r} <fk><fjfr> <fr><fjfk> 2<fj>< k><fr»
e 1 (10-55)
= - —— log 7 -
thalkakr
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and in general, all the central momenis are given by

mi m,
<{f,6 - <f =) (£, - <f >} 3--->
i 1 ] ]

e : m-
+
mi mj+ 3 1 5 ]

s log % {10-56)
oA, axjmJ

For noncentral moments, it is customary to define a moment generating

function

¢ (B ...Bm} = <exp[Blfl+...+Bmfm]> (10-57)

1

which evidently has the property

/ I'['li Ilfl:l
m. ms
<, g = 1 e $(By.- B) (10-58)

However, we find from (10-57)

20O =By) s e (A =8 )]

(By...8 ) = (10-59)
JCIPRN TR

50 that the partition function % serves this purpose; instead of {10-58)

we may write equally well,

z (10-60)

which is the generalization of (10-51).

Now, we might ask, what are the covariances of the derivatives of fk

with respect to a parameter o? Let's define

9, = ofy (10-61)

oo

if £, is the energy and o is the volume then -g, is the pressure. The law
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for the fluctuation of these is, by a similar derivation that I'll leave for

vou to work out,

a9 d«g. >
k> - X (10-62)

AL[<g.g. > - <g.¥<q.>»] =
L 1 3[ 5% 957" % : <8a 3o

]:

a very interesting thing. I had found and used special cases of this for
gsome time, before I finally realized it's actually completely general.
Other derivatives of log Z are related to various moments of the fk and

their derivatives with respect to a. For example, closely related to {10-62)

is
32109 2 29y
—7 = ' Ajhk[<gjgk> - <gj><gk>] - E kk<aa {10-63)
jk k
The cross—-derivatives give us a simple and useful relation
32log 2 _ _ 295
Buakk Ao
=¥ < - <f >< - 10-64
) Aj[ fkgj> fk> gj>] <9, {10-64)

J
which also follows from (10-48) and (10-54); and by taking further derivatives
an infinite hierarchy of similar moment relations is obtained. As we will
see later, the above theorems have many applications in calculating the
fluctuations in pressure of a gas or liquid, the voltage fluctuations, or
"noise" generated by a reversible electric cell, etc.
Again, it is evident that if several different parameters {ml...ar}

are present, relations of the above form will hold for each of them; and

new ones like

z
82109‘ z 3 fk Bfk afj Bfk Bfg 10-65
do, o0 l M\sa do. /T 2 Ajkk do, oo,/ \da 3o (10-65)
1 2 k 1 2 ki i 2 1 2

will appear.

Well, these moment theorems are guite numercus, but easy to derive.

Because of the relation (10-41) between log Z(ll...h A

- 1..,um) and
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S(<fl>...<fm>; al...ar), you can see that they can all be stated also in
terms of derivatives (i.e. variational properties) of S. 1In the case of S,
however, there is a still more general and important variational property
that I want to develop.

In (l0-43) we supposed that the definitions cf the functions fk(x) were
fixed once and for all, the variation in <fk> being due only to variations
in the p,- We now derive a more general variational statement in which both
of these guantities are varied. Let 6fk(xi) be specified arbitrarily and
independently for each wvalue of k and i, let 5<fk> be gpecified independently
of the 6fk(xi), and consider the resulting change from one maximum-entropy
Aistribution Py to a slightly different one pi' =p; + ﬁpi, the variations
6p; and §i; being determined in terms of éfk(xi) and 5<fk> through the above
equations. In other words, we are now considering two slightly different
maximum-entropy problems in which all conditions of the problem—-including

the definitions of the functions fk(x) on which it is based--are varied

arbitrarily. The wvariation in log 2 is

1 n m
§ log Z = % Zi=l {Zkzl [“Akéfk(xi) - Gkkfk(xi)]
n )
cexp[- A f.(x)]
Pl By g 2yt
" §a, <f 10-66)
= - Zk=l [ <8 > + §X <£ >] | {10-

and thus from the Legendre transformation (10-41)

8s = = [ A [8<£, > = <8f >]
k
Qr,
§s =} Me 9 (10-87)
k
where

6y = O<fy> - <Of >

195



Lecture 10, Section 10.7.

I

1=

This result, which generalizes (10-43), shows that the entropy S is stationary
not only in the sense of the maximization property which led to the canonical
distribution (10-39); it is also stationary with respect to small variations
in the functions fk(xi} if the p; are held fixed.

As a special case of {(10-67}, suppose that the functiens fk contain

parameters {al...ar} as in (10-65), which generate the Gfk{xi) by

r Bfk{xi,u)

5€ = - 10-69
g K00y Zj=1 vas j ( :

While SQk is not in general the exact differential of any function Qk(<fl>...

<fm>;al...ar), Eg. (l0~67) shows that Ay is an integrating factor such that

z Akﬁgk is the exact differential of a "state function" S(<f,>...<f >;o,...a ).

At this point, perhaps all this is beginning to sound vaguely familiar.
Finally, I leave it for you to prove from (10-67) that

BAk

m
£1.> —— = -
Ek=l <> o 0 (10-70)

where <fl>...<fm> are held constant in the differentiation.
Evidently, there's now a large new class of problems which we can ask
the robot to do, which he can solve in rather a wholesale way. He first
evaluates this partition function 7, or better still, log Z. Then just by
differentiating that with respect to everything in sight, he obtains all sorts
of predictions in the form of mean values. This is quite a neat mathematical
procedure, and, of course, you recognize what we have been doing here. These
equations are all just the standard equations cf statistical mechanics, in a
disembodied form with all the physics removed. In the next lecture, we'll

examine that application; but from the way we derived it, it's already clear

that this same mathematics also has a lot of other applications outside of physics.
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10.8. Conceptual Problems--Frequency Correspondence.

The principle of maximum entropy is basically a simple and straight-
forward idea, and in the case that the given information consists of average
values it leads, as we have Jjust seen, to a surprisingly concise mathematical
formalism, since essentially everyvthing is known if we can evaluate a single

function log Z{ll...km;a ...ar). Nevertheless, it seems to generate some

1
serious conceptual difficulties, particularly to people who have been trained
to think of prokabkility only in the frequency sense. Therefore, before turn-
ing to applications, I want to examine, and hopefully resolve, some of these
difficulties.

Here are scome of the objections that have been raised against the princi-
ple of maximum entropy: (A) If the only justification for the canonical

distribution {(10-39) is "maximum uncertainty,” that is a negative thing which
can't possibly lead to any useful predictions; you can't get reliable results
cut of mere ignorance. (B} The probabilities obtained by maximum entropy
cannot be relevant to physical predictions because they have nothing to do
with frequencies—-there is absclutely no reason to suppose that distributions
observed experimentally would agree with ones found by maximizing entropy.

{C) The principle cannot lead to any definite physical results because dif-
ferent people have different information, which would lead to different
distributions—--so the results are basically arbitrary. (D) The principle

is restricted to the cagse where the constraints are average wvalues--but

almost alwavs the given data {Fl...Fn} are not averages over anything. They
are definite measured numbers. When you set them equal to averages, Fk = <fk>,
you are committing a logical contradiction, for the given data said that

£, had the value F, ; vet vou immediately write down a probability distribution

k k

that assigns non-zerc probabilities to values of fk # Fk.
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Objection {A) is, of course, nothing but a play on words. The "uncer-
tainty" was always there. Our maximizing the entropy 4id not create any

"ignorance" or Muncertainty;" it is rather the means for honestly recognizing
the full extent of the uncertainty already present. It is failure to do
this--and as a result using a distribution that implies more knowledge than
we really have——that would lead to dangerously unreliable conclusions,

0f course, the information put into the theory as constraints on our
maximum-entropy distribution, may be so meager that no reliable predictions
can be made from if., But in that case, as we will see later, the theory
automatically tells us this. If we emerge with a very broad probability
distribution for some guantity § of interest (such ag presgsure, magnetization,
electric current density, rate of diffusion, etc.), that is the robot's way
of telling us: "You haven't given me enough information to determine any
definite prediction." But if we get a very sharp distribution for 6 [for
example-—and typical of what does happen in many real problems--if the theory
says the odds on 6 being in the interval §,(1 £ 10-6) are greater than lOlO:l],
then the given information was sufficient to make a very definite prediction.
But in both cases, and in the intermediate ones between these extremes, the

digtribution for 6 tells us just what conclusions we are entitled to draw

about 8, on the basis of the information which was put into the eguations.

Now to answer objection (B), I want to show that the situation is wvastly
more subtle than that. The principle of maximum entrepy has, fundamentally,
nothing to do with any "random experiment," and some of the most important
applications are to cases where the probabilities Py in (10-39} have no fre-
quency connection for just that reason--the X; are simply an enumeration’

of the possibilities, and there are no "random variables" in the problem.

However, nothing prevents us from applying the principle of maximum entropy

also to those cases where the X may be regarded as produced by some random
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experiment; and in this case, the gquestion of the relation between maximum-—
entropy probqbilities amdobser%able:frequencies is capable of mathematical
analysis.

I want to give you this analysis now, and demonstrate that (1)} in this
case the maximum-entropy probabilities do have a precise connection with
frequencies; (2) in most real problems, however, this relation is unnecessary
for the usefulness of the method; (3) in fact, the principle of maximum
entropy is most useful to us in just those cases where the empirical freguency
distribution does not agree with the maximum-entropy probability distribution.

Suppose now that the wvalue of x is determined by some random experiment;
at each repetition of the experiment the final result is one of the values
Xi' i=1, 2, ..., n. But now, instead of asking for the probability Pj
let's ask an entirely different question: on the basis of the available
information, what can we say about the relative frequencies fi with which
the various 2y will occur in the long run?

Let the experiment consist of N trials (we are particularly interested
in the limit ¥ -+ «, because that is the situation contemplated in the usual
frequency theory of probability), and let every conceivable sequence of
results be analyzed. Each trial could give, independently, any one of the
results {xl...xn}; and so there a priori nV conceivable outcomes of the whole
experiment. But many of these will be incompatible with the given information
{(let's suppose again that this consists of average values of serveral functions
fk(x), k=1, 2, ..., m; in the end it will be clear that the final conclusions
are independent of whether it takes this form or some other). We will, of
course, assume that the result of the experiment agrees with this information
-—-if it didn't, then the given information was false and we are doing the
wrong problem. In the whole experiment, the result Xy will be cbtained ny

times, x, will be obtained n, times, etc. Of course,
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n
Zi=1 n; =N (10-71)

and if the specified mean values Fk are in fact obtained, we have the additional

relations

I

}. . n.f (x.) =NF_ , k=1, 2, ..., m (10-72)
i=1

If m « n-1, the relations (10-71), (10-72) are insufficient to determine
the relative frequencies fi = ni/N. Nevertheless, we do have good and strong
grounds for preferring some choices of the fi to others. For, out of the
original ot conceivable outcomes, how many would lead to a given set of sample

numbers {nl, n .o nn}? The answer is, of course, the multinomial coef-

2!
ficient

W N1 N1 (
= = 10-73)
nllnzl...nn! (Nfl}l{Nfz)l...(an)!

The set of frequencies {fl...fn} which can be realized in the greatest number
of ways is therefore the one which maximizes W subject teo the constraints
(10-71), (10-72). Now you see it coming--we can equally well maximize any

1

monotonic increasing function of W, in particular N ~ log W; but as N + «

we have, as we already saw in (10-17),

L 10g W - Zn f, log £, = U (10-74)
y ~°¢ =17 99 5 T Ye

So you see that, in (10-71), (10-72), (10-74) we have formulated exactly
the same mathematical problem as in the maximum=-entropy derivation of Sec. (10.86),
so the two problems will have the same solution. This derivation is mathema-
tically very reminiscent of the Wallis derivation that I gave you a few minutes
ago, but of course the equations now have an entirely different meaning.

You also see that this identity of the mathematical problems will persist
whether or not the constraints take the form of mean wvalues. If the glven

information dees consist of mean value--and I want to say more about that in
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a moment——then the mathematics is particularly neat, leading to the partition
function, ete. But, for given information which places any definite kind of
constraint on the problem, we have the same conclusion: the probability
distribution which maximizes the entropy is numerically identical with the
frequency distribution which can be realized in the greatest number of ways.
The maximum in W is, furthermore, enormously sharp. To show this, let

{f "'fn} be the set of frequencies which maximizes W and has entropy H_;

1 £

and let {fl'...fn'} be any other set of possible frequencies [i.e. a set
which satisfies the constraints (10-71), (10-72)] and has entropy Hf, < Hf.
The ratio (number of ways in which fi could be realized)/(number of ways in

which fi' could bhe realized) grows asymptotically, according to (10-74), as

W
EF‘+-exp{N(Hf—Hf.)} (10-75)
and passes all bounds as N +» », Therefore, the distribution predicted by

maximum entropy can be realized experimentally in overwhelmingly more ways

than can any other.

We have here ancother precise and quite general connection between proba-
bility and frequency; once again, it had nothing to do with the definition
of probability, but emerged as a mathematical consequence of probability
theory, interpreted as the "calculus of inductive reasoning." Two more kinds
of connection between probability and freguency, whose precise mathematical
statements are different in form, but which have the same practical conse-
quences, will appear later, in lectures 12 and 17.

Now let's turn to objection (C) and analyze the situation there. Does
this connection between probability and freguency justify our predicting
that the maximum-entropy distribution will in fact be observed in a real
random experiment? Clearly not, in the sense of deductive proof; for just

as objecticon (C) points out, we have to concede that different people may

201



Lecture 10, Section 10.8.

have different amounts of information, which will lead them to writing down
different distributions, and they can't all be right. But let's lock at
this more closely. Consider a specific case: Mr. A knows the mean values
<fl(x}>, <f2{x)>. Mr. B khows in addition <f3(x)>. Each sets up a maximum-
entropy distribution on the basis of his information. Since Mr. B's entropy

igs maximized subject to one further constraint, we will have

H < H (10-76}

Suppose that Mr. B's extra information was redundant, in the sense that
it was only what Mr. A would have predicted from his distribution. Now Mr. 2
has maximized his entropy with respect to all variations of the probability

F

distribution which hold <fl>, <fz> fixed at the specified wvalues Fl, o

Therefore, he has a fortiori maximized it with respect to the smaller class
of variations which also held <f3> fixed at the value finally attained.
Therefore Mr. A's distribution also solves Mr. B's problem in this case;

A3 = 0, and Mr. A and Mr. B have identical probability distributions. 1In
this case, and only in this case, we have equality in {10-76).

FProm this example we learn two things: (1) two people with different
given information do not necessarily arrive at different maximum-entropy
distributions; this is the case only when Mr. B's extra information was
"surprising” to Mr. A. (2) In setting up a maximum-entropy problem, it is
not necessary to determine whether the different pieces of information used
are independent: any redundant information will neot be "counted twice,”
but will drop out of the equations autcmatically.

Now suppose the opposite extreme: Mr. B's extra information was legically
contradictory to what Mr. A knows. For example, it might turn out that

+ 2F.,.

f3(x) = fl(x) + 2f2(x), but Mr. B's data failed to satisfy F3 = Fl 5

Evidently, there is no probability distribution with this property. How
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does our rcbhot tell us this? Mathematically, you will then find that the

equations

3
= -2 log Z(A_,A_, -77
o 109 { 1779 A3) (10 )

Fk
k

have no simultaneocus solution with real Ak. In the example just mentioned,

It
ZO oA, =}, -x_f - -
(2 rhy) Zl=1 exp[- £ (x )=h £ (x)-h £ (x )]
n .
= Xi=l eXP{-(Al+l3)fl(xi}—{A2+2A3)f2(xi}] {10-78)
and so

37 a7 8%
R (10-79)
BAB Bhl 812

and so (10-77) cannot have solutions for Al, 12, h3 unless F3 = Fl + 2F2.

So, when a new piece of information logically contradicts previous information,
the principle of maximum entropy breaks down, as it should, giving us no
distribution at all.

The most interesting case is the intermediate one where Mr. B's extra
information was neither redundant nor contradictory. He then finds a maximum-
entropy distribution differxent from that of Mr. A, and the inequality holds
in (10-76), indicating that Mr. Bfs extra information was "useful” in further
narrowing down the range of possibilities allowed by Mr. A's information.

The measure of this range is just W; and from (10-75) we have

W

2
ﬁ; 4y exp{N(HA - HB)} (10-80)

For large N, even a slight decrease in the entropy leads to an enormous
decrease in the number of possibilities.

Suppose now that we start performing the random experiment with Mr. A
and Mr. B watching. Since Mr. A predicts a mean value <f;> different from

the correct one known to Mr. B, it is clear that the experimental distribution
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cannot agree in all respects with Mr. A's prediction. We cannot be sure in
advance that it will agree with Myx. B's prediction either, for there may be
still further constraints f4(x), f5(x), ..., ctc. operating in the experiment
but unknown to Mr. B.

However, the property demonstrated above does justify the following
weaker statement of frequency correspondence: If the information incorporated
into the maximum-entropy analysis includes all the constraints actually opera-
tive in the random experiment, then the distribution predicted by maximum
entropy is overwhelmingly the most likely to be observed experimentally,
because it can be realized in overwhelmingly the greatest number of ways.

Conversely, 1f the experiment fails to confirm the maximum-entropy
prediction, and this disagreement persists on indefinite repetition of the
experiment, then we will conclude that the physical mechanism of the experi-
ment must contalin additicnal constraints which were not taken into account
in the maximum-entropy calculation. The ohserved deviations then provide a
clue as to the nature of these new constraints. In this way, Mr. A can dis-—
cover empirically that his information was incomplete.

Now the little scenario just described is an accurate model of just what
did happen in one of the most important applications of statistical analysis,
carried out by J. Willard Gibbs. By the year 1901 it was known that in
classical statistical mechanics, use of the canonical ensemble (which Gibbs
derived as the maximum-entropy distribution over classical phase volume,
based on a specified mean value of the energy) failed to predict thermodynamic
properties (heat capacities, equaticons of state, equilibrium constants, etc.)
correctly, Analysis of the data showed that the entropy of a real physical
system was always less than the value predicted. At that time, therefore,
Gibbs was in just the position of Mr. A in the scenarxio, and he drew the

conclusion that the microscomic laws of physics must invelve additional

204



Lecture 10, Section 10.8.

constraints not contained in the laws of classical mechanics. Unfortunately,
Gibbs died in 1903 and it was left to others to find the nature of this
constraint; first by Planck in the case of radiation, then by Einstein and
Debye for solids, and finally by Bohr for isolated atoms. The constraint
consisted in the discreteness of the possible energy values, thenceforth called
energy levels., By 1927, the mathematical theory by which these could be
calculated had been developed by Heisenberg and Schrédinger.

Thus it is an historical fact that the first clues indicating the need
for the gquantum theory, and indicating some necessary features of the new
theory, were uncovered by a seemingly "unsuccessful"” application of the
principle of maximum entropy. We may expect that such things will happen
again in the future, and this is the basis of the remark that the principle
of maximum entropy is most useful to us in just those cases where it fails
to predict the correct experimental facts.

Gibbs (1902) wrote his probability density in phase space in the form

wlgy.--q ipy.--p ) = explnig,...p )] (1o-81)

and called the function n the "index of probability of phase.”" He derived
his canonical and grand canonical ensembles from constraints on average energy,
and average energy and particle numbers, respectively, as (loc. cit., p. 143)
"the distribution in phase which without vieolating this condition gives the
least value of the average index of probability of phase ; «..." This is,
cf course, just what we would describe today as maximizing the entropy subject
to constraints.

Unfertunately, Gibbs did not give any clear explanation, and we can
only conjecture whether he possessed one, as to why this particular function

is to be minimized cn the average, in preference to all others. Conseguently,

his procedure appeared arbitrary to many, and for sixty years there was
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controversy over the validity and justification of Gibbs' method. In spite
of its enormous practical success when adapted to guantum statistics, few
attempts were made to extend it beyond problems of thermal equilibrium.

It was not until the work of Shanncon in our own time that the full signi-
ficance of Gibbs' method could be appreciated. Once we had Shannon's theorem
establishing the uniqueness of entropy as an "information measure," it was
clear that Gibbs' procedure was an example of a general method for inductive
inference, whose applicability is in no way restricted to equilibrium thermo-

dynamics or to physics.
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Lecture 13

INTROBUCTION TO DECISION THEORY

"Your act was unwise,"

I exclaimed "as you see
by the outcome." He solemnly eyed me.,
"When choosing the course of my action," said he,

"T had not the outcome to guide me."

-——=Ambrese Bilerce

At this stage we have acaumulated guite a few loose ends, which T would
now like to clear up. In almost every lecture so far, T had to insert one
or more parenthetic remarks to the effect that "there is still an essential
point missing here, which will be supplied when we take up decision theory."
Actually, we began seeing what it is, as soon as we started applying the
theory to our first problem. When we illustrated the use of Baves' theorem
by sequential testing in Lecture 5, we noted that there is nothing in proba-
bility theory pexr se which could tell us where to put the threshold levels
at which we make our decision: whether to accept the batch, reject it, or
make another test. At that time, I said only that the location of this
thresheld level obvicusly depends in some way on our judgment as to what are
the consequences of making wrong decisions, and what are the costs of making
further tests. Qualitatively, this is clear enough; but before we can claim
to have a really complete design for our robot, we must re-state this in

guantitative terms.
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The same situation occurred in Lecture 8 when we studied particle counters,
and the robot was faced with the job of estimating the number of particles
which had passed through the counter under various conditions. Probability
theory told us only the robot's state of knowledge as to the number of parti-
cles; it did not tell us what estimate he should in fact make. We noted at
that time that taking the mean value over the postericor distribution was the
same as making that decision which minimizes the expected sgquare of the error;
and in Lecture 11 we followed the same procedure for statistical mechanics.

In both of those cases, this seems to be a fairly zensible criterion, and
leads to results in good correspondence with common sense. Howsver, why

was 1t the sgquare of the error that we minimized? Why not some other function
of the rrror? The criterion of minimum mean sguare error has obvious mathe-
matical advantages, because the mean value of a distribution is generally

easy to calculate; but in principle it appears to be entirely arbitrary.

You see the common feature of all these problems., In every case, proba-
bility theory can give us only a probability distributicn which represents
the robot's final state of knowledge with all the available data taken into
account; but in practice his jobk is to make a definite decision. He must act
as though one hypothesis were true, he must make a definite numerical estimate

of some parameter, and so on. The essential thing which is still missing in

our design of this robot is the rule by which he converts his final probabi-

lity assignment into a definite course of action.

13.1. Daniel Bernoulli's Suggestion.

As you might expect from the way this situation appeared in the most
elementary applications of probability theory, this problem is by no means
new. It was clearly recognized, and a definite solution offered for a certain

class of problems, by Daniel Bernoulli in the year 1738. 1In a cruder form, the
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same principle had been seen even earlier, at the time when probability theory
was concerned almost exclusively with problems of gambling. The noticn which
gseemed very intuitive to the first workers in probability theory was "expecta-
tion of profit." By this we mean, of course, that I consider each possibility,
i=1, 2, ..., n, assign probabilities Py to them, and also assign numbers Mi
which represent the profit I would obtain if the i'th possibility should in
fact turn put to be true. Then the gquantity

I

<M> = Ei=l p; M; (13-1)

is what we call the "expectation of profit." It seemed obvious to the first
‘workers in probability theory that a gambler acting in pure self-interest
should always bhehave in such a way as to maximize hig expected profit. This,
however, led to scme paradoxes (particularly in the famous St. Petersburg
problem} which led Bernculli to recognize that simple expectation of profit
is not always a sensible criterion of action.

To give a very simple example, suppose that 1 assign probability 0.51 to
heads in a certain slightly biased ¢oin. HNow I am given the choice of two
actions: (1) to bet every cent I have at even money, on heads for the next
toss of this coin; {(2) not to bet at all. According to the criterion of
expectation of profit, I should always choose to gamble when faced with this
choice. My expectation of profit, if I do not gamble, is zero; but if I do
gamble, it is

<M> = 0.51 MO + 0.49 {—Mo) = 0.02 MD > 0 {13-2)
where Mo is the amount I have now. Nevertheless it seemed obvious to BRernoulli,
and I think it deoes also to vou, that very few people would really choose the
first alternative in the problem ag stated. This means that our common sense,
in some cases, rejects the criterion of maximizing expected profit.

Suppose that you are offered the feollowing opportunity. You can bet any
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amount you want on the basis that, with probability (1 - 10_6)Jr vou will lose
your mcney; but with probability 10_6, you will win 1,000,001 times the amount
vou had wagered. Again, the criterion of maximizing expected profit says

that you should bhet all thé money you have. OQur common sense rejects this
sclution even more forcefully: no sane person would risk all his fortune,

which he is practically certain to lose, for an infinitesimal chance of winning
a4 very much larger sum.

Daniel Bernoulll proposed to resolve these paradoxes by recognition that
the true value tec a person, of receiving a certain amount of money, is not
measured simply by the amount received; it depends also upon how much he has
already. 1In other wérds, Bernoulli said that we should recognize that the
mathematical expectation of profit is not the same thing as its "moral expecta-
tion." A4 modern economist is expressing exactly the same idea when he speaks
of the "diminishing marginal utility of money."

The original St. Petersburg game consists of the following--we toss an
honest coin until it comes up heads for the first time., The game is then
terminated. If heads occurs for the first time at the n'th throw, the player
receives 2 dollars. The gquestion is: what igs a "fair" entrance fee for him
to pay, for the privilege of playing this game? If we use the criterion that
a fair game is one where the entrance fee is equal to the expectation of profit,

vou see what happens. This expectation is

(%] o

EK=1 2%y 2% = Z1<=1 1 (13-3)

and this is infinite. MNewvertheless it is clear again that no sane person

would be willing to risk more than a very small part of his fortune for the

privilege of playing this game. Let me guote Laplace (1812) at this point:
"Indeed, it is apparent that one franc has much greater value for him

who possesses only 100 than for a millionaire. We ought then to distinguish
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the absolute value of the hoped-for benefit from its relative value. The
latter is regulated by the motives which make it desirable, whereas the first
i1s independent of them. The general principle for appreciating this relative
value cannct be given, but here i1s one proposed by Daniel Bernoulli which will
serve in many cases: The relative value of an infinitely small sum is equal
to its absclute wvalue divided by the total fortune of the person interested.”
In cther words, Bernoulli proposed that the "moral walue," or what the
modern economist would call the "utility" of money should be taken proportional
to its logarithm. Laplace, in discussing the $t. Petersburg problem and this
criterion, reports the following regult without giving the calculation: a
person whose total fortune is 200 f£rancs ought not reasonably to stake more
than 9 francs on the play of this game. I took the trouble of checking this.
The fair fee £(200) is found by eguating his present utility with his expected
utility if he pavs the fee and plays the game; a computer gives the root of

o

log 200 = Zn:i %-ﬁ— log (200 ~ £ + 2™
as £(200) = 8.7204. Likewise, f(103) = 10,98, f(104) = 14.24 f1106) = 20.87.
It seems to me that this kind of numerical result is entirely reasonable.
However the logarithmic assignment of utility is not to be taken literally
either in the case of extremely small fortunes (as Laplace points out), or
in the case of extremely large ones, as the feollowing example of Savage {1954)
shows. Suppose your total fortune is 10,000,000 dollars; then if vour utility
for money is proportional to the logarithm of the amount, the theory says that
vou should be as willing as not to accept a wager in which, with probability
one-half, vou'll be left with conly 10,000 dollars; and with probability onhe-
half, you will be left with 10,000,000,000 dollars. I think that most of us
would consider such a bet to be distinctly disadvantageous to a perscn with

that initial fortune. This shows that cur intuitive "utility" for money

actually must increase even less rapidly than the logarithm for extremely
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large wvalues. There are some who esven claim that it is bounded.

The gist of Paniel Bernculli's suggestion was therefore that, in the
gambler's problem of decision making under uncertainty, one should act so as
to maximize the expected wvalue, not necessarily of the profit itself, but of
some function of the profit which he called the "moral value". 1In more modern
terminology the optimist will call this "maximizing expected utility," while
the pessimist will speak instead of "minimizing expected loss", the loss
function being taken as the negative of the utility function.

The logarithmic assignment of utility is reasonable for many purposes,
as long as 1t is not pushed to extremes. It is also, incidentally, very
closely connected with the notion of entropy, as shown by an argument of Kelly
(1956) , extended by Bellman and Kalaba {1956). Here, a gambler who receives
advance tips on a game which are only partly reliable, acts (i.e., decides on
which side and how much to bet) so as to maximize the expected logarithm of
his fortune. They show that (1) one can never go broke following this strategy,
in contrast to the strategy of maximizing expected profit, where it is sasily
seen that with probability one this will eventually happen, and (2} the amount
one can reasonably expect to win on any one game is clearly proportional to the
amount Mo he has to begin with, so after n games, one could hope to have an
amount M = Mo eun. With the logarithmic utility function, one acts so as to
maximize the expected value of a. The maximum attainable <a> turns out to be
Just (SO—S), where S is the entropy which describes the gambler's uncertainty
as to the truth of his tips, and So is the maximum possible entropy, if the
tips were completely unreliable. This suggests that, with a little more
development of the theory, entropy might have an important place in guiding
the strategy of a stock market investor.

Daniel Bernoulli's solution to the problem of decision making has suffered

the same fate as did Laplace's scoluticon to the problem of inductive reasoning.
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The "objectivist" or "orthodox" school of thought either ignored it or condemned
it as metaphysical nonsense until just a few vears ago. In one of the best
known books on probability thecxry (Feller, 1950; p. 199), Daniel Bernoulli's
solution of the St. Petersburg paradex is rejected without even being described,
except to assure the reader that he "tried in vain to solve it by the concept

of moral expectation.” Well, we will see next just how vain Daniel Bernoulli's

efforts were.

13.2. The New Formulation of the Decision Problem.

In the late 1940's a general theory of decision making in the face of
uncertainty was developed, largely by Wald (1950) which in its initial stages
had no apparent connection with probability theory. I mentioned it briefly
in Lecture 5, and now I would like to give you a more specific account of
some of the ideas it involved.

We begin by imagining (i.e. enumerating) a set of posasible unknown "states

of nature", {8., 6,,.e., BN} whose number might be finite or infinite. The Bj

1’ 72
might also form a continuum. In the quality-control example of Lecture 5,
the "state of nature" is the unknown number of defectives in the batch, and
the Gj are discrete. 1In the particle-counter problem of Lecture 8, the state
of nature could be taken as the unknown source strength s, and the ej are
continuous.

There are certain illusioné that tend to grow and propagate here. Let
me dispel one right now by noting that, in enumerating the different states
of nature, we are not describing any objective (measurable} property of nature

——for, one and only one of them is in fact true. The enumeration is only a

means of describing our state of ignorance. It is, therefore, meaningless to

ask whether one particular enumeration in "correct" without first asking,

"what is the information that is being described by the set of & ?" Two
J
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observers with different amounts of information may enumerate Bj differently
without either being inconsistent.

The next step in our thecry is to make a similar enumeration of the
posgible decisions {Dl, Dy vee, Dk} that might be made. In the gquality-

2

control example, there were three possible decisions at each stage:

D1 = accept the batch
D, = reject it
D3 = make anocther test {13-4)

In the particle counter problem of Mr. B, where we are to estimate the number
n, of particles passing through the counter in the first second, there are
an infinite number of possible decisions:

D, = ”nl is estimated as equal to 1," 1 =0, 1, 2, ... (13-5)
If we are to estimate the source strength, then there is a continuum of
possible decisions.

This theory is clearly of no use unless by "making a decision" we mean
"deciding to act as if the decision were correct". It 1s idle to "decide"
that n, = 150 is the best estimate unless we are then prepared to act on the
assumption that nl = 150. Thus the enumeration of the Di is a means of
describing our knowledge as to what kinds of actions are feasible; it is idle
to congider any decision which we know in advance corresponds to an impossible
course of action.

There i1z another reason why a particular decision might be eliminated;

even though D. i1z easy to carry out, we might know in adwvance that it would

1
lead to intolerable congequences. An automecbile driver can make a sharp left
turn at any time; but his common sense usually tells him not to. Here we see
two more points: (1) there is a continuous gradation--the consegquences of an

action might be sericus without being abscolutely inteclerable, and (2) the

consequences of an action (=decision) will in general depend on what is the
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true state of nature—-a sharp left turn does not alwavs lead to disaster.

This suggests a third concept we need--the loss function L(Di,Bj), which
is a set of numbers representing our judgment as to the "loss" incurred by
making decgsion Di if 6j should turn out to be the true state of nature. If
the Di and Sj are both discrete, this becomes a loss matrix Lij'

Quite a bit can be done with just the ej, Di, Lij and there is a rather
extensive literature dealing with criteria for making decisions with nc more
than this. The material we need for our purposes has been summarized in a
very readable and entertaining form by Luce and Raiffa (1857), and in the
elementary textbook of Chernoff and Moses (1959). The minimax criterion is
this: for each Di find the maximum possible loss Mi = maxj(Lij); then choose
that D, for which Mi is a minimum. The minimax criterion would be a reasonable
ocne if we regard nature as an intelligent adversary who foresees our decision
and deliberately choosgses the state of nature so as to cause us the maximum
frustration. In the theory of some games, this is not a completely unreal-
istic way of describing the gituation, and conseguently minimax strategies
are of fundamental importance in game thecry. But in the decision problens
of the scientist or engineer the minimax criterion is that of the long-faced
pessimist who concentrates all his attention on the worst possible thing that
could happen, and thereby misses out on the favorable opportunities.

Egually unreasonable for us is the opposite extreme of the starry-eved
optimist who uses this "minimin" criterion: for each Di find the minimum
possible loss mi = minj{Lij) and choose the Di that makes mi a minimum.

Evidently, a reasonable decision criterion for the scientist and engineer
ig, in some gense, intermediate between minimax and minimin. Many other
criteria have been suggested, which go by the names of maximum utility (Wald),

g-cptimism-pessimism (Hurwicz), minimax regret (Savage}, etc. The usual

procedure, as described in detail by Luce and Raiffa, has been to analyze any
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proposed criterion to see whether it satisfies about a dozen gualitative

common-sense conditions such as (1) Transitivity: if Dl is preferred to D2,

and D2 preferred to D3, then Dl must be preferred to D3, and (2) Strong

Domination: 1if for all states of nature ej we have Lij < I, ., then Di should

LS|
always be preferred to Dk. This analysis, although straightforward, can

become tedicous. I will not follow it any further, because the final result

is that there is only one class of decision criteria which passes all the

tests, and this class is obtained more easily by a different line of reasoning.

A full decision theory, of course, cannot concern itself merely with the
ej, Di’ Lij' We also, in typical problems, have additional evidence E, which
we recognize as relevant to the decision problem, and we have to learn how to
incorporate E into the theory. In the quality-control example, E consisted
of the results of the previous tests.

At this point, current decision theory takes a long, and I think unneces-
sary, mathematical detour. One defines a "strategy", which is a set of rules
of the form, "If I recelve new evidence Ei' then I will make decision Dk'"

In principle cone first enumerates all conceivable strategies (whose number is,
however, astronomical even in quite simple problems), and then tries to eliminate
the undesirable cnes by application of various common-sense conditions. This
leads to defining a class of "admissikle" strategies, which consists, crudely
speaking, of all those any sane person would ever consider adopting; a strategy
is admigsible if no other exists which is as good or better for all states of
nature.

A principal object of the theory is then to characterize the class of
admissible strategies in mathematical terms, so that any such strategy can be
found by carrying out a definite procedure. The fundamental theorem bearing

on this is Wald's Complete Class Theorem which establishes a result already

mentioned in Lecture 5. Instead of following this rather difficult argument,
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I would like to make a few more remarks about the nature of the problem, and
then give a different line of reasoning which leads to the same result by
elementary mathematics.

What is it that makes a decision process difficult? Well, if we knew
which state of nature was the correct one, there would be no problem at all;

if 63 is the true state of nature, then the best decision Di is the one which

renders L.13 a minimum. In other words, once the loss functicon has been speci-

fied, our uncertainty as tco the best decision arises solely from our uncex-

tainty as to the state of nature. Whether the decision minimizing Li3 is or
is not best depends entirely on this: How strongly do we believe that 83 is
the true state of nature? How plausible is 93?

To a physicist or engineer it seems like a wvery small step--really only
a rephrasing of the guestion--to ask next, "Conditicnal on all the available
evidence, what is the probability P3 that 83 is the true state of nature?”
Not so to the orthodeox statistician, who regards the word “"probabkility" as
synonomous with-"long-run relative freguency in some random experiment'.
On this definition it is meaningless to speak of the probability of 63,

because the state of nature is not a "random wvariable”. Thus, if we adhere

consistently to the orthodox view of probability, we will have to conclude
that probability theory cannot be applied to the decision problem, at least
not in this direct way.

It was just this kind of reasoning which led statisticians, in the early
part of this century, to relegate problems of parameter estimation and hypo-
thesis testing (which are really decision problems and as such are included
in our general formulation) to a new field, Statistical Inference, which was
regarded as distinct from probabkility theory. But let_us leok in detail at
a typical problem of this type, using the loss function criterion, from the

orthodox wviewpoint. I want to show that a rather simple extension of the usual
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orthedox arguments leads us to the same conclusion that Wald's much deeper
analysis forced him to (very much against his will): that the original methods
propesed by Laplace and Daniel Bernoulli are, in fact, the unique soclution

of the decision problem.

13.3. Parameter Estimation for Minimum Loss.

One of the situations considered in the discussion of particle counters
{Lecture 8) was that of Mr. B, who knew that there was a constant, but unknown,

source strength s. By cbserving the number of counts {c .,cn} in several

e
different seconds, he could make an estimate of the numerical value of s,

which presumably became more and more accurate with inecreasing n. This ig a

typical example of the general problem of parameter estimation.

More generally, suppeose that there 1s ome unknown parameter o, and we
make repeated observations of some guantity, obtaining an observed "sample™,

x = {x ..,xn}. We can interpret the symbol x, without subscripts, as stand-

17
ing for a vector in an n-dimensional "sample space". We will suppose that the
possible results Xy of individual cbservations are real nuwbers. From obser-
vation of the sample x, what can we say about the unknown parameter o?

To state the problem more drastically, suppose that we are compelled to
choose one gpecific numerical value as our "best" estimate of a, on the basis
of the observed sample x, and any other prior information we might hawve. This
is the decision situation which we all face daily, both in our capacity as sci-
entists and engine_rs, and in,éveryday life. The driver approaching a bling
intersection cannot know with certainty whether he will hawve encugh time to
cross it safely; but still he is compelled to make a decision based on_what
he can see, and act on it.

Now it is clear that in estimating o, the observed sample x is of no use

to us unless o exerts some kind of influence on x. In other words, if we

13-12



knew o, but not x, then the probabilities (x‘a) = {x ...xnfu) which we would

1
assign to various samples must depend in scome way on the value of o, If we
consider the different observations as independent, as is almost always done
in the orthedox theory of parameter estimation, then the distribution factors:

(x|o) = (x;fa) oo (x |a) (13-6)

1
However, this vervy restrictive assumption is not necessary (and in fact doesn't
lead to any formal simplification) in discussing the general principles of
parameter estimation from the decision theory standpoint.

Let B = B(Xl...xn) be an "estimator", i.e. any function of the sample
values, proposed as an estimate of a. Also, let L{x,B) be the "loss" incurred

by guessing the value B when o is in fact the true value. Then for any given

estimator the expected loss for a person who already knows the true value of

o, is

L = ‘[L(u,s)(x]a) ax (13-7)

o

Call this the oc-expected loss. By f{ ) dx we mean the n-fold integration

J[ ..:/- { ) dxl...dxn (13-8)

There is no need to gpecify different limits of integration for different
preblems, since if certain ranges of the %, are impossiblie, the factor (x]a)
will be zerc and remove contributions from those ranges. Also, this notation
includes both the continuous and discrete case, since in the latter {xlu] is
a sum of delta-functions.

On the view of one who uses the frequency definition of probability, the

above phrase, "for a person who already knows the true value of o' is mislead-

ing and unwanted. The notion of the probability of sample x for a person with

a certain state of knowledge is entirely foreign to him; he regards {x|a) not

as a description of a mere state of knowledge about the sample, but as an

objective statement of fact, giving the relative frequencies with which dif-
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ferent samples are observed "in the long run". Thus the "freguentist" believes
that LOc is not merely the "mathematical expectation" of loss in the present
situation, but is also, with probability 1, the limit of the average of actual
losses which would be incurred by using the estimator B an indefinitely large
number of times. Furthermore, the idea of finding the estimator which is "best
in the present specific case" is guite foreign to his outlook; because he
regards the notion of probability as meaningful only in the sense of limiting
frequencies, he is forced to speak instead of finding that estimator "which
will prove best in the long run'.

On the frequentist view, therefore, it would appear that the best esti-
mator will be the one that minimizes L&. Is this a variational problem? A

change 68({x) in the estimator produces a change of La of

3L
SL, = }3g (x]a) 8B(x) ax. (13-9)

If we were to regquire this to vanish for all &R (x), this would mean

oL
—E'= ¢ for all possible values of B. (13-10)

Thus the problem as stated has no truly statiocnary solution except in the
trivial case where the loss function is independent of the estimated value B;
the best estimator by the criterion of minimum c-expected loss cannot be found
by variational methods. Nevertheless, we can get some understanding of the
problem by considering (13-7) for some specific choices of loss function,
Suppose we take the guadratic loss function Lig,R) = (o - 8)2. Then (13-7}

reduces to

L, = 02 - 2p<p> + <B2> (13-11)
or,

L, = (o - <83)2 + var (B) ’ (13-12)
where var {(B) = <82> - ﬁB>2 is the wariance, and the n'th moment
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g™ = I[B(x)]n (x|a) dx (13-13)

is the g-expected wvalue of Bn- The g-expected loss is the sum of two positive
terms, and a good estimator by the criterion of minimum w-expected loss has
two properties:

(1} <> = q

(2) wvar (B) is a minimum. (13-14)
These are just the two conditions which orthodox statistics has considered
most important. An estimator with property (1) is called an unblased estimate
[more generally, the function big) = <f> - g is called the bias of the esti-
mator R(x}], and one with both properties (1) and (2) was called efficient by
R. A. Fisher (although this last condition is ambiguous until we specify the
class of functions B(x) to be taken into consideration). Nowadays, it is

often called an unbiased minimum variance (UMV) estimator.

It has always seemed to me that the above reasoning amounts to looking
at the problem backwards. We are descriking the situation as it appears to
‘a person who already knows the correct value of o, but does not know which
specific sample has been observed. The above egquations really refer to only
one value of o, but involve many different possible wvalues of x. But this is
just the opposite of the state of knowledge which we have when we estimate a
parameter; we know x, but not a. Our equations should invelve only one sample,
namely the one actually observed; but sholld take inte account many different
possible wvalues of a.

Our job is always to do the best reasoning we can about the single
situation that exists here and now, on the basis of the knowledge which we
do in fact have; consideration cof how things might seem to a person whose
state of knowledge is different, or what might happen in some other situation

that we are not reasoning about (if some different sample were observed) is
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not relevant to our preoblem. So, we ought to do it the other way around; it is
the expected value of L{x,R) over the posterior distribution (u|x) of o,
conditicnal on knowledge of the sample, that should logically be minimized.
Call this the x-expected loss:

L_(8) =IL(u,B)(aJx) Ao, (13-15)
where (a|x) is cbtained by applying Bayes' theorem. Thus, having observed the
sample X, we should calculate LX(B} and take as our estimate that value of B
which minimizes LX(B). In the continucus case, gubject to some elementary

regularity cconditions, we would use the estimator B(x ..,xn) determined by

17
aLx (B}
= 0 (13-16)
g
521, (B)
—_—— s D (13-17)
ap?

These egquations make no reference to any sample other than the specific one
that has been observed.

But most of the prominent workers in statistics would raise strong objec-
tions to this procedure on philoscphical grounds [you guessed it—-that (u]x) is
meaningless because o 1s not a "random wvariable"]. So, let's go back and
take a closer look at the orthodox formulation of the problem—-is there some
way we could improve it without conflicting with orthodox principles?

We have already seen a practical difficulty faced in the first formulation;
the criterion of minimum o-expected loss does not lead to a variational
problem, and therefore even in the simplest case of a guadratic loss function,
it gives us no analytical method for constructing the "best" estimator
B(xl...xn). In fact, it is clear from (13-14) that the only really correct
solution of the mathematical problem as stated, is B(xl...xn) = o, independent

of the observed sample. This shows again that the criterion of minimum

o~expected loss essentially describes the reasoning of a person who already
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knows the correct value of gy, However, the stubborn fact remains that the
statistician using this criterion does not know o, and so he cannot use the
correct solution of the problem. His estimator must be some function of the
sample values only. Once an estimator has been suggested, it can be tested by
calculating (13-12). But, except for one gpecial class of sampling distribu-
tions (xl...xn!a), which I will consider later, the frequentist has no general
principle like ({13-16), only his judgment and common sense, to tell him which

cnes to try out in the first place.

13.4. Should We Use an Unbiased Estimate?*

What is the relative importance of removing bias and minimizing the
variance? Well, from (13-12) it would appear that they are of exactly equal
importance; there is no advantage in removing the bias (<f> - a) 1f in so
doing we increase wvar () more than enough to compensate. Yet shat is just
what the orthodox statisticlan usually does! Iet me give vou a specific
example of this. Cramér (1946, p. 351) considers the problem of estimating
the wvariance “2 of a distribution (xl[uz):

— 2« 2 - 2 -
Uy = <xl > <xl> <xl > (13-18)

from n independent observations {xl...xn}. We assume, in {(13-18) and in what

follows, that x> o= 0 since a trivial change of variables would in any event

accomplish this. An elementary calculation shows that the sample variance

2
1 -nn 1 -nn
_ = 2 &
My = ol {n Liza xi] (13-19)
has expectation value, over the distribution (xl...xnluz} = (xlluz)...(xn|u2);
of
n-1 '
my> = = Yy (13-20)

*This section is a digression in response to a question from the audience, It
may be skipped without losing the main line of argument; however, it does con-
tain an illustration of an important pcint.
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and thus, as an estimator of ) it has a negative blas. So, goes the argument,

we should correct this by using the unbilesed estimator

n
M2 = -7 My {(13-21)

Now, of course, the only thing that really matters here is the total error of
our estimate; the particular way in which you or I separate error inte two
abstractions labelled "bias" and "variance" is a purely academic matter with
no bearing on the actual quality of the estimator. So, let's lock at the

mean sguare error criterion. Replacement of m2 by M2 removes a term {<m2>'—

u2)2 = uzz/n2 in (13-12); but it also increases the term var{m by a factor

2)
n/fn-1)12, so it seems obvious that, at least for large n, this has made

things worse instead of better. Let's check this more carefully. Suppose

we replace m. by the estimator,

2

Yg = (L +¢) m {13-22)

2

What is the best choice of ? The uz—expected logs (13-12) is now

<(y6 - u2)2> = U22 ~- 2{1+6)u2<m2> + (l+6)2<m22>

[(em,> - u2)2 + var(n}] - <m22>q2 + <m22>(6—q)2 (13-23)
where

2
<TIM F - M <. >
q = 2 2 .2 (13-24)

{m22>

Evidently, the hest estimator in the class Yg is the one with § = q, and the
texm.—<m22>q2 in (13-23} represents the decrease in mean—-square error obtain-
able by using vy instead of m, . From Cramér's result (loc. cit., Bg., 27.4.2)
d
o oem 24 2 _ T3 ~ o fm_2y1 2 -
var(mz} = <m,”> <m,> n (n-1) { {n l)u4 (n 3)u2 ] {13~-25)

where

b L oo b
= - > > = =
Mg (%) = <xp”) *q

is the fourth central moment of (Xl’pz), we find
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n3<m22> = (n-1) [(nz—n+2)u22 + (n-1) var(x?)] (13-26)
03, 2>g = (n-1) [(n-2)u,% - (n-1 2
577g = (n [ {n )u2 (n-1) var(x“)] {(13-271

where var(xz) =¥, —-u22 = 0. {13-28)
We must understand n > 1 in all this, for if n = 1, we have m, = 0; a single
observation gives no information at all about the variance of (x1|u2). But
if n = 2, we have g < 0; instead of removing the bias, we should always increase
it in order to minimize the mean sguare error! More generally, if var(x?) =

Ku22 we have from (13-26), (13-27):

(n~2) - (n—-1) K

(n%-n+2) + (n-1) K (13-29)
and therefore, if K < 1,
2-K
g ; 0 ifn ; Tx {13-30)
while if K > 1, g < 0 for all n.
In the case of a Gaussian distribution,
x12
X ) = A exp| ~ —— 13-31)
({ 1|”2 P 2, (
we have
<x - <x12>2
<X12>2

We will seldom have K < 2, for this would imply that (xl]uz) cuts off even
more rapidly than Gaussian for large xl. If ¥ = 2, (13-29) reduces to

1

9= -1 (13-33)

which again says that rather than removing the bias we should approximately
double it, in order to minimize the expected sqﬁare of the error. How much
better is the estimator Yq than MZ? In the Gaussian case the mean square
error of the estimator Yq is

32 - 2 2 i}
{(Yq u2) = i) p2 {13-34)
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For a general choice of &, it is

Sly. - u2s =2 2, n?-1 (8 +L}2 (13-15)
Tg = M2 = M7 4T ne ntl

The unblased estimator M2 corresponds to the choice

g = (13-36)

1
n-1 d
and thus to the mean sguare error

<(M, - u2)2> = u22 [% + %] (13-37)
which is over twdce the amount incurred by use of yq.

Most distributions which arise in practice, if not gaussian, have wider
"tails" than gaussian so that K > 2., In this case, the difference will be
even greater.

Up to this point, 1t may have seemed that I was quibbling over a very

minor thing--changes in the estimator of one or two parts ocut of n. But now

you see that the difference between (13-34) and {13-37) is not at all trivial.

For example, with Cramér's unbiased estimator M2 you will need n = 203 cbser-

vations in order to get as small a mean-sguare error as the biased estimator

Yg gives you with only 100 observations.

There is a fantastic example in a recent book on econometrics (Valavanis,
1959; p. 60) where the author attaches such great importance to removing bias
that he advocates throwing away practically all the data from the sample, if
necessary, to achieve this. One reason for such an undue emphasis on bias is
the belief that if we draw N successive samples of n observations each and
calculate the estimators Bl...BN, the average §_= N_l ZSi of these estimates
will converge in probability to <Bf> as N » «, and thus an unbiased estimator
will, on sufficiently prolonged sampling, give an arbitrarily accurate esti-
mate of o, Such a belief is almost never justified even for the fairly well

controlled measurements of the physicist or engineer, not only because of
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unknown systematic errcr, but because successive measurements lack the inde-
pendence required for these limit theorems to apply. In such uncontrolled
situations as economics, the situation is far worse.

But unbiased estimators are, even 1f we accept these limit thecorems, not
the only ones which appraach perfect accuracy with indefinitely prolonged
sampling. Many other estimators approach the true value of o in this limit,

and do it more rapidly. Our Yq is a specific example. Furthermore, asymptotic

behavior of an estimator is not really relevant, because the practical problem
is always to do the best we can with a finite sample; therefore the important

guestion is not whether an estimator tends to the true wvalue, but how rapidly

it does so.

I have a dark suspicion that a still more important reason for attaching
such an undeserved importance to blas is simply that we have bheen caught in
a psycho-semantic trap. It is well known to politicians that our thought
processes are influenced to a rather alarming degree by the particular choice
of words we use. When we call the quantity <f>-o the "bias”, tnat makes it sound
like something awfully reprehensible, which we must get rid of at all costs.

If we had called it instead the "component of error orthogonal to the variance",
as suggested by the Pythagorean form of Eg. {(13-12), then it would be clear

to all that these two contributions to the error are on an exactly equal
footing; and that it is folly to decrease one at the expense of increasing

the other.

In the bock of Cherncff and Moses (1959} these points are clearly recog-
nized, and an even more forceful example is given showing what can be wrong
with the criterion of an unbiased estimate. A company 1s laying a telephone
cable across the ocean. They cannot know in advance exactly how much cable
will be required, and so they must estimate. If they overestimate, the loss

will presumably be proportional to the amcunt of excess cabkle to be disposed
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of; but if they underestimate and the cable end falls off inte the water, the
result may be financial disaster. Use of an unbiased estimate herxe could only
be described as foolhardy.

Note, however, that after all this argument, nothing in the above entitles
us to conclude that Yq is the best estimator of oy by the mean-square criterion!
For we hawve considered only the class (13-22) of estimatore constructed by
multiplying the sample variance (13-19) by some preassigned number; we can say
only that Yq is the best one in that class. The question whether some other
function of the sample walues, not a multiple of (13-19), might be still better
by the mean-square error criterion, remains completely open. This weakness
of the orthodox approach to parameter estimation--that it does not tell us how
to find the best estimator, but only how to compare different guesses-—-is due
tc our having "locked at the problem backwards", in the sense I explained a

moment ago. Now I want to show how the trouble can be overcome.

13.5. Reformulation of the Proklem.

It is easy to see why the orthodox criterion of minimum c-expected loss
is bound to get us into trouble and is unakle to furnish any general rule for
constructing an estimator. The mathematical problem was: for given Lo ,B) and
(x|a), what function B(xl...x } will minimize
L, = [L(u,s) (x|a) ax (13-38)
Although this is not a variational problem, it might have a unique soclution;

but the solution will still, in general depend on a. Of course, there may be

(and in fact are) a few exceptional cases where the a-dependence drops out;
but in general the criterion of minimum ac-expected loss leads to an impessible
situation--even if we could solve the mathematical preblem (13-38) and had

before us tne best estimator B (X ..xn) for each wvalue of a, we could use
o

1

the result only if o were already known, in which case we would have no need
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to estimate. We were indeed lcooking at the problem backwards!

This makes it clear that in general we cannot use the criterion (13-38),
or in fact any criterion which makes reference to only a single value of «;
not for philosophical reasons but because any guch criterion is built on self-
contradictory premises. The person who advises us to use (13-38) puts himself
in exactly the position of the shoe clerk who teld a customer, "You will never
be able to get those new boots on until you have worn them a while.™

This also makes it clear how to correct the trouble. It is of no use to
ask what estimatcr is best for some particular value of @, even though the
gquestion might have a definjte answer; the only reason for using an estimator
is that o is unknown. The estimator must therefore be some compromise that
allows for all possibilities within some prescribed range of a; within this

range it must do the best job of protecting against loss no matter what the

true value of o turns out to be.

Thus it is some weighted average of Lu'
<L> = Jff(uj La da {13-39)
that we should really minimize, where the function f(a} > 0, which will be
given a fuller interpretation later, measures in some way the relative import-
ance of minimizing La for various possible values of o.

Merely to recognize this, which amounts to removing a contradiction in
the original formulation, already implies the solution. For the mathematical
character of the problem is completely changed by adopting (13-39) instead of
{(13-38}. We now have a solvable variational problem with a well-behaved

solution. The first variaticon in <L> due to an arbitrary variation 6B (x ...xn)

1

in the estimator is

§<I> = _[E(a} da.[-"',/.dxl"'dxn %%-(xl...xn|a} SB(xl...xn)

which vanishes independently of 68 if
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oz

L
dea £(a) 3p (xq...x.la) =0 (13-40)

for all possible samples {xl...xn}. Equation (13-40) is the fundamental

integral eguation which determines the best estimator.

Taking the second variation, we find the condition that (13-40) shall

yvield a true minimum is

2
J[du £(a) %E%.(xl...xn|u) > 0 (13-41)

Thus a sufficient condition for a minimum is simply

5"2'2 0 (13-42)

but this is far stronger than necessary.
If we take the guadratic loss function L(a,R) = K{a - B)%, eguation
(13-40) reduces to

jdu £a) (o = B) (%y.-.x [a) =0

or, the optimal estimator for quadratic loss is

_]éa Flo) o (xl...xn]a)
B(Xl'”xn) - _f‘da f(u)(xl...xnla)

(13-43)

But, you see, this is just the mean value over the posterior distribution of o:

)G aex o)

] Ela
(a]=,...%) = (13-44)
1% _jrdu

£{a) (%q...%,|0)
given by Baves' theorem if we interpret fla) as a prior probability density!
This example shows us, perhaps more clearly than any I have given so far,

why the mathematical form of Bayes' thecrem is azlways going to be the funda-

mental principle behind parameter estimatiocn, independently of all philoso-

phical arguments about the '"meaning of probability", or about "random variables™.
Let's see what happens for some other loss functions. If we take as a

loss function the absolute error, L{u,B8) = |a - Bi, then the fundamental

equation {13-40) becomes
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[ oo
f_m da £(o) (®...x,]) =ﬁ) de £(o) (xq...x|a)

which states that B(Xl...Xn) is to be taken as the median over the posterior

distribution of a:

3 @ 1
_[;w Ao (a'xl...xn) =.j; Ao (a’xl...an alicy (13-45)

Likewise, if we take a loss function L{c,B) = (o - R)Y, equation (13-40)

leads to an estimator B(xl...xn) which is the real root of

£(8) = B3 - 3082 + 3028 - a2 =0 (13-46)
where
) . n
o =jd05 & (alx,...x) (13-47)
1 n
is the n'th moment of the posterior distribution of w. [That {13-46) has

only one real root is seen on forming the discriminant; the condition f'(R)

> 0 for all real f is just (a2 - o?) > O,

k . . .
If we take L(a,B) = [a - BI , and pass to the limit k =+ 0, or if we just take

L{o,B) = (13-48)
1l, otherwise

Eg. {(13-40) tells us that we should choose B(Xl,..x } as the most probable
n

value, or mode of the posterior distribution (alxl...x }. If f£{e) = const.,
n

this is just Fisher's maximum likelihood estimate.

In this result we finally see just what maximum likelihood accomplishes,
and under what clrcumstances it 1s the optimal method to use. The maximum
likelihood criterion is the one in which we care only about the chances of
being exactly right; and if we are wrong, we don't care how wrong we are.
This is just the situation we have in shooting at a small target, where "a
miss is as good as a mile". But it is clear that there aren't very many
other situations where this would be a rational way to behave; almost always,

the amount of error is of some concern to us, and so maximum likelihood is

not the beet estimation criterion.
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Note that in all these cases it wag the posterior distribution (&[xl...x )
n
that was involved. That this will always be the case ig easily seen by noting

that our "fundamental integral equation" {(13-40} is not so profound after all.

It can equally well be written as
V& £la) Lio,B) (x....x |a) = O
Y ’ IEREE .

but if we interpret f(a) as a prior probability density, this is identical
with (13-16), which we had already derived from much simpler reasoning!

Likewise the condition (13-41}) for a true minimum is identical with (13-17).

13.6. "Objectivity" of Decision Theory.

Decision Theory occupies a unigue position in discussion of the logical
foundations of statistics, because, as we have seen in (13-16) and (13-40),
its procedures can be derived from either of two diametrically opposed view-
points about tﬁe nature of probability theory, and it thus forms a kind of
hridge between them. While there appears o be universal agreement as Lo
the actual procedures that should be followed, there remains a fundamental
disagreement as to the underlying reason for them, having its origin in the
0ld issue of frequency vs. non~frequency definitions of probability.

From a pragmatic standpoint, such considerations may seem at first to
be unimportant., However, in the attempt to apply decision-theory methods in
real problems one learns very guickly that these guestions intrude in the
initial stage of setting up the problem in mathematical terms. In particular,
our judgment as to the generality and range of validity of decision—-theory
methods depends on how these conceptual problems are resolved. My aim is to
expound the viewpoint according to which these methods have the greatest
possible range of application. Now we find that the main source of contro-
versy here 1s on the issue of prior probabilities; on the orthodox viewpoint,

if the problem involwves use of Bayes' theorem then these metheds are just not
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applicable unless the prior probabilities are known freguencies. But to
maintain this position consistently would imply an enormous restriction on
the range of legitimate applications. Therefore, let's see whether the
mathematical form of our final eguations can shed any light on this issue.

Motice that only the product fla)L{x,f) is involved in (13-40) or (13-16);
thus whether we interpret the problem as:

(3) Prior probhability f£(wa), loss function L{y,g) = (g - 3)2 or as
(B) Uniform prior probability, loss function L(a,R) = fla)(a - B)2 or as
(C) Prior probability gla), loss function £(a) (¢ - 8)2/g(a), the solution
is just the same. This is equally true for any loss function.

I emphasize this rather trivial mathematical property because of a curious
psychological phenomenon. In expositions of decision theory written from
the orthodox viewpoint, the writers are always very reluctant to introduce the
notion of prior probability. They postpone it as leng as possible, and fin-
ally give in only when the mathematics forces them to recognize that prior
probabilities form the only basis for choice among the different admisgsible
decisions. Even then, they are so unhappy about the use of prior probabilities
that they feel it necessary always to invent a situation--often highly arti-
ficial--which makes the prior probabilities appear to be frequencies; and
they will not use this theory for any problem where thev don't see how to do
this. But these same writers do not hesitate to pull a completely arbitrary
leoss function out of thin air without any basgis at all, and proceed with the
calculation!

The eguations show that if your final decision depends strongly on which

particular prior probability assignment you use, it is going to depend just

as strongly on which particular loss function you use. If you worry about

arbitrariness in the pricor probabilities, then in order to be consistent, you

ought to worry Just as much about arkbitrariness in the loss functions. IF
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you claim {as most writers on this subject have been doing for decades) that
uncertainty as to the proper choice of pricr probabilities invalidates the
Laplace-Bayes theory, then in order to be consistent, vou must alsc claim
that uncertainty as to the proper choice of loss functions invalidates Wald's
decision theory.

The reason for this strange lopsided attitude is closely connected with
a certain philoscphy varicusly called behavioristic, or positivistic, which
wants us to restrict our statements and concepts to objectively verifiable
things. Therefore the chbservable decision is the thing to emphasize, while
the process of inductive reasoning and the judgment described by a prior
probability must be swept under the rug. But I see no need to do this,
because it seems to me chvious that rational action can come only as the
result of rational thought.

If we refuse to consider the problem of rational thought merely on the
grounds that it is not "objective", the result will not be that we cobtain a
more "objective" theory. The result will be that we have lost the possibility
of getting any satisfactory theory at all, because we have denied ourselves
any way of deseribing what is actually going on in the decision process.

And, of course, the loss function is just the expression of a purely subjective
value judgment, which can in no way be considered any more "objective" than
the prior probabilities.

In fact, I claim that the prior probabilities are usually more objective
than the loss function, beoth in the mathematical theory and in the everyday
decision problems of "real life". In the mathematical theory we have two
quite general formal principles—--maximum entropy and transformation groups--
that completely remove the arbitrariness of prior probabilities for a large
class of important problemg, which includes most of those discussed in statis-

tical text books. Of course, these principles will not solve all problems,
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and undoubtedly there are more such principles waiting to be discovered.

I hope that one result of these talks will be to encourage others to seek

them. To the best of my knowledge, there are as yet no general principles

for determining loss functions--not even where the criterion is purely economic,
because the utility of money remains ill-defined.

In "rxeal life" decision problems, we have a similar situation. Each man
knows, pretty well, what his prior probhabilities are; and because his beliefs
are based on all his past experience, they are not easily changed by one more
experience, so thev are fairly stable things. But in the healt of argument he
may lose sight of his loss function; or he may never have bothered to reason
out the consequences of his actions. Thus the labor mediator must deal with
parties with violently opposing ideologies; policies considered noble by one
party are regarded as reprehensible by the other. The successful labor medi-
ator realizes that mere talk will nct alter prior beliefs; and so his role
mist be to turn the attention of both parties away from this area, and explain
clearly to =sach what his loss function is. In this sense, I think we can
¢laim that in real life decision problems, the leosz function is often far
more "subjective" (in the sense of being less well fixed in our minds) than
the prior probabilities,

O0f course, we have to concede this much to the behaviorists--the final
criterion by which we judge the soundness of any theory must be on the objec-
tive, pragmatic level. After a theory has been constructed, the ultimate
test we apply to it is not whether lts premises are philosophically satisfying,
but how it works out in practice. Indeed, a major objective of these talks
is to show you, in detail, just how the Laplace-Bayes theory deoes work out
in practice and how its results compare with those of the orthodox methods;
because that is something you very seldom find in any of the literature

written from the orthodox viewpoint.
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But in the process of constructing a theory, we must demand the right to

invent and use any concepts we please, whether or not these concepts are

themselves "objectively verifiable". If we deny ourselves this freedom on

the grounds of some philosophical dogma, we are putting ourselves in a strait-
jacket which effectively prevents further progress. In the case of physical
thecries, this point has been stressed repeatedly and strongly by Einstein;
his own work is, of course, the perfect example of what can be accomplished
through the free invention of new concepts.

Now let's see the extent to which varying loss functions lead to varying

decisions, by some numerical examples.

13.7. Effect of Varving Loss Functions.

Suppcse that on the basis of the observed sample X, a parameter o has
the posterior distribution
(a|x) =k e , 0<cg <o (13-49)

This has the n'th moment

< = fo a” (a|x) da =n! k © (13-50)
wWith loss function {o - 8}2, the best estimator i1s the mean value
-1
g = <g> = k . {13-51)

With loss function Ia - 8], the estimator is the median, determined by

ri -
JO (¢|x) @z =1 - e kg (13-52)

E3
2

oY

k™l 1n 2 = 0.693 <g>. (13-53)

oW
|

To minimize <(a - B}4>, we should choose B to satisfy equation (13-46), which
becomes, in this case,
3 _ syl R _
v 3y- + 6Y 6 = 0 (13-54)

with v = kB. The root of this is at vy = 1.59, so the optimal estimator
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with loss function |a - B|L+ is
B = 1.59 sq>. {13-55)

s+1

For the losg function (o - &) with s an odd integer, the fundamental

equation (13-40) is

= —1c0
J; - 8% ™ =0 (13-56)
which reduces *o

5 m
{-kB)
§m=0 my =0 (13-57)

of which (13-5%4} is a gpecial case with s = 3, In the case s = 5, loss function
{x - 3)%, we find
B = 2,025 <g=>. (13-58)
As s » o,f also increases without limit. But the maximum-likelihood estimate,
which corresponds to the loss function
Li{a,B) = - §(a - B)
or egqually well to

lim[a - 8]®
k—+0

is B = 0!

These numerical examples merely illustrate what was already clear intui-
tively; when the posterior distribution (a[x) is not sharply peaked, the best
estimate of o depends very much on which particular loss function we use.

You might suppose that a loss function must always be a monotonically
increasing function of the error [a - B]. In general, of course, this will
be the case, but there is nothing in this theory which restricts us to such
functions. You can think of some rather frustrating situations in which, if
you are going to make an error, you would rather make a large one than a
small one, William Tell was in Jjust that fix. If vou study our equations

for this case, you will see that there is really no very satisfactory decision
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at all; and nothing can be done about it.

Our noting that the final decision depends only on the product of prior
probability and loss function alsc helps to clear up a mystery which has long
been puzzling to RBayesians. As we noted in Lecture 8, Jeffreys (1939) pro-
posed that, in the case of a continucus parameter o known to be positive,
we should express prior ignorance by assigning, not uniform prior probability,
but a prior densgity proporticonal to {(1/a). The theoretical Jjustification
of this rule was long unclear; but it yvields very sensible-looking results
in practice, which led Jeffreys to adopt it as fundamental in his significance
tests., We saw in Lecture 12 that, in the case that o is a scale parameter,
the Jeffreys prior is uniquely determined by invariance under the transforma-
tion group; but now we can see a still more general justification of it.

From the decision-theory viewpoint the thing that matters is not the
prior or loss function separately; only their product enters into the final
decisicn. If we use the abscolute error loss function [B - u' when o is
known te be peositive, then to assign f{a}) = const. in (13-453) amounts to
saying that we demand an estimator which vields, as nearly as possikle, a
constant absolute accuracy for all values of o in 0 < a < «, That is clearly
asking for too much in the case of large g; and we must pay the price in a
poor estimate for small o. But we now see that the median of Jeffreys’
pogterior distribution is mathematically the same thing as the optimal esti-
mator for uniform prior and loss function |B - a[/u; we ask for, as nearly
as possible, a constant percentage accuracy over all values of w. This is,
of course, exactly what we do want in most cases where we know that 0 < o < o,
The reason for the superior performance of Jeffreys' rule is thus made apparent;
and the mystery disappears if we re-interpret it as saying that the (1l/w)

factor is part of the loss function.
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13.8. General Decision Theory.

In the foregoing, I have developed decision theory only in terms of one
particular application; parameter estimation. But we really have the whole
story already; the criterion (13-16) for constructing the optimal estimator
generalizes immediately tc the criterion for finding the coptimal decision of
any kind. The final rules are simply:

(1} Enumerate the possible states of nature ej, discrete or contlnucus,

as the case may be.

(2) Assign prior probabilities (ejIX} which maximize the entropy subiject

to whatever prior information X you have.

{3} Digest any additicnal evidence E by applicaticon of Bayes' theorem,

thus obhtaining the posterior probabilities (BjIEX).

(4} FEnumerate the possible decisions Di.

{5) Specify the loss functicn L(Di,ej) that tells what you want to

accomplish.

(6} Make that decision Di which minimizes the expected loss

<L>, = Zj L(D;,8;) (8j|EX).
That is all there is to it; after all is said and done, the final zxules of
calculation to which the theorems of Cox, Wald, and Shannon lead us are just
the cnes which had already been developed by Bayes, Laplace, and Daniel
Bernoulli in the 18'th century, except that the entropy principle generalizes
the principle of indifference.

These rules either include, or improve upon, practically all known

statistical metheods for hypothesis testing and point estimation of parameters.

If you have mastered them, then vou have just about the entire field at your

fingertips. The most outstanding thing about them is their simplicity--if we
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sweep aside all the polemics and false starts that have c¢luttered up this
field in the past and consider only the constructive arguments that lead
directly to these rulez, it is ¢lear that the underlying rationale could be
fully developed in a one-semester undergraduate course.

However, in spite of the utter simplicity of the rules themselves, really
facile application of them involves intricate mathematics, and fine subtleties
of concept; so much g0 that several generations. of workers in this field mis-
used them and concluded that the rules were all wrong! So, we still need a
good deal of leading by the hand in order to develop facility in using them.
It is a goocd deal like learning how to play a musical instrument--anybody can
make noise with it, but you will not play this instrument well without years
of practice.

As an example——although a rather trivial one--of the little tricks that
help in applying this theory, note that the decision rule is invariant under
any proper linear transformation of the loss function; i.e. 1f L(Di,ej} is
one loss function, then the new one

L'(D,,8.,) = a+ b LD ,0,)
T 3 i 7
where —=» < g < o, 0 < b < =, will lead to the same decision, whatever the
prior probabilities (ﬁjIX) and new evidence E., Thus, in a binary decision

problem, given the logs matrix

10 100
Lij =
19 10
we can equally well use
0 10
L'.. =
i
J 1 0

corresponding to a = -10/9, b = 1/9. This may simplify the calculation of

expected loss quite a bit.
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Lecture 14

DECISION THEORY IN SIGNAL DETECTION

In this Lecture, I want to examine in detail cne of the simplest applica-
tions of the general decision theory just formulated. As I pointed out in
Lecture 6, the problem of detection of signals in noise is really exactly the
same as Laplace's old problem of detecting the presence of unknown systematic
influences in celestial mechanics, and Shewhart's (1931) more recent problem
of detecting a systematic drift in machine characteristics, in industrial
quality control. It is unfortunate that the basic identity of all these
problems hasn't been more widely recognized, because it has forced workers
in several different fields to rediscover the same things, with wvarying
degrees of success, over and over again.

As you know by now, all we really have to do to solve this preblem is
to take the principles developed in Lectures 3, 10, and 12; and supplement
them with the loss function criterion for converting final probabilities
intc decisions, However, the literature of this field has been largely
created from the standpoint of the original decision theory before it was
realized that it was mathematically identical with the original Laplace methods;
or at least before the full implications of this fact had "sunk in." The
exigting literature therefore uses a different sort of vocabulary and set of
concepts than I have been using up to now. Since it exists, we have no choice
but to learn these terms and viewpoints 1f we want to read the literature of

the field. So, I want to give you a wvery rapid, condensed review of the
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literature of the 1950's on these problems. My aim is to expose what is
really essential, stripped of all unnecessary details. This material is also
given in the papers of Middleton and van Meter (1955, 1956) and the treatise
of Middleton (1960), in an enormously expanded form where a beginner can get
lost for months without ever finding the real underlying principles. Just

to have a complete, self-contained summary, I'1ll repeat a littie bit from

previcus lectures,

l4.1. Definitions and Preliminaries.

Notation:
(A’B) = Conditional probability of A, given B
(AB]CD) = Joint conditiecnal probability of A and B, given D and C, . . .,

=heta
FPor our purposes, everything follows from the single fundamental rule of
calculation, which we have called Rule 1:
(aB|C) = (a|BC) (B]C) = (B|AC) (A]Q) (14-1)
If the propositions B, C are not mutually contradictory, this may be rear-

ranged to give the rule of "learning by experience," Bayes' theorem:

{ClAB}
{(CIB)

(B|AC)

o) (A|B)

(a|Bc) = a]lo) {14-2)

If there are several mutually exclusive and exhaustive propositions Bi, then
by summing (14-1) over them, we obtain the chain rule

alcy = § (a]B;0) (B;]O) (14-3a)
i

or, for a simpler notation,
!

(alcy =} (a|Bo) Bl (14-3b)
B

Now let
X = prior knowledge, of any kind whatsoever

S = signal
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N = noise
V = V(8,N) = chserved voltage
D = decision about the nature of the signal

Any probabilities conditicnal on X alone are called prior probabilities.
Thus we have

(s]x)

il

pricr probability of the particular signal S

(NJX) W(N) = pricr probability of the particular sample of noise H.
In a linear system, V = S + N, and

(V]s) = (v|sx) = WV - 8) . (14-4)
You may be disturbed by the absence of density functions, dsS's, d¥N's, etc.,
which might be expected in the case of continucus S, W. HNote, however, that
our equations are homogeneous in these guantities, so they cancel out anyway.
By ZA I mean ordinary summation over some previously agreed set of possible

values if A is discrete, integration with appropriate density functions if

A 1s continuous.

A decision rule (Dilv')' or for brevity just (D[V), represents the
process of drawing inferences about the signal from the observed voltage.
If it is always made in a definite way, then (D]V) has only the values 0, 1
for any choice of D and V; however we may also have a "randomized" decision
rule according to which (D!V) is a true probabllity distribution., Maintaining
this more general view turns out to be a help in formulating the theory.

The essence of any decision rule, and in particular, any one which can
be built inte auvtomatic eguipment, is that the decision must be made on the
bagis of V alone: V is, by definition, the quantity which contains all the
information actually used (in addition to the ever-present X) in arriving
at the decision. Thus, 1f ¥ # D is any cther proposition, we have

(b|v) = (p|vy) . {14-5)
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&n equivalent statement is that D depends on any proposition Y only through
the intermediate influence of ¥ on V:
(ofyv)y = § (o|vy vy (14-6)

v

14,2. BSufficiency and Information.

Eguation (14-5} has interesting consegquences; suppose we wish to judge
the plausibility of some proposition ¥, on the basis of knowledge of V and
D. From (14-1),

(DY|v) = (¥|vD) (D|V) = (B|VY) (Y|W)
and using {14-5), this reduces to
(v|vpy = (x|lw) (14~7)
Thus, if V is known, knowledge of D is redundant and cannot help us in esti-
mating any other quantity. The reverse is not true, however; we could equally
well use {(17-1) in another way:
(vY|D) = (¥|vD) (v|D) = (¥|D) (V]¥D).
Combining this with (14-7), there results the
Thecrem: Let D be a possible decision, given V. Then (VID) # 0, and
(¢|v) = (¥|p) if and only if (V|D) = (V|¥D) (14-8)
In words: knowledge of D is as good as knowledge of V for judgments about ¥
if and only if Y is irrelevant for judgments about V, given D. Stated 4if-
ferently: in the "environment" produced by knowledge of D, the propositions
Y and V appear to be independent, i.e.
(xv|p) = (¥|D) (V|D) (14-9)

In this case, D is said to be a sufficient statistic for judgments about Y.

In the next lecture, we will study the notion of sufficiency from a different
point of wiew. Evidently, a decision rule which makes D a sufficient statistic
for judgments about the signal S is in some sense superior to one without

this property. However, such a rule does not necessarily exist. Eguation
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(14-9}) is a wery restrictive condition, since it must be satisfied for all
values of ¥, V, and all D for which (D’V) # 0.

As you might guess from this, the concept of sufficiency is closely
related to that of information., The definition of sufficiency could equally
well be stated as: D is a sufficient statistic for judgments about Y if it
containg all the information about ¥ which V containsg. Since D i1s determined
from V, if it is not a sufficient statistic, it necessarily centains less
information about ¥ than doces V. In this statement, the term "information™
was used in a loose, intuitive sense; does it remain true if we adopt Shannon's
measure of information? Imagine that there are several mutually exclusive

propositions Yi' one of which must be true. For brevity we use, as above,

il

the notation ZY f{¥} = Z_ f{Yi). Then the entreopy of ¥ with a specific value
i

of D given is

Ho(Y) = - é (Y|D) log (¥|D) {14-10)

and i1ts average over all values of D is

H(Y) = é (D] X} H (¥) {14-11)

If

HC(Y) < HD(Y)

we saf that C contains, on the average, more information about ¥ than deoes D.
Note, however, that it may be otherwise for specific values of C and D.
Roguisition of new information can never increase E: let D, ¥V, ¥ be,

for the moment, any three guantities and form the expression

H(¥) - H (¥) = ] (V[ (¥|DV) log (¥|pV)
VY

- Y wx)@lv) 1og (¥]w)
VY

JOv[) (Y|DV) log [(¥]DV)/(¥|v)]
DVY
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Using the by now familiar fact that log x = (1 - x 1

}, with equality if and
only if x = 1, this becomes

Ho(Y) = H () 2 DéY (ov|x) [(vlovy - (¥[w1 = o (14-13)

Thus, ﬁhv(Y) < E%{Y), with equality if and only if Eq. (14-7) holds for all
D, Vv, and Y for which (DV[X) # 0. Since (14-13) holds regardless of the meaning
of D and V, we can equally well conclude that for all D, Vv, ¥,

HD{Y) z HDV(Y) S HV(Y) .

Now letting D, V, Y resume their original meanings, we have in consequence of
14-7) H_{Y) = H Y so that
{ ) v() DV(),

H_(Y) < H_(Y) (14-14}

with equality if and only if Eq. {14-%) holds, i.e. if and only if D is a
sufficient statistic. Thus, if by "information" we mean minus the average
errtropy of Y over the prior distribution of D or V, zerc information loss in
going from V to D is egquivalent to sufficiency of D. Note that inegualities of
the form {14-13}) hold only for the averages E} not for the H. Acguisition of
a specific piece of information (that an event previously considered improkable
had in fact cccurred) may in some cases increase the entropy of Y. However,
this is an improbable situation and on the average the entropy can only be
lowered by additional information. This shows again that the term "information"
is not a happy choice of word to describe entropy expressions. In spite of

the entropy increase, the situation just described could haxdly be called

one of less information, but rather one of less certainty.

14.3. Loss Functions and Criteria of Optimum Performance.

In order to say that one decision rule is better than ancother., we need
some specific criterion of what we want our detection system to accomplish.

The criterion will vary with the application, and cbvicusly no single decision
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rule can be best for all purposes. A very dgeneral type of critericn is

obtained by assigning a loss function L{D,8) which represents cur judgment

of how serious it is to make decision D when signal S is in fact present.

In case there are only two possible signals; Sy = 0 {(i.e. no signal), and
Sl # 0, and consequently two possible decisions Do’ Dl, there are two types
of error, the false alayrm A = (Dl,so) and the false rest R = (DO,SI). In

some applications, one type of error might be much more serious than the
other. Suppose that a false rest is considered ten times as serious as is
a false alarm, while a correct decision of either type represents no "loss."

We could then take L(DO,SO] = L(Dl,§l} = 0, L(DO,S y = 10, L(Dl,so) =1,

1
Whenever the possible signals and the possible decisions form discrete setsg,
the loss function becomes a loss matrix. In the above example,
0 10
Li.=

] 1 0
The loss matrix plays approximately the same role in detection theory as does
the payoff matrix in game theory. A plaver in a game may choose that strategy
which maximizes his expected gain, and correspondingly we may choose that
decision rule (D[V) which minimizes the expected loss.

Instead of assigning arbitrarily a certain loss value to sach possible

type of detection error, we may consider information loss by the assignment

L{D,S) = - log (SfD). This is somewhat more difficult to manipulate, because
now L(D,S) depends on the decision rule. A decision rule which minimizes
information loss is one which makes the decision in some sense as ¢lose as
possible to being a sufficient statistic for judgments about the signal. In
exactly what sense seems never to have been clarified.

The conditional loss L(S) is the average loss incurred when the gpecific

signal § isg present

L(s) =} L(D,S) (p]s) (14-15)
D
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which may in turn be expressed in terms of the decision rule and the properties

of the noise by using (14-6}. The average loss is the expected value of this

over all pessible signals:

<L> = ) L{8)(8]x) (14-16)
5

Two different criteria of optimum performance now suggest themselves:

The Minimax Criterion. For a given decision rule (D]V), congider the

conditional loss L(8) for all possible signals, and let [L(S}]max be the
maximum value attained by L(S}. We seek that decision rule for which [L(S}]max
is as small as possible. .As we noted in the last lecture, this criterion
concentrates attention on the worst possible case regardlesg of the probability
of occurrence of this case, and it is thus in a sense the most conservative
one. If the worst possible case is extremely unlikely to arise, one would

call it too conservatiwve. It has, however, the practical advantage that it
does not involve the prior probabhilities of the different signals, (S|X},

and therefore it can be applied in cases where the available information about
the signal is of such an indefinite type that we do not know what prior
probabilities to assign.

The Bayes Criterion. We seek that decision rule for which the average

loss <1> is minimized. In order to apply this, a prior distribution (S]XJ
must be available.

Other criteria were proposed before the days of Decision Theory. In the
Neyman-Pearson criterion, we £ix the probability of occurrence of one type
of error at some small value &, and then minimize the probkability of another
type of error subject to this constraint. Siegert's "Ideal Cbhserver" minimizes
the total probability of error regardless of tvpe. However, we will see
below that these are both special cases of the Bayes criterion, for particulaxr

loss functions L{D,S}). The minimax criteriocn may also be considered a special
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case of the Bayes, 1n which we choose the worst possible (S|X), after having
found the decision rule which minimizes <L> for a given (S‘X). The basic
identity of all these criteria came as guite a surprise to the early workers
in this field.

Substituting in succession equations (14-15}, (14-6), and (14-3) into
(14-16) , we obtain for the average loss

<T> =T { 7 L(D,s) vs]|x) | (o|w (14-17)
vl s

If L{D,S) is a definite function independent of (DIV} {this assumption excludes
for the moment the information loss function), there is no function (D’V) for
which this expression is stationary in the sense of calculus of variations.

We then minimize <IL> merely by chocsing for each possible V that decision

D, (V) for which

1

K(D,V) = g L(D,,S) (Vs[x) (14-18)

is a minimum. Thus, we adopt the decision rule

(o|v) = §(D,Dy) - (14-19)
In general there will be only one such Dl, and the best decision rule is
nonrandom. However, in case of “degeneracy," K(Dl,v) = K(Dz,v), any randomized

rule of the form

(plv) = a &(O,py) +bMO,D,) , a+b=1 (14-20)

l) 2
is just as good. This degeneracy occurs at "threshold" wvalues of V, where we

change from cne decision to another.

14.4. A Discrete Example.

Consider the case already mentioned, where there are two possible signals

S Sl' and a leoss matrix

O!’
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where La’ Lr are the losses incurred by a false alarm and a false rest,

regpectively. Then

K(D_,V) =L (VS |X) = L_(vs_|x)
° ot v 1 (14-21)
K(D,V) = L, (V§,|X) = L_{vs |x)
and the decision rule that minimizes <L> is
(vs_|x} L
. 1 a
Choogse D 1f —m™—m—— > —
1 (VSO|X) L
r
{14-22)
(s [x) L
Choogse D if 1 < _a
0 (VSO X) Lr

Choose either at random in case of equality.
In words: 1f the prior probability that the observed wvoltage is due to the
signal exceeds the probability that it is due to noise alone by a factor
greater than the ratio of false alarm loss to false rest loss, we decide that
the gignal is present. If the prior probabkilities of signal and no signal are
(5,]%) =p, (sgl¥y =q=1-p (14-23)

respactively, we have {VSl|X) = (V|Sl)(5 ‘X) = p(V|Sl), etc., and the decision

1

rule becomes

(vs)) qL_

Choose Dl if , eto., (14-24)

(V‘SO) 7 pL,.
The left-hand side of (14-24) is called a likelihood ratic. It depends only
on the statistical properties of the noise, and is the quantity which should
be computed by the optimum receiver according to the Bayes criterion. The
same guantity is the essential one regardless of the assumed loss function
and regardless of the probability of occurrence of the signal; these affect
only the threshold of detection. Furthermore, if the receiver merely computes
this likelihood ratio and deliwvers it at the output without making any deci-

gilon, it provides us with all the information we need to make optimum decisions
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in the Bayes sense. Note particularly the generality of this result, which
is one of the most impeortant ocnes for cur applications; no assumptions are
needed as to the type ©f gsignal, linearity of the system, or statistical
properties of the noise.

We now work out, for purposes of illustration, the decision rules and
their degree of reliability, for several of the above criteria, in the simplest
possible problem that I mentioned back in Lecture 4, to illustrate the prin-
ciple of maximum likelihood. We have a linear system in which the veoltage
is observed at a single instant, and we are to decide whether a signal, which
can have only amplitude Sl, is present in noise, which is gaussian with mean

sguare value <NZ>:

1 N2
W{N) = ¢§;Zﬁg;-expl:— Ezﬁg;] (14-25)
The likelihocd ratio in (14-24) then becomes

(v]s,) WV-s_) Vg -5 2
1 1 . exp 11 (14-286)

V|Sg) WV 2<w%>

and since this is a monctonic function of ¥V, the decision rule can be written

as
D]_ >
choose when V v (14-27)
D < b
0
with
v L
b g9
=1 [2 log| —2 1] + s8] = v {14-28)
<N< > 23 rL b
¥
in which
S
s = 1 is the voltage signal-to-nolse ratio, and
VanZ>
v o= v is the normalized voltage.
LN“ =

Now we find for the probability of a faise rest:
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| %)

1

Y
p L (pglvvlsy) =p AV W(v-8)
v

=p ®lv, - 5 ) (14-29)

(R]%) = (DS,

and for a false alarm,

alx) = (ps4lx) = af yfw vy = qj' av W (V)
v Y

gll - ®{Vb)] . (14-30)

Here ®{x) is the cumulative normal distribution

x 2
1 -t5/2
¢{x) = 7= e dt (14-31)
numerical values of which are given in most mathematical tables. For x > 2,

a good approximation is

—x2/2 .
1 - d(x) =~ S . (14-32)

o

Az a numerical example, if L, = 10 L,r 4= 10 p, these expressions reduce to
10 i)
(a[x) = 10 ®R|x) =37 11 - o(5 s]] (14-33)

The probability of a false alarm is less than 0.027, and of a false rest
=3
less than 0.0027 for s > 4. For s > &, these numbers hecome 1.48 x 10 ~,
-4 .
1.48 x 10 respectively.

Let us see what the minimax criterion would give in this problem. The

conditional losses are

Ls,) = Laé (D |v w]sy) = La‘{’m (Dy |[V) wW(v) av
. (14-34)
B(S;) = L_ é (0| ) (v]s)) = Lr-]:m (DO]V) W(V-5,) av
Writing £(V) = (Dl[V) = 1 - (DO]V}, the only restriction on f£({V) is

0 < £(V) £ 1. Since La’ Lr' and W(V) are all positive, a change §£(V) in

the neighborhcod of any given point V will always increase one of the quanti-

ties (14-34) and decrease the other. Thus when the maximum L(S5) has been
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made as small as possible, we will certainly have L(SO) = L(Sl}, and the

problem is thus to minimize L(SO} gsubject tc this constraint. Suppose that

for some particular (S|X) the Bayes decision rule happened to give L(SO) = L(Sl).
Then this particular solution must be identical with the minimax solutionm,

for with the above constraint, <L> = [L(S)]max, and if the Bayes solution
minimizes <L> with respect to all admissible variations §f(V) in the declsion
rule, it a fortiori minimizes it with respect to the smaller class of variations

which keep L(S ) = L(Sl). Therefore our optimum decision rule will have the

0

same form as before: There is some threshold Vm such that

0, V<Vm
£(V) = {14-36)
L. vV > Vm
Any change in Vo from the value which makes L(SO) = L(Sl) necessarily increases

one or the other of these guantities. The eguation determining Vin is therefore

La-j; W(V) dv = Lr-j;m W(V-S1) Qv
m

or, in terms of normalized quantities,

La[l - @(vm)] = L @{vm - 8) (14-37)

r
Neote that (14-30), (14-31) give the conditional probabilities of false rest
and false alarm for any decision rule of type {14-36), regardless of whether

the threshcld was determined from (14-28) or not; for the arbitrary threshold

v
0

(Rls)) = (v < v [s)) = ety - s)

{14-38}

1 -
(A\SO} (v > vo\so) S - ev)]

From (14-28) we sees that there is always a particular ratio {p/q) which
makes the Bayes threshold Vb equal te the minimax threshold Vm. For values
of (p/q) other than this worst value, the Bayes criterion gives a lower aver-
age loss than does the minimax, although one of the conditional losses L(S

o’
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L{Sl) will be greater than the minimax valus.
These relations and several previous remarks are illustrated in Figure

(14.1), in which we plot the conditional losses L(S.), L(Sl} and the average

loss <L> as functions of the threshold VO' for the case La = %—L , P =g = 1.

0

The minimax threshold is at the common crossing-peoint of these curves, while

the Bayves threshold occurs at the lowest point of the <L> curve. One sees

how the Bayes threshold moves as the ratio {p/g) is varied, and in particular
that the value of (p/g) which makes Vb = Vm also leads to the maximum values

of the <L>min obtained by the Bayes criterion. Thus we could also define a
"maximin" criterion; first find the Bayes decision rule which gives minimum

<L> for a given (S|X)  then wary the prior probabilities (S]X} until the
maximun value of {L>min iz attained. This ig the worst possible (in the

Bayes sense) prior probability, and the decision rule thus obtained is identical

with the one resulting from the minimax criterion.

m‘m

|+

bJ

v 7 g V= Vo/ﬁ<N2> -

Figure 14.1, Conditional and Average Losses as functions of the detection
threshold VO. The L(Sl) curve is symmetric about the point {S,Lr/2}.
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The Neyman-Pearson criterion is easily discussed in this example: Suppose
the conditional probability of a false alarm (leSO) is held fixed at some
small value ¢, and we wish to minimize the conditional probability (DO|Sl)
of a false rest, subject to this constraint. Now the Bayes criterion minimizes
the average loss

<L> = er(DO]sl) + qLa(Dl]SO)
with respect to any admissible wariation G(DIV) in the decision rule, 1In
particular, therefeore, it minimizes it with respect to the smaller class of
variations which hold (D1|SO) constant at the wvalue finally obtained. Thus
it minimizes (Dolsl) with respect to these variations and solves the Neyman-—
Pearson problem; we need only choose the particular value of the ratio
{qLa/er) which results in the assumed value of ¢ according to egquations
(14-28), (14-30).

We find for the Neyman-Pearson threshold, from {14-38)

@(vnp) =1-¢ (14-39)
and the conditional probability of detection is
o fs) =1 - (DO|Sl) =4 - v ) (14-40)
This is the cumulative normal distribution, plotted in Appendix . First
finding from the graph, Vnp for given £, we find thar if ¢ = 10_3, a detection
probability of 99 per cent or better is attained for s > 6.

It is important to note that these numerical examples depend critically
on our assumption of gaussian noise. If the noise 1s not gaussian, the actual
situation may be elther more or lesg favorable than indicated by the above
relations. It is well known that in one sense gaussian noise is the worse
possible kind: because of its maximum entropy properties, gaussian noise can
obscure a weak signal more completely than can any other noisze of the same
average power. On the other hand, gaussian ncise is a very favorable kind

from which to extract a fairly strong signal, because the probability that
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the noise will exceed a few times the RMS value v/<N?> beccmes vanishingly

small, Consequently, the probability of making an incorrect decision on the
presence or absence of a signal goes to zero very rapidly as the signal strength
is increased. The high reliability of operation found akbove for s > 6 would
not be found for noise possessing a probability distribution with wider "tails".

The type of noise distributiocn to be expected in any particular case
depends, of cocurse, on the physical mechanism whichgives rise to the noise.

When the ncise is the resultant of a large number of small, independent
effects, the central limit thecrem of prcbability theory tells us that the
gaussian distribution will be our best bet regardless of the nature of the
individual sources.

Well, as the BBC announcers say, that is the end of my summary. All of
these apparently different criteria lead, when worked out, to a probability
ratio test. In the case of a binary decision, it tock the simple form (14-22).
Of course, any decision process can be broken down into successive binary
decisions, so this case really has the whole story in i1t. All the different
criteria amounted, in the final analysis, only to different philosophies about

how you choose the threshold value at which you change your decision.

14.5. How Would Our ERobot Do It?

Now let's see how this problem appears from the viewpoint of ocur robot.
The rather long argumenés we had to go through above (and even they are very
highly condensed, I assure youl) to get the result are due only to the orthodox
view which insists on looking at the problem backwards, i.e. on concentrating
attention on the final decision rather than on the inductive reascning process
which logically has to precede it. To the robot, if our job is to make the
best possible decision as teo whether the signal is present, the obvicus first

thing we must do is calculate the probability that the signal is present.
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If there are to be only two possibilities, SO, Sl' taken into account, then
after we have seen voltage V, the odds are from (5-5)

(v|sl)

e v (14-41)
(V]SO)

0(8,|Vvx) = o(sy[x)

If we give the robot the loss function (14-21) and ask him to make the decision

which minimizes the expected loss, he will evidently use the decision rule

(sl|v) L
h D if of{s | = =2 14-42
choose D 1 { l| } TEBT§7-> L ( )
etc. But from Rule 1, (VS |X) = (5,[V) (V[x), (Vs |®) = (s,[v)(V[x), and

{14-42) is identical with (14-22). 8o, just from looking at this problem
the other way around, our robot derives the same final result in exactly
two lines!
You see that all this discussion of strategles, admissibility, conditional
losses, etc., wag completely unnecessary. Except for the introduction of
the loss function at the end, there's nothing in decision theory that isn't
already contained in basic probability theory, if we can only free ourselves
from the dogma that "probability statements can be made only about random
variables," and use the theory in the full generality given to it by Laplace.
This comparison shows why the development of decision theory has, more
than any other single factor, led to this revolution in statistical thought.
For about thirty yvears, Jeffreys tried valiantly to explain the Laplace methods
to statisticians, and his efforts met only with a steady torrent of denials
and ridicule. The guotaticn about Bayes' theorem applied to quality-control
testing that I gave you back in Lecture 5 is a relatively mild example; if
you have a taste for such things, you can find, particularly in the works
of Fisher and von Mises, some attacks on the viewpoint of Laplace and Jeffreys
which make my polemics seem rather tame. It is really astonishing how much

emoticnal fervor can be generated by something that outsiders might consider
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a rather dry and dull branch of mathematics.

It is real poetic Jjustice that the work of one of the most respected of
the "orthodox™ statisticians, which was hailed, very properly, as perhaps
the greatest advance in statistical practice vet produced, turned cut to
give, after very long and complicated arguments, exactly the same final results
that the despised Laplace methods give you immediately. The only proper
conclusion, it seems to me, is that the supposed distinction between statistical
inference and probability theory was entirely artificial--a tragic error of
judgment which has wasted perhaps a thousand man-years of our best mathematical
talent in the pursuit of false goals. There is no longer any justification
for trying to make this non-existent distinction.

Suppose that, in the above case of a linear system with gaussian noilse,
we apply Bayves' theorem in the logarithmic form of Lecture 5. If now we let
S. and 5. stand for numerical wvalues giving the amplitudes of the two pessible

0 1

signals, the evidence for the signal is increased by

2 2
(v|sl) v -s)% - (v -s))
log = >
(v]sy) <N
5, - B
= const. + _L_iEJQ-v (14-43)
<N<>

so, the observed voltage is just a linear function of the number of db evi-
dence for Sl.

A funny thing happened in the history of this subject. You know that
electrical engineers started out not knowing anvthing whatsocever about statistics,
They knew about signal to noise ratios. Receiver input circuits were designed
for many years on the basis that signal to noise ratio was maximized. More
specifically, it turned out that if you take the ratio of (peak signal)2 to

mean square noise, and find the design of input stages of the receiver which

will maximize this guantity, this turned out to be a very useful thing. This
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leads teo the solution which is now called the classical matched filter. It
has been discovered independently by at least a dozen people. T helieve the
first person to work out this matched filter theory was the late Professor
W. W. Hansen, in about 1941, I was working with him, beginning in 1942, on
problems of radar detection. He circulated a little memorandum at the time
in which he gave this solution for the design of the optimum response curve
of an IF strip. Years later I was thinking about an entirely different pro-
blem (an optimum antenna pattern), and when I finally got the solution, I
recognized it as exactly the same thing that Bill Hansen had worked cut many
years before. 1I'll give you this theory in a later lecture. Since then I
see, almost every time I open a journal concerned with these problems, that
somebody else has a paper with the same solution in it.

Now, in the 1950's, people got more sophisticated about the way they
handled their detection problems, and they started using this wonderful new
tool, statistical decision theory, to see 1f there were still better ways
of handling these design problems. The strange thing happened that in the
case of a linear system with gaussian noise, the optimum sclution which deci-
sion theory leads vou to, turns out to be exactly the same old classical
matched filter. When I first saw this, T was very surprised that two approaches
so entirely different should lead te the same solution. But, note that our
robot represents a viewpoint from which it is not at all surprising that the
two 1ines of argument would have to give the same result. The best statisti-
cal analysis you can make of the problem will always be one in which you
calculate the probability that the wvarious signals are present by means of
Bayes' theorem. But, in the case of a linear system with gaussian noise, the
observed voltage is itself just a linear function of the posterior probability
measured in db. So, they are egsentially just two different ways of formu-

lating the same problem.
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The different approaches to the theory simply amount to different phile-
scphies of how you choose that value of probability at which vou will change
your decision. Because of the fact that they all lead to the same probability
ratio test, they must necessarily all be derivable from Bayes' theorem, in
agreement with out robot's prediction back in Lecture 4,

The problem just examined by several different decision criteria is,
of course, the simplest possible one. In a more realistic problem we will
observe the voltage v(t) as a function of time, perhaps several vcltages
v (t), v_(t}, ... in several different channels., We may have many different

1 2

possibkble gignals Sa(t), 5. (t) ... to distinguish, or we may need not only to

b
decide whether a given signal is present, but alsc te make the hest estimates
of one or more signal parameters (such as intensity, starting time, frequency,
phase, rate of frequency modulation, etc.). Therefore, just as in the problem
of quality control discussed in Lectures 5, &, the details can become arbi-
trarily complicated. But these extensions are, from the Bayesian viewpoint,
straightforward in that they require no new principles beyond those already
given,

I want to come back to some of these more complicated problems of detec—
tion and filtering toward the end of these lectures; but for now let's look
at another elementary kind of decision problem. In the ones discussed so far,

we used Bayes' theorem, but not maximum entropy. Now I want to show you a

kind of problem where we need maximum entropv. but not Bayes' theoren.

14.6. The Widget Problem.

This problem was first propcunded at a symposium held at Purdue Uni-
versity in November, 1860--at which time, however, the full solution was not
known. This was worked cut later {(Jaynes, 1963c¢), and some numerical approxi-

mations were improved in the computer work of Tribus and Fitts (1568},
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The widget problem has proved to be interegting in more respects than
originally realized. It is a decision problem in which there is no cccasion
toc use Bayes' theorem, because no "new" information is acquired. Thus it
would be termed a "no data" decision problem in the sense of Chernoff and
Moses (1959). However, at successlive stages of the problem we have more and
nore prior information; and digesting it by maximum entropy leads to a sequence
of prior probability assignments, which lead to different decisions. Thus
it is an example of the "pure" use of maximum entropy, as in statistical
mechanics. It is hard to see how the problem could be formulated mathematically
at all without use of maximum entropy, or some other device [like the one
considered in Lecture 10 (Sec. 10.8)] which turns out in the end tc be mathe-
matically equivalent to maximum entropy.

The problem is interesting also in that we can gsee a continuous gradation
from decision problems so simple that common sense tells us the answer instantly
with no need for any mathematical theory, through problems more and more
involved so that common sense has more and more difficulty in making a decision,
until finally we reach a point where ncobhody has vet claimed to be able to
see the right decision intuitively, and we reqguire the mathematics to tell
us what to do.

Finally, it turned cut to be very close to an important real problem
faced by 0il prospectors. The details of the real problem are shrouded in
proprietary caution; but I'm not giving away any secrets if I tell you that,

a few years ago, I spent a week at the research laboratories of one of our
large oil companies, lecturing for over 20 hours on the widget problem. They
made me go through every part of the caleculation in excruciating detail--
much more than we have time for here--with a room full of engineers armed
with slide-rules, checking up on every stage of the numerical work. I'we

often wondered since how far they have extended the theory beyond the original

14-21



problem, and how much it helped them; but I don't expect to find out.

Well, here is the problem. Mr. A is in charge of a Widget factory,
which proudly advertises that it can make delivery in 24 hours on any size
order. This, of course, is not really true, and Mr. A's job is to protect,
as best he can, the Advertising Manager's reputation for veracity. This means
that each morning he must decide whether the day's run of 200 Widgets will
be painted red, yellow, or green. (For complex technological reasons, not
relevant to the present problem, only one color can be produced per day.)

We follow his problem of decision through several stages of increasing know-
ledge.

Stage 1. When he arrives at work, Mr. A checks with the stock room and finds
that they now have in stock 100 red widgets, 150 yellow, and 50 green. His
ignorance lies in the fact that he does not know howmany orders for each

type will come in during the day. Clearly, in this state of ignorance, Mr.

A will attach the highest significance to any tiny scrap of information about
orders likely to come in today; and if no such scraps are to be had, we do
not envy Mr. A his job. Still, if a decision has to be made on no more in-
formation than this, his common sense will probably tell him that he had
better build up that stock of green widgets.

Stage 2. Mr. A, feeling the need for more informaticn, calls up the front
office and asks, "Can yvou give me some idea of how many orders for red,
vellow, and green widgets are likely to come in today?" They reply, "Well,
we don't have the breakdown of what has been happening each day, and it would
take us a week to compile that informaticn from our files. But we do have

a summary of total sales last year. Over the last year, we sold a total of
13,000 red, 26,000 yellow, and 2600 green. Figuring 260 working days, this
means that last year we sold an average of 50 red, 100 vellow, 10 green each

day." If Mr. A ponders this new information for a few seconds, I think he
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will change his mind, and decide to make yellow ones today.

Stage 3. The man in the front office calls Mr. A back to say, "It just occurred
to me that we do have a little more information that might possibly help you.
We have at hand not only the total number of widgets sold last year, but

also the total number of orders we processed. Last year we got a total of

173 orders for red, 2600 for yellow, and 130 for green. This means that
customers who use red widgets ordered, on the average, 13000/173 = 75 widgets
pexr order, while the average orders for yellow and green ware 26000/2600 = 10,
and 2600/130 = 20 respectively." This new data doesn't change‘thé axpected
daily demand; but if Mr. 2 is very shrewd and ponders it very hard, I think
he may change his mind again, and decide to make red ones today.

Stage 4. Mr. A is just about to give the order to make red ones when the
front office rcalls him again to say, "We just got word that a messenger is

on his way here with an emergency order for 40 green widgets." Now, what
should he do? Up to this point, Mr. A's decision problem has been simple
enough so that reasonably good common sense will tell him what to do. But
now, I think he is in trouble; gualitative common sense is just not powerful
enough to solwve his prcblem, and he needs a mathematical theory to determine

a definite optimum decizion,

Let's summarize all the above data in a table:

R Y G De¢ision
1. 1In Stock 100 150 50 G
2. Avg. Daily Order Total 50 100 10 Y
3. Avg. Individual Order 75 10 20 R
4. Specific Order 40 ?

Table 14.1. Summary of four stages of the Widget Problem.
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In the last column I give the decisions that seemed, tc me, to be the
best ones before I had worked §u£ fhe mathematics. Do other beoPle ag?ee
with this intuitive judgment? Professor Myron Tribus has put this to the
test by giving talks about this problem, and taking votes from the audience
before the solution is giwven. Let me quote his findings as given in their

paper (M. Tribus and G. Fitts, 19¢8). They use Dl, D2, D3, D4 to stand for

the optimum decisions in stages 1, 2, 3, 4 respectively:
"Before taking up the formal solution, it may be reported that Jaynes'
widget problem has been presented to many gatherings of engineers who have

been asked to vote on D_, D D

1 X and D,. There is almost unanimous agree-—

37 4
ment about D, . There is about 85 percent agreement on D2‘ There is about

70 percent agreement on D and almost no agreement on Dy- One conclusion

3 r
stands out from these informal tests; the average engineer has remarkably
D

good intuition in problems of this kind. The majority vote for D and

1t T2f

D has always been in agreement with the formal mathematical solution. How-
ever, there has been almest universal disagreement over how to defend the
intuitive soluticn. That is, while many engineers could agree on the best
course of action, they were much less in agreement on why that course was

the best one.”

14.7. Sclution For Stage 2.

How, how are we to set up this problem mathematically? In a real life
situation, evidently, the problem would be a little more complicated than
indicated so far, because what Mr. A does today also affects how serious his
problem will be tomorrow. Mr., A's decision each day should not depend only
on orders expected for that day; they should be based on his best estimates
of orders likely to come in for all future days, and on the conseguences of

failure tc meet all orders not only today but also in the future. That would
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get us into the subject of dynamic programming. But for now, just to keep
the proklem simple, let's solve only the truncated problem in whiech he makes
decisions on a day to day basis with no thought of tomorrow.

We have just to carry out the steps enumerated under "General Decision
Theory" at the end of the last lecture. Since Stage 1 is almost too trivial
to work with, consider the problem of stage 2. First, enumerate the possible
"states of nature" Gj- These correspond to all possible order situations
that could arise; if Mr. A& knew in advance exactly how many red, vellow, and
green widgets would be ordered today, his decision problem would be trivial.
Letn, =0, 1, 2, ... be the number of red widgets that will be ordered today,

1

n, for yellow and green respectively. Then any conceivable

and similarly n,. N

order situation is given by specifying three non-negative integers.{nl,nz,n3}.
Conversely, every ordered triple of non-negative integers represents a con-
ceivable order situation.

Next, we are to assign prior probabilities (lex) = (nlnanIX) to the

states of nature, which maximize the entropy of the distribution subject to
the constraints of our pricr knowledge. We solved this problem generally
in Lecture 10, Egquations (1l0-26)--(10-32); and so we just have to translate

the result into our present notation. The index i on x; in Lecture 10 now

corresponds to the three integers n n n the functions fk{xi) also

17 tor il

correspond to the n;, since the prior information at this stage is that the
expectations <nl>, <n2>, <n3> of orders for red, yellow, and green widgets

are given as 50, 100, 10 respectively. With three average values ¢given,

we will have three Lagrange multipliers ll, lz, h3, and the partition function
{(10-30} becomes

Z(Al,Az,k3)

|
[ |
i
o
g

En _g EXp(=Any = Aon, = Agng)

=MH,_. (1-e ) (14-24)
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The li are determined from (10~32):

3
<n,» = - — log Z
hi Bli
= > L (14-45)
et -1

The maximum-entropy probability assignment (10-28) for the states of nature

Gj = {nl n, n3} therefore factors:
p(nln2n3) = pltnl) p,(n,) p,in,) (14-46)
with
-} =\.n,
i ivi
p,n}y={L--e ) e . . =0,1, 2, ...
i1 1
<n, > Dy
1 i *

= {14-47)
<n.> + 1 <n.>» + 1
i i

Thus in stage 2, Mr. A's state of knowledge about today's orders is given

by three exponential distributions:

_1 /50\"1
pylny) =357 {57

() = -1 100)“2
Pyiigl =

Il

101 \101
1 /10\%3
P3(n3) =7\ {14-42)

which completes step 2., Step 3, application of Bayes' thecorem to digest
new evidence E, 1s absent because there is noc new evidence. Therefore,

the decision must be made directly from the pricr probabilities (14-48), as
is always the case in statistical mechanies. $o, we now proceed to step 4,
enumerate the possible decisions. These are Dy = make red ones today, D, =
make yellow ones, D3 = make green ones. In step 5, we are to introduce a
loss function L(Di,ﬁ.}. Mr. A's judgment is that there is no loss if all

orders are filled today; otherwise the loss will be proporticnal to--and in
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view of the invariance of the decision rule under proper linear transformations
that we noted at the end of Lecture 13, we may as well take it equal to--~the

total number of unfilled orders.

The present stock of red, yellow, and green widgets is Sl = 100, 82 = 150,
53 = 50 respectively. ©On decision Dl(make red widgets) the available stock
Sl will be increased by the day's run of 200 widgets, and the loss will be
L(Dl;nlnan) = g(n1 - Sl - 200} + q(n2 - 52) + g(n3 - SB) (14-49)

where g(x) 1s the ramp function

X, e
gi{x) = (14-50)
0, b4

1w
[

[
o

Likewise, on decision D2, D3 the loss will be
L(D2; nln2n3) = g(nl - Sl) + g(n2 - 82 - 200} + g(n3 - 53) (14-51)

; = - - - - 14-52
L{D3 nln2n3) g(nl l) g(n2 82} + g(n3 53 200) ( )

So, if decision D1 is made, the expected loss will he

<,
Ly

g p[nln2n3) L(Dl;nln2n3)

1
o]

= E l=0 pl(nl) g(nl—Sl—200} + zn2=0 pz(nz) g(nz_sz)

«]

+ - 14-53
En3=0 p3(n3) g(n3 S,) ( )
and gimilarly for D2, D3. The summations are elementary, giving
e s —ll(sl+200) N —XZSZ Vo }e—k383
1 = <npe n>e 3
- - + -
<L>_ = <n_re lls +oLn, re RZ(Sz 00 + <n_ >e R3S3
1 2 3
-A.5 -3 5 -A_ {8 +200)
<L>, = <n,>e + <n,>e 22y nre 303 (14-54)
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or, inserting numerical values

<L>l = 0.131 + 22,480 + 0.085 = 22.70

<Ly, = 6.902 + 3,073 + 0.085 = 10.06

<p>, = 6.902 + 22.480 + 4 x 1079 = 29,38 (14-55)
showing a strong preference for decision Dy = "make yellow ones today,” as

common sense had already anticipated.

You will recognize that Stage 2 of Mr. A's decision problem is mathema-
tically the same as the theory of the harmonic cscillator in quantum seatisti-
cal mechanics. There is still another engineering application of the harmenic
oscillator egquatiocns, in some problems of message encoding, that we'll see
when we take up communication theory. I'm trying to emphasize the generality
of this theory, which is mathematically quite o0ld and well known, but which
has been applied in the past only in seome specialized problems in physics.
Thig general applicability can be seen only after we are emancipated from
the orthodox view that all probability distributicons must be justified in
the frequency sense., Historically, this made it appear to most workers in
statistical mechanics that the methods of Gibbs could be justified only via
unproved "ergodic hypotheses” (in spite of the fact that Gibbs himself never
menticned them). But if we interpret Gibbs' eguations not as assertions
about frequencies but as examples of inductive reasoning based on the principle
of maximum entropy, it is clear that the reasoning doesn't depend on ergodic
properties or any other aspect of the laws of physics--ergo, the canonical
engemble formalism of Gibbs can be applied to any problem of inductive reason-

ing where the given information can be stated in the form of mean wvalues.

14.8. Solution For Stage 3.

In Stage 3 of Mr. A's problem we have some additicnal pieces of informa-

tion giving the average individual orders for red, yellow, and green widgets.
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To take account of this new information, we need to set up a more detailed
enumeration of the states of nature, in which we take into account not only

the total orders for each type, but also the breakdoewn into individual orders.
We could have done this alsc in stage 2, but since at that stage there was

no information available bearing on this breakdown, it would have added nothing
to the problem. However, in the interest of checking the consistency of

this theory, you may find it amusing to retrace stage 2 on this basig and see
how 1t would have led to exactly the same results given above.

In stage 3, a possible state of nature can be described as follows. We
receive uy individual orders for 1 red widget each, u, orders for 2 red widgets
each, ..., ur individual orders for ¥ red widgets each. BAlso, we receive
vy orders for y yellow widgets each, and Wg orders for g green widgets each.
Thus a state of nature is specified by an infinite number of non-negative
inteqgers

B = {ulu2...;vlv2...;wlw2...} (14-56)

and conversely every such set of integers represents a conceivable state of
nature, to which we assign a probability p(ulu2...;Vlvg...;wlwz...).

Today's total demand for red, yellow and green widgets is, respectively

By Er=1 ¥

n, = zy=l ¥ v,
= 14-57
L Eg=l g Wy ( )
the expectations of which were given in stage 2 as <n;> = 50, <ny> = 100,
n,> = 10. The total nuwber of individual orders for red, yvellow, and green

widgets are respectively

= E:|:=]_ Uy
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=]
|

2~ zy=1 Yy

o

m, = W 14-58
Eg=1 . ( )

And the new feature of stage 3 is that <m. >, {m2>, {m3> are also known. For

example, the statement that the average individual order for red widgets iz
75 means that <n1> = 75<ml>,
With six average values given, we will have six Lagramnge multipliers

{4 }. The maximum-entropy probability assignment will have the

LR PR
form

-y m_=i_.n

e WV ee) = @EP(SAgmA 0y SUgRy AR, mU M, A R ol )

1°2° 172

which factors:

p[uluz...;vlvz...;wlwz.,.) = pl(uluz...)pz(vlvz...)p3(wlw2...) {14-59)

The partition funectieon also factors:

Z = Z_ (A Z (A Z (A 14-60
1( 1“1J 2( 2u2} 3( 3u3) ( )
with
[=] [xs)
Z_ (A = PR ~A +2u +3u +...0) - +u +u +...
1y Eulzl Eu231 exp LA, (yF2u +3u b ), (uptu bu e o)
w 1
= 14-61
I =1 “-rh,=U ( )
171
l~ce
with similar expressions for Zos Zy- TO find Al, Wy we apply the general
rule, Egquation (10-32):
-ri_ -
] e 171 © r
<np == ] ) log(l - e ) = lpm1 o (14-62)
1 11
e -1
o A i o
9 1771 v 1
= - = 14-63
“hy” au Z'1:=]_ log(l - e ) Lpr=] rh_+u ( J
1 11 1
e -

Comparing with equations (14-57), (14-58), we see that
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S
r rAtHg
e -1

(14-64)

and now the secret is out--Stage 3 of Mr. A's decision problem is just the
theory of an ideal Bose-Einstein gas in quantum statistical mechanics!

If we treat the ideal Bose-Einstein gas by the method of the grand
canonical ensemble, we obtain just these equations, in which the number r
corresponds to the r'th single-particle energy level, u,. to the number of
particles in the r'th state, Al and My to the temperature and chemical potential.

In the present problem it is clear that for all r, <ur><<l, and that

<u,> cannot decrease appreciably below <u.> until r is of the order of 75,

1
the average individual order. Therefore, Ul will be numerically large, and
ll numerically small, compared to unity. This means that the series (14-562),
(14-63) converge very slowly and are useless for numerical work unless you

have a big computer. However, we can transform them into rapidly converging

sums as follows:

zm 1 _ Z Em e_n(lr'f'li)
r=1 eAr+u _ r=1 &n=1
-7 e (14-65)
n=1 -ni
1-e
The first term is already an excellent approximation. Similarly,
zm v _ Em e—n()&+p)
= - - £ - 2 14_66
r=1 Jxtu T fnel o O (14-66)
and so (14-62) and (14-63)} become
-1y
e
<n1> o > {14_67)
A
1
-1q
o .
<mg> o= {14-63)
Al
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or

1 L1
A= = — = 0.0133 14-69
1 €n1> 75 ( )
pl <nl>
e = 5 = 112.5 (14-70)
<ine > .
1
uy = 4.722 (14-71)

Tribus and Fitts, evaluating the sums exactly by computer, get Rl = 0,0131,
up = 4.727; so our approximations (14-67), (1L4-68) are very good, at least
in the case of red widgets.
The probability that u, has a particular value is, from (14-5%9) or (14-61},

-ri_-u —{rA_+u_lu
plu) = (1 - e S P (14-72)

which has the mean value {(14-64) and the variance

R , rkl+ul
var(u ) = <u “»-<y >° = —= (14-73)
r r r rkl+ul 5
(e - 1)
The total demand for red widgets
o0
Ny = Jyeq TU, (14-74)

is expressed as the sum of a large number of independent "random variables".

The probability distribution for n, will have the mean value (14-67) and

1
the wvariance
. . o TAytiy
varin.) = Z r2 var{u ) = E < (12-75)
1 r=1 r =1 Yi_+u
171 z
(e - 1)
which we convert into the rapidly convergent sum
o -n {A+ -n {2X+
= 2 —n(ri+p) e n{A+h) + e n{2a+i)
Z nr- e = Z n (14-76)
r,n=1 n=1 -ni, 3
(L - e )

or, approximately,
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1 2
var(n ) = = Z_<n_ > . (14-77)
1 \ Al 1

At this point I have to anticipate some mathematical facts concerning the
Central Limit Theoxem, that we'll study later., Because n, is the sum of a
large number of small terms, the probability distribution for ny will be

very nearly gaussian:

}\l (n1_<nl>) 2
pin.) = A expy- a<ns {14-78)
1

for those values of ny which can arise in many different wavs. For example,

the case n, = 2 can arise in only two ways: u. = 2, or u

1 1 = 1, all other uk

2
being zero. On the other hand, the case n, = 150 can arise in an enormous
number of different ways, and the "smoothing" mechanism of the central Iimit
theorem can operate. Thus, Equaticon (14-78) will be a good enough approxi-

mation for the large wvalues of ny of interest to us, but it may not be for

small K
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Lecture 15

SURVEY OF ORTHODOX PRINCIPLES

Now I want to turn to a few other topics which come under the heading
of clearing up various questions that were left dangling in previous lectures.
We need to have an understanding of the terminclogy and the various concepts
and principles of orthodox statistics in order to make comparisons and refer
eaglily to the existing literature. We have already examined the principle
of maximum likelihood in Lecture 9, and in the last two lectures we saw some-
thing of the orthodox principles for point estimation of parameters, and
the orthodox approach to decision theory. This seems like as good a time as
any to extend the list.

The methods to be described are now obsclete, in the sense that Bayesian
methods either include them as special cases, or improve on them. MNeverthe-
less, they exist, the literature is full of them, and they will continue to
appear in the literature throughout ocur lifetimes, because many Statistics
Departments are still teaching them to thelr students as if Bayesian methods
didn't exist. So, we have no choice but to learn the terminclogy of orthodox
statistics,

However, don't get the impression that there exists any definite mono-
lithic "orthodox thecrv." In fact, orthodox statistics is a mish-mash of
mutually contradictory ad hoe principles, and there are just as many--and
just as bitter-controversies between different workers within the orthodox

school as between orthodox and Bayesian advocatss.
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15.1. Sufficient Statistics.

Given a sampling distribution function (xl...x Ia) and a proposed esti-
1
mator B(xl...x ) of o, let us carry out a change of wvariables (xl...xn) -
n
v h that = N d the j bi J = A M.
(yl yn) sug a Yl B(Xl xn) an e jacobian atyl yn}/Q{Kl xn}
is finite and not identically =zero. Then the sampling distribution function
of the Y, is
(y,...v o) = (x,...x ‘a)|J|_l (15-1)
1 n 1 n

By our Rule 1, this can be factored:
(v, ..oy oy = (By,...v [0) = (8]@) (v,...y_|Ba) (15-2)
Suppose now that (y2...yn|8u) turns out to be independent of w. This is
equivalent to saying that the original sampling distribution can be factored
in the form
(xq.ox Ja) = glxg..ax)) (Bla) (15-3)

where g{xl...x l = (v ...y iSJ]JI can be expressed as a function of the x
1 n

2 ir

not involving o, Therefore, if B iz known, knowing the value of o would

give us no more informaticon about the sample. Conversely, it seems intuitively

that if B is known, then knowledge of (yz...yn) could give ug no further

information about «; i.e. all the information in the sample, that is relevant

for inference about a, 1s contained summarized in the single function B(xl...xn).
Let ug check whether this is true. The ultimate criterien is, of course,

whether the conjectured property can be derived from Bayes' thecorem; i.e.

whether the posterior distribution (alxl...xn} depends on the sample only

through the function B{xl...x .

n

This distribution has the form

. a = 15-4
(afx - ox ) F o ) ) (15-4)

where f{a) is a prior probability density.
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Substituting {15-3) into this, we obtain

(8] o) glx ...x ) £lo)

(a]x ...x ) = {15-5)

n J’(Bla) g(xl...xn) fla) do
Since g(xl...xn) does not depend on «, it cancels out, leaving us with

(] %) = (B]a) £(a)
S (Bla) fla) du

(15-6)

which says, as conjectured, that the posterior probability distribution of o
depends only on the particular function B(xl...an of the sample values.
All other properties of the sample are irrelevant for inference about o.

In this case, B is said to be a sufficient statistic for a, a terminology

introduced by Fisher, More generally, any function f(xl...xn) of the sample
values is called a "statistic."
For example, let o be the unknown mean value of a gaussian distribution

of known variance ¢2. Then

(x X |u) = A exp| - L zn {x. - a)2 (15-7)
1°*%n 202 Li=1 ‘%4

where A is a normalizing constant. Rearranging, we have

= _.n 2 _ - 2
(xl...xn[a} A exp[ pyna (x 2ax% + o )]
= A exp[ - -—z-nsz 1 exp [ - _Tn (x - a)z] (15-8)
2q 20
where
— 1 <01
% = ; zi=l x5 {15-9)
= _ 1" 2
x* = = i1 % (15-10)
s = x2 - x¢ (15-11)

are the sample mean, mean square, and variance respectively.

Suppose we propose the sample mean as our estimator; i.e. we take

Blx ook 2 X = % E’;_l % (15-12)
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The sampling distribution of B is

(Bla) = f del...dxn a(g - %E xi} (xqoeox o) (15-13)

To evaluate this, it is easier to take first its Fourier transform, or char-

acteristic function:

b (k) = <eik8> = Im Bla) o™ ag

20 o . k
i—f{x +...4+x )
dx az e ™ 1 P x_|a)
1= o n 1" n

o

The integration is elementary, and we find

2.2
4(k) = exp [ ik - an ] (15-14)

Then, inverting the Fourier integral, we have

oo

1 -ik
(Bla) = Py p(k) e kB dk
n 2
= 2_”—1;2- exp[ - EZ— (B jnd 0‘.) ] (15—15)

But, comparing with (13-8), we see that the factorization property (15-3)
does hold for this estimator, and consequently £ is a sufficient statistic
for estimation of wo.

Conversely, applying Baves' theorem {14-4), we find

jo]

exp[ ~ 55T (oo - ;)21 £ l{a)
" {15-16)

fexp{— o7 (© —E)Z]_f(a) do

(u[xl...xn}

which says again that the sample mean % is a sufficient statistic for estimation
of . The parameter g would be termed the "population mean" by the statistician.
However, this underlying "population™ is entirely fictitious in most real
problems.

If the mean ¢ and standard deviation ¢ are both unknown, we can apply

Bayeg' theorem to find their joint posterior probability density (ac[xl...xn).
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In this case we need the correct normalization constant for the sample distri-

bution function:

_on {_ (x4 —a)z} ]
(xl...xnra,U) Hi=1 /E;EI exp —~l§E?—— {15-17}
Bayes' theorem then vields, with priocr probability density £(a,g):
A fla,q0) n -
(wo|xq. .2 ) = == exp[— 3.7 [s7 + (a - )213 (15-18)

where A i1s a normalizing constant independent of u and g. Since only the

. - 2 - 2 . .
sample mean and variance x, s appear here, x and 8 are jointly sufficient

for ¢ and o, a fact that I mentioned briefly at the end of Lecture 6. In
general (15-18) will show some correlation between ¢ and ¢; but if we just
want the best estimates of each independently of the other, we get them from

the marginal distributions obtained by integrating out the unwanted parameter:

(o]xy. .. ) = Jn(aclxl...xn} do (15-19)

(U]xl...x ) \[(aofxl...xn} do (15-20)

i

Similarly, let Q0 < o < 1, ©

1A

X: < =, and consider the distribution

1
31 £y
(ry-oxpJo) =AW " o (15-21)
Since this factors:
(pnox o) = & (xp...x )P 77 (15-22)

we find as before that the sample mean % is a sufficient statistic for o,
and the best estimate of o, by the criterion of any loss function, will be
some function 8(%} of the sample mean only.

Likewise, consider the rectangular distribution

n
Geyooem foy = T £ (xp) (15-23)

1

where
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£ ={at, Osxsa (15-24)
a, o < X
Thus,
0 Xpdn * 0
(xl...xnia) = a B, 0« Xoin € Xmax & ° (15-25}
0, O < Xpax
where Xmin’ xmax are the minimum and maximum cobserved sample valuss. The

posterior distribution (a[xl...x )} depends on the Xy only through X onse? (and,

Il
of cocurse, on the number n of observations). Consequently Xk is a sufficient
statistic for estimation of a; or, iv a little different terminology often

found in the literature, X hax and n are jointly sufficient.

Evidently, the condition for existence of a sufficient statistic is

that a single function y(x ..xn} of the sample walueg must exist gsuch that

1
(xl...xnfa) factors into the form
(xl...xnjal = g(xl...xn} hiy,a). (15-26)
For the rectangular distribution, this is the case with y(xl...xn) = X’
g(xl...xn) = 1, and
-1n
a T, a>y
hiy,a) = {15-27)

A gufficient statistic deoes not always exist. For example, the Cauchy distri-

-1

n
bution (xl...xnla} = A Hi [1 + {xi - a}zl deces not admit any factorization

=1

of the form (15-26), nor does the truncated exponential distribution (xl...xn[a)

= A exp[—a(xl+ .. +xn)], 0 < xl...xn < ¢, But in the latter case E_and

X are Jjointly sufficient for a.
max
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15.2. Efficient Estimates.

I have already pointed out [Eg. (13-38)] that the c¢riterion of minimum
ax-expected loss does not in general lead to any specific "best" estimator

B(xl...xn), but it may do so in some special cases. We can now exhibit one

such special case. Consider a gquadratic loss funection L(a,p) = (B - a)2,
and independent sampling so that
gz fo) = £lx,0) £lxy,a) ... £lx_,a) (15-28)

An estimator B which minimizes the w-expected loss was called "efficient"

by R, &, Fisher. In some of the later literature, however, the term "efficient"
is taken to mean only that this condition is approached asymptotically, in

the limit of large samples. This is the condition called "asymptotic efficiency™
by Cramér (1946). A famous inequality associated with the names of Fréchet,
Darmois, Rao, Cramér, and cthers, places a lower limit on the g-expected loss

with any estimator B(xl...xn):

()
a
<{B - a) %> 2 2
J‘(B log £
n P

5 (15-29)
) fix,q) dx

with eqguality when and only when the following two conditions are met:
(1) B is a sufficient statistic for estimation of «, i.e.

(xl...xn[a) = g(x;...%) h{8,a) (15-30)

(2) the function h(B,a) satisfies

g log h _

k(o) (B - a) {15-31)
aa

for some function kiw). A simple proof of this thecrem is given by Cramér
{1946, Sec. 32.3). From {(15-30) and (15-31) it is seen that the sampling

distribution function must also satisfy
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3 log (xl...xn|a)

= k{o) (B - a} (15-32)
P IvA

or, on integration, i1t must have the form

m(xl...xn) exp[-Ai (a) B(xl...x 1]

n
R = 15-33
(Xl xnla) . ( )
where A depends only on o, and
Z(A) = Jﬁm(xl...xn) exp[—kﬁ(xl...xn)] dxl...dxn {15-34)

Since this 1s just the canonical distribution of statistical mechanics, we
may restate the theorem as fallows: The best estimator 8(x1...xn) by the
criterion of minimum g~expected loss, which achieves equality in (15-29),
exists when and only when the sampling distribution function has the canonical
form with maximum entropy, relative to some welghting function m(xl...xn),

for a given expectation value <R>.

Thus, for example, the energy of a system at thermal equilibrium is
always a sufficient and efficient statistic for estimation of the temperature
of the heat-bath surrounding it, all other details of its state being irrelevant
for that purposse.

We examined the notion of sufficiency in Lecture 14, from the standpoint
of "information" in the sense of entropy, and saw in Eg. (14-14) the exact
sense in which the colloguial term "information" is related to entropy.
Although "gufficiency"” was introduced by R. A. Fisher within the context of
orthodox statistics, we saw in Eg. (15-6) that it is exactly derivable from
Baves' theorem. Therefore, it remains a valid and useful notion in Bayesian
statistics; any problem of inference in which a single sufficient statistic
exists, will be vastly simpler mathematically, and will lead tc much shorter

calculations in applications. Generally, in nontrivial real problems whers

a sufficient statistic does not exist, we will be driven to approximations
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in reducing data. B, ' . _ Y - .-

The notion of efficiency, however, is not of any particular walue in
Bayesian statistics, because Bayes' theorem automatically gives us the best
estimator by the criterion of any loss function. Thus the need toc compare
different estimators doesn't arise unless the equations are so complicated
that we have to resort to approximations. But then it is the x-expected
loss [as defined in Eg. (13-15)] rather than the gw-expected loss that provides
our criterion of good approximation.

Furthermore, the notion of efficiency doesn't really have any "objectiwve"
meaning, because 1t depends on the particular way you or I choose to define
our parameters. For example, instead of the parameter o, there is no reason

2, or & = log o, etc.,

why we couldn't use just as well, the parameter vy = o
and of course any satisfactory statistical methods ought to lead us to the
same final conclusicons however we have defined our parameters. But the

Fisher definition of efficiency is so parameter-dependent that if an efficient

2

estimator of o exists, then an efficient estimator of o does not exist!

For these reasons, we will have no further use for the concept of efficiency.

15,3. Tests of Goodness of Fit.

Back in Lecture 7, when we discussed the application of Bayes' theorem
te such problems as the validity of Newtonian celestial mechanics, we noted
this: Baves' theorem ftells us that we cannot say how the observed facts affect
the probability of some hypothesis H, until we state some specific alternatives
against which H is to be tested, For example. suppose there are only two
possikle hypotheses, H and H', to be considered. Then, on any data D, we
must always have (H|D) + (H'!D} = 1, and in terms of our logarithmic measure

of plaugibility in decibels, Bayes' theorem becomes
(D|H)

H|ID) = HX) + 10 15-35

et|D) = e|x) 9910 E") ( )
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which we might describe in words by saving that, "data D supports hypothesis
H relative to H', by 10 log;g, (D]H)/(DIH') decibels." The phrase relative
to H' is essential here, since with some other alternative H", the change

in evidence for H, [e(H|D} - e(H!X)] might be entirely different; it does
not make sense to ask how much the observed facts tend "in themselwves" to
support or refute H (except, of course, in the case where D is absolutely
impossible on hypothesis H, so deductive reasoning can take over).

Now as long as we talk only in these generalities, our common sense
readily assents to this. But if we consider specific problems, we may have
some doubts. For example, in the particle counter problem of Lecture 8 we
had a case (known source strength s and known counter efficiency a) where
the probability of getting ¢ counts in any one second is a Poisson distributicon

{8-5) with mean wvalue ¢ = sa:

[
-sa (sa)
c!

(c|s,a) = e (15-36)

Although it wasn't necessary for the problem we were considering then, we

can still ask: what can we infer from this about the relative frequencies

with which we would see ¢ counts if we repeat the measurement in many different
saconds, with the result {clcz...cn}? If the probability of any particular

event (say the event ¢ = 12) is independently equal to

12

—=sa (sa)
= =244 15-37)
P=e 121 (

at each trial, then the probability that the event will occur exactly r times

in n trials is the bkinomial distribution
F 1 r n-x
{r|n) = (r) p (1-p) (15-38)

or, the probkability that it will occur with frequency f = r/n, is

; £ ~nf
RN (15-39)

(£|n)
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When n is very large, we can use the Stirling approximation (10-16) to get

L = 1 Aog {f/n)
n

=~ - £ log £ - {1-f) log (1-f) + £ log p + (1-f) log (1l-p) (15-40)

Treating £ as a continuous wvariable,

3 £ P
921 1

afZ T T E(1-f)
So L reaches a maximum at £ = p, and we have the Tavlor series expansion

about that point:

o - _Ep)”
R A

Therefore, an approximation (which is actually much hetter than you might

guess from this simple derivation) to (15-39) is

{f[n} * (const.)-ex {— Eiﬁ:Eli} {15-41)
VST pp)

Thus the most likely frequency to be observed is numerically equal to the

probability; and the (mean * standard deviation) estimate of the frequency is

(f) - p+ /RUP) (15-42)

est n
Here is another connection between probability and frequency which common
sense cculd have anticipated, except that it would hardly give us a quantita-
tive interval of reascnable "errcr." The result (15-42) will be generalized
to a wider class of probability models in the next two lectures.

In the long run, therefore, we expect that the actual frequencies of
various counts will be distributed in a manner approximating the Poisson
distributicn (15-36)., Now we can perform the experiment, and the experimental
frequencies either will or will not be a reasonable approximation to the
predicted wvalues. 1If, by the time we have observed a few thousand counts,

the observed frequencies are wildly different from a Poigson distribution,
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our common sense will tell us that the theory which led to Poisson prediction
must be wrong. Yet we have not said anything about any alternatives! 1Is

our common sense wrong here, or is there some way we c¢an reconclle the theory
with common sense?

Let's look again at equation (15-35). No matter what H' is, we must
have {DIH'J > 1, and therefore a statement which is independent of any alter-
native hypotheses is

e(H[D) 2 e(H[X) + 10 log,(D[H) = e(H|X) - y_ (15-42)
where

o

P = - 10 loglo{D]H} > 0. (15-44)

Thus, there is no possible alternative which data D could support, relative

to H, by more than y decibels.

This suggests a solution to our paradox: in judging the amount of
agreement between theory and observations, the proper gquestion to ask is not,
"How well dees data D support hypothesis H?" A much better question is,
"Are there any alternatives H' which data D would support relative to H, and
how much support is possible?" Probabkility theory can give no meaningful
answer to the first question, but it can give a very definite answer to the
second.

We might ke tempted to conclude that the proper criterion of "goodness
of £it" is simply V_, or what is the same thing, the probability (D‘H).

This is not so, however, as the following argument shows. After we have
obtained data D, it is always possible to invent a strange, "sure thing"
hypothesis He, according to which D was inevitable: (D[HS) = 1, and Hs will
always be supported relative to H by exactly ¥, decibels. TLet us see what
this implies. Suppose I toss a die N = 10,000 times, and record the result

of sach toss. Then, on the hypothesis H = "the die ig honest,” each of the
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6N possible results has probability 6_N, or ¢, = 10 loglo{6N) = 77,815 decibels!
No matter what I cbhserve in the 10,000 tosses, there is always an hypothesis
HS that will be supported relative to H by this enormous amount. If, after
performing this experiment, I continue to believe that the die is honest,
it can be only because I considered the prior probability of Hs to be very
much lower than minus 77,815 decibels. Otherwise, I am reasoning inconsistently.

This is, I think, all perfectly correct and we have to accept the con-
clusion. The priocr probability of Hy was indeed much lower than 6_N, simply
because there were 6N different "sure thing" hvpotheses which were all on the
same footing befoxe I observed D. But it is cbwvicous that in practice we don't
want to bother with this kind of hypothesis; ewven though it is supported by
the data more than any other, its prior probability is so low that we are not
going to accept it anvyway.

In practice we are not interested in comparing H to all conceivable
alternatives, but only to all those in some restricted class 2, consisting
of hypotheses which we consider to he in some sense "reasonable" @ priori,
Let me give cne example (by far the most commen and useful one) of a test
relative to such a restricted class of hypotheses.

We consider some experiment, which has r possible cutcomes, A_, Az,..., Ar.
Define the gquantities

X, = m, if A is true on the n'th trial (15-45)

n
Thus each x, can take on the values x = 1, 2, «v.;, r. TIf the experiment
consists of tossing a die, then ¥ = 6, and x, is the number of spots up on
the n'th toss. 3Suppocse now we wish to take inte account only the hypotheses
belonging to the "Bernoulli class” B,/ in which the probabilities of the A
on successive repetitions of the experiment are considered independent and

stationary; thus, when H is in Br' the prohability, conditional on H, of any

specific sequence {xl...xN} of observations has the form
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I'll I

¥
coux |H) = ... -
(] xN\) P, P (15-46)

where p 1is the probability of result Am in any trial, and n 1s the number
m m
of times Am was true in the seguence. O0Of course, Z n = N. To every hypothesis
m
It

in B_ there corresponds a set of numbers {p_...p } such that p > 0O, Zp =1,

¥ 1 ¥ m - m
and for our present purposes these numbers completely characterize the hypo-
thesis. Conversely, every such set of numbers defines an hypothesis bhelonging
to the Bernoulli class B..

Now let's note an important lemma, which we have used before to establish

some properties of entropy. Using the fact that log x > (1 - x_l), with

egquality if and only if x = 1, we find at once that
e 1 i, 0 (15-47)
i=1 ni Qg NPl - r

with equality if and only if p; = ni/N for all i. This inequality is the
same as

log (xl...ﬁllH) <N ) £, log £, (15-48}

where fi = ni/N is the observed frequency of result Ai. The righthand side
of (15-48) depends only on the observed sample, so if we consider various
hypotheses Hl, H2, ce. in Br in the light of this particular sample, the
guantity (15-47) gives us a measure of how well the different hypotheses fit
the data; the nearer to equality, the better the fit.

For convenience in numaricai work, let's express the quantity {(15-47)

in decibel units:

r o,
by = 10 Eizl n, loglo ﬁﬁi (15-49}
i

To see the exact significance of wB’ suppose we apply Baves' theorem in the

form of Equation {15-35}. There are only two hypotheses, H = {pl...pr}, and
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H' = {pl',...,pr'} to be considered. 1Ilet the walues of (15-49) computed
according to H and H' be wB’ wB‘ respectively. Then Bayes' theorem reads

{(x ...xNJH)

1
H . = HiXy + 10 1
el |xl xN) e (H| % °9.4 ?EhtiTE_Tﬁjﬁ
1 N
= e(H|X) + '- 15~50
(H] %) byt by ( )
Now we can always find an hypothesis H' in Br' for which pi‘ = ni/N, and
wB' = 0; therefore wB has the following meaning:

Given an hypothesis H and the cbserved data {xl...xN}, compute Wn
from (15-49). Then given any D £ wB' it is possible to find an
alternative hypothesis H' in B, such that the data will support H'
relative to H by D decibels. There is no H' in B, which is sup-

ported relative to H by more than wB decibels,

Thus, wB ig exactly the appropriate measure of "doodness of fit" relative to

the class of Bernoulli alternatives.

We can also interpret wB in this manner: we may regard the observed
results {xl...xN} as a "message" consisting of N symbols chosen from an
alphabet of r letters. On each repetition of the experiment, Wature transmits
to us one more letter of the message. How much information 1s transmitted
by this message, under the Bernoulli probability assignment with independence

of successive symbols? Note that

X
b/N =10 f.  f, log) (£./p) (15-51)

with £ = n /N. Thus, {—wB/N} is the entropy per symnbol of the observed
i i

message distribution {f ..fr} relative to the "expected distribution"

1
{pl...pr}. This shows that the notion of entropy is, in a sense, "inherent”

in probability theory. Independently of Shannon's thecrem, entropy or some

monotonic function of entropy will appear automatically in the egquations of
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anyone who is willing to use Bayes' theorem for hypothesis testing,.
Historically, a slightly different test was introduced by Karl Pearson.
We expect that, if hypothesis H is true, then ng will be close to Npi, in the

sense that the differxence 'ni - Npi will grow with N only as YN. cCall this

"condition A." Using the expansion log x = (x-1) - (x—l)2/2 + ..., we easily
find that
2
r n, ¥ {n, - Np.)
Y on, log —= =217 1 e — 15-52
Li=1 4 J Np, 251=l Np; VN ( )

the gquantity designated as o (1/vVN) tending to zero as indicated provided

that the observed sample does in fact satisfy condition A. The gquantity
2 2

(n; - Np,) r (fi - pi)

x =],  TTmeem— = N ), m—e—e— (15-53)

i=1 NPi i=1 D,

is thus wvery nearly proportional to wB’ if the sample freguencies are close
to the expected values:

2, O(L/YN) = 2.1715 Xz + 0(1/ViN) (15-54}

yg = (10 logge) % X

Pearson suggested that the gquantity X2 be used as a criterion of goodness
of £it, and this has led to the "Chi-squared" test, one of the most used
techniques of orthodox statistics. Before describing the test, let's examine
first its thecretical basis and suitability as a criterion. Evidently,
xz z 0, and X2 = 0 only if the observed freguencies agree exactly with those
expected if the hypothesis is true. 8o, larger values of xz correspond in
some way to greater deviations between prediction and cbservation, and tce
large a value of XZ should lead us to doubt the truth of the hypothesis. But
these gualitative properties are possessed also by @--and by any number of
other quantities we could define. We have seen the theoretical hasis, and
precise significance, of P; so we ask (noting the comments of Pratt and Bross,
as qucted in the preface) whether there exists any "connected argument"

leading to xz.
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The results of a search for this connected argument are disappointing.
Scanning a number of orthodox textbooks, we find that xz is often introduced

as a straight deux ex machina; but Cramér (1946} does attempt to prepare the

way for the l1dea, in these words: "It will then be in conformity with the
general principle of least squares to adopt as measure of deviation an expres-
sion of the form Z ci(ni/N - pi)2 where the coefficients c; may be chosen
more or less arbitrarily. It was shown by K. Pearson that if we take c, = N/pi,
we shall obtain a deviation measure with particularly simple properties.”
In cther words, xz is adopted, not because of any connected argument but
because it has, in Pratt's words, "some pleasant properties.”

We have seen that in some cases xz is nearly a multiple of ¢ and in
such cases they will of course lead to essentially the same conclusions.
But let's trr to understand the guantitative difference in these criteria by
a technigue that I want to use a lot from now on, in comparing crthodox and
Bayesian methods. As discussed in the preface, we often find a small quanti-
tative difference between Bayesian and orthodox results, which would be of
ne consequence in most practical problems, and is sc small that our common
sense is unable to pass judgment on which result is preferable. But when
this happens, we can understand the difference by "magnifying" it--by finding
some extreme problem where the difference is so great that our common sense
can tell us which theory is giving sensible results, and which is not.

as our first example of this magnification technigue, let's compare ¥

and XZ to see which is the more reasonable criterion of goodness of fit,

15.4. Comparison of ¥ and Chi-squared.

A coln toss can give three different outcomes: (1} heads, (2) tails,
{3) it may stand on edge. Suppose that Mr. A's knowledge of coins is such

that he assigns probabilities pl = p2 = 0.499, p3 = 0.002 to these cases.
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We are in communication with Mr. B on the planet Mars, who has never seen a
coin and doesn't have the slightest idea what a coin is. So, when told that
there are three possible outcomes at each trial, and nothing more, he can
only assign equal probabilities, pl' = p2' = pa' = 1/3.

Now we want to test Mr. A's hypothesis against Mr. B's by doing a "random"
experiment. We toss the coin 29 times and observe the cutcomes: ng=n, = 14;

ny = 1. 8o, we have for the two hypotheses:

‘ 14 1
a~ [28 todyg (29 % .499) * 1ody, (29 % .002)} = 8.3 db

14 % 3) ( 3)
10| 28 1 12X 3) 21l = 35. i
B { °910 ( 29 10914 (29 ] 30019 db

From thisz experiment the man on Mars thus learns that {(a) there is another

=
Il

v

Il

hypothesis about the coin that is 35.2 db better than his (35.2 db corresponds
to odds of over 3,300:1}) and so unless he can justify an extremely low prior
probability for that alternative, he cannot reasonably adhere to his first
theory. (b) Mr. A's hypothesis is better than his by some 26.8 db, and in
fact is within about 8 db of the best hypothesis that could be made, under
our assumption of independent Bernoulli trials B,. Here the P-test tells us
pretty much what our common sense does.

But suppose that the man on Mars knew only about "orthodox" statistical
principles as usually taught; and therefore believed that X2 was the proper

criterion of goodness of fit. He would find that

2 2
2 (14 - 29 x .499) (L - 29 x .002)
X % =2 + = 15.
A 29 x .499 29 x .002 3.33
2 (14 - 29 x .333)° (1 - 29 x .333)2
= e + o = .
Xp 2 29 % .333 29 = .333 11.65
and he would report back delightedly: "My hypothesis, by the accepted statisti-

cal test, 1s shown to be slightly preferable to yours!"
I think that many persons trained to use xz will find this comparison

startling, and will immediately try to find the error in my nhumerical work
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above. We have here still another fulfillment of our rcbot's prediction
back in Lecture 4. The V¥ criterion is exactly derivable from Baves' theorem;
therefore any criterion which is only an approximation to it must contain
either an inconsistency or a gualitative wviolation of common sense, which
can be exhibited by producing special cases,

We can learn an important lesson about the practical use of XZ by looking
more cleosely at what is happening here. On hypothesis A, the "expected”
nunber of heads or tails in 29 tosses was Np; = 14.471. The actual observed
number must be an integer; and we supposed above that in each case it was the
closest possible integer, namely 14, This certainly seems a mild assumption,
not harmful to hypothesis A. Yet this small discrepancy between expected
and obgarved sample numbers, in a sense the smallest it could possibly be,
nevertheless had an encrmous effect on xz. The spogk lies entirely in the
fact that XAZ turned out so much larger than seems reasonable; there is
nothing surprising about the other numerical values. Evidently, it is the
last term in XAQr which refers to the fact that the coin stood on edge once
in 29 tosses, that is causing the trouble. On hypothesis A, the probability
that this would happen exactly n times in 29 tosses is our binomial distri-
bution

(n|w,py = (ﬁ) " (1-p) M

with N = 29, p = 0.002. From this, we find that the probability of seeing

the coin on edge one or more times in 29 trials is about (1/18); i.e. the

fact that we saw 1t even once is a bit uneuvpected, and constitutes some evidence
against A, that contributes 8 db to the value of wA. But this amount of
evidence is certainly not overwhelming; if our travel guide tells us that
London has fog, on the average, one day in 18, we are hardly astonished to

see fog on the day we arrive.
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It is the (l/pi) weighting factor in the summand of X2 that causes this
ancmaly. Because of it, the xz criterion essentially concentrates its atten-
tion on the extremely unlikely possibilities, if the hypothesis contains them;
and the slightest discrepancy between expected and observed sample numbers
for the .unlikely events severely penalizes the hypothesis. The {-test also
contains this effect, but in a much milder form, the (1/p;) factor appearing
only in the logarithm.

To see this effect more clearly, suppose now that the experiment had
yielded the results nl = 14, n, = 15, n, = 0. Evidently, by either the X2

or ¥ criterion, this ocught to make hypothesis & lock better, B worse, than

in the first example. Repeating the calculations, we now find

wA 0.30 db Ka

0.0925

51.2 db X 14.55

B B

!

You see that by far the greatest relative change was in xAz: both criteria
now agree that hypothesis A is far superior to B.

This shows what can happen through uncritical use of xz. Professor Q
believes in extrasensory perception, and undertakes to prove it to us poor
benighted, intransigent doubters. So he plays card games. On the "null
hypothesis" that only chance is operating, it is extremely unlikely that the
subject will guess many cards correctly.

The first few hundred times he plays, the results are disappointing;
but these are readily explained away on the ground that the subject is not
in a "receptive" mood. [The literature of parapsycholegy abounds with wistful
complaints about the difficulty of reproducing the phenomenon; indeed, just
the kind of difficulty one would expect if the phenomencn did not existl]

But one day providence smiles on Mr. Q; the subject comes through hand-

somely. Immediately he calls in the statisticians, the mathematicians,
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the notary publics, and the newspaper reporters. An extremely improbable

event has at last occurred; and XQ is encrmous. Now he can publish the results
and assert: "The validity of the data is certified by reputable, disinterested
persons, the statistical analysis has been under the supervision of recognized
statisticians, the calculations have been checked by competent mathematicians.
By the accepted statistical test, the null hypothesis has been decisively
rejected.” And everyvthing he haz said is absclutely true!

Moral: For testing hypotheses involving moderately large probabilities,
which agree moderately well with observation, it won't make much difference
whether we use Y or x2. But for testing hypotheses involving extremely
unlikely events, we had better use ¥; or life might become too exciting for

us.

Mow let's describe briefly the Chi-sguared test as done in practice.
We have the sc-called "null hypothesis" H to be tested, and no alternative
is stated. The null hypothesis predicts certain relative freguencies {pl...pr}
and corresponding sample numbers {Npl,...,Npr} where N 1s the number of trials.
We observe the actual sample nunbers {nl,...,nr}. If some of the ni are
very small, we group categories together so that each n, is at least, say,
five. For example, in a case with r = 6, if the observed sample numbers
were {6, 11, 14, 7, 3, 2} we would group the last two categories together,
making it equiwvalent to a problem with r' = 5 distinguishable outcomes per
trial, with sample nunbers {6, 11, 14, 7, 5}, and null hypothesis H' which
predicts frequencies {pl, Py p3, p4, p5+pe}.

We then calculate the cbserved value of XZ:
2

1 (Ili - Nle

2 =
Xobs Zi=1 Npi

(15-55}

as our measure of deviation of cobservation from prediction. Evidently, it

is very unlikely that we would find Xébs = @ even if the hypothesis is true.
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S0, goeg the orthodox reasoning, we should calculate the preobability that
xz would have various wvalues, given H', and reject H if the probability of
a deviation as great or greater than ngs is sufficiently small; usually one
takes 5 per cent as the threshold of rejection.

Now the n, are integers, so xz is capable of taking on only a discrete
gset of numerical values, at most (N+r-1)!/N!{(r-1)! different values, if
the p; are all different and incommensurable. Therefore, the exact x2 distri-
bution is necessarily discrete and defined at only a finite number of points.
However, for sufficiently large N, the number and density of points becomes

2 distribution by a continuous one.

s0 large that we may approximate the ¥
The "pleasant property" referred to by Cramér and Pratt, ig then the fact,

at first glance surprising, that in the limit of large N, we obtain a universal

distribution law: the probability that x? lies in the interval d{y2) is

£op

2y a(v2) = X L2 g2 15-56

g(x%) a(x?) 7z (f‘z): exp{- = x*} a(x?) ( )
2

where f is called the "number of degrees of freedom" of the X2—distribution.
If£f the null hypothesis H was completely specified (i.e. if it contained no
variable parameters), then £ = r' - 1, where r' is the number of categories
used in the sum of (15-55). But if H contains unspecified parameters which
must be estimated from the data, we take £ = r' - 1 - m, where m is the
number of parameters estimated.

We readily calculate the expectation and variance of x2 over this distri-
bution: <X2> = T, var(xzj = 2f; so if we were given H but didn't have the
data of the expsriment, the (mean * standard deviation) estimate of the XZ
we expect to see, would be just

(x2) = f + /2f (15-57)
The reason usually given for grouping categories for which the sample numbers
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are small, is that the approximation (15-56) would otherwise be bad. But
grouping inevitably throws away some of the relevant evidence of the sample,
and there is newver any reason to do this when using .

The probability that we would see a deviation as great or greater than

X%bs is then
2 - 2 2
P[Xobs) J;gbs gy di{x*)
e k
= % e 9 ag {15-58)
qobs
where g = % Xz, k = (£-2)/2. 1If P(xgbs) < 0.05, we reject the null hypothesis
at the 5% "significance level" (sometimes called the 95% level). Tables of
X%bs for which P = 0.01, 0.05, 0.10, 0.50 for various numbers of degrees of

freedom, are given in mest orthodox textbooks and collections of statistical
tables.

Note the traditional procedure here: we choose some basically arbitrary
significance level first, then report only whether the null hypothesis was
or was not rejected at this level. Evidently, this doesn't tell us very
much about the real import of the data; if vou tell me that the hypothesis
was rejected at the 5% lewvel, then I don't know from this whether it would
have been rejected at the 2%, or 1%, level. 1If you tell me it was not rejected
at the 5% lewvel, then I don't know whether is would have beaen rejected at
the 10%, or 20%, level. The orthodox statistician would tell us far more
about what the data really indicates i1if he would report instead the signifi-

cance level P(ngs) at which the null hypothesis is just barely reijected;

for then we know what the verdict would be at all levels. But, for reasons
totally incomprehensible to me, orthodox practice never doesg this, on the
Chi-squared or any other significance test. In fact, the crthodox x2 and

cther tables are so constructed that you can't report the conclusions in
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this more informative way, because they give numerical values only at such
widely separated values of the significance level that interxrpolation isn't
possible,

Sc, let me show you how to find numerical values of P/{ from {(15-58)

P
Xobs)
without using the Chi-sguared tables. Writing g = g, t t, we have

100 oo

k k —-ig +t)}
pe | DoTaga | dmr®l 0T g
k! 0 ki
qO
> - (g +
= 1 Zk K m ok e {qo © dt
K1 fp=0 {m) Jyp To
g a
x -q
=l o © —- (15-59)

But this is just the cumulative Poisson distributicon; i.e. the probability

K
(nsk|q,) = Zm=0 (m]q,)

that m £ k, if m has a Poisson distribution with mean value <m> = Ayt

—q_q "
3 TO
mig) =e = — (15-60)

Numerical values of (15-59) for all wvalues of U v k of usual interest are
given in the graph of the cumulative Poisson distribution in Appendix C.
Use of this will somewhat improwve the walue of the Chi-sguared test.

But if you use the {-test instead, you don't need any tables or graphs
at all. The evidential meaning of the sample is then described simply by

the numerical value of §; and not by a further arbitrary constraint such as

tail areas. Of course, the numerical value of ¥ doesn't in itself tell you
whether to reject the hypothesis (although we could, with just as much justi-
fication as in the Chi-sguared test, prescribe some definite "level" at which
to reject). From the Bayesian point of view, there is simply no use in

"rejecting” any hypothesis unless we can replace it with a definite alternatiwve
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known to be better; and whether this is justified must obvicusly depend not
only on ¥, but also on the priox probability of the alternative (recall our
quotation from E. L. Lehmann on p. 90), and on the conseguences of making
wrong decisions.

In spite of the difference in viewpoints, there is often not much Adif-
ference in the actual conclusions reached. For example, as the number of
degrees of freedom £ increases, the orthodox statistician will accept a higher
value of xz [roughly proportional to £, as (15-57) indicates] before rejecting
the hypothesis, on the grounds that such a high value is guite likely to
occur if the hypothesis is true; but the Bayesian who will reject it only
in favor of a definite alternative, must also a=cept a proportionally higher
value of |, because the number of reasonable alternatives is increasing
exponentially with £, and the pricr prokability of any one of them is corres-
pendingly decreasing. So, in either case we reject the hypothesis if ¥ or
X2 exceeds some limit, with an encrmous difference in the philosophy of how
we choose that limit, but not necessarily a blg difference in its actual
location.

Although the point isn't made in the orthodox literature which just
doesn't mention alternatives at all, we see from the above that xz is not
a measure of goodness of fit relative to all conceivable alternatives; but
only relative to those in the same Bernoulli class. More generally, given
any well-defined class C of alternatives, if we can write Bayes' theorem
{(describing the effect of new data D on the plausibility of two hypotheses
Hl’ H.) in the form

2

e(Hl|DX) - e(Hl|X) = wl - ¢2

where 1, depends only on the sample and Hi, is non-negative over C, and
1

vanishes for some Hy in ¢, then we have constructed the appropriate i which
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measures goodness of fit relative to the class of alternatives C.

In a recent article, Anscombe (1963) holds it to be a weakness of the
Bayesian method that we had to introduce a specific class of alternatives.
It seems to me, however, that it is entirely meaningless to speak of "goodness
of fit" without reference to definite alternatives. For example, if vou ask
a scientist, "How well did the Zilch experiment fit the Bong theory?" you may
get this reply: "Well, if vou had asked me last week, I would have said it
fits the Bong theory wvery handsomely; the experimental points lie much closer
to Bong's curve than to the old Smith thecry curve. But just vesterday I
learned that this fellow Jones has worked out a new theory based on entirely
different assumptions; and his curve goes right through the experimental
points. 50, now I'm afraid I have to say that the Zilch experiment pretty
well demolishes the Bong theory.”

Whether given data support or refute an hypothesis depends entirely on
which alternatives we have in mind; if we fail to specify any alternatives
we cannot hope to get a meaningful significance test, because we have not
asked a well-posed guestion. The guestion when we should seek new alternatives
mist involve our knowledge about the "mechanism"” being studied, and the line
of reascning which led to formulation of the null hypothesis in the first
rlace; it cannot be answered merely from examining the null hypothesis and
the sample. I would hold it to be a great merit of the Bavesian approach
that it forces us to recognize these things, which have apparently not been
obvious to statisticians (although qualitatively they are part of the ele-
mentary common sense which any scientist uses constantly in judging his theories).

This ig a good example of what, I suggest, is the general situation:
the Bayesian approach to statistics supplies the missing theoretical basis
for, and often improvements on, orthodox methods which had long been, just

as Pratt says, "ad hoc procedures with some pleasant properties.”
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15,5. An Acceptance Test.

Here is another very interesting example of a useful significance test.
The probability that a certain machine will operate without failure for a
time t 1s, by hypothesis, exp(~-it). We test n units for a time t, and observe
r failures; what assurance do we then have that the mean life § = k_l exceeds
a preassigned value 80? Let us examine the crthodox sclution based on the
same kind of philesophy that we just saw in the Chi-sguared test (i.e. it is
taboo to speak of the prcobability that ¢ has various values, because & isn't
a "random variable"; so we can use only the probability of getting wvarious
sample values, or the probability distribution of some "statistic"); and
also give the Bayesian solution.

Sobel and Tischendorf (1959) (hereafter dencted ST} give an orthodox
solution with tables that are reproduced in Reoberts (1963). The test iz to
have a critical number C (i.e. we accept only if r ¢ C). On the hypothesis

that we have the maximum tolerable failure rate, Ao = Bo . the probability
that we shall see r or fewer failures is the binomial sum

r - -k _t At
Win,x) = zk:o (EJ °© -e °)F (15-61)

and so, setting W(n,C) £ 1 - P gives us the sample size n reguired in order
that this test will assure § > 80 at the 100 P per cent significance level.
From the ST tables we find, for example, that if we wish to test only for
a time t = 0.01 €, with C = 3, then at the 90 per cent significance level
we shall require a test sample of n = 668 units; while if we are willing to
test for a time t = 60 with € = 1, we need test only 5 units.

The amcunt cof testing called for is appalling if t << 80; and out of
the question if the units are complete systems. For example, if we want to
have 95 per cent confidence (synonymous with significance) that a space

vehicle has 80 z 10 vears, but the test must be made in six months, then
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with C = 1, the ST tables say that we must build and test 97 vehicles! Suppose
that, nevertheless, it had been decreed on the highest policy level that this
degree of confidence must be attained, and you were in charge of the testing
program, If a more careful analysis of the statistical problem, requiring

a few man-vears of statisticians' time, could reduce the test sample by only
cne or two units, it would be well justified economically. Scrutinizing the
test more closely, we note four points:

(1) We know from the experiment not only the total number r of failures,
but also the particular times {tl...tr} at which failure occurred. This
information is clearly relevant to the question being asked; but the ST
test makes no use of it.

{2) The test has a "quasi-segquential" feature; if we adopt an acceptance
number C = 3, then as soon as the fourth failure occurs, we know that the
units are going to be rejected. If no failures occur, the required degree
of confidence will be bullt up long before the time t specified in the ST

tables. 1In fact, t is the maximum possible testing time, which is actually

required only in the marginal case where we cbserve exactly C failures. A
test which 1s "gquasi-sequential"” in the sense that i1t terminates when a clear
rejection or the required confidence is attained, will have an expected length
less than t; conversely, such a test with the expected length set at t will
require fewer units tested.

(3) We have relevant prior information; after all, the engineers who
designed the space wehicle knew in advance what degree of reliability was
needed. They have chosen the quality of materials and components, and the
construction methods, with this in mind. Each sub-unit has had its own tests.
The wehicles would never have reached the final testing stage unless the
engineers knew that they were operating satisfactorily. In other words, we

are not testing a completely unknown entity. These facts constitute prior
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information about the reliability, just as cogent as anything we can learn
from a random experiment.

{(4) In practice, we are usually concerned with a different guestion than
the cne the ST test answers. An astronaut starting a five-year flight to
Mars would not be particularly comforted to be told, "We are 95 per cent

confident that the average life of an imaginary populaticon of space vehicles

like yours, 1s at least ten years.”™ He would much rather hear, "There is
95 pexr cent probability that this vehicle will operate without breakdown
for ten years." Such a statement might appear meaningless to an orthodox
statistician who holds that {probability) = (frequency). But such a statement
would be very meaningful indeed to the astronaut. This is hardly a trivial
point; for if it were known that l_l = 10 years, the probability that a
particular vehicle will actually run for 10 vears would be only 1/ = 0.368;
and the pericd for which we are 95 per cent sure of success would be only
- 10 1In(0.95) vyears, or 6.2 monthas. Reports which concern only the "mean
life" can be rather misleading!

Let us first compare the ST test with a Bayesian test which makes use
of exactly the same Information; i.e. we are allowed to use only the total

nunber of fallures, not the actual failure times. On the hypothesis that

the fajlure rate is A, the prokability that exactly r units fail in time ¢ is

(1 - e ) (15-62)

plr|n,,t) = (n) e (RTL)AL Aty
X

T want to defer discussion of nonuniform priors to a later section; for the
time being suppose we assign a uniform prior to A. This amounts to saving
that, before the test, we consider it extremely unlikely that cur space vehi-
cles have a mean life as long as a microsecond; nevertheless it will be of
interest to see the result of using this priocr. The posterior distribution

of A is then
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n! -{n-r}it -At. ¥

p(dhln,r,t} = Tor-1) T ©l {1l - e yoodA(At) (15-63)

The Bayesian acceptance criterion, which ensures § > Ao_l with 100 P per cent
probability, is then

0o
J; piai|n,r,t) <1 -p (15-64)
o]

But the left-hand side of (15-64) iz identical with W(n,r) given by (15-61);
this is just the well-known identity of the incomplete Beta function and the
incomplete binomial sum, given already in the original memoir of Baves {1762).
In this first cemparison we therefore find that the ST test is mathematically
identical with a Bayesian test in which (1) we are denied use of the actual
failure times; (2) because of this it is not possible to take advantage of
the quasi-sequential feature; (3) we assign a ridiculously pessimistic prier
to A; (4) we still are not answering the guestion of real interest for most
applications.

Of these shortcomings, (2} is readily corrected, and (1) undoubtedly
could be corrected, without departing from crthodox principles. On the
hypothesis that the failure rate is A, the probability that r specified units
fail in the time intervals {dtl...dtg-respectively, and the remaining (n-x)
units do not fail in time t, is

r -irt -(n-r)rt
pldty...dat |n,A,t) = A e dty...dt ]l e ] (15-65)

where t = rdl Zti is the mean life of the units which failed. There is no
single "statistic" which conwveys all the relevant information; but r and t
are jointly sufficient, and so an cptimal orthodox test must somehow make
use of both. When we seek their joint sampling distribution p(r,dE]n,A,t}
we find, to cur dismay, that for given r the interval 0 < t < t is broken
up into r equal intervals, with a different analytical expression for each.

Evidently a decrease in r, or an increase in t, should incline us in the
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direction of acceptance; but at what rate should we trade off one against
the other? To specify a definite critical region in both variables would
seem to lmply some postulate as to their relative importance. The problem
does not appear simple, either mathematically or conceptually; and I would
not presume to guess how an orthodox statistician would solve it.

The relative simplicity of the Bayesian analysis is particularly striking
in this problem; for all four of the above shortcomings are corrected effort-
lessly. PFor the time being, we again assign the pessimistic uniform prior

to A; from (15-65), the posterior distribution of A is then

X
p(di|n,t, t t ) = (AT)  -AT

1t T d(AT) (15-66)

where
T=rt+ (n-r)t (15-67)
is the tectal unit-hours of failure-free operation observed. The posterior
probability that *» > X is now
o
k
o -4 T AT
1 r -x r o )

Bin,r) = = " x" e T dx = e ) 0 TET (15-68)

o
]

and so, B{n,r) < 1 - P is the new Bayesian acceptance criterion at the 100 P
per cent level; the test can terminate with acceptance as soon as this inequa-
lity is satisfied.

Numerical analysis shows little difference between this test and the
ST teat in the usual range of practical interest, where we test for a time
short compared to 60 and observe only a very few failures. For, if Aot << 1,
and r << n, then the Peoisson approximaticon to (15-61}) will be wvalid (as in
Lecture 8); but this is just the expression (15-68) except for the replacement
of T by nt, which is itself a good approximation. In this region the Bayesian

test (15-68) with maximum possikble duration t generally calls for a test

sample one or two units smaller than the ST test. Our common sense readily
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assents to this; for if we see only a few fallures, then information about
the actual failure time adds little to our state of knowledge.

Now let us magnify. The big differences between (15-61) and (15-68)
will occur when we find many failures; if all n units fail, the ST test tells
us to reject at all confidence levels, even though the cbkserved mean life
may have been thousands of times our preassigned 80. The Bayesian test (15-68)
does not break down in this way; thus if we test 2 units and all fail, it
tells us to accept at the 90 per cent level if the observed mean life E_i 1.58 BO.
If we test 10 units and ¢ fail, the ST test says we can assert with 20 per
cent confidence that 8 > 0.22%t; the Bayesian test (15-68) says there is 90
per cent probability that 0 > 0.63 t + 0.07 t. Our common sense has no dif-
ficulty in deciding which result we should prefer; thus taking the actual
failure times intc account leads to a clear, although usually not spectacular,
improvement in the test, The person who rejects the use of Baves' theorem
in the manner of Eg. (15-66} will be able to obtain a comparable improvement
only with far greater difficulty.

But the Bayesian test (15-68) can be further improved in two respects.
To correct shortcoming (4), and give a test which refers to the reliability
of the individual unit instead of the mean life of an imaginary "population"
of them, we note that if A were known, then by our original hypothesis the
probability that the lifetime 8 of a given unit is at least 80, is

-\
p(oz8_|A) = e (15-69)

The probability that © > 80, conditional on the evidence of the test,

is therefore

o  -A8
Q
p(egeo\n,t .t ) = JC e plai|n, t)...¢)

1 r
r+1
- (T E'@“) (15-70)
o]
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Thus, the Bayesian test which ensures, with 100 P per cent probability,

that the life of an individual unit is at least 80, has an acceptance criterion

that the expression ({15-70) is > P; a result which is simple, sensible, and
as far as I can see, utterly bevond the reach of orthodox statistics.

The Bayesian tests (15-68) and (15-70) are, however, still based on a
ridiculous prior for A; ancother improvement, even further beyond the reach
cf orthodox statistics, will be found presently, as a result of using a

reasonable prior.
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Lecture 16

THE Ap DISTRIBUTION AND RULE OF SUCCESSION

Up to this point we have given our robot fairly general principles hy
which he can convert information into numerical values of prior probabilities,
and convert posterior probabilities inte definite final decisiocns; so he is
now able to solve lots of preoblems. But he still operates in a rather inef-
ficient way in one respect. When we give him new informaticon and ask him
to reason about it, he has to go back into his memory {(this proposition I
that involves everything that has ever happened to him). He must scan his
entire memory storage reels for anything relevant to the problem before he
can start reasoning on it. Ag the robot gets older this gets to be a more
and more time-consuming process.

Now, human brains don't do this. We have some machinery built into us
which summarizes our past conclusions, and allows us to forget the details
which led us to those conclusions. We want to see whether it's possible to
give the robot a definite mechanism by which he can store conclusions rather

than isclated facts.

16.1. Memory Storage for 0ld Robots.

Let me point out ancther thing, which we will see is closely related
to this problem. Suppose you have a penny and you are allowed to examine it
carefully, convince yourself that it's an honest coin, has a head and tail,

and center of gravity where it ought to be. Then, vou're asked to give the
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probability that this coin will come up heads on the first toss. I['m sure
vou'll say 1/2. Now, suppose vou are asked to assign a probability to the
proposition that there is life on Mars. Well, I don't know what your opinicn
is there, but on the basis of all the things that I have read on the subject,
I would again say about 1/2 for the prcobability. But, even though I hawve
assigned the same probability to them, I have a very differént state of
knowledge about those propositions. To see that, imagine the effect of getting
new information. Suppose we tossed the coin five times and it comes up

tails every time. ¥You ask me what's my probability for heads on the next
throw; I'11 still say 1/2. But if vou tell me one more fact about Mars, I'm
ready to change my probability assignment completely. My state of belief

has a great instability in the case of Mars, but there's something which
makes it wvery stable in the cagse of the penny.

Now, it seemed to me for a long time that this was a fatal objection to
Laplace's form of probabllity theory. We need to associate with a proposition
not just a single number representing plausibility, but two numbers; one
representing the plausibility, and the other how stable it is in the face of
new evidence. 2&And so, a kind of two-valued theory would have to be developed
before it would make any sense. In the early 1950's, I even gave a talk at
one of the Berkeley Statistical Symposiums, expounding this viewpoint. This
is, furthermore, just what Carnap (1952) has done; his continuum of inductiwve

methods consists of a class of probability functions C. (h,e) in which A is

P\
the "stability parameter.™

But now, I think that there's a mechanism by which we can show that our
present theory automatically contains all these things. So far, all the
propositions we have asked the robot to think about are ones which had to

be either true or false. Suppose we bring in new propositions of a different

type. It doesn't make sense to say the proposition is either true or false,
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but still we are going to say the robot assigns credibility to it. Now,
these propositions are sometimes hard to state verbally, and I, at least,
am never able to write a verbal statement that's unambiguous. But you noticed
hefore that we can get around that very nicely by recognizing that if I state
all probabilities conditional on X for a given problem, I've told vou every-
thing abcut X that's relevant to the problem. So, I want to introduce a new
propositicon Ap, defined by
(Ala E) = p (16-1)
P

where E is any additional evidence. If I had to render Ap as a verbal state-
ment, it would come out scomething like this:

"Regardless of anything else you may have been told,

the probability of A is p."

Now, Ap is a strange proposition, but if we allow the xobot to reason
with propositions of this soxrt, Bayes' thecorem guarantees that there's nothing
to prevent him f£rom getting an Ap worked over onto the left side in his
probabilities: (Ap|E}. Mow, what are we doing here? We're talking about
the "probability of a preobability.” I defined Ap by writing an eguation.

You ask me what i1t means, and I reply by writing more eguations. So let's
write the egquations; if X says nothing about A except that it is possible for
A to be true, and also possible for it to be false, then as we saw in the
case of the "completely ignorant population" in Lecture 12,

(Ap[x) =1, 0<pc< 1. (16-2)
The transformation group arguments of Lecture 12 apply to this problem. Aas

seon as we have this, we can use Baves' theorem to get the probability (den-

sity) of Ap, conditicnal on other things. In particular,

(Elap) _ (E|Ap)
(APJE) = (Ap[x] &% - G (16-3)
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Now,
1
(alE)y = (3a_|E) ap (16-4)
0 1%

The propositions Ap are mutually exclusive and exhaustive (in fact, every
Ap flatly and dogmatically contradicts every other Aq), so we can do this.
We're just going to apply all of our mathematical rules with total disregard
of the fact that Ap is a funny kind of proposition. We believe that these
rules form a consistent way of manipulating preopositions; their application
cannot lead to contradictions. (0f course, we haven't really proved that
they are consistent; we have proved only that if we represent degrees of
plausibility by real numbers and require gqualitative agreement with common
sense, any other rules would be inconsistent.) But consistency 1s a purely
structural property of the rules, which could not depend on the particular
semantic meaning you or I might attach to a proposition. So now we can blow

up the integrand of (l6~4) by our Rule 1:

(a|E) = lfl (ala E)(a_lE) ap {16-5)
) P b

But from the definition (16-1) of AP, the first factor is just p, and so

1
(alg) = f (A_|E) p &p {16-6)
o P

The probability which our robot assigns to proposition A is just the

first moment of the distribution of AP. Therefore, the distribution of Ap
should contain an awful lot more information about the robot's state of mind
concerning A, than just the probability of A. I think the introduction of
propogsitions of this sort solves both of the preblems mentioned, and also
gives us a powerful analytical tool for calculating probabilities.

To see why, let's first note some lemmas about relevance. Suppose this
evidence E consists of two parts; E = E By where Ea is relevant to A and,

given E_, E,_ is not relevant:
a b

(a[) = (aleE) = @&alE) (16-7)
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By Bayés' theorem, it follows that, given E_, A must also be irrelevant to

Eb, for

(A|ELE )
(B [2E ) = (B |E) _?ETE;T_ = (B |E) (16-8)

Let's call this property "weak irrelevance." Now does this imply that By,
is irrelevant to AP? Evidently not, for (16-7) savs only that the first
moments of (AP]Ea) and {ApraEb) are the same. But suppose that for a given
Ey (1l6-7) holds independently of what E, might be; call this "strong irrele-

vance.," Then we have

1 1
alE) = jr (2 |EE) pdp = Jf @ |E) p ap. (16-9)
| , @JEE)p@= ) @alz) e

If this is to hold for all (Ap|Ea), the integrands must be the same

(Ap]EaEb) = (Ap[Ea) (16-10)

and from Bayes' theorem it follows as in (16-8) that Ap is irrelevant to By :

(Ey|agE) = (By[E (16-11)

for all E;.
Now, suppose our robot gets a new piece of evidence, F. How does this
change his state of knowledge about A? We could expand directly by Bayes'

theorem, which we have done before, but let's use cur Ap this time,

| 1 | ! | (F[A E)
(aler) = t£ (a ler) p ap = D @, _TFTET" p dp . (16-12)

In this likelihood ratioc, any part of E that is irrelevant to Ap can be struck

out. Because, by Bayes' theorem, it is equal to

(EbIFAPEa)
(F|A_E E) (F|ApEa) (FIA E )
[ P a b _ (Eb|ApEa} - ] p a (16_13)
(F|EE,) : {Eb|FEaJ {F|Ea)
(FIE.) |-
%a) |, fe )

where we have used (16-11). Now if E, still contains a part irrelevant to

Ap, we can repeat this process. Imagine this carried out as many times as
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possible; the part E_a of E that is left contains nothing at all that is
irrelevant to Ap. E,, must then be some statement only about A. But then

by the definition (16-1) of Ap’ we see that Ap automatically cancels out

Eaa in the numerator: (F]APEaa) = (FlAp). and so we have {16-12) reduced to

1 1
(A!EF] = (—F]-Eajfo (Ap|E) (F|Bp) r dp (16-14)

The weak point in this argument is that I haven't proved that it is possible
to resolve E intc a completely relevant part and completely irrelevant part.
However, it is easy to show that in many applications it is possible. So,
let's just say that the following results apply to the case where the prior
information is "completely resolvable.” We don't know whether it is the most
general case; but we do know that it is not an empty one,

Now, (F|Eaa) is a troublesome thing which we would like to get rid of.
It's really just a nermalizing factor, and we can eliminate it the way we
did in Bguation (5-3); by calculating the odds on A instead of the probability.

This is just

1
/{; (Ap[E) (F|Ap) p dp

= 1
1- d
j} (Apr) (F!Ap) (1-p) dp

(a|EF)
(a|FE)

= O(a|EF) {16-15)

The proposition E, which for this problem represents cur prior evidence,

now appears only in the combinatiocn (ApiE). This means that the only property

of E which the robot needs in order to reason out the effect of new informa-

tion 1s this distribution (AP|E). Everything that has ever happened to him
which is relevant to this proposition A may consist of milliens and millieons
of isolated separate facts. Whenever he receives new information, he does
not have to go back and search his entire memory for every little detail of
experience relevant to A. Everything he needs in order to reason about it

is contained summarized in this one function, (AP|E). So, for each proposi-
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tion about which he is going to have to reason, he can store a function like
that in Figure {(16.1). Whanever he receives new information, F, he will be
well advised toc calculate {2& [EF), and he then can erase his previous (APIE)
and for the future store only (AP|EF).

This shows that in a machine which does inductive reasoning, the memory
storage problem is wery much simpler than it is in a machine which does only
deductive reasoning, like this one you have down at the end of the hall.
This doesn't mean that the robot is able to throw away entirely all of his
past experience, because there's always a possibility that some new proposi-

tion will come up which ke has not had to reason about before. And whenever

this happens, then, of course, he will hawve to go back to his original archives

and search for every scrap of information he has relevant to this propesition,

With a little introspecticon, I think we would all agree that that's

exactly what goes on in cur minds. If you are asked how plausible you regard

(Aplm

p -

Figure 16.1
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some proposition, you don't go back and recall all the details of everything
that you evexr learned about this proposition. You recall your previous
state of mind about it. How many of us can still remember the argument

that first convinced us that

d sin x
dx

= oS X ?

Let's look once more at Equation (16-14). If the new information F is
to make any appreciable change in the probkability of A, we can see from this
integral what has to happen. If the distribution of (AP‘E} was already wvery
sharply peaked at one particular value of p, then (FIAP) will have to be even
more sharply peaked at some other value of p, if we are going to get any
appreciable change in the probability. ©On the other hand, 1f the distribution
(APJE) is a very broad one, then, of course, almost any small amount of slope
in (F|Ap) can make a big change in the probability which the robot assigns
to A. 8o, the stability of the robot's state of mind is essentially the
width of the distrxibution (AP‘E). I don't think there's any zingle number
which fully describes this stability. ©On the cother hand, whenever he has
accumulated encugh evidence so that (AP|E) is fairly well sharply peaked
at some value of p, then the variance of that distribution becomes a pretty
good measure of how stable his state of mind is. The greater amount of pre-
vious information he has collected, the narrower his Ap—distribution will
be, and therefore the harder it will be for any new evidence to change that
state ¢of mind.

Now we can see the difference between the penny and Mars. In the case
of the penny, my distribution (Ap[E}, based on my prior knowledge, is repre-
sented by a curve scmething like Figure (l6é.2a). In the case of the question

of life on Mars, my state of knowledge is described by an (Ap|E) distribution

something like Figure (16.2b), qualitatively. The first moment is the same
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Fenny Mars

(A_|E) ——
(o |B) —

p — 1 0 P — 1
{a) {(b)

Figure 16.2

in the two cases. So, I assign probability 1/2 to either one; nevertheless,
there's all the difference in the world between my state of knowledge about
those two propositions, and this difference is represented in the distribution
of (A_|E).

b

Now, incidentally, I might mention an amusing thing. While I was first
working some of this out, a newspaper story showed up from which I would
like to read yvou a few sentences. This is from the Associated Press, Decem-
ber 14, 1957, entitled, "Brain Stockpiles Man's Most Inner Thoughts." It
starts out: "Evervthing yvou have ever thought, done, or said--a complete
record of every conscious moment--is logged in the comprehensive computer of
your brain. You will never be able to recall more than the tinlest fraction
of it to memory, but you'll never lose it either. These are the findings
of Dr. Wilder Penfield, Director of the Montreal Neurclogical Institute, and

a leading Neurosurgeon. The brain's ability tc store experiences, many
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lying belcw consciousness, has been recognized for some time, but the extent
of this function is recorded by Dr. Penfield."

Now there are several examplesgiven, of experiments on patients suffering
from epilepsy. Stimulation of a definite lecation in the brain recalled a
definite experience from the past, which the patient had not been previcusly
able to recall to memory. This has happened many times. I'm sure you have
all read about these things. Here are the concluding sentences of this article.
Dr. Penfield now says, "This is not memory as we usually use the word, although
it may have a relation to it. No man can recall by voluntary effort such a
wealth of detail. A man may learn a song so he can sing it perfectly, but
he cannot recall in detail any one of the many times he heard it. Most things
that a man is able to recall to memory are generalizations and summaries.
If it were not so, we might find curselwvesconfused by too great a richness

of detail."”

16.2. An Application.

Now let's imagine that a "random" experiment is being performed. From
the results of the experiment in the past, we want to do the best jok we can
of predicting results in the future. To make the problem a definite one,
introduce the propositions:

X = "For each trial we admit two prior hypotheses: A true,
and A false, The underlying 'causal mechanism' is
assumed the same at every trial. This means, for example,
that (1) the probability assigned to A at the n'th
trial does not depend on n, and (2) evidence concerning
the results of past trials retains its relevance for
all time; thus for predicting the outcome of trial

1,000, knowledge of the result of trial 1 is just as

lg-10



relevant as knowledge of the result of trial 999.
There is no other prior evidence.

Nn = "A true n times in ¥ trials in the past.”

M "A true m times in M trials in the future.”

n

iy

The wverbal statement of X suffers from just the same ambiguities that we
have found before, and which have caused so much trouble and controversy in
the past. One of the important points I want to put across in these talks
is that you have not given any precise description of the prior informatiocn
until you have given, not wverbal statements, but equations, which specify
the prior probabilities to be used. In the present problem, this more precise
statement of X is, as before

(Aplx) =1 , 0<pc<l (16-16)
with the additicnal understanding that the Eggg_ap—distribution is to be
used for calculations pertaining to all trials. What we are after is (Mman).

First, note that by many repetitions of our Rule 1 and Rule 2, in the same

way that we found Equation (5-34), we have the binomial distributions
N) n N-n
ey = (L) p (1-p)

@) pM-pyt (16~17)

It

‘Mm"“*p’

Note that, although Ap sounds like an awfully dogmatic and indefensible
statement to us the way we've introduced it, this is actually the way.in
which probability is introduced in almost all present testbooks. One postu-
lates that an event possesses some intrinsic, "absclute" or "physical" proba-
bility, whose numerical value we can never determine exactly. Nevertheless,
no one gquestions that such an "absolute" probability exists. Cramér (1946,
p. 154}, for example, takes it as his fundamental axiom. That is just as

dogmatic a statement as our Ap; and T think it is, in fact, just our Ap

The eguations you see in current textbooks are ali like the two I have just
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written; whenever p appears as a given number, there's an Ap hiding in the
right-hand of vour probabiliity symbols.

Mathematically, the only difference bhetween what we're doing here and
what is done in current textbooks i1s that we recognize the existence of that
right-hand side for all prcbabilities, and we are not afraid to use Baves'
thecrem to work any proposition whatscever back and forth from one side of
our symbols to the other. I think that in refusing to make free use of
Bayes' theorem, modern writers are depriving themselves of the most powerful
single principle in probability theory. When a problem of statistical inference
is studied long encugh, sometimes for decades, one is always forced eventually
to a conclusion that could have been derived in three lines from Bayes'
theorem. We saw this in the quality-control example and in the case of
decision theory; and we'll see several more examples in the remainder of
these talks.

Now, we need to find the prior probability (Nn]X). This is already
determined from (AP|X), for our trick of resolving a proposition into mutuaily

exclusive alternatiwves gives us

1 1 1
N n N-n
N |x) = NA [%) dp = N la)@a |x) dp = f 1- a
o |x) JE (N p[ } dp LL | o P| ) dp (p) P (1-p) p

The integral we have to evaluate is the complete Beta-function:

1
r 5 r! gl
J; x (1-x) dx = (z+st1) ! (16-18)
Thus, we have
'I\.I__’J_:‘Ir 0 <£n <X
W, [%) = (16-19)

i.e., just the uniform distribution of maximum entropy. (MmiX) is similarly

found. Now we can turn (16-17} around by Bayes' theorem:

v [a))
(3 |8 ) = (& |x) = (N+1) (¥ |2 ) (16~20)
p' n P (N, %) np
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and so finally the desired probability is

1 1
(M [N ) = JC (MmAp]Nn) dp = Jg (MmlApNn)(Ap]Nn) do . (16-21)

Since (Mm[ApNn) = {Mm|Ap} by the definition of Ap, we have everything in the

integrand on the board. Substituting into {(16-21), we have again an Eulerian
integral, and our result is
(n+m) (N+M—n—m )
| ) = n(N+M+?jn (16-22)
M

Note that this is not the same as the hypergeometric distribution {5-23) of
sampling theory. Let's look at this result first in the special case M = m = 1,
It will then reduce to the probability of A being true in the next trial,

given that it had been true n times in the previous N trials. 7The result is

(a[n ) = ; i ; X (16-23)

This is Laplace's rule of succession. It occupies a supreme pogsition in
1%

probability theory; it has been easily the most misunderstood and misapplied
rule in the theory, from the time Laplace first gave it in 1774. In almost
any book on probability you'll find this rule mentioned wvery briefly, mainly
in order to warn the reader not to use it. But we've got to take the trouble
to understand it because in our design of this robot, Laplace's rule of
succession is, 1like Bayes' theorem, one of the most important rules we have.
It is a new rule for converting raw information into numerical wvalues of
probabilities, and it gives us one of the most important connections between

probability and frequency.

16.3. Laplace's Rule of Succession.

Poocr old Laplace has been lampooned for generations because he illustrated
use of this rule by calculating the probability that the sun will rise tomorrow,

given that it has risen every day for the past 5,000 yzars. One gets a
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rather large factor in favor of the sun rising again tomorrow, of course,
With no exceptions at all as far as I know, modern writers on probability
have considered this a pure absurdity. Even Jeffreys and Carnap find fault
with the rule of succession.

I have to confess to you that I am unable to see anything at all absurd
about the rule of succession. I recommend very strongly that yvou do a little
literature searching, and read some of the objections various writers have
to it. I think you will see that in every case the same thing has happened.
First, Laplace was quoted out of context, and secondly, in order to demons trate
the absurdity of the rule of succession, the author applies it to a case where
it was never intended to be applied, because there is additional prior informa-
tion which was not taken into account.

If you go back and read Laplace {1819) himgelf, you will see that in
the very next sentence after this sunrise episode, he points out to the
reader that this is the probability based only on the information that the
event has occurred n times in N trials, and that our knowledge of celestial
mechanics represents a great deal of additional information. Of course,
if you have additional information beyond the numbers n and N, then you ought
to take it into account. You are then considering a different problem, the
rule of succession no longer applies, and you can get an entirely different
answer. This theory gives the results of consistent plausible reasoning on

the basis of the information which was put inte it.

Let me give you three famous examples of the kind of objections to the
rule of succession which you find in the literature. (1) Suppose the solidif-
ication of hydrogen to have been once accemplished. According to the rule
of succession, the probability that it will solidify again if the experiment
is repeated is 2/3. This does not in the least represent the state of belief

of any scientist. (2) A boy is 10 years old today. According to the rule
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of succession, he has the probability 11/12 of living one more year. His
grandfather is 70; and so according to this rule he has the probability
71/72 of living one more vear. The rule violates qualitative common sense!
(3) Consider the case N = n = 0. It then says that any conjecture without
any verification has the prebability 1/2. Thus there is probability 1/2
that there are exactly 137 elephants on Mars. Also there Is probability 1/2
that there are 138 elephants on Mars. Therefore, it is certain that there
are at least 137 elephants on Mars. But the rule says alsc that there is
probability 1/2 that there are no elephants on Mars. The rule is logically
gself-contradictory!

The trouble with examples (1) and (2) is obwvious in view of our earlier
remarks; in each case, an enormous amount of highly relevant prior information,
known to all of us, was simply itrnored, producing a flagrant misuse of the
rule of succession. But let's look a little more closely at example (3).
Wasn't the law applied correctly here? I certainly can't claim that we had
pricr information about elephants on Mars which was ignored, can I? And
even 1f I could, that still wouldn't account for the self-contradiction,
Evidently, if the rule of succession is going to survive example (3}, there
must be some very basic points about the use of probability theory which we
still have to learn.

Well, now, what do we mean when we say that there's no evidence for a
proposition? The question is not what you or I might mean c¢olloquially by
such a statement. The qguestion is, what does it mean to the robot? wWhat
does it mean in terms of probability theory?

The prior information we used in derivation of the rule of succession
was that the robot is told that there are only tweo possibilities: A true,
and A false. His entlire "universe of discourse" consists of only two propo-—

sitions. 1In the case N = 0, we could solve the probklem alsc by direct appli-
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cation of the principle of indifference, Rule 4; and this will of g¢ourse give
the same answer (A|X) = 1/2, that we got from the rule of succession. But

just by noting this, we see what is wrong. Merely by admitting the possibility

of three different propositions being true, instead of only two, we have

already specified prior information different from that used in deriving the

rule of succession.

If the robot is teold to consider 137 different ways in which & couwld
be false, and only one way in which it could be true, then the prior probabi-
lity of A is 1/138, not 1/2. So, we see that the example of the elephants
on Mars was, again, a gross misapplication of the rule of succession.

Moral: Prcbability theory, like any other mathematical theory, cannot
give us a definite answer unless we ask it a definite question. We should
always start a problem with an explicit enumeration of the different proposi-
tions we're going to consider. That is part ¢of the "boundary conditions™
which must be specified before we have a uniquely defined mathematical problem.
If you say, "I don't know what the possible propositions are," that is
mathematically equivalent te saying, "I don't know what proklem I want to
solve." This is just the peint that I have already belabored back in Lecture
7.

In this connection we have to remember thait probakility theoxy never
solves problems of actual practice, because all such problems are infinitely
complicated. We solve only idealizations of the real problem, and the solution
is useful to the extent that the idealization is a good one. In the example
of the solidification of hydrogen, the prior information which our common
sense uses so easily, is actually so complicated that nobody knows how to
convert it into a prior probability assignment. I don't think there is any
reason to doubt that probability theory is, in principle, competent to deal

with such problems; but we have not yet learned how to translate them inte
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mathematical language without oversimplifying so much that the solution is
uselessg.

Laplace's rule of succession provides a definite scolution to a definite
proklem. EBvervbody dencunces it as nonsense because 1t is not also the
solution to some other problem. The case where the problem can be reasonably
idealized to one with only two hypetheses to be considered, a belief in a

t

constant "causal mechanism," and no other prior information, is the only

case where it applies. You can, of course, generalize it to any number of
hypotheses, and let me just give you the result of doing this.

There are K different hypotheses, {Al, Royrenes AK}, a belief that the
"causal mechanism" is constant, and no other prior information. We pexrform

a randem experiment N times, and cbserve Al true ny times, A, true n, times,

2

etec. Of course, z nj
i

N. ©On the basis of this evidence, what is the proba-

bility that in the next M = E m, repetitions of the experiment, By will be
i
true exactly m; times? To find the distribution (ml...mK nl...nK) that

answers this, define the prior knowledge by a K-dimensional uniform prior
distribution

A X) = C +...+p -1} 0 16-24
(B [ %) 8 (p, P P, 2 { )

To find the normalization constant C, we set

dp f dp. (A [x) = 1=¢c1(D (16-25)
j; 1 0 K pl°°'pK

where

Ap ... - 16-2
I(r) £ pl f{;detS(pf +pK T) (16-26)

Direct evaluation of this would be rather messy, sc¢ let's use the following

trick. First, take the Laplace transform of (16-26)

s [ ca —Of.(p +---+p )
- K
e % 1(r) ar = ap. . .. dp, e T - (16-27)
0 0 1 0 K K
68
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Or, inverting the Laplace transform,

1o
ar Ke-1
1 e 1 d or
I{r) = — e da = e
27i f_.m o (K-1) 1 g,K-1
1 a=0
K-1
s a— (16-28)
(K~1) 1
Thus,
c=_1 = (-1 (16-29)
T{1)

By this device, we avoided having to consider complicated details about dif-
ferent ranges of integration over the different Py that would come up if we
tried to evaluate (16-26) directly.

The prior distribution (n ..nK‘X] is then, using the same trick,

1
o o] n n
N! 1 K
{n_....n ‘X) P — Jﬂ dp .../F dp. p .. .p (A Ix)
1 K nl....nK. 0 1 0 K™l K pl...pK
Nl (K-1)!
= I( )' J (1) (16=-30)
nytereng!
where
/00 /oo nl nK
J(r) = dp_... d . 8 +...+p -r) {16-31)
, Ty o Px Py Py (p1 P
which we evaluate as before by taking the Laplace transform:
sl - oot
c/ e—ur Ji{r) dr = ’ 4d er g 1 p nK e a(pl PK)
0 0 Pyeee 0 Py Py Py
n,!
K 1
= Hi=l Y {16-32)
q +
So, as in (l6-28), we have
nyl...ng! ieo oOF aq nyl...ngl! N+K=1 Lom33)
T = "oy i QMK K- (

and
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(n n IX) o MR- o 0, n.+ +n._ = N (16=-34
17"k (N+k-1) 1 i P - )

Therefore, by Baves' theoremn

{n ..nK|Ap D
(a fnl...nK) = (a | %) { [lX K
PPy PyeeePy - - Dy ] X)
n n
_(HK-1) ! 1 K (16-35)
= EIfTTTH;T 1 ...pK 6(pl+. +p_ -1}

and finally

ceen ) = dp....| 4 ...n_|a
(myeeomy nyonony ) fo Py f; P (my-oomy| pl...pK)(Apl...pKInl By

w2 o n._+m n_+m
M1 (N+K-1) 1 f f 1™ K g
= d - d = +-oo -

mot.m o f.on ! Jy t17d, Fr P Py S (Bt ety L)

1 K1 K’
{16-36)
The integral 1s the same as J{l) except for the replacement n, -+ ni+mi.
So, from (16-33),

fn 4+m )!...(n +m J!

(m ...om [n ...n ) = Mt (NtR-DE 1 ] K_K (16-37)
1 K K mlz...mKl nl!...nKl (N+M+K-1) !

or, reorganizing into binomial coefficients,

n,+ +
(nl ml) (nK My
ny Dy

(ml...mK nl...nK) = NTIR=1 {16-38)
M
In the case where we want just the probability that Al will be true on the
next trial, we need this formula with M = ml = 1, all other m, = 0. The
result is the generalized law of succession:
nl + 1
A |n_ ,N,K) = ——— ° 16-39
(& In NR) = = ( )
You see that in the case N = n, = 0, this reduces to the answer provided

1

by the principle cof indifference, Rule 4, which it therefore contains as a
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special case. If K is a power of 2, this is the same as a method of inductive
reasoning proposed by Carnap in 1945, which he denotes as c¢*{(h,e} in his
"Continuum of Inductive Methods."

Now, use of the rule of succession in cases where N is very small is
rather foolish, of course. Not really wrong; just foolish. Because if we
have no prior evidence about A, and we make such a small number of observations
that we get practically no evidence; well, that's just not a very promising
basis on which to do plausible reasoning. We can't expect to get anything
useful out of it. We do, of course, get definite numerical values for the
prokabilities, but these values are wvery "soft," i.e., very unstable, because
the A distribution is still wvery bread for small N. ©QOur common sense tells
us that the evidence Nn for small N provides no reliable bagis for further
predictions, and we'll see in the next lecture that this conclusion also
follows as a conseguence of the theory we're developing here.

The real reason for introducing the rule of succession lies in the
cases where we do get a significant amount of infermation from the random
experiment; i.e., when N is a large number. In this case, fortunately, we
can pretty much forget about these fine points concerning prior evidence.

The particular initial assignment (Apfx) will no longer have much influence
on the results, for the same reason as in the particle-counter problem. This
remains true for the generalized cagse leading to (16-38). You see from
(16-39) that as soon as the number of observations W is large compared to

the number of hypotheses K, then the probability assigned to any particular
hypothesis depends for all practical purposes, only on what we have okserwved,
and not on how many pricr hypotheses there are. If you contemplate this

for ten seconds, I think your commen sense will tell vyou that the criterion

N**K is exactly the right one for this to be so.
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16.4., Confirmation and Weight of Evidence.

Now, I'd like to introduce a few new ideas which are suggested by our
calculations involving Ap. We saw that the stability of probability assign-
ment in the face of new evidence is essentially determined by the width of

the AP distribution. If E is prior evidence and F ig new evidence, then

O (AP]F) (Ap|E) p dp

T
A |F) (A |E) @&
[ oo w

We'll say that F is compatible with E, as far as A is concerned, if having

1
(B|EF) = J; (AP[EF) p dp = (16-40)

the new evidence, F, doesn't make any appreciable change in the probability
of A; 1.e.,

(a]EF) = (A|E) (16-41)
The new ewvidence can make an enormous change in the distribution of Ap with-
out changing the first moment. It might sharpen it up very much, or broaden
it, We could become elither more certain or more uncertain about A, but if
F doesn't change the center of gravity of the Ap distribution, we still end
up assigning the same probability to A.

Now, the stronger property: the new evidence F confirms the previous
probability assignment, if F is compatible with it, and at the same time,
gives us more confidence in it. 1In other words, we exclude one of these
possibilities, and with new evidence F the Ap distribution narrows. Suppose
F consists of performing some random experiment and observing the frequency

with which & is true. In this case F = Nn, and our previous result, Eqg. (16-20),

gives
(N+1} ! n N-n
(Apan} - n!{N-n)! p (1-p)
(p-£) 2
= (constant) *exp - —2—5—— {16-42)
20

1-21



where

o2 = Eiélﬁl (16-43)

and £ = (n/N} is the observed frequency of A. The approximation is derived

by expanding log(a in a Taylor series about its peak value, and is valid

P]Nn)
when n>>1 and (M-n)>> 1. If these conditions are satisfied, then {Ap|Nn) is
very nearly symmetric about its peak value. Then, if the observed frequency
f is close tc the prior probability (AIE), the new evidence Nn will not
affect the first moment of the Ap distribution, but will sharpen it up, and
that will constitute a confirmation as I defined it. This shows one more
connection between probability and frequency. I defined the "confirmation®
of a probability assignment according to entirely different ideas than are
usually used to define it. I defined it in a way that agrees with our in-
tuitive notion of confirmation of a previous state of mind. But it turned
out that the same experimental evidence would constitute confirmation on
either the fregquency theory or our theory.

Now, from this we can see ancther useful notion; which I'11 call weight
of evidence.

ILet's consider Ap, given two different pieces of evidence, E and F.

(A_|EF) = (constant) (A |E)(a |F) (16-44)
p p p

If the distribution (AP|F) was very much sharper than the distribution (AP!E),
then the preduct of the two would still have its peak at practically the

value determined by F. In this case, we would say that the evidence F carries
much greater "welght" than the evidence E. If we have F, it doesn't really
matter much whether we take E into account or not. On the other hand, if

we don't have F, then whatever evidence E may represent will be extremely
significant, because it will represent the best we are able to do. So,

acquiring one piece of evidence which carries a great amount of weight can
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make it, for all practical purposes, unnecessary to continue keeping track
of other pieces of evidence which carry only a small weight.

Of course, this is exactly the way our minds coperate. When we receive
one very significant piece of evidence, we no longer pay so much attention
to vague evidence. In so¢ doing, we are not being very inconsistent, because
it wouldn't make much difference anyway. 50, our intuitive notion of weight
of evidence is bound up with the sharpnass of this Ap distribution., Evidence
concerning A that we consider very significant is not necessarily evidence
that makes a kig change in the prokability of A. It is evidence that makes
a big change in this distributicn of Ap. Now seeing this, we can get a little
more insight into the principle of indifference, Rule 4, and also make contact
between this theory and Carnap's methods of inductive reasoning.

Before we can use the principle of indifference to assign numerical
values of probabilities, there are two different conditions that have to be
satisfied: (1) we have to be able to analyze the situation into mutually
exclusive, exhaustive posgibilities; (2) having done this, we must then find
that the available information gives us no reason to prefer any of the pos-
sibilities to any othexr. 1In practice, these conditicns are hardly ever met
unless there's some evident element of symmetry in the problem. But there
are two entirely different wavse in which condition (2} might be satisfied.

It might be satisfied as a result of ignorance, or it might be satisfied as
a result of positive knowledge about the situation.

To 1llustrate this, let's suppose that a person who is known to be very
dishonest is going to toss a coin and there are two people watching him. Mr.
A is allewed to examine the coln. He has all the facilities of the National
Bureau of Standards at his disposal. He performs thousands of experiments
with scales and calipers and magnetometers and microscopes, X-rays, and

neutron beams, and so on. Finally, he is convinced that the ceoin is perfectly
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honest. Mr. B is not allowed to do this. All he knows is that a coin is
being tossed by a shady character. He suspects the coin is biased, but he
has no idea in which direction.

Condition {2} is satisfied equally well for both of these people. Each
of them would start out by assigning probability one-=half to each face. The
same probability assignment can described a c¢ondition of complete ignorance
or a condition of wvery great knowledge. WNow, this sort of situation has
seemed paradoxical for a long time. Why doesn't Mr, A's extra knowledge
make any difference? Well, of course, it gggg make a difference. It makes
a very important difference, but one that doesn't show up until we start
performing this random experiment. The difference is not in the prokbability
of A, but in the distribution of Ap.

Suppose the first toss is heads. To Mr. B, that constitutes evidence
that the coin is biased to favor heads. aAnd so, on the n=xt toss, he would
assign new probabilities to take that into account. But to Mr. A, the evidence
that the coin is honest carries overwhelmingly greater weight than the evidence
of one throw, and he'll continue to assign a probability of 1/2.

Well, now, you see what's going to happen. To Mr. B, every tosg of the
coin represents new evidence about its bias. Bvery time it's tossed, he will
revise his assignments for the next toss; but after several tosses his assign-—
ments will get more and more stable, and in the limit N + @ they will tend
to the observed fregquency of heads. To observer A, the evidence of symmetry
continues to carry greater weight than the evidence of almost any number of
throws, and he persists in assigning probability 1/2. Each has done consistent
plausible reasoning on the basis of the information avaiiable to him, and our
theory accounts for the behavior of each.

If vou assumed that Mr. & had perfect knowledge of symmetry, vou might

conclude that his Ap distribution is a true éd-function. In that case, his
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mind could never be changed by any amount of new data from the random experi-
ment. Of course, that's a limiting case that's never reached in practice.

Not even the Bureau of Standards can give us evidence that good.

16.5. Carnap's Inductive Methods.

Carnap (1952} gives an infinite family of possible "inductive methods,"
by which one can convert prior information and freguency data into a probability
assignment and an estimate of frequencies for the future. His principle is
that the final probability assignment (AINnX) should be a weighted average
of the prior probability (A[X) and the cbserved frequency, £ = n/N. Assigning
a weight N to the "empirical factor" £, and an arbitrary weight X to the
"logical factor" (A[X) leads to the method which Carnap denotes by cl(h,eJ.
Introduction of the Ap distribution accounts for this in more detail: the
theory developed here includegs all of Carnap's methods as special cases
corresponding to different pricor distributions (Aplx), and leads us to re-
interpret A as the weight of prior evidence. Thus, in the case of two hypo-

theses, the Carnap A-method is the one you can calculate from the prior dis-

tribution (Ap]X} = {const.)-[p(l—p)]r, with 2r = 3»-2. The result is
2n + A (n+r) + 1
N = = -
(AF nX) 2N+ 2) (N+2r) + 2 ) (16-45)

Greatar A thus corresponds to a more sharply peaked {AP|X) distribution.

In our coin-tossing example, the gentleman from the Bureau of Standards
reasong according to a Carnap method with ) of the order of, perhaps, thousands
to millions; while Mr. B, with much less prior knowledge about the coin, would
use a » of perhaps % or 6. (The case )X = 2, which gives Laplace's rule of
succession, is much too broad to be realistic for coin tossing; for Mr. B
surely knows that the center of gravity of a coin can't be moved by more than
half its thickness from the geometrical center. Actually, as we will see in

Lecture 19, this analysis isn't always applicable to tossing of real coins,
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for reasons having to do with the laws of physics.)

From the second way I wrote Equation (16-45), vou see that the Carnap
A-method corresponds to a weight of prior evidence which would be given by
(L~2) trials, in exactly half of which A was obsarved to bhe trues. Can we
understand why the weighting of prior evidence is A = (number of prior trials
+ 2), while that of the new evidence N, is only {(number of new trials) = N?
Well, look at it this way. The appearance of the (+2) is the rocbot's way
of telling us this: prior knowledge that it is possible for A to be either
true or false, is equivalent 0o knowledge that & has been true at least once,
and false at least cnce. This is hardly a derivation; but I think it makes
excellent common sensa.

But let's pursue this line of reasoning a step further. We started with
the statement X: it is possible for A to be either true or false at any
trial; but that is still a socmewhat vague statement. Suppose we interpret
it as measing that A has bheen cbserved true exactly once, and false exactly

cnca. If we grant that this state of knowledge is correctly described by

Laplace's assignment (A |X} = 1, then what was the "pre-pricr" state of
P

knewledge before we had the data ¥7? To answer this, we need only apply Bayes'

theorem backwards, as we did at the beginning of Lecture 7. The result is:
our "pre-prior" Ap—distribution must have been

x| ) ap = ¢ by B (16-46)
o p = {const. o (1-p)

which is the quasi-distribution representing "complete ignorxance," or the
"baslc measure" of our parameter space, that we found by transformation
groups in Lecture 12. So, here is another line of thought that could have
led us to this measure.

It appears, then, that if we have definite prior evidence that it is

possibkble for A to be either true or false on any one trial, then Laplace's
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rule (Ap]X) = 1 is the appropriate one to use. But if initially we are so
completely uncertain that we're not even sure whether it is possible for A
to be true con some trials and false on others, then we should use the prior
(16-46) .

How different are the numerical results which the pre-prior assignment
(le-46) gives us? Repeating the derivation of (16-20) with this pre-prior
assignment we find that, provided n is not zero or N,

W-1) ! nobg Nl (16-47)

(Ap|Nn)|: {n=1) f (N-n-1)! P

which leads, instead of to Laplace's rule of succession, to the mean-value
estimate of p:
1 n

(A[Nn)' = JC (Ap|Nn)‘ pdp = o (16-48)
equal to the observed frequency, and identical with the maximum-1likelihocd
estimate of p. Likewise, provided 0 < n < N, we find instead of (16-22)
the formula

(rrH—n—l) (M—m+N—n-1)
] M-m

(Mman) = (N+M—l) (16-49)
M

81l of these results correspond to having observed one less success and one

less failure.
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Lecture 17

PROBABILITY AND FREQUENCY IN EXCHANGEABLE SEQUENCES

We are now in a position to say quite a bit more about connections between
probability and fregquency. These are of two main types: (a) given an observed
frequency in a random experiment, to convert this information into a probabi-
lity assignment, and (b} given a probability assignment, to predict the
frequency with which some condition will be realized. We have seen, in Lectures
10 and 12, -how the principles of maximum entropy and transformation groups
lead to probability assignments which, if the quantity of interest happens
to be the result of some "random experiment,” correspond automatically to
predicted frequencies, and thus sclve problem (b) in some situations.

The rule of successipn gives us the scoluticn to problem {(a) in a wide
class of problems; 1f we have observed whether A was true in a very large

number of trials, and the conly knowledge we have about A is the result of

this random experiment, and the constancy of the "causal mechanigm,"” then

it says that the probability we should assign to & at the next trial becomes
practically equal to the observed freguency, Now, in fact, this is exactly
what pecple who define probability in terms of frequency do; cone postulates
the existence of an unknown "absolute" probability, whose numerical wvalue

is to be found by performing random experiments. Of course, vou must perform
a very large number of experiments. Then the observed freguency of A is
taken as the estimate cf the prcbability. As we saw in Lecture 15, even the

+]1 and +2 in Laplace's formula turn up when the "freguentist" refines his
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methods by taking the center of a confidence interval. 8o, I don't see how
ever. the most ardent advocate of the frequency theory of probability can
damn the rule of succession without thereby damning his own procedure; after
all polemics, there remains the simple fact that in his own procedure, he is
doing exactly what Laplace's rule of succession tells him to do. Indeed,
to define probability in terms of frequency is equivalent to saying that
the rule of succession is the cnly rule which can be used for converting

observational data into probability agssignments.

17.1. Prediction of Freguencies.

Now let's consider prcoblem (b) in this situation; to reason from a proba-

bility tc a freguency. This is simply a problem of parameter estimation,
not different in principle from any other. Suppose that instead of asking
for the probability that & will be true in the next trial, we wish to infer
something about the relative freguency of A in an indefinitely large number
of trials, on the basis of the evidence N,- We must take the limit of
Equation (16-22) as M > <«, m = <, in such a way that {(m/M) - f. Introducing
the proposition

Af = "The frequency of A true in an indefinitely large number

of trials is f£,"

we find in the limit that the probability density of Ay, given Nn, ig

(Af’N y = L MELY engg g Nen

n’  nl (N-n)! et
which is the same as our (Ap|NnJ in {16-20}, with f numerically egual to p.
According to (17-1) the most probable frequency is egual to (n/N), the ob-
served frequency in the past. But we have noted before that in parameter
estimation (if you object to my calling £ a "parameter," then let's just

call it "prediction"), the most probable value is usually a poorer estimate

than the mean value in the small sample case, where they can be appreciably
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different., The mean value estimate of the freguency is

Jﬁl n+ 1
£= ), f@g[N) af = 75— (17-2)

i.e., just the same as the value of (A[Nn) given by Laplace's rule of suc-

cession. Thus, we can interpret the rule in either way; the probability

which Laplace's theory assigns to A at a single trial is numerically egual

to the estimate of frequency which minimizes the expected square of the error.

You see how nicely this corresponds with the ralation.between'prbbébility
and frequency which we found in the maximum-entropy and transformation group
arguments.

Note also that the distribution {AfiNn} is gquite broad for small N,
confirming our expectation that no reliable predictions should be possible
in this case., As a numerical example, if A has been cbserved true once in
two trials, then £ = (A|Nn) = 1/2; but according to {(17~1) it ig still an
even bet that the true frequency £ lies outside the interval 0.326 < £ < 0.674.
With no evidence at all (N = n = 0), it would be an even bet that f lies
outside the interval 0.25 < f < §.75. More generally, the variance of (17-1)
is

var (Ag|N,) = £2 - £2 = £(1-F)/(+3) (17-3)
1/2

so that the expected error in the estimate (17-2) decreases like N More
detailed conclusions about the reliability of predictions, which we could
make Erom {(17-2) are for all practical purposes identical with those the
statistician would make by the method of confidence intervals.

All these results hold also for the generalized rule of succession.

Taking the limit of (16-38) ag M > =, mi/M - fi, we find the joint probability

distribution for Ai to occur with frequency fi to be

17-2



n n
_ {ntk-1)! 1 k )
= HITTTTH;T (£, T, ) S(Ep.L 46 -D) Qf .. .af (17-4)

The probability that the frequency fl will be in the range d4f. is found by

1

integrating (17-4) over all values of f2...fk compatible with fi > 0,

(f2+.,,+fk) =1 - fl. This can be carried out by application of Laplace

transforms in a well known way, and the result is

n N-n_+K-2
- 1
) af, = ——HKeD) ! £ T-g) af, (17-5)

1 - Y
1 n, ! (M n1+K 2y 71 1

(fl[nl...nk

from which we find the most probable and mean value estimates of fl to be

= 1 _
(fl) = R—3 (17-6)
_ nl+l
f1 = TR ; compare (16~ 39) (17-7}

Another interesting result is found by taking the limit of (Mm[Ap) in
(16-17) as M > ®, (m/M) > £. We easily find
(Af|Ap) = §{f-p) (17-8)
Likewise, taking the limit of (Ap[Nn) in {16-20) as N - «, we find

(AplAf) = & (p-f) (17-9)

which alsc follows from (17-8) by application of Baves' theorem. Therefore,

if B is any proposition, we have from our standard argument,

(B[a.)

1

! 1
A.) dp = Q/‘ Bla A )(A_|A) 4
fo @A |r) ap = [ @Blaa k(2

i

1
f (Bla } $(p-£) dp . (17-10)
¢ 1%

In the last step we used the property (1€6-1) that Ap automatically neutralizes
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any other statement about A. Thus, if £ and p are numerically egual, we
hawve (B]Ap) = (B[Af); Ap and Af are equivalent statements in their implication
for plausible reasoning.

To verify this eguivalence in one case, note that in the limit N - o,
(n/N) - £, (Mm[Nn) in Eguation (16-22) reduces to the binomial distribution
(Mmpr} as given by (16-17). The generalized formula (16~ ), in the cor-

responding limit, goes into the multinomial distribution,

fm. «..m [ £ (17-11)

1 k717 7k m o l...m ! 1 k )

This equivalence shows why it is so easy to confuse the notions of
probability and freguency, and why in many problems this confusion does no
harm. Whenever the available information consists of observed freguencies
in a large sample, and constancy of the "causal mechanism," Laplace's theory
becomes mathematically equivalent to the frequency theory. Most of the
"classical" problems of statistics (life insurance, etc.) are of just this
type; and as long as one works only on such problems, all is well. The harm
arises when we consider more general problems.

Today, physics and engineering ocffer many important applications for
probabkility theory in which there is an absolutely essential part of the
evidence which cannot be stated in terms of freguencies, and/or the quantities.
about which we need plausible inference have nothing to do with freguencies.
The axiom (probability) = (frequency), if applied consistently, would prevent

us from using probability theory in these problems.

17.2. OCne-Dimensional Neutron Multiplication.

Our discussion so far has been rather abstract; perhaps toe much so.
In order to make amends for this, I would like to show vou a specific physical

problem where these equations apply. This was first described in a short
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ncte by Bellman, Kalaba, and Wing (1957) and further developed in the recent
book of Wing (1962). Neutrons are traveling in fissionable material, and

we want te estimate how many new neutrons will ke produced in the long run

in consequence of one incident trigger neutron. In order to have a tractable
mathematical problem, we make some drastic simplifying assumptions:

{a) the neutrons travel only in the *x-direction, at a constant
velocity.

(b) each time a neutron, traveling either to the right or the left,
initiates a fission reaction, the result is exactly two neutrons,
one traveling to the right, one to the left. The net result is
therefore that any neutron will from time to time emit a progeny
neutron traveling in the opposite direction.

{c) the progeny neutrons are immediately able to produce still more
progeny in the same manner.

We fire a single trigger neutron into a thickness x of fissicnable material
from the left, and the problem i1s to predict the number of neutrons that

will emerge from the left and from the right, over all time, as a consegquence.
At least, that is what we would like to calculate. But of course, the number
of emerging neutrons is not determined by any of the given data, and so the
best we can do is to calculate the probability that exactly n neutrons will
be transmitted or reflected. I want to make a detailed comparison of the
Laplace theory and the frequency theory of probability, as applied to the
initial formulation of this problem. I am concerned mainly with the under-
lying rationale by which we relate probability theory to the physical model.

Many propcnents of the frequency theory berate the Laplace theory on

purely philosophical grounds that have nothing to do with its success or failure
in applications. There is a more defensible position, held by scme, who

recognize that the present state of affairs gives them no reason for smugness,
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and a good reason for caution. While they believe that at present the frequency
theory is superior, they alsoc say, as one of my correspondents did to me,
"I will most cheerfully renocunce the freguency theory for any theory that
yields me a better understanding and a more efficient formalism." The trouble
is that the current statistical literature gives us no opportunity to see the
Laplace theory in actual use so that valid comparisons could be made; and
that is the situation I am trying to correct here.

First, let us formulate the problem as it would be done on the freguency
theory. Here is the way the "frequentist" would reason:

"The exeerimentalists have measured for us the relative frequency p = ad
of fission in a very swmall thickness 4 of this material. This means that
they have fired N trigger neutrons at a thin film of thickness A, and cobserved
fission in n cases. Since N is finite, we cannot find the exact value of
p from this, but it is approximately equal to the observed frequency {(n/N).
More precisely, we can find confidence limits for p. In similar situations,
we can expect that about k per cent of the time, the limits (Cramér, 1946;

p. 515)

N 2n + A2 T (N-n} 3z
N+>\2[ ON ik/_nﬁ_*?ﬁa’f‘ (17-12)

will include the true value of p, where A is the (100 - k} per cent value

of a normal deviate. For example, with A = /5} the range
n+1 N 1/2n(m—n) 1 n+1 /2n (0-n)
+ [ o -
N+2 T ON+2 NT T NZ T N2 K (17-13)
will cover the correct p in about 84 per cent of similar cases. [Again,
there's that +1 and +2 of Laplace’s rule of succession!] In general, the

connection between A and k is given by

MiN

A
i B
Vamf_, © dx = 160
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Equation (17-12) is an approximation valid when the numbers n and (N-n) are
sufficiently large; the exact confidence limits are difficult to express
analytically, and for small N one should consult the graphs of Pearson and
Clopper (1934). The number p is, of course, a definite, but imperfectly

known, physical constant characteristic of the figsionable material.

"Now in order to calculate the relative frequency with which n neutrons
will be reflected from a thickness x of this material, we have to make some
additional assumptions. We assume that the probability of fission per unit
length is always the same for each neutron independently of its history.

Due to the complexity of the causes operating, it seems reasonable to assume
this; but the real test of whether it is a valid assumption can come only
from comparison of the final results of cur calculation with experiment.
This assunption means that the probabilities of fission in successive slabs
of thickness A are independent so that, for example, the probability that
an incident neutron will undergo fission in the second slab of thickness 4,
but not in the first, is the product p(l-p).

"At this point we turn tc the mathematics and solve the problem by any
one of several possible techniques, emerging with the relative frequencies
pn(x), qn{x) for reflection or transmission of n neutrons, respectively.
fActually, the analytical solution has not yet been fcund, but the book of
Wing (1962) gives the results of numerical integration, which is equally
good for orr purposes.]

"We now compare these predictions with experiment. When the first trig-
ger neutron is fired intc the thickness x, we observe r, neutrons reflected
and t1 neutrons transmitted. This datum does not in any way affect the
assignments pn(x), qn(x), since the latter have no meaning in terms of a
single experiment, but are predictions only of limiting freguencies for an

indefinitely large number of experiments. We therefore must repeat
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the experiment many times, and record the numbers ri, ti for each experiment.
If we find that the frequency of cases for which ri = n tends sufficiently
close to pn(x) ['sufficiently close' being determined by certain significance
tests such as Chi-squared], then we conclude that the theory is satisfactory;
or at least that it is not rejected by the data. TIf, however, the observed
frequencies show a wide departure from ﬁn(x), then we know that there is
something wrong with our initial set of assumptions.

"Now, of course, the theory is either right or wrong. If it is wrong,
then in principle the entire theory is demolished, and we have to start all
over again, trying to find the right theory. In practice, it may happen
that only one minor feature of the theory has to be changed, so that most
of the old calculations will still be useful in the new theory."

k ok d ok ke % ok % Kk Kk K * ok * ¥ K Kk Kk Kk k Kk ¥ kX * k % k X%

Now let's state this same problem in terms of Laplace's theory. We
regard it simply as an exercise in plausible reasoning, in which we make the
best possible guesses as to the outcome of a single experiment, or of any
finite number of them. We are not concerned with the prediction, or even
the existence, of limiting frequencies; because any assertion about the out-
come of an impossible experiment is obviocusly an empty statement, and cannot
be relevant to any application. We reason as follows:

The experimentalists have provided us with the evidence Nn’ by firing
N neutrons at a thin film of thickness A, and observing fission in n cases.
Since by hypothesis the only prior knowledge was that a neutron either will
or will not undexrgo fission, we have just the situation wherxe Laplace's rule
of succession applies and the probability, on this evidence, of fission for

the (N+1)'th neutron in thickness A, 1s

y = DFL (17-14)

F N
( N+1| n N+ 2

lre
ill
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where

F
m

1l

"the m'th neutron will underge fission,"

Whether N is large or small, the guestion of the "accuracy" of this probabi-
lity deoes not arise--it is exact by definiticn. Of course, we will prefer

to have as large a value of N as possible, since this increases the weight

of the evidence Nn and makeg the probability p, not more accurate, but more
stable. The probability p is manifestly not a physical property of the fis-
sionable material, but is only a means of describing our state of knowledge
about it, on the basis of the evidence N, . For, if the preliminary experiment
had yvielded a different result N oy then we would of course assign a different
probability p'; but the properties of the fissionable material would remain

the same.

We now fire a neutron at a thickness x = Mp, Define the propositions,

F? = "The neutron will cause fission in the n'th slab of thickness A"

£1 "The neutron will not cause fission in the n'th slab.”

11t

The probability of fission in slab 1 is then
1
p= (FN) =5 {17-15)

But now the probability that fission will occur in the second but not the
first slab, 1s not p{l-p) as in the first treatment. At this point we see
one of the fundamental differences between the theories. From our Rule 1,

we have

(F2f1|N )
n

{F2|le )(fl[N ) = ==
n n

(n+l) (N-n+1)
{N+2) (N+3)

(17-16)

. . . . 21 21
The difference is that in calculating the probability (F If Nn), we must
take into account the evidence fl, that a neutron has passed through one

more thickness A without fission. This amounts to one more experiment in
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addition to that leading to N_ - The evidence fl is fully as cogent as N

and it would be clearly inconsistent to take one into account and ignore the
other. Continuing in this way, we find that the probability that the incident
neutron will emit exactly m first-generation progeny in passing through thick-

ness MA is just the expression

_ /My {ntm) 1 (W+1) ! (N+M-n-m) !
{MmJNn) h (m) n! (N-n) ! (N+M+1) !

which we have derived before, Eg. (16-22). Now if N is not a very large

{(17-17)

number, this may differ appreciably from the value
_ (M Myq_ .y M-m
(Mp[Ag) = (m) p {(l-p) (17-18)

which one obtains in the frequency approach. However, note again that as the
welght of the evidence Nn increases, we find (AP'JND) -+ §({p" - gq, and

(Mman) > (MmrAp)

in the limit N =+ =, (n/N} + p. The difference in the two results is negli-
gible whenever N>>M; i.e. when the weight of the evidence Nn greatly exceeds
that of Mm' Now let's study the difference between (17-17) and (17-18) more
closely. From (17-17) we have for the mean value estimate of m, on the
Laplace theory,

n+l

17-19
N+2 ( )

m= M

To state the accuracy of this estimate, we can calculate the variance of the

distribution (17-17). This is nmost easily done by using the representation
(16-21):
2 oM 2 1
n® =} mf(M[A)(A|N)dP
n=0 0 . p P n
(N+1) ! J/I 2 n N-n
= — Mp + M{M-1 1- d
SRTEREEA (Mp M-1)p"] p (1-p) D
_ nt+1l _ (n+l) (n+2) )
= Mg PRl (N+2) (N+3) (17-20)
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which gives the wvariance

o o NM#2  n+l n+l
V=m -mn = "3 Y52 |1- E:E] (17-21)
while, from (17-18), the frequency theory gives
Eé = Mp (17-22)
VO = (;E-— EQJO = Mp(l-p) (17-23)

If the freguentist takes the center of the confidence interval {17-13) as

his "best" estimate of p, then he will take p = (n+l)/(N+2) in these equations.
So, we both obtain the same estimate, but the variance (17-21) is greater

by the amount

M-1
— — ——— M l_ —_
v vo N3 p{1l-p} (17-24)

Why this difference? Why is it that the Laplace theory seems to determine

the value ©of m less precisely than the frequency theory? Well, appearances
are deceiving here. The fact is that the Laplace theory determines the value
of m more precisely than the freguency theory; the variance (17-23) is not

the entire measure of the uncertainty as to m on the frequency theory, because
there 1s still the uncertainty as to the "true" value of p. According to
{(17-23), p is uncertain by about t/§§T1:§T7ﬁ; so the mean value (17-22) is

uncertain by about

2p{l-p)
M LNB— (17-25)
in addition to the uncertainty represented by (17-23). If we suppose that

the uncertainties (17-23) and (17-25) are independent, the total mean square
uncertainty as to the value of m on the frequency theory would he represented

by the sum of (17-23} and

1_
M2 2p{l-p)

N (17-26)

which more than wipes out the difference (17-24). The factor 2 in (17-26)
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would of course be changed somewhat by adopting a different confidence level;
but no reascnable choice can change it wvery much.

In the freguency theory, the two uncertainties (17-23), (17-26) appear
as entirely separate effects which are determined by applying two different
principles; one by conventional probability theory, the other by confidence
intervals. In the Laplace theory no such distinction exists; both are given
automatically by a single calculation. We found exactly this same situation
back in our particle-ccunter problem [Lecture 9, Sec. 9.3.], when we comparsd
our robot's procedure with that of the orthodox statistician.

The mechanism by which the Laplace theory is able to do this is very
interegting. It is just the difference already noted; in the derivation of
(17-17) we are continually taking into account additional evidence accumulated
in the new experiment, such as fl in (17-16). In the freguency theory, the
uncertainty (17-25) in p arises because only a finite amount of data was
provided by the preliminary experiment given N - It is just for that reason
that the new evidence, such as fl, igs still relevant. In thus giving a
consistent treatment of all the evidence, the Laplace theory automatically
includes the effect of the finiteness of the preliminary data, which the
frequency theory is able to do only crudely by the introduction of confidence
intervals. In the Laplace theory there is no need to decide on any arbitrary
"confidence level" because probability theory, when consistently applied to
the whole problem, already tells us what weight should be given to the pre-
liminary data Nn.

What we get in return for this is not merely a more unified treatment;
in yvielding a smaller net uncertainty in m, the Laplace theory shows that
the two sources of uncertainty (17-23) and (17-26) of the frequency theory
are not independent; they have a small negative correlation, so that they

tend to compensate each other. That is the reason for Laplace's smaller

17-13



prokable error. If you think about this wvery hard, you will be able to sece
intuitively why this negative correlation has to be there--I won't deprive
you of the pleasure of figuring it ocut for yourself. All this subtlety is
completely leost in the frequency theory.

"But," someone will obdject, "vyou are ignoring a very practical consid-
eration which was the original reason for introducing confidence intervals.

While I grant that in principle it is better to treat the whole problem in

a single calculation, in practice we usually have to break it up into two
different ones. After all, the preliminary data N was obtained by one group
of people, who had to communicate their results to another group, who then
carried out the second calculation applying this data. It is a practical
necessity that the first group be able to state their conclusions in a way

that tells honestly what they found, and how reliable it was. Their data

can also be used in many other ways than in yvour second calculation, and the
introduction of confidence intervals thus filled a very important practical
need for communication between different workers."

Of course, if you have followed everything in these lectures so far,
you know the answer to this. The memory storage problem was ovr original
point of departure, and the problem just discussed is a specific example of
just what I pointed out more abstractly in Eg. (l6-15). You see from (1&6-21).
and also in our Qeriwvation of (17-21), that the only property of the prelim-
inary data which we needed in order to analyze the whole problem was the
Ap-distribution (Ap|Nn) that resulted from the preliminary experiment. The
principle of confidence intervals was introduced to fill a very practical
need. But there was no need to introduce any new principle for this purpose;
it is already contained in prokability theory, which shows that the exact
way of communicating what you have learned is not by specifying confidence

intervals, but by specifying your final Ap-distribution.
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As a further point of comparison, note that in the Laplace theory there
was no need to introduce any "statistical assumption" about independence of
events in successive slabs of thickness A. In fact, the theory told us, as
in Eg. (17-16), that these probabilities are not independent when we have
only a finite amount of preliminary data; and it was just this fact that
enabled the Laplace theory to take account of the uncertainty which the
frequency theory describes by means of confidence intervals.

Now this brings up a very fundamental point about probability theory,
which the fregquency theory fails to recognize; but which is essential for
applications to both communication theory and statistical mechanics, ag I
will show in later lectures. What do we mean by saying that two events are
"independent?"

In the frequency theory, the only kind of independence recognized is
causal independence; i.e. the fact that one event occurred does not in itself
exert any physical influence on the occurrence of the other. Thus, in the
coin-tossing example that I discussed iﬁ Lecture 16, the fact that the coin
comes up heads on one toss, of course, doesn't physically affect the result
of the next toss, and so on the frequency theory one would call the coin-
tossing experiment a typical case of "independent repetitions of a random
experiment;" the probability of a heads at both tosses must be the product
of the separate probabilities . But then, you lose any way of describing
the difference between the reasoning of Mr. A and Mr. B in that example!

In Laplace’s theory, "independence" means something entirely different,
which we see from a glance at our Rule 1: (AB|C} = (B]C)(AJBC}. Independence
means that (A|BC) = (AIC); i.e. knowledge that B is true does not affect
the prckability we assign to A. Thus, independence means not mere causal
independence, but logical independence. Even though heads at cne toss does

not physically predispose the coin to give heads at the next, the knowledge
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that we got heads may have a very great influence on our predictions as to
the next toss.

The importance of this is that the wvarious limit theorems, which I'11
say more about later, require independence in their derivations. Consequently,
even though there may be strict causal independence, if there is not also
logical independence, these limit theorems will not hold. Writers of the
freqguency school of thought, who deny that probability theory has anything
to do with inductive reasoning, recognize the existence only of causal con-
nections, and as a consequence, they have long been applying these limit
theorems to physical and communication processes where, I claim, they are
incorrect and completely misleading. This was noted long ago by Keynes (1921),
who stressed exactly this same point.

I think these comparisons make it wvery clear that, at least in this
kind of problem, the Laplace theory does provide the "better understanding

and more efficient formalism" that my colleague asked for.

17.3. The de Finetti Theorem.

S¢ far we have considered the notion of an Ap-distribution and derived

a certain class of probability distributions from it, under the restriction
that the ggyg_Ap-distribution is to be used for all trials. Intuitively,
this means that we have assumed the underlying "mechanism” as constant,
but unknown. It is c¢lear that this is a very restrictive assumption, and
the guestion arises, how general is the c¢lass of probability functions that
we can obtain in this way? In order to state the problem clearly, let us
define

1, if A is true on the n'th trial

0, if A is false on the n'th trial

Then a state of knowledge about N trials is described in the most general
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way by a probability function p(xl.;.xN} which could, in principle, bhe defined
arbitrarily (except for normalization) at each of the 2N points.

We now ask; what is a necessary and sufficilent condition on p(xl...xN)
for it to be derivable from an Ap—distribution? What test could we apply
to a given distribution p(xl...xN) to tell whether it is included in our
theory as given above? A necessary condition is clear from our previous
equations; any distribution obtainable in the way we have derived them neces-
sarily has the property that the probability that B is true in n specified
trials, and false in the remaining (N-n) trials, depends only on the numbers
n and N; i.e., not on EEEEE trials in 1 £ n £ N were sgpecified. If this is

s0, we say that p(xl...xN} defines an exchangeable sequence.

An important theorem of de Finetti (1937} asserts that the converse is

also true: any exchangeable probability function p(xl...x ) can be generated
N

by an A _-distribution. Thus there is a function (APIX) = g{p) such that
=

1
g{p) z O, ‘/‘ g{p) dp = 1, and the probability that in N trials A is true in
0

n specified trials and false in the remaining (¥N-n), is given by
! n Nen
P ) = j; p (1-p) g(p) dp (17-27)
This can be proved as follows. Wote that pn(l—p)N_n is a polynomial of degree
N:

N-n pn ZN_D (N—n

n I | k
p (1-p) = =0 n ) (~p) = Ek:O uk(N,n) P (17-28)

which defines ak(N,n). Therefore, if (17-27) holds, we would have

. .
= 7-2
Pyln) = ) o (n) B (17-29)
vwhere
1oy

B, = P gip) dp ' (17-30)

n 0
is the n'th moment of g(p). Thus, specifying BO' Bl' 82,..., BN is equivalent
to specifying all the ® _(n) for n =0, 1,2,..., N. Conversely, for given N,

N
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gpecifying PN(n}, 0 < n< N, is equivalent to specifyving {60...8N}. In fact,

BN iz the probability that X1 T Xy = ... = Xy = 1, regardless of what happens
in later trials, and its relation to PN(n] can be established directly without

reference to any function gip).

So, the problem reduces to this: if the numbers 80, Bl' 82, .. are

specified, under what conditions does a function g(p) » 0 exist such that

{17-30) holds? This is just the well-known Hausdorff moment problem, whose

solution can be found many places; for example in the book of Widder (1941;
Chap. 3). Translated into our notation, the main theorem is this: A neces-

gsary and sufficient condition that a function g{p) = 0 exists satisfying

(17-30) [and therefore also (17-27)] is that there exist a number B such that

w (N) P (n) < B, N=0,1,2, .... (17-31)
n=0 in N
But, from the interpretation of PN(n) ag probabilities, we see that the
eguality sign always holds in {17-31) with B = 1, and the proof is completed.
Here is another way of looking at it, which might be made into a proof
with a little more work, and perhaps discloses more clearly the intuitive
reason for the de Finetti theorem, as well as showing immediately just how
much we have sald about g{p) when we specify the PN(n). Imagine g(p) expanded
in the form

oo

glp) = ) o ad (® (17-32)

where ¢ (p) are the complete orthonormal set of polynomials in 0 < p < 1,
n s Z

essentially the Legendre functions:

_ Yenl @° 1oy 1"
byl =~y g PU-PY]
= (-)" vVantl P (2p-1) . (17-33)

¢n(p) is a polynomial of degree n, and satisfies
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1
dp = § 17-
j;¢m<p) 0 (p) dp = 8 (17-34)
If we substitute (17-34) into (17-27), only a finite number of terms will
survive, because ¢; (p) is orthogonal to all polynomials of degree N < k.

Then, it is easily seen that for given N, specifyving the values of P _(n),

N
0 ¢ n< N, is equivalent to specifying the first (N+1) expansion coefficients
{ao, al, a2, PR aN}. Thus, as N -+ «, a function gl(p), defined by (17-32)},
becomes uniguely determined to the same extent that a fourier series uniguely
determines its generating function; i.e., "almost everywhere.”" The main
trouble with this argument is that the condition g(p) 2z 0 is not sc easily
established from (17-32).

The de Finetti theorem is very important to us because it shows that
the connections between probability and freguency which we have found in this
lecture hold for a fairly wide class of probability functions p(xl...xN),
namely the class of all exchangeable sequences. These results, of course,
generalize immediately to the case where there are more than two possible
ocutcomes at each trial.

Possibly even more important, however, is the light which the de Finetti
theorem sheds con one of the oldest controversies in probability theory--
Laplace's first derivation of the rule of succession. The idea of an Ap—
distribution is not, needless to say, my own invention. The way I have intro-
duced it here is only my attempt to translate into modern language what I
think Laplace was trying to say in that famous passage, "When the probability
of a simple event is unknown, we may suppose all possible values of this
probakility between 0 and 1 as equally likely." This statement, which I
interpret as saying that with no prior evidence, (AP|X) = ponst., has been
rejected as utter nonsense by virtually everyone who has written on proba-

bility theory in this century. 2and, of course, on any fregquency definition
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of probability, Laplace's stattwment could have no justification at all. But
on any theory it is conceptually difficult, since it seems to involve the
idea of a "probability of a probability,"” and the use of an Ap-distribution
in calculations has been largely avoided since the time of Laplace.

The de Finetti theorem puts some much more s0lid ground under these

methods. Independently of all conceptual problems, it is a mathematical

theorem that whenever you talk about a situation where the probability of

a certain sequence of results depends only on the number of successes, not
on the particular trials at which they occur, all your probability distri-
butions can be generated from a single function g{p), in just the way we
have done here. The use of this generating functicon is, moreover, a very
powerful technigque mathematically, as you will quickly discover if you try
to repeat some of the above derivations [for example, Equation (16-22))
without using an Ap-distribution. So, it doesn't matter what you or I might
think about the Ap—distribution conceptually; its validity as a mathematical

tool for dealing with exchangeable sequences is a proven fact, standing

beyond the reach of mere philosophical objections.
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Lecture 18

APFLICATION OF PROBABILITY THEORY TO PHYSICAL MEASUREMENTS

Suppose we wish to determine the charge e and mass m of the electron.
The Millikan oil-drop experiment measures e directly. The deflection of an
electron beam in a known electromagnetlic field measures the ratic (e/m).
The deflection of an electron beam toward a metal plate due to attraction
of image charges measures (ez/m).

From the results of any two of these experiments we can calculate values
of e and m. But all the measurements are subject to error, and the wvalues
of e, m obtained from different experiments will not agree. How, then, do
we process the data so as to make use of all the information available and
get the best estimates of e, m? What is the probable error remaining? How
much would the situwation be improved by including still another experiment
of given accuracy? In tiis lecture I want to show that probability thoory

gives simple and elegant answers to these guesticns.

18.1. Reduction of Eguations of Condition.

More specifically, suppose we have the results of these experiments:
{1) measures e with *2% accuracy
{(2) measures (e/m) with *1% accuracy
{3) measures (ez/m) with *5% accuracy
Supposing the values of e, m approximately known in advance, e = e r m = m,,

the measuremants are then linear functions of the corrections. Write the
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unknown true values of e and m as

[t
i

eo{l + xl)

=)
Il

mo(l + xz) {18-1)

then x_,x. are dimensionless corrections, small compared to unity, and our

12

problem is to find the best estimate of X, and X, The results of the three

measurements are three numbers Ml, M2, M3 which we write as

Ml = eo(l + yl)

e

_ O

M, = Er—(l + yz)

o)

2

®o

M3 = {1+ Y3) (18-2)

where the y; are also small dimensionless numbers which are defined by (18=-2)
and are therefore known in terms of the o0ld estimates e s M and the new

2
measurements Ml, Mz, M3. On the other hand, the true wvalues of e, e/m, ¢ /m

are expressible in terms of the X8

e eO{l + xl)

eO(l + xl) e,

e
m . m {1 + x2) T m {1+ X T % SRR
o o

2 2

)
1 o]
m = mo 1t xg) = (1 + 2%, - X, + ...} {18-3)

2 e 2(1 + x
5]

where higher order terms are considered negligible. Comparing {18-2) and

{18-3) we see that if the measurements were exact we would have

Y17 %
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But taking into account the

errors, the known y; are related to the unknown

x5 by
SRS F S T P |
Yy T % Fp T A Mt 6
Yy T 83y %)t Ay, ¥, F 0y (18-4)
where the coefficients a; 5 form a (3 x 2) matrix:
a1, P 1 0
A = a21 a22 = 1 -1 {(18-5)
4, Ay 2 -1
and the Gi are the unknown fractiocnal errors of the three measurements. For
example, the statement 62 = —-0.01 means that the second measurement gava a

result one per cent too small.

More generally, we have n unknown quantities {xl...xn} to be estimated

from N imperfect observations {yl...yN}, with N 2 n, and the N "equations

of condition,"

n
Y. =

oY, in matrix notation,

where A is an (N x n) matrix.

It seems plausible that the best estimate of cach x.

P07 Ly g %

+ &, i {18-6)

1

l; 2, ‘e N.

y = Ax + & {18-7)

i will be some linear

combination of all the Y. but if N > n we cannot simply sclve edquation

(18-7) for x, since A is not a square matrix and has no inverse.

However,

we can get a system of equations solvable for x if we take n linear combina-
tions of the egquations of condition; i.e., 1f we multiply (18-7) on the left
(n x N) matrix B.

by some Then the product BA exists and is a square (n x n)
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-1
matrix. Choose B so that (Ba) exists. Then the linear combinaticns are
the n rows of

By = BAx + BE§ {18-8)
which has the unigque solution
-1
x = (BA) Biy - &) (18-9)
If the probabilities of varicus fractional errors ﬁi are symmetric:

p(&.)y = p(—éi) so that <éi> = 0, then corresponding to any given matrix B

1

the "best" estimate of X4 by almost any criterion will be the j'th row of
X = (8a) T By (18-10}

But by making different choices of B {(i.e. taking different linear combina-
tions of the eguations of condition) we get different estimates. Which choice
of B is best?

In the above I have merely restated, in modern terms, the old problem
of "reduction of equations of condition" studied by 18'th century astronomers
and described in Laplace's "Essai Philosophique." A popular criterion for
solution was the principle of least squares; find that matrix B for which
the sum of the squares of the errors in ;l ig a minimum; or perhaps use a

J

weighted sum. This problem can be solved directly.

18.2. Reformulation as a Decision Problem,

But we really solved this problem in Lecture 13, for we have already
shown in full generality that the best estimate of any parameter (or any
quantity, if you are squeamish about calling every unknown quantity a "para-
meter), by the criterion of any loss function, is found by applying Baves'
theorem to find the probability that the parameter lies in various intervals,
then making that estimate which minimizes the expected loss taken over the
posterior probabilities.

Now in the original formulation of the problem, as given above, it was
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only a plausible conjecture that the best estimate of Xj is a linear com=-
bination of the y; as in BEquation (18-10). The material in Lecture 13 shows

us a much better way of formulating the problem, in which we don't have to
depend on conjecture. Instead of trying to take linear combinations without
knowing which combinations to take, we should apply Bayes' theorem directly

to the equations of condition. Then, if the best estimates are indeed of

the form {18-10), Bayes' theorem should not only tell us that fact, it will
automatically give us also the best choice of the matrix B.

Let's deo this calculation for the case the probabilities assigned

to the errors 6; of the various measurements are independent and gaussian.
We expect this to be the most realistic case, since in most physical measure-
ments the total error is the sum of contributions from many small imperfections,
and the central limit theorem, to be discussed later, would then lead us
to the gaussian form. To anticipate a little, this is subject to one important
gqualification; that in general the gaussian approximation will be good only

for those values of total error § which can arise in many different ways by
combination of the individual elementary errors. For unusually wide deviations
the gaussian approximation can be very bad--just how bad we will see later
when we study the Cauchy distribution.

The probability that the errors {61...6N] lie in the intervals ddl...dGN

respectively, is

N

_ _ 21 2 -
p(él...ﬁN) dél...dGN = (const.) exp[ » Ei=l wiéi ]dal"'dﬁﬁ {18-11)

where the "weight" Wi is the reciprocal variance of the error of the i'th
measurement. For example, the crude statement that the first measurement has
+2 per cent accuracy, now becomes the more precise statement that the first

measurement has weight

- - = 2500 18-12
¥ <512> (.02)2 ¢ )
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From {18-6) and (18-11) we have immediately the probability density for

obtaining measured values {yl...yN} given the true values {xl...xn}:

1N n 2}
{Yl"'Ylel"'xn) = Clexp{; 5 Zi=l wi[yi - Ej=l uijxj] (18-13)

where Cl is independent of the Vs According to Bayes' theorem, if we assign
uniform prior probabilities to the xj, then the posterior probability density

for the xj, given the actual measurements Vi is of the form

N

(x x | ) =¢C {— 1 ) w, [y. - En X ]%} {18-14)
1 ¥n Y Yyt T ST 2 L ViV T L=l %555

where C, is independent of the x,. Now

2 3

Lien Y3t 7 ja1 245%y)

N n n
= W - 2 a,. %X, + ]
Zi=l [Yl Yy Ej=l 1373 Zj,k=l 13171k 37k
n n N 2
= -2 L.x, + V. 18-15
L e K3 s T 2 Lyop By Loy "% ( )
where
I 18-16
Kjk = L. Widi4ay (18-16)
= 7 (18-17)
Ly = Ly YiY3%44

or, defining a diagonal "weight" matrix Wij = wi éij’ we have a matrix K and

a vector L:

b

K= Wa (18-18)

I

L = Wy (18-19)

where A is the transposed matrix. We want to write {(18-14) in the form

1 =N —

x = C.expl- = K., (X. - x.)(x - x)] (18-20)

(ep e xp 1Yoy 3 2 Ly k=1 T3k 3' Yk Tk

whereupon the ;5 will be the mean value estimates desired. Comparing (18-15)
and (18-20) we see that

Il —
} K. x =L, (18-21)
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or,

=0 M s (18-22)
k j=1 kj 7

and this is the solution for best estimates of the ;# by the mean-square

error criterion. From (18-18) and (18-19), we can write the result as
x-aunlaiwy (18-23)
and, comparing with (18-10), we see that in the gaussian case with uniform
prior probabilities, the best estimates are indeed of the form (18-10}, and
the best choice of the matrix B is
B=2aW , (18-24)
a result given by Laplace (1819).

et us apply this solution to our determination of ¢ and m. Here the

measurements of e, {(e/m), (ez/m} were of 2%, 1%, 5% accuracy respectively,

and so
1
W, = ——"—y = 10,000
2 (.01
.
w3 =—73 = 400 {18-25)
(.05)

and we found Wy = 2500 before., Thus we have

. 1 1 2 W W 2w
B=4AW= O w2 0 = 1 2 3 (18-26)
0 -1 -1 0 -w, W
2 3
0 0 W
3
. (wl+w2+4w3) —(w2+2w3)
K=AWA-= (18-27)
—(w2+2w3} (w2+w3}
(W, +w.) (W +2w._)
-1 ~ -1 2 3 2 3
K~ = (AWa) ~ = % (18-28)
(w2+2w3) (w1+w2+4w3}
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where

A = det{k) = wow, WoW + WaWy (18-29)

Thus the final result is

W (W +w.} -W. W W, W
~ 172 73 2 3 23
A= f (18-30)

wl{w2+2w3) —wz(wl+2w3) w_ (w_—w_)

Awa t

and the best estimates of X1r %, are

wl(w2+w3)yl + w2w3{y3—y2}

Wyky + Wowy + wawW)
= W lry ) b wawgly-2y,y) 4 wawy (2y,-y,)
x2 - WW_ +wWww ot ww (18-32)
12 23 31
Inserting the numerical wvalues of wl, W w3, we have
X, = lﬁ + — (y.- 18-33
1715 ¥yt yg Wyvy) (18-33)
X = = -y ) + = -2 + o= (2y = 18-34
2 =% {yl Y, 1 (y3 y2) 30 ( Y, y3) ( )

which exhibits the best estimates as weighted averages of the estimates

taken from all possible pairs of experiments. Thus, ¥y is the estimate of

Xy oktained in the first experiment, which measures e directly. The second

. . 2 -1
and third experiments combined give an estimate of e given by (e /m) (e/m) ~.

Since
2
So_
o (HY3)
o
. = e (L+tyy=y,)
w (YY)
o]

1 given by experiments 2 and 3. Eguation (18-33)

says that these two independent estimates of % should be combined with weights

{y3—y2) is the estimate of x

13/15, 2/15. Likewise, Equation (18-34) gives ;é as a welghted average of

three different {although not independent) estimates of X,
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But how accurate are these estimates ;,? From (18-20) we find the

well-known formula for the second central moments of {xl...x |yl...yN):
n

_ - - _ _ _ -1 _
4axjaxk> = <(xj xj}(xk xk)> = <xjxk> <xj><xk> {K )jk (18-35)

Thus from the inverse matrix

kY awayt (18-36)

already found in our calculation of ;5, we can also read off the probable
errors, or more conveniently, the standard deviations. From (18-27) we can

state the results in the form (mean) * (standard deviation) as

x. =x. t Jix'hy (18-37)

] 3 i]
_ w2 + W3 l/2
X1 =X 2 10y Fww + ww {18-38)
12 23 31
w, o+ w, ¥ 4w 12
o+ 12 3 (18-39)
X, = X, t —
+ +
2 2 wlw2 w2w3 w3w1
with numerical values
x. = x. * 0.0186
1 1
Xy = X, E 0.0216 (18 40)

so that from the three measurements we obtain e with *1.86 per cent accuracy.
m with £2.16 per cent accuracy.

How much did the rather poor measurement of (ez/m), with only *5 per cent
accuracy, help us? To answer this, note that in the absence of this experiment
we would have arrived at conclusions given by (18-27), (18-31) and (18-32)
in the limit W, > 0. The results {also easily verified directly from the

statement of the problem) are

X = v.-y (18~41)
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W W
- 2
Kl = - ‘1\? 2 (18-42)
1720 w (w_+w )
2 1

or, the (mean) * {(standard deviation) values are

1
xl = yl + w yl + 0.020
1
wl+w2“l/2
X, = ¥17Y, + wlwg = Y7V, + 0.024 (18-43}

As might have been anticipated by common sense, a low-accuracy measurement
can add very little to the results of accurate measurements, and if the
(ez/m) measurement had been much worse than *5 per cent it would hardly Le
worth-while to include it in our calculations. But suppose that an improved
technigue gives us an (ez/m) measurement ¢f *2 per cent accuracy. How much
would this help? The answer is given by our previous formulas with w, = w

1 3

= 2500, W, = 10,000. We find now that the mean-value estimates giwve much

higher weight to the egtimates using the (eg/m)J measurement:

X

.556 + 0.444(y_-
1 0.55 Y, 0 (y3 Yz)

X

0.444 - + (0.444 -2 0.112{2v_- 13-44
5 (yl yz) (y3 y2J + { Y, 7Y ) (183 )

3

which is to be compared with (18-33), (18-34). The standard deviations are
given by

x = x_ + 0.0149
X =x * 0.020 (18-45)

The accuracy of e is improved roughly twice as much as that of m, since the

improved measurement involves ez, but only the first power of m.

13.3. Discussion: & Paradox.

We can learn many more things from studying this problem. For example,
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I want to peint out something which you will find asteonishing at first. If
you study Equation (18-32), which gives the best estimate of m from the
three measurements, you will gee that Y3r the result of the (e2/m) measursnent,

enters into the fermula in a different way than ¥y and Yo, It appears once

with a pesitive coefficient, and once with a negative one. If Wl Wy these
coefficients are equal and (18-32) collapses to
Z, =¥, T ¥, {18-46)

Now, realize the full implications of thisz: it says that the only reason

2 . . . .
we make use of the (e /m) measurement in estimating m is that the (&) measure-

ment and the (e/m) measurement have different accuracy. No¢ matter how accu-

rately we know (ez/m}, if the (&) and (e/m) measurements happen to have the
same accuracy, however peor, then we should ignore the good measurement and
base our estimate of m only on the (=) and (e/m) measurements!

I think that your common sense will instantly revolt against this con-
clusion, and vou will say that there must be an error in Equation(18-32).

So, let's take a minute off while you check the derivation.

This is a perfect example of the kind of result which probability theory
gives us almost without effort, but which our unaided common sense might
not notice in years of thinking about the problem. I won't deprive vou of
the pleasure of resclving this "paradox" for yourself, and explaining to
your friends how it can happen that consistent inductive reasoning may demand
that you throw away your best measurement.

You recall that, back at the end of Lecture 9, I complained about the
fact that orthodox statisticians sometimes throw away relevant data in order
to fit a problem tc their model of "independent random errors.” Am I now
guilty of advocating the same thing? No doubt, it looks wvery much that way!
Yet I plead innocence—-the numerical value of (e2/m) is in fact irrelevant

to inference about m, 1f we already have measurements of e and e/m of equal
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accuracy. Try drawing diagrams—-or just try and figure out how you would
use (e2/m) in this situation=--and I think you'll see why this is so.

As another example, it is important that we understand the way our
conclusions depend on our choice of loss functions and probability distri-
butions for the errors Si. If we use instead of the Gaussian distribution
(18-1)) one with wider tails, such as the Cauchy distribution p(é) ~ {1 + %w62}d1,
the posterior distribution (xlx2]y1y2y3) may have more than one peak in the
(xl,xzj—plane. Then a quadratic loss function, or more generally any concave
loss function (i.e. doubling the error more than doubles the loss) will lead
you to make estimates of xl and x2 which lie between the peaks, and are known
to be very unlikely. With a convex loss function a different "paradox"
appears, in that the basic sguation (13-16) for constructing the best estimator
may have more than one solution, with nothing to tell us which one to use.

The appearance of these situations is the robot's way of telling us
this: our state of knowledge about X and xz is too complicated to be described
adequately simply by.giving estimates and probable errors. The only honest
way of describing what we know is to give the actual distribution (xlx2|yly2y3).

This is one of the limitations of decision theory which we have to understand

in order to use it properly.
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Lecture 19

PHYSICS OF "RANDOM" EXPERIMENTS

As we have already noted several times in these lectures, the idea that
probability assignments must be based ultimately con observed frequencies
in randecm experiments is fundamental to almost all recent expositions of
probability theory; which would seem to make it a branch of experimental
science. At the end of Lecture 9 we saw some of the difficulties that this
view leads us to, in that in some real physical experiments the distinction
between random and nonrandom guantities is so ¢obscure and artificial that
you have to resort to black magic in order to force this distinction into
the problem. But in that discussion we didn't really get intc the serious
physics of the situation. In this lecture, I want to take time off from
development of probability theory, and have a little interlude of more physical
considerations that show the fundamental difficulty with the notion of "random"
experiments--even the ones, such as coin tossing, which at first glance seem
most appropriately regarded as "random.”

We have also noted that there have always been dissenters from the
ortheodox view who have maintained, with Laplace, that probability theory is
properly regarded as the "calculus of inductive reasoning,” and is not funda-
mentally related to random experiments at all. According to this second view,

congsideration of random experiments is only one particular application of

prcbability theory f{and not even the most important one); for probability

theory accounts equally well for general inductive inferences where no random
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experiment is involved. But we haven't yet noted that there is an interesting
correlation; those who have advocated the second view have tended to be physi-
cists rather than mathematicians. So, it will be of interest to examine the
hestorical background of this guestion with particular emphasis on the physics
of the situation.

With the rise of the '"Neo-Bayesian" school of thought, this gquestion
has flared up again in the recent literature of statistics. Several partici-
pants have recognized that the issue is not merely one of philosophy or
mathematics; in some way not vet made entirely c¢lear, it alse invelves physies.
The mathematician tends to think of a random experiment as an abstraction--
really nothing more than a segquence of numbers. To define the "nature" of
of the random experiment he introduces statements=--variously termed assumptions,
postulates, or axioms--which specify the sample space and assert the existence,
and certain other properties, of limiting frequencies. In real life, however,
& random experiment is not an abstraction whose properties can be defined
at will; it is surely subject to the laws of physics.

As soon as a specific random experiment is described, it is the nature
of a physicist to start thirnking, not about the abstract sample space thus
defined, but about the physical mechanism of the phenomenon being observed.
The guestion whether the usual postulates of probability theory are compatible
with the known laws of physics is capable of logical analysis, with results
that have a direct bearing on the questiocn, not ¢f the mathematical validity
of frequency and non-freguency theories ¢f probability, but cf their agpplica-
bility to real situations. Any such conclusions have, evidently, a relevance
to the gquestion of orthodox vs. Bayesian statistical methods.

In & recent discussion of these questions Professor G. E. P. Box (196 )
has remarked, "I believe, for instance, that it would be very difficult to

persuade an intelligent physicist that current statistical practice was sensible,
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but that there would be much less difficulty with an approach via likelihoced
and Bayes' theorem." Let's analyze this statement in the light both of

history and of physics.

19.1., Historical Background.

As we know, probability theory started in consideration of gambling
devices by Cardano, Pascal, and Fermat; but its development beyond that level,
in the 18'th and 19'th centuries, was stimulated by applications in physics
and astronomy, and was the work of people--Jacch and Daniel Bernoulli, Laplace,
Poisson, Legendre, Gauss—-most of whom we would describe today as mathematical
physicists.

In the nineteenth century a knowledge of statistical analysis, consisting
largely of the work of Laplace, lLegendre, and Gauss, was considered an essential
part of the training of a scientist. For example, as a yvoung man J. Willard
Gibbs spent three years (1866-69) in post-doctoral study at the Universities
of Paris, Berlin, and Heidelberg; and the most prominent topic mentioned in
the list of lectures he attended was statistical analysis. This study un-
doubtedly contributed to his discovery, 33 years later, of the basic "cancnical
ensemble" formalism of statistical mechanics.

A radical change took place early in this century when a new group of
workers, not physicists, entered the field. They proceeded to reject virtually
everything done by Laplace, and sought to develop statistics anew based on
entirely different principles. This extremely aggressive school soon dominated
the field so completely that its methods have ccme to be known as "orthodox"
statistics.

Simultaneously with this development, the physicists--with Sir Harold
Jaffreys as almost the sole exception--guietly retired from the field, and

statistical analysis disappeared from the physics curriculum. This disappear-
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ance has been so complete that, if today somecne were to take a poll of
physicists, I think he would find that not one in a hundred could identify
such names as Fisher, Nevman, Wald; or such terms as maximum likelihood,
confidence interval, analysis of variance.

This course of events—-the leading role of physicists in development
of the original Bayesian methods, and their later withdrawal from orthodex
statistics--was no accident. &as further evidence that there is some kind of
hasic conflict between orthodox statistical dectrine and physics, we may
note that two of the most eloguent proponents of non-frequency definitions
in this century--Poincaré and Jeffreys--have been mathematical physicists
of the very highest competence, as was Laplace. Professor Box's statement
thus has a clear basis in historical fact.

But what is the nature of this conflict? What 1s there in the physicist's
knowledge that has led him to reject the very thing that the orthodox statisti-
cian regards as conferring "cbjectivity" on his methods? To see where the
difficulty lies, we examine a few simple random experiments from the physicist's
viewpoint. The facts I want to point out are go e€lementary that you can’'t
believe they are really unknown to modern writers on probability theory.

The continual appearance of new statistical textbooks which ignore them merely
illustrates what we physics teachers have always known; you can teach a student
the laws of physics, but vou cannot teach him the art of recognizing the
relevance of this knowledge, much less the habit of applying it, in his

everyday problems.

19.2. How to Cheat at Coin and Die Tossing.

Cramér (1946) takes it as an axiom that "Any random variable has a unigue
probability distribution." From the later context, it is clear that what he

really means is that it has a unique frequency distribution. If one assumes
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that the number obtained by tossing a die is a random variable, thig leads
to the conclusion that the frequency with which a certain face comes up is

a physical property of the die; just as much so as its mass, moment of inertia,

or chemical composition. Thus, Cramér (loc. cit., p. 154) states, "The

numbers o3 should, in fact, be regarded as physical constants of the particular
die that we are using, and the guestion as to their numerical values cannot

be answered by the axioms ¢f probability theory, any more than the size and

the weight of the die are determined by the geometrical and mechanical axioms.
However, experience shows that in a well-made die the frequency of any event

r in a long series of throws usually approaches 1/6, and accordingly we shall
of ten assume that all the p, are equal to 1/6 . . . ."

To a physicist, such an attitude seems to show utter contempt for the
known laws of mechanics. The results of tossing a die many times do not
tell us any definite number characteristic of the die. Thyy tell us something
about the way the die was tossed. If you toss "loaded" dice in different
ways, you can easily alter the relative frequencies of the faces. With more
difficulty, and over a smaller range, vyou can even do this if the die is
perfectly "honest.”

Although the principles will be just the same, it will be simpler to
discuss a random experiment with only two possible cutccmes per itrial. Con-
sider, therefore, a "biased" coin, about which I. J. Good has remarked (Savage,
1962): "Most of us probakly think about a biased coin as if it had a physical
probakility. HNow whether it is defined in terms of frequency or just falls
out of another type of theory, I think we do argue that way. I suspect that
even the most extreme subjectivist such as de Finetti would have toc agree
that he did sometimes think that way, though he would perhaps aveid doing
it in print." 1t is, of course, just the famous theorem of de Finetti that

we studied in Lecture 17, which shows us how to carry out a probability
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analysis of the bilased coin without thinking in the manner suggested (it does
not follow, howewver, that this analysis is applicable to a real biased coin}.
In any event, it is quite easy to show how a physicist would analyze the
problem. Let us suppose that the center of gravity of this coin lies on its
axis, but displaced a distance x from its gecmetrical center. If we agree
that the result of tossing this coin is a "random variable," then according
to the axiom stated by Cramér and hinted at by Good, there must exist a
definite functional relationship between the freguency of heads and x:

py = £(x)
But this assertion goes far beyond the mathematician's traditional range of
freedom to invent arbitrary axioms, and encroaches on the domain of physics;
for the laws of mechanics are gquite competent to tell us whether such a
functional relationship does or does not exist.

The easiest game to analvze turns out to be just the one most often
played to decide such practical matters as the starting side in a football
game. Your opponent first calls "heads" or "tails" at will. You then toss
the coin into the air, catch it in vour hand, and without looking at it, show
it first to your opponent, who wins if he has called correctly. It is further
agreed that a "fair" toss is one in which the coln rises at least nine feet
inte the air, and thus spends at least 1.5 seconds in free flight.

The laws of mechanics now tell us the follegwing. The ellipsoid of
inertia of a thin disc 1z an oblate spheroid of eccentricity l//gl The
displacement x does not affect the symmetry of this ellipseoid, and =so according
to the Poinsot construction, as found in textbooks on rigid dynamics [such
as Routh {192 }], the pclhodeg remain circles concentric with the axis of
the cein. In consequence, the character of the tumbling motion of the coin
while in flight is exactly the same for a biased as an unbiased coin, except

that for the biaSéd one it is the center of gravity, rather than the geo-
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metrical center, which descrikes the parabolic "free particle" trajectory.

An important feature of this tumbling motion is conservation of angular
momentum; during its flight the angular momentum of the coin maintains a fixed
direction in space (but the angular velocity does not; and so the tumbling
may appear chaotic to the eye). Let us denote this direction by the unit
vector n; it can be any direction you choose, and it is determined by the
particular kind of twist you give the coin at the instant of launching.
Whether the coin is biased or not, it will show the same face throughout
the motion if viewed from this direction (unless, of course, n is exactly
perpendicular to the axis of the coin, in which case it shows no face at all).

Therefore, in order to kanow which face will be uppermost in your hand,
you have only te carry out the following procedure. Denote by K a unit vector
passing through the coin along its axis, with its point on the "headsg" side.
Now toss the coin with a twist so that k and n make an acute angle, then
catch it with your palm held flat, in a plane normal to n. On successive
togses, vou can let the directien of n, the magnitude of the angular momentum,
and the angle between n and k, vary widely; the tumbling motion will then
appear entirely different to the eye on different tosses, and it would require
almost superhuman powers of observation to discover your strategy.

Thus, anyone familiar with the law of conservation of angular momentum
can, after some practice, cheat at the uswal coin-toss game and call his
shots with 100 per cent accuracy. You c¢an obtain any freguency of heads you

want; and the bias of the c¢oin has no influence at all on the results!

Of course, as soon as this result is out, somecne will okiject that the
experiment analyzed is too "simple."” In other words, those who have postulated
a "physical" probability for the biased coin have, without stating so, really
had in mind a more complicated experiment in which some kind of "randomness“

has more opportunity to make itself felt.

19-7



While accepting this criticism, I can't suppress the obvious comment:
scanning the literature of probability theory, isn't it curious that so many
mathematicians, usually far more careful than physicists to list all the
gualifications needed to make a statement correct, should have failed to see
the need for any gqualifications here? However, to be more constructive,
we can just as well analyze a more complicated experiment.

Suppose that now, instead of catching the coin in our hand, we toss
it onto a table, and let it spin and bounce in various ways until it comes
to rest. TIs this experiment sufficiently "random" so that the true "physical
probapility" will manifest itself? No doubt, the answer will be that it is
not sufficiently randem if the coin is merely tossed up two inches starting
at the table lewvel, but it will become a "fair" experiment if we toss it up
higher.

Exactly how high, then, must we toss it before the true "physical proba-
bility" can be measured? This is not an easy question to answer, and I cer-
tainly won't make any attempt to answer it here. It would appear, however,
that anyone who asserts the existence of a "physical" probability for the
coin ought to be prepared to answer it; otherwise it is hard to see what
content the assertion has (in the sense of operaticnal verifiability).

I don't deny that the bias of the coin will now have some influence on
the frequency of heads; I claim only that the amount of that influence depends
very much cn how you toss the coin so that, again in this experiment, there
is no definite number Py = f(x) describing a physical property of the coin.
Indeed, even the direction of this influence can be reversed by different
methods of tossing, as follows.

However high we toss the coin, we still have the law of conservation of
angular momentum; and so we can toss it by Method A: to ensure that heads

will be uppermost when the coin first strikes the table, we have only to hold
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it heads up, and toss it so that the total angular momentum is directed
vertically. Again, we can vary the magnitude of the anqgular momentum, and

the angle between n and k, so that the motion appears gquite different to the
eye on different tosses, and it would require very close observétion to notice
that heads remains uppermost throughout the free flight. Although what happens
after the coin strikes the table is complicated, the fact that heads is upper-
most at first has a strong influence on the result, which is more pronocunced
for large angular momentum.

Many people have developed the knack of tossing a coin by Method B:
it goes through a phase of standing on edge and spinning rapidly about a
vertical axis, before finally falling to one side or the other. If you toss
the coin this way, the eccentric position of the center of gravity will have
a dominating influence, and render it practically certain that it will £fall
always showing the same face. Ordinarily, one would suppose that the coin
prefers to fall in the position which gives it the lowest center of gravity;
i.e., 1f the center of gravity is displaced toward tails, then the coin should
have a tendency to show heads. However, for an interesting mechanical reason,
which I leawve for you to work cut, method B produces the opposite influence,
the coin strongly preferring to fall so that its center of gravity is high.

On the other hand, the bias of the coin has a rather small influence
in the opposite direction if we tess it by Method C: the coin rotates about
a horizontal axis which is perpendicular to the axis of the coin, and so
bounices until it can no longer turn over.

In this experiment also, therefore, a perscon familiar with the laws of
mechanics can toss a hiased coin so that it will preduce predominantly either
heads or tails, at will. Furthermore, the effect of method A persists whather
the coin is biased or not; and so one can even do this with a perfectly

"honest" coin. Finally, although we have been considering conly coins, essen-
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tially the same mechanical considerations apply to the tossing of any other
object, such as a die.

Frem the fact that we have seen a strong preponderance of heads, we
cannot legitimately conclude that the coin is biased; it may be biased, or
it may have been tossed in a way that systematically favors heads. Likewise,
from the fact that we have seen egual numbers of heads and tails, we cannot
legitimately conclude that the coin is "honest." It may be honest, or it

may have been tossed in a way that nullifies the effect of its bias.

19.3. Experimental Evidence.

8ince the conclusions just stated are in direct contradiction to what
is postulated, almost universally, in expositions of probability theory,
it is worth noting that anyone can easily verify them for himself, in a few
minutes of experimentation in his kitchen. An excellent "biased cein" is
provided by the metal 1lid of a small pickle jar, of the type which is not
knurled on the outside, and has the edge rolled inward rather than outward,
so that the outside surface is accurately round and smooth, and so symmetrical
that on an edge view cne cannot tell which is the top side.

Suspecting that many people simply would not believe the things just
claimed without experimental proof, I have performed these experiments with
a jar 1id of diameter d = 2 5/8", height h = 3/8". Assuming a uniform thick-
ness for the metal, the center of gravity should be displaced from the geo-
metrical center by a distance x = dh/(2d+8h) = 0.120 inches; and this was
confirmed by hanging the 1lid by its edge and measuring the angle at which
it comes to rest. Ordinarily, one expects this bias toc make the lid prefer
to fall bottom side up; and so this side will be called "heads." The 1lid
was tossed up about 6 feet, and fell onte a smocth linoleum floor. I allowed

myself ten practice tosses by each of the three methods described, and then
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recorded the results of a number of tosses by: method A deliberately favor-
ing heads, method A deliberately favoring tails, method B, and method C, as

glven in Tabkle 19.1.

Method No. of Tosses No. of Heads
A (H) 100 99
A({T) 50 0]
B 100 0
C 100 54

Table 19.1. Results of tossing a "biased coin'" in four
different ways.

In method A the mode of tossing completely dominated the result (the
effect of bias would, presumably, have been much greater is the "coin" were
tossed onto a surface with a greater coefficient of friction). In method
B, the kias completely dominated the result (in about thirty of these tosses
it locked for a while as if the result were going to be heads, as one might
naively expect; but each time the "coin"” eventually righted itself and turned
over, as predicted by the laws of rigid dynamics). In method C, there was
ne significant evidence for any effect of bias.

One can, of course, always claim that tossing the coin in any of the

L1}

four specific ways described is "cheating," and that there exists a "fair"
way of tossing it, such that the "true" probabilities will emerge from the
experiment. But again, the person who asserts this ought to be prepared to
define precisely what this fair method is, ctherwise the assertion is with-
out content. Presumably, a falr method of tossing ought to be scme kind of

random mixture of methods a(H), A(T), B, C, and others; but what is a "fair"

relative weighting to give them? It is difficult to see how one could define

19-11



a "fair"™ method of tossing except by the condition that it should result in
a certain freguency of heads; and so we are involved in a circular argument.
This analysis can be carried much further than we have done here, and I
want to go into it scome more in a minute; but it is perhaps sufficiently
clear already that analysis of coin and die tossing is not a problem of abstract
statistics, in which one is free to introduce postulates about "physical®
probabilities which ignore the laws of physics. It 1s a problem of mechanics,
highly complicated and irrelevant to probability theory except inscfar as
it forces us tec think a little more carefully about how probability theory
must be formulated if it is to be applicable to real situations. Performing
a random experiment with a coin does not tell us what the "physical" probabi-
lity of heads is; it may tell us scomething about the bias, but it also tells
us scmething about how the coin is being tossed. Indeed, unless we know
how it is being tossed, we cannot draw any inferences about its bias from
the experiment.
It may not, however, be clear from the above that conclusions of this
type hold quite generally for random experiments, and in no way depend on the
particular mechanical properties of coing and dies. In order to illustrate

this, let's consider an entirely different kind of random experiment.

19.4. Bridge Hands.

In Lectures 5 and 13, we have already quoted Professor Wm. Feller's
pronouncements on the use of Bayes' thecrem in quality control testing, about
Laplace's rule of succession, and about Daniel Bernoulli's conception of the
utility function for decision theory. He does not fail us here either; in
this interesting textbock (Feller, 1950}, he writes: "The number of possible

distributions of cards in bridge is almost 1030. Usually, we agree to consider

them as egually probable. For a check of this convention more than 1030
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experiments would be reguired ...." Here again, we have the view that bridge
hands possess "physical" probabilities, that the uniform probability assign-

ment is a "convention," and that the ultimate criterion for its correctness
must be observed frequencies in a random experiment.

The thing which is wrong here is that none of us would be willing to use
this criterion in a real-life situation because, if we know that the deck is
an "honest" one, our common sense tells us socmething which carries more

weight than 1030 random experiments do. We would, in fact, be willing to

accept the result of the random experiment only if it agreed with ocur pre-

conceived notion that all distributions are equally likely.

To many of you this last statement may seem like pure blasphemy——it
stands in wviolent contradiction to what we have all been taught. Yet in
order to see why it is true, we have only to imagine that those 1030 axperi-
ments had been performed, and the uniform distribution was not forthcoming.,
We expect, if all distributions of cards have equal frequencieg, that any
combination of two specified cards will appear together in a given hand, on
the average, once in 52+51/13-12 = 17 deals. But suppose that the particular
combination (Jack of hearts--Seven of clubs) appeared together in each hand

three times as often as this. Would we then accept it as an established fact

that this particular combination is inherently more likely than cothers?

We would not. We would say that the cards had not been properly shuffled.
But once again we are involved in a circular argument; hecause there is no
way to define a "p?oper" method of shuffling except by the condition that it
should produce all distributions with equal frequency!

In ¢carrying out a probabllity analysis of bridge hands, are we really
concerned with physical probabilities; or with inductive reasoning? In order
to help answer this, consider the following scenario: T tell an orthodox

statistician that I have dealt at bridge 1000 times, shuffling "fairly" each
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time; and that in every case the seven of clubs was in my own hand. What
will his reaction be? He will, I think, mentally visualize the number
(L)lOOO . 10—602
4
and conclude instantly that I have not told the truth; and no amount of
persuasion on my part will shake that judgment. But what accounts for the
strength of his belief? Obvicusly, it cannot be justified if our assignment
of equal probabilities to all distributions of cards is merely a "convention,”
subject to change in the light of experimental evidence. Even more obviously,
he is not making use of any knowledge about the outcome of an experiment

. . 30 .
invelving 10 bridge hands.

What is the extra evidence he has, which his common sense tells him

carries more weight than any number of random experiments; but whose help

he refuses to acknowledge in expounding probability theory? 1In cxder to

maintain the claim that probability theory is an experimental science, based
fundamentally nct on inductive inference but on frequency in a random experi-
ment, it is necessary to suppress some of the information which is available.
This suppressed information, however, is just what enables inductive reasoning
to approach the certainty of deductive reasoning in this example.

The suppressed evidence is, of course, simply our recognition of the
symmetry of the situation. The only difference between a seven and an eight
is that thexre is a different number printed on the face of the card. Our
common sense tells us that where a card goes in shuffling depends only on
the mechanical forces that are applied to it; and nct on which number is
printed on its face. If we observe any systematic tendency for one card to
appear in the dealer's hand, which persists on indefinite repetitions of the
experiment, we can infer from this only that there is some systematic tendency

in the procedure of shuffling, which alone determines the cutcome of the
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experiment.
Once again, therefore, performing the experiment tells you nothing about
the "physical” probabilities of different hands. It tells you something

about how the cards are heing shuffled.

19.5. General Random Experiments.

In the face of the foregeoing arguments, one can still take the following
pesition (as a member of the audience did after one of my recent lectures):
"You have shown only that coins, dies, and cards represent exceptional cases,
where mechanical considerations cbviate the usual probability postulates;

i.e., they ave not really 'random experiments.' But that is of no importance
because these devices are used only for illustrative purposes; in the more
dignified randem experiments which merit the serious attention of the scientist
or engineer, there is a physical probability.”

Te answer this, note that any specific experiment for which the existence
of a physical probability is asserted, is subject to physical analysis like
the ones just given, which will lead eventually to an understanding of its
mechanism. But as soon as this understanding ig reached, then this new experi-
ment will also appear as an exceptional case where physical considerations
obviate the usual postulates of '"physical" probabilities. For, as soon as
we have understood the mechanism of any experiment E, then there is logically
no room for any postulate that various outcomes possess physical probabilitdes;

"

for the question: "What are the probabilities of wvarious cutcomes Olr 02,...?

then reduces immediately to the guestion: "What are the probabilities of

the corresponding initial conditions Il, Tor ves that lead to these cutcomes?"

We might suppose that the possible initial conditions of experimant E
themselves possess physical probabilities. But then we are considering an

antecedent random experiment E', which produces conditions I, as its possible

k
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outcomes. We can analyze the physical mechanism of E' and as soon as this

is understood, the guestion will revert to: "What are the probabilities

of the various initial conditions I, ' for experiment E'?" Evidently, we

are involved in an infinite regress {E, E', E", ...}; the attempt to introduce
a physical probakility will be frustrated at every level where our knowledge
of physical law permits us to analyze the mechanism involved. The notion of
"ohysical probability" must retreat continually from one level to the next,

as knowledge adwvances.

We are, therefore, in a situwation very much like the "warfare bhetween
science and theology" of earlier times. For several centuries, theologians
ingisted on making factual assertions which encrcached on the domaing of
astronomy, physics, biclogy, and geology—-and which they were later forced
to retract one by one in the face of advancing knowledge.

Clearly, probability theory ought tce be formulated in a way that avoids
factual assertions properly belonging to other fields, and which will later
need to be retracted (as is now the case for many assertions in the literature
concerning coins, dies, and cards). It appears to me that the only formulation
which accomplishes this is the original one given by Laplace and expounded
by Poincaré and Jeffreys, in which probability theory is regarded as the
general "calculus of inductive reasoning," whose validity does not depend
on any assumptions about properties of physical experiments. As we saw back
in Lecture 3, a very important contribution to the logical foundations of this
approach was made recently by R. T. Cox (1848), (1961), who showed that, if
we represent degrees of plausibility by real numbers, then the mathematical
rules for inductive inference are restricied by elementary conditions of
consistency, stated in the form of functional equations whose general soluticns
are readily found. As already noted, it is no accident that all the afore-

mentioned gentlemen are to be classed as physicists, to whom the things I
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have pointed out in this lecture would be cbvious from the start.

The Laplace-Poincaré-Jeffreys-Ceox formulation of probability theory
does not require us to take one reluctant step after another down that infinite
regress; it recognizes that anything which continually recedes from the light
of detailed analysis can exist only in ocur imagination. Performing any of
the so-called random experiments will not tell us what the "physical" proba-

bilities are, because there is no such thing as a "physical" probability.

The experiment tells us, in a very crude and incomplete way, something about
how the initial conditions are varying from one repetition to ancther,

A much more efficient way of obtaining this information would be to
study the initial conditions directly. However, in many cases this is bevond
our present abilities; as in determining the safety and effectiveness of a
new medicine. Here the only fully satisfactory appreoach would be to analyze
the detailed sequence of chemical reactions that follow the taking of this
medicine, in persons of every conceivable state of health. Hawing this
analysis one could then predict, for each individual patient, exactly what
the effect of the medicine will bhe.

Such an analysis being entirely out of the question at present, the only
feasible way of obtalning the information we want is to perform a "random"
experiment. No two patients are in exactly the same state of health; and
for a given dose, the unknown variations in this factor constitute the variable
initial conditions of the experiment, while the sample space comprises the
set of distinguishable reactions to the medicine.

Cur use cf probabllity thecry in this case is an example of inductive
reasoning which amounts to the following: "If the initial conditions of the
experiment continue in the future to vary over the same unknown range as they
have in the past, then I expect that the relative frequencies of various

outcomes will, in the future, approximate those which I have observed in the
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past. In the absence of positive evidence giving a reason why there should
be some change in the future, and indicating in which direction this change
should go, I can only suppose that thiungs will continue in more or less the
same way. As I observe the relative frequencies to remain stable over longer
and longer timeg, I become more and more cenfident about this conclusion.

But still, I am doing ¢nly inductive reasoning—-there is no deductive proof

that fregquencies in the future will not ke entirely different than those in

the past.
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Iecture 20

INTRODUCTICN TO COMMUNICATION THEORY

At this point we have all the basic machinery of cur theory developed,
and have seen its application in some of the "classical" problems. We said
back in the first talk that what started all this was the attempt to see
gtatistical mechanics and communication theory as examples of the same line
of reasoning. A generalized form of statistical mechanics appeared as soon
as we supplemented Laplace's theory of inductive reasoning by the notion
of entrcpy, and we ought now to be in a position to treat communication theory
in a similar way.

One difference is that in statistical mechanics the prior information
has nothing to do with freguencies (it consists of measured values of quanti-
ties such as pressure); while in communication theory the pricr information
is obtained in a different way, which makes the probability-frequency paradoxes
much more acute. For this reason I thought it best to take up communication
theory only after we had seen some of the general connections between prokba-
bility and frequency, via the Ap distribution and the de Finetti thecrem.

First the difficult matter of giving credit where credit is due. All
major advances in understanding have their precursors, whose full significance
is never recognized at the time. Relativity theory had them in the work of
Mach, Fitzgerald, and lorentz, to mention only the most cbviocus examples.
Communication theory had many precursors, in the worxk of Gibbs, Nygquist,

Hartley, Szilard, von Neumann, and Wiener. But there is no denying that the
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work of Shannon (1948} represents the arrival of the main signal, just as
did Binstein's of 1905. Here for the first time, ideas which had long been,
so to speak, "in the air™ in a wague form, are grasped and put into shaxp
focus.

Shannon's papers were so full of important new concepts and results
that they exercised ncot only a stimulating effect, but also a paralyzing effect.
During the first few years after thelr appearance, it was common to hear the
opinion expressed, rather sadly, that Shannon had anticipated and solwved
all problems of the field, and left nothing else for others to do. Teday,

I think, no one entertains any such ideas, and the field has seen considerably
more development.

The psst-sShannon developments, with few exceptiéns, can be classed into
efforts in two entirely different directions. On the one hand we have the
expansionists, who try to apply Shannon's ideas to cother flelds, as I have
been doing. Others range from the entropy calculator (who works out the
entropy of a television signal, the French language, a chromosome, or almost
anything else you can imagine; and often finds that nobody knows what to do
with the result), to the universalist (who assures us that communication
theory will revolutionize all intellectual activity; but seldom offers a
specific example of anything that has been changed by it).

We should not be critical of these efforts because, as J. R. Pierce has
said, it is wvery hard to tell at present which ones make gense, which are
pure nonsense, and which are the beginning of something that will in time
make sense. My own efforts have received ali three classificaticns from various
gquarters. I have a very strong hope, and a moderately strong belief, that
the ideas introduced by Shannon will eventually be indispensable to the
linguist, the geneticist, the television engineer, the neurologist, etc.

But I share with many others a feeling of disappointment that twenty vears
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of effort along these lines has led to so little in the way of really useful
advances in these fields. We have today an abundance of wvague philosophy,
and of abstract mathematics, but a rather embarrassing shortage of examples
where specific practical problems have been solved by using communication
theory.

The moral of this is, I think, that more than half the battle is in
learning how to ask the right question. People who want to apply communication
theory to new fields must learn that the first, and hardest, step is to state

precisely what is the problem we want solved. Once we succeed in doing this,

real progress comes easily. I will give some examples pertaining to statis-
+ical mechanics and decision theory in these lectures.

In almost diametric opposition to the above efforts, as far as aim is
concerned, stand the mathematicians, who view communication thecry simply
as a branch of pure mathematics. Characteristic of this school is a belief
that, before introducing a continuous probability distribution, you have to
talk about set theory, Borel fields, measure theory, the Lebesgue-Stieltjies
integral, and the Radon-Nikodym theorem. The important thing ig to make the
theorems rigorous by the criteria of rigor currently popular, even if in so
doing we 1limit the scope of the practical theory, and/or make it unintelligible
to the average scientist or engineex. The recently published books on informa-
tion theory by A.Khinchin (1957) and A. Feinstein (1958) can serve as typical
examples of the style prevalent in this literature.

Here again, no valid criticism of these efforts is possible. Of course,
we want our principles to be subjected to the clesest scrutiny one can bring
to bear on them. If important applications exist, the need for this is so
much the greater; fortunately, mathematicians have found the subject interest-
ing encugh to take on a not very easy task. However, the present talks are

not addressed to mathematicians, but to scientists and engineers who are
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interested in applications; and so I am going to dwell on this side of the
story only to the extent of pointing out that the particular theorems which
the mathematicians have chosen to rigorize are not always the ones relevant
to real situations.
Now, in order to explain this rather cryptic remark, let's turn to some of

the specific things in Shannon's papers.

20.1. The Noiselegs Channel.

We deal with the transmission of information from some sender to some
receiver. I will speak of them in anthropomorphic terms, such as "the man
at the receiving end," although either or both might actually be machines,
as in telemetry or remote control systems. Transmisgion takes place via some
channel, which might be a telephone or telegraph circuit, a microwave link,
a freguency band assigned by the FCC, the German language, the postman, the
neighborhoocd gossip, or a chromosome. If, after having received a message,
the receiver can always determine with certainty which message was intended
by the sender, we say that the channel is noiseless.

It was recognized very early in the game, particularly by Nyguist and
Hartley, that the capability of a channel is not described by any property
of the specific messages it sends, but rather by what it could have sent.
The usefulness of a channel depends on its ability to transmit any one of a
large class of messages, which the sender can choose at will.

In a noiseless channel, the obvicus measure of this ability is simply
the maximum number, W(t), of distinguishable (at the destination) messages
which the channel is capable of transmitting in time t. In all cases of
interest to us, this number eventually goes inte an exponential increase

Ct

for sufficiently large t: W(t) v e ~, so the measure of channel performance

which i1s independent of any particular time interval is the coefficient C

20-4



of this increase. We define the channel capacity as

C lim [%-log Wit)] (20-1)

oo
The units in which C is measured will depend on which base we choose for our
logarithms. Usually one takes the base 2, in which case C is given in "bits
per second," one bit being the amount of information contained in a single
binary {(yes-no) decision, For easy interpretation of numerical values the
bit is by far the best unit to use; but in formal operations it is easier
to use the base e of natural logarithms, and T will do that in this discussion.
Qur channel capacities are therefore measured in natural units, or "nits per
second." To convert, we note that 1 bit = (log.2) = 0.69315 nits, or 1 nit =
1.4427 bits.

The capacity of a noiseless channel is a definite number, characteristic
of the channel, which contains no subjective features. Thus, if a noiseless
channel can transmit n symbols per second, c¢hosen in any order from an alphabet
of a Jetters, we have W(t) = ant, or C = n log a nits/second. Any constraint
on the possible sequences of letters can only lower this number. For example,

if the alphabet is A., A ,...,Aa, and it is required that in a long megsageof

1 2

N = nt symbols the letter Ai must occur with relative frequency fi’ then the

number of possible messages in time t is only

Nl -
wit) = (20-2)
1 |
(Nfl) | (Nfa) !
and from Stirling's approximation, we f£ind, as in Eg. (1¢-17},
C=-n ] £, log £, nits/second. (20~3)

1

This attainsg its maximum value, equal to the previcus C = n log a, in the

case of equal frequencies, f; = a”l. Thus we have the interesting result

that a constraint reguiring all letters to occur with egual frequencies does

not decrease channel capacity at all. It does, of course, decrease the number

20-5



W{t) by an encrmous factor; but the decrease in log W is what counts, and
this grows less rapidly than t, so it makes no difference in the limit.
Suppose now that symbol A, has transmission time ti, but there is no
other constraint on the allowable sequences of letters. What is the channel
capacity? Well, consider first the class of messages in which letter Ai

occurs n, times, i =1, 2, ..., a. The number of such messages is

NI
W{nl...na) = EITTTTH;T (20-4)
where
a
N=Q_, 0 - (20-5)

The total number of different messages that can be transmitted in time t is
then

Ww(t) =} Wi{nj...n) (20-6)

n,
1

where we sum over all choices of (n ...na) compatible with ni > 0 angd

1
a

7 n. t, £ . {(20-7)
i=1 11l

The number K{t) of terms in the sum (20-6) satisfies K(t) < (Bt)? for some

B < w. This is seen most easily by imagining the n; as coordinates in an

a-dimensional space and noting the geometrical interpretation of (20-7).
Exact evaluation of (20-6) would be guite an unpleasant job. But it’s

only the limiting value that we care about right now, and we can get out of

the hard work by the following trick. Note that W(t) cannot be less than

the greatest term W_ = W (n....n ) in (20-6) nor greater than W _K(t):
m max 1 a In
log W, < log w(t) < log W, + a log (Bt) (20-8)
and so we have
.1 , L
C Z lim E‘log W{t) = lim E‘log Wm (20-9)
oo T
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i.e., to find the channel capacity, i1t is sufficient to maximize log W(nl...na)
subject to the constraint (20-7). This rather surprising fact can be under-
stood as fellows. The logarithm of Wt} is given, rather crudely, by

log W(t) = log wmax + log [number of reasonably large terms in {20-6)]

Even though the number of large terms tends to infinity as ta, this is
not rapid enough to make any difference in comparison with the exponential

increase of Woa This same mathematical fact is the reason why, in statis-

<*
tical mechanics, the Darwin-Fowler methed and the method of the most probable
digstribution lead to the same results in the limit of large systems.

We can solve the problem of maximizing log W(nl...na) by the same Lagrange
multiplier argument used in Lecture 10, Section (10.6). The problem is not
quite the same, however, because now N is also to be varied in finding the
maximum.

Using the Stirling approximation, which is walid for large ng, we have

as before

a
log W(nl.-.na] = N log W - Zi=l 0y log ng (20-10}

The variational problem with A a Lagrangian multiplier, is

§[log W + A } n;t;] = 0 (20-11)

but since &N = Z 6ni, we have

§ log W= 6N log N - 6N - Z (Sni log ni - 5ni}

i
oy
= - Z én, log(—%) (20-12)
L N
Therefore (20-11l) reduces to
Ea 1 (235 + Aty én, =0
i-1 199y it oty T
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with the solution

—Ati
n; =Ne (20-13)
To fix the wvalue of A we require
—hti
N=})n, =N)e (20-14)
with this choice of n,, we find
1 1 n') 1
= - = A o2 -
s log W = - 2] n log(N ) n, Oit,) (20-15)

In the limit, €~ § ngt, » 1, and we find
o1
C = lim E-log Wity = X . (20-16)
toee
So, cur final result can be stated very simply:

To calculate the capacity of a noiseless channel in which symbol

ai has transmission time ti and which has no other constraints on the

possible messages, define a partition function

=\t
i

Z(x) =} e (20-17)
i

Then the channel capacity C is the real root of

Z2{x) = 1. (20-18)
You see already a very strong resemblance to the reascning and the
formalism of statistical mechanics, in spite of the fact that we have not

yvet said anything about probasility. From (20-14} we see that Win ...na)

1

is maximized when the relative frequency of symbol A; is given by the canoni-

rcal distribution
In, .
£ = Ei-= e tT=eo * {20-19)

Should we conclude from this that the channel is being "used most efficiently"
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when we have encoded our messages so that (20-192) holds? No, that wouldn't
be quite the right way of putting it. Because, of course, in time t the chan-
nel will actually transmit one message and only one; and this remains true
regardless of what relative frequencies we use. Equation {(20-19) tells us
only that the coverwhelming majority of all possible messages that the channel
could have transmitted in time t are ones where the relative frequencies

are canconical.

On the other hand we have a generalization of the remark following {20-3};
if we impose an additiconal constraint reguiring that the relative frequencies
are given by (20-19), which might be regarded as defining a new channhel, the
channel capacity would not be decreased. But any constraint requiring that
all possible messages have letter frequencieg different from (20-19) will
decrease channel capacity.

There are many other ways of interpreting these eguations. For example,
in our above arguments we supposed that the total time of transmission is
fixed and we wanted to maximize the number W of possible messages among which
the sender can choose. In a praciical communications system, the situation
is usually the other way around; we know in advance the extent of choice
whéch we demand in the wessages which might be sent over the channel, so
that W is fixed. We then ask for the condition that the total transmission
time of the message be minimized subject to a fixed W.

Tt is well known that variational problems can be transformed into several
different forms, the same mathematical result giving the solution to many
different problems., A circle has maximm area for a given perimeter; and
alse it has minimum perimeter for a given area. In statistical mechanics,
the canonical distribution can be characterized as the one with maximum entropy
for a given expectation of energy; or equally well as the one with minimum

expectation of energy for a given entropy. ESimilarly, the channel capacity
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found from (20-18) gives the maximum attainable W for a given transmission
time, while its reciprocal is equal to the minimum attainable transmission
time for a fixed W.

As another extension of the meaning of these equations, note that we
don't have to interpret the quantity ti as a time; it can stand equally well
for the "cost," as measured by any criterion, of transmitting the i'th symbol.
For example, it might be that the total length of time the channel is in
operation is of no importance, bhecause the apparatus has to sit there in
readiness whether it is being used or not. The real economic criterion might
be the total amount cf choice W of different messages which the apparatus
is capable of transmitting before breaking down, for a given installation
cost, The lifetime of the apparatus might be limited by the total number
of times a certain relay has to copen and close. In this case, we could define
t; as the number of times this relay must operate in the course of transmitting
the i'th symbol. The channel capacity given by Eguation {20-18) would then
be measured, not in nits per second, but in "nits per relay operation," and
its reciprocal is equal to the minimum attainable number of relay operations
per nit of transmitted information.

A more complicated type of noigeless channel, also considered by Shannon,
is one where the channel has a memory; it may be in any one of a gset of "states,"
{Sl...Sk} and the possible future symbols, or their transmission times,
depend on the present state. For example, suppose that 1f the Channel is in
state 54, it can transmit symbol An’ which lsaves the channel in state Sj'
the corresponding transmission time being tinj' Surprisingly, the calculation
of channel capacity in this case is guite easy.

Let Wi(tj be the total number of different messages the channel can

transmit in time t, starting from state Sy Breaking down Wi(t) into several

terms according to the first symbol transmitted, we have
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Wo(t) =) W (t-t, ) (20-20)
i in i inj

where the sum 1s over all possible seqguences S, > A - 8,. This is a linear
i n
difference eguation with constant coefficients, so its assymptotlc sclution

must be an exponential function:

W.(t) = B, exp(Ct) {20-21)
i i

and from the definition (20-1) it is clear that, for finite k, the coefficient

C is the channel capacity. Substituting (20-21) into {(20-20}, we obtain

B, = Zk Z..(C) B (20-22)
i j=1 173 3
whera
2,5 () = rfl exp (-At, ) (20-23)
is the "partition matrix.”™ If the seqguence Si -+ An-+ Sj is impossible, we

set tinj = o, By this device we can understand the sum in (20-23) as extending
over all svmbols in the alphabet.

Equation (20-22) says that the matrix Zi' has an eigenvalue equal to

unity. Thus, the channel capacity is the greatest real root of D(A) = 0,
where
Ay = Ay - . -
D{X) det[Zij( ) Gij] (20~24)
In the case of a single state, k = 1, this reduces to the previous rule,

Equation (20-18).

The problems solved above are, of course, only especlalily simple ones.
By inventing channels with more complicated types cof constraints on the
allowable sequences (i.e. with a long memory), vou can generate mathematical
problems as involved as you please. But it would still be just the mathematics--—
as long as the channel is noiseless, there would be no difficulties of principle.
In sach case you simply have to count up the possibilities and apply the

definition (20-1). For some weird channels, you might find that the limit
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therein does not exist, in which case we can't speak of a channel capacity,

but have to characterize the channel simply by giving the function W(t).

20.2. The Information Source.

When we take the next step and consider the information scurce feeding
our channel, fundamentally new problems arise. There are mathematical pro-
blems aplenty, but there are also more basic conceptual problems, which have
to be considered before we can state which mathematical problems are the
significant ones.

It was Professor Norbert Wiener who first suggested the enormously
fruitful idea of representing an information source in probability terms.

He applied this to some problems of filter design, which T will take up briefly
in a later lecture. This work was an essential step in developing a way of
thinking which led tc modern communication theory.

it is perhaps difficult nowadays for us to realize what a big step this
was. Previously, communication engineers had congidered an information source
simply as a man with a message to send; for their purposes an information
source could be characterized simply by describing that message. But Wiener
suggested instead that an information source be characterized by giving the
probabilities that it will emit variocus messages. Already we can see some
ceonceptual gifficulties faced by a frequency theory of probability--the man
at the sending end presumably knows perfectly well which message he is going
to send. What, then, could we possibly mean by speaking of the probability
that he will send something? There is nothing analogeous to "chance" operating
here.

By the probability of a message, do we mean the freguency with which he
sends that particular message? The guestion is absurd--a sane man sends a

given message at most once, and most messages never. Do we mean the frequency

20=-12



with which the message M occurs in some imaginary "ensemble" of communication
acts? Well, it's all right to state it this way if you want to, but it doesn't
answer the question. It merely leads us to re-state the gquestion as: what

do we mean by the ensemble? How is it to be set up? Calling it by a different
name doesn't help us.

Right at this point we have to state clearly what is the specific problem

we want solved. B probability distribution is a means of describing a state

of knowledge. But whose state of knowledge do we want to talk about? Evi-
dently, not the man at the sending end. Is it the man at the receiving eng?
Well, that might be relevant te the problem I have in mind. But basically,
since I am talking to scientists and engineers, I want to consider communication
thecry, not as describing the "general philosophy" of communication between
sender and receiver, but as something of practical value to an engineer whose
job is to design the technical eguipment in the communication system. In

other words, the state of knowledge we want to describe is that of the commini-

cation engineer when he designs the equipment.

This consideration is something yvou will not find in the previous liter-
ature based on the viewpoint which sees no digtinction between probability

and frequency; on this view, the notion of a probability for a person with

a certain state of knowledge simply doesn't exist. WNevertheless, from any

viewpoint, the problem of choosing some probability distribution to represent
the information source does exist. It cannot be evaded, and the whole content
of the theory depends on how we do this.

I have already emphasized several times that in probability theory we
never solve an actual problem of practice. We solve only some abstract
mathematical model of the real problem. Setting up this model requires not
only mathematical ability, but also practical judgment. If our model does

not correspond well to the actual situation, our theorems, however rigorous,
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may be more misleading than helpful.

This is so with a vengeance in communication theory because, as I will
show in this lecture, not only the quantitative details, but even the quali-
tative nature of the theorems that can be proved, depend on which prchability
model we use to represent an information source.

The purpese of this probability model is to describe the communication

engineer's pricr knowledge about the messages to be sent. In principle, this

prior knowledge could be of any sort; but in "traditional" communication

theory the only kind of prior knowledge considered consists of frequencies

of letters, or combinations of letters, which have been cbhserved in past
samples of similaxr messages. A typical practical problem is to design eguip-
ment which will transmit English text at a given rate, while using the smallest
possible channel capacity. The engineer will then, according to the usual
viewpcint, need accurate data giving the correct frequencies of English text.
Let's think about that a little more.

Suppose we try to characterize the English language, for purposes of
communication theory, by specifying the relative frequencies of variocus letters,
or compinations of letters. Now we all know that there is a great deal of
truth in statements such as "the latter E occurs more freguently than the
letter Z." Long before the days of communication theory, many people made
cbvious common-sense use of this knowledge. One of the earliest examples
is the design of the Morse telegraphic code, in which the most frequently
used letters are represented by the shortest codes--the exact prototype of
what Shannon formalized and made precise a century later.

The design of our standard typewriter kevboard makes considerable use
of knowledge of letter frequencies. This knowledge was used in a much more
direct and drastic way by Ottmar Mergenthaler, whose immeortal phrase

ETAOIN SHRDLU
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was a common sight in the newspapers not so many years ago. But already we
are getting into trouble, because there does not seem to be complete agreement
even as to the relative order of the twelve most common letters in English,
let alone the numerical values of their relavive frequencies. For example,
according to Pratt (1942} the above phrase should read

ETANOR ISHDLF
while Tribus {1961) gives it as

ETOANTI RSHDLC
As we go into the less fregquently used letters, the situation becomes still
more chaotic.

Of course, we readily see the reason for these differences. People who
have cbtained different walues for the relative frequencies of letters in
English have consulted different samples of English text. It is obvious
enough that the last volume of an encyclopaedia might have a hidgher relative
frequency for the letter Z than the first volume. There is no reason to
expect that letter frequencies would be the same in, say, a textbook on
organic chemistry, a treatise on the history of Egypt, and a modern Aﬁerican
novel. The writing of educated people would reveal systematic differences
in word frequencies from the writings of people who had never gone beyend
grade school. Even within a much narrower field, we would expect to find
significant differences in letter and word frequencies in the writings of James
Michener and Ernest Hemingway. The letter frequencies in the transcript of
the tape recording of this lecture will probably be noticeably different
from those I would produce if I sat down and wrote out the lecture verbatim.

The fact that statistical properties of é language vary with the author
and circumstances of writing is so clear that it has become a useful research
tool. A recent doctoral thesis in classics submitted to Columbia University

by James T. McDonough (1961) contains a computer-run statistical analysis of
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Homer's Iliad. Classicists have long debated whether all parts of the Iliad
were written by the same man, and indeed whether Homer is an actual higtorical
person. The analysis showed stylistic patterns consistent throughout the work.
For example, 40.4 per cent of the 15,693 lines end on a word with one short
syllable followed by two long ones, and a word of this structure never once
appears in the middle of a line. Such consistency in a thing which is not a
characteristic property of the Greek language, seems very strong evidence

that the Iliad was written by a single person in a relatively short period

of time, and it was not, as had been supposed by many nineteenth century
classicists, the result of an evoluticnary process over several centuries.

Of course, the evolutionary theory is not demolished by thisz evidence
alone. If the Iliad was sung, we must suppose that the music had the very
monotonous rhythmic pattern of primitive music, which persisted to a large
exFent ags late aw Bach and Haydn. Characteristic word patterns may have been
forced on the composers, by the nature of the music. Archaecologists tell
us that the siege of Troy, described in the Iliad, is not a myth but an
historical fact, occcurring about 1200 B, C., some four <enturies before Homer.
The decipherment of Mincan Linear B s¢ript by Michael Ventris in 1952 esta-
blished that Greek existed already as a spoken language in the Aegean area
several centuries before the siege of Troy: but the introduction of the
Phoenician alphabet, which made possible a written Greek language in the
modern sense, occurred only about the time of Homer. You see that the question
igs rery complex and far from settled; but I find it fascinating that a statis-
tical analysis of word and syllable frequencies, representing evidence which
has been there in the Iliad for some twenty-eight centuries for anyone who
had the wit to extract it, is now recognized as having a definite bearing
on the problem. Undoubtedly, this is only the beginning of this type of

analysis.
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Well, to get back tc communication theory, the point I am making is
simply this: it is utterly wrong to say that there exists one and only one
"true" set of letter or word frequencies for English text, If we use a
mathematical model which presupposes the existence of such uniguely defined
frequencies, we might easily end up proving things which, while perfectly
valid as mathematical theorems, are worse than useless to an engineer who
is faced with the job of actually designing a communication system to transmit
English text efficiently.

But suppose cur engineer does have extensive frequency data, and no
other prior knowledge. How is he to make use of thig in describing the in-
formation source? Many of the standard results of communication theory can,
from the viewpoint I am advocating, be seen as simple examples of maximum-
entropy inference; i.e. as examples of the same kind of reasoning as in
statistical mechanics. To understand this was my original goal, discussed

in Lecture 1.

20.3. Optimum Encoding: Letter Freguencies Known.

Suppose our alphabet consists of a different symbols Al, Az,..., A,
a

and we denote a general symbol by Ai, Aj, etc. Any message of N symbols

then has the form A, A, ...A, . We dencte this message by M, which is a
1 N
shorthand expression for the set of indices: M = {il i2 i iN}. The number

of conceivable messages is aN. By ZM I mean a sum over all of them. Alse,
define

N, M) = {(nunber of times the letter Aj appears in the message M)

. (M) = {(number of times the digranrﬁfﬁjappears in M),
and so on.

who has a set of numbers (£

Consider first an engineer E -.fa) giving

1’ 1

the relative frequencies of the letters Ai, as observed in past samples of

20~17



messages, but has no other prior knowledge. What communication system represents
rational design on the basis of this much information, and what channel capacity
deoes Eq require in order to transmit messages at a given rate of n symbols

per second? To ansyer this, we need the probabilities p(M) which El assigns

to the wvarious concelvable messages. Now Mr. El has no deductive proof that

the letter frequencies in future messages will be equal to the fi observed

in the past. ©On the other hand, his state of knowledge affords no grounds

for supposing that the frequency of Ai will be greater than fi rather than

less, or vice versa. So he is going to suppose that frequencies in the future
will be more or less the same as in the past, but he is not going to be too
dogmatic about it. He can do this by requiring of the distribution p (M)

only that it yield expected frequencies equal to the past cnes. In cother words,

<N, > = gl N, (M) p(M) = NE, i=1, 2,..., a (20-25)

Of course, p(M} is not uniquely determined by these cconstraints, and so E)
must at this point make a free choice of some distribution.

Let me emphasize again that it makes no sense to say that there exists
any "physical" or "objectiwve" distribution p(M) for this problem. This becomes
especially clear if we suppose that only a single messagé is ever going to
be sent over the communication system; thus there is no conceivable procedure
by which p{M) could be measured as a freguency. But this would in no way
affect the problem of engineering design which we are considering.

In choosing a distribution p{M), it would be perfectly possible for El

to assume some message structure involving more than single letters. For

example, he might suppose that the digram A_A, is more likely than A

1% 3Py

But from the standpoint of El this could not be justified, for as far as he
knows, a design based on any such assumption is as likely to hurt as to help.

From El's standpoint, rational conservative design consists just in carefully
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avoiding any such assumptions. This means, in short, that E1 should choose

the distribution p{M) by maximum entropy consistent with (20-25).
All the formalism of the maximum-entropy inference developed in Lecture
10 now becomes available to El. His distribution p({M) will hawve the form

log pi{M) + A_. + )\lNl(M) + AZNZ(M) + ...+ J\aNa(M} =0 (20-26)

0

and in order to evaluate the Lagrangian multipliers Ai' he will use the

partition function

N
Zgeeer) = 5 exp[-A N (M) - ... - AN M =z (20=27)

where

2= a + ... te . (20~28)
From {20-25}) and the general relation

]

N> o= - EX; log Z(Al...h (20-29}

we find

A\, = - log(zf,) , 1 (20-30)

1

[IFa8
-
| M
J§1]

and, sukstituting back into (20-26), we find the distribution which describes

El's state of knowledge is just the multinomial distribution:

pM) = £ £ R - (20-26a)

which is a special case of an exchangeable sequence; the probability of any
particular message depends cnly on how many times the letters Al, AZ, -

appear, not on their order. The number of different messages possible for

specified Ny is just the multincmial coefficient
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The entropy per symbol of the distribution (20-26a) is

H -

S 1 log 2 a
= - = M i M = =2 . 4+
1 NZP() og p (M) E ALE

N ij=1 11
M

[

a
- Ei=l £, log £ (20-31)

Having found the assignment p(M}, he can encode into binary digits in the
most efficient way by a method found independently by R. M. Fano and C, E.
Shannon (19248, Sec. 9). Arrange the messages in order of decreasing probabi-
lity, and by a cut separate them into two classes so the total probability

of all messages to the left of the cut is as nearly as possible equal to

the probability of messages to the right. If a given message falls in the
left class, the first binary digit in its code is 0; if in the right, 1.

By a similar division of these classes into subclasses with as nearly as
possible a total probability of 1/4, we determine the second binary digit,
atc. I leave it for you to prove that (1) the expected number of binary
digits required to transmit the message is numerically equal to Hl' when
expressed in bits, and (2) in order to transmit at a rate of n of the original
message symhbols per second, El requires a channel capacity C > nHl, a result
first given by Shannon.

The preceding mathematical steps are so well-known that they might be
called trivial. Howewver, the rationale which we have given them differs
essentially frem that of conventional treatments, and in that difference
lies the main point of this section. Conventionally, one would use the
frequency definition of probability, and say that El'a probability assignment
p(M) is the one resulting from the assumption that there are no intersymbol
influences. Such a manner of speaking carries a connetation that the assump-
tion might or might not be correct, and that its correctness must be demon-

strated if the resulting design is to be justified; i.e. that the resulting
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encoding rules might not be satisfactory if there are in fact intersymbol
influences.

On the other hand, I contend that the probability assignment (20-26}
is not an assumption at all, but the exact opposite. Eg. (20-26} represents,
in a certain naive sense which I want to come back to later, the complete
absence of any assumption on the part of El, beyond specificaticn of expected
single-letter frequencies, and it is uniquely determined by this property.
The design based on (20-26) is the safest one possible on his state of know-
ledge. By that I mean the following. If, in fact, strong intersymbel in-
fluences do exist unknown to El’ his encoding system will still be able to
handle the messages perfectly well. If he had been given this additional
information about intersymbol influences, he could have used 1t to arrive
at an encoding system which would be still more efficlent (i.e. would require

a smaller channel capacity), as long as messages with only the specified

type of correlation were transmitted. But if the type of intersymbol influence

in the messages were suddenly to change, this new encoding system would likely

become worse than the original one.

20.4. Better Encoding From Knowledge of Digram Frequencies.

Here is a rather long mathematical derivation which has, however, useful
applications outside the particular problem at hand. Consider a second
engineer, E2. He has a set of nubers fij’ l<i<a, 1=z 3j=< a, which repre-
sent the expected relative frequencies of the digrams AiAj. E, will assign

2

message probabilities p(M) so as to agree with his state of knowledge,
N > = 1\24 Nyg M) PO = (N-1) £ (20-32)

and in order tc avoid any further assumptions which are as likely to hurt
as to help as far as he knows, he will determine the distribution p(M) which

has maximum entropy subject to this constraint. The problem is solved if he
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can evaluate the partition function

Z{x, K ) = z exp[— Z

1] M

a :
. l..N‘.(M)] . (20-33)
i,3=1 i3 ij

This can be done by solving the conbinatorial problem of the number of dif-

ferent messages with given Nij' or by observing that (20-33) can be written

in the form of a matrix product:

a le)
z = . 20-34
zirj=l (Q 11 ( )

where the matrix Q@ is defined by
= e 1 (20-35)

The result can be simplified formally if we suppose that the message

A, ...A, 1is always terminated by repetition of the first symbol A, , so that
1

mil TN 1
it becomes A, ...A, A, . The digram & A is added to the message and an
i i 74 i, 1
1 N 71 N 1
extra factor exp(—lij) appears in (20-~33). The modified partition function
then becomes a trace:
2t = 1r(gh) = §° N (20-36)
k=1

where the q, are the roots of |Qij - b = (¢, This simplification would

]
be termed "use of periodic boundary conditions"” by the physicist. Clearly,

the modification leads to no difference in the limit of long messages; as

M > o,
lim l-lo Z = lim E-lo Z2' = lo {20-37)
N g N g El qmax

where iz the greatest eigenvalue of Q.
nax

The probability of a particular message is now a special case of (10-28):

1
= = - A -
p(M) = = expl- ] {Ns4 0] (20-238)
which yields the entropy as a special case of (10-34):
8=~/ p( log p()
M
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= log Z + ) AN (20-39)
iy 13043

In view of (20-32) and (20-37), Mr. E2's entropy per symbol reduces, in the

limit W —+ =, to

LS
= — = A -—
H2 N log Tnax * Z. ijfij (20-40)
1]
or, since z fij = 1, we can write (20-40) as
ij
= f +
Hy =) i3 09 Do T 25!
1]
dq
iy 13 i3

Thus, to calculate the entropy we do not need Tnax 25 2 function of the kij
(which would be impractical for a » 3), but we need find only the ratio
g /0.. as a function of the f,..
max " ij 13
To do this, we first introduce the characteristic polynomial of the

matrix Q:

D{g} = det(Qij - qﬁij) (20-42)

and note, for later purposes, some well-known properties of determinants

{(Bocher, 1907, pp. 31-33). The first is
a

Dig:é = M { - gd )
A T TR
= Z My Qs My (20-43a)

and similarly,

D(g)6,, = 2 M0 - Mg (20-43b)
in which Mij is the cofactor of (@, - gf, ) in the determinant D{g); i.e.

i ij
e

(-)l ] Mi. is the determinant of the matrix formed by striking out the i'th
row and j'th column of the matrix (0 - ql). If g is any eigenvalue of Q,
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the expressions (20-43) wvanish for all choices of 1 and k.

The second identity applies only when g is an eigenvalue of ¢. In this
case, all minors of the matrix M are known to vanish. 1In particular, the
second order minors are

M o , if D{g)} = O. (20-44a)

M M M =
ik j1 il jk

This implies that the ratios (M,, /M. ) and (M /M ) are independent of k:
1k’ ik ki’ kj
i.e. that M must have the form

1]

M, , = a.b, r if D(g) = O . {20-44b)
1] 1]

Substitution into (20-43a) and (20-43b) then shows that the quantities bj

form a right eigenvector of @, while a; is a left eigenvector:

b b, if D 0 -
g ij ;= Py if D(q) (20-43c)

l
o

) 2,9, =98, . if D(Q (20-434)
i

Suppose now that any eigenvalue g of Q0 is expressed as an explicit

function g(i A a) of the Lagrangian multipliers Aij' Then, varying

[ P
117 12 a
a particular Akl while keeping the other lij fixed, g will vary so as to

keep D(q) identically zerc. By the rule for differentiating the detexrminant

(20-42), this gives

il Tkl 0 e
k1 x1 q 9%
- - _ g - -4
Mlekl 3 Tr (M) 0 (20-45)
k1
where
a
Tr (M) = Zizl i1 (20-46)

ig the trace, or diagonal sum, of the matrix M.
Using this relation, the condition {(20-32}) fixing the Lagrangian mualti-

pliers Aij in terms of the prescribed digram frequencies fij' becomes
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M

. log g = 23111 (20-47)
i3 8}\13 max q_maxTr (M)

The single-letter frequencies are proportional to the diagonal elements of M:

M.
il
Za

£, = £, =
=1 1ij Tr (M)

. (20-48)
i

where we have used the fact that (20-43a) wvanishes for g = Dax’ i=kXk.

Thus, from {20-47) and (20-48), the ratio needed in computing the entropy

per symbol is

0.. f..M.. £ b,
1] _ 1] 11 _ 1] _l (20_49)
Inax T Mig  FL Py

where we have used (20-44b), Substituting this into (20-41), we find that
the terms involving bi and bj cancel out, and E2's entropy per symbol is
just

i3 £5

t .
H = - Z fij log (*il)

= - -+ \ —_
gj fij log fij E £, log £, (20-50)

This i1g never greater than El‘s Hl' for from (20-31), (20-50},

£, £,
- H = B
H2 Hl 2. fij log

ij ij

fi £,

<) £, —=—2L-1] =0
Y. 1] f,.
1] 1]

where we used the fact that log x € x - 1 with equality if and only if x = 1.
Therefore,

H_ < H (20-51)

with equality if and only if £ , = £ f,, in which case EZ'S extra information
1] 17

was conly what El would have inferred. To see this, note that in the message
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M= {1 ...iN}, the number of times the digram A A occurs is
]

N M - 6 1_’.{. (S ;l } 5 ll'l )(S( !l

and so, if we ask El to estimate the freguency of digram AiAj, by the criterion

of minimizing the expected square of the error, he will make the estimate

<N, > 1
<f, > = —Fd = ——J pM) N (M) = £ f (20~53)
ij N-1 N-1 11 1]
using for p(M) the distribution (20-26a) of El. In fact, the distributions

p{M) found by El and E2 are identical if fij = fifj, for then we have from
{(20-47)y, {20-48), and (20-44h),

o
= lj = -
e Lax Vi, f - {20-54)

ij
Using (20-37}, (20-52}, and (20-54), we find that E2‘s distribution (20-38)

reduces to (20-26a). This is a rather nontrivial example of what we noted

in Lecture 10, Eg. (10-76).

20.5. PRelation to a Stochastic Model.

The quantities introduced abowve acgquire a deeper meéning in terms of
the following problem. Suppose that part of the message has been received,
what can Mr. E2 then say about the remainder of the message? This is answered
by recalling cur Rule L1:
(3B[%) = (A]BX) (B|X)

or, the conditional probability of A, given B, is

(AB | X)

(2| BX)

a relation which in conventional theory, which does not use X, is taken as
the definition of a conditional probability (i.e., w2 ratio of two "absolute”

probabilities}. In our case, let X stand for the general statement of the
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problem leading to the solution (20-38), and let

B = "The first (m-1) symbols are {i 3.

172" tmel
A

"The remainder of the message is {im...iN}.“

Then (AB|X) is the same as p(M) in (20-38). Using (20-52), this reduces to

@B]X) = (1 ...i 0% =219g, ,Q . ...0. . (20-56)
1 N 1112 1213 lN_llN
and in
a a
BlIX) = . i_...1 (X 20=57
®]) Zi=1 Ei=1(11 Nl) ( )

m N

the sum generates a power of the matrix Q, just as in the partition function

(20-34). Writing, for brevity, :'Lm_1 =i, im = 3, iN = k, and
R = l'Q (20=58)
L M TS U
we have
(B]x) = R Za o ™, - R Za © ) (20-59)
= Ripy @ ik - Rigx=1%59 ik
and so
Q‘ ‘Ql ] ""Ql Y
+J lmlm+1 lN-llN
(alBxX) = Z — (20-60)
k=1 @ ) ix

since all the Q's contained in R cancel out, we see that the probabilities
for the remainder {im“‘iN} of the message depend only on the immediately
preceding symbol Ai’ and not on any other details of B. This property defines

a Markov Chain. Theye is a huge literature dealing with them: it is perhaps

the most thoroughly worked out branch of probability theory. The basic tool,
from which essentially all else follows, is the matrix Pij of "elementary
transistion probabilities.” This is the probability pj5 = (A;[A;X) that the
next symbol will be Aj’ given that the last one was A; . Summing (20-60)

over i . | we find

mtl N
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Q.. - T,
P = alax) = 3 (20-61)
ij jha L QT
4 %1373
where
- ya N-m -
To= ey @ g (20-62)

The fact that Tj depends on N and m is an interesting feature., Usually, one
considers from the start a chain indefinitely prolonged, and so it is only
the limit of (20-61) for N + = that is ever considered. This example shows
that prior knowledge of how long the chain is going te be can affect the
transition probabilities; however, the limiting case is clearly of greatest
interest.

To find this limit we need a little more matrix theory. The equation
D{g) = det(Qij - qSij) = 0 has a roots (qlq2.--qa), net necessarily all dif-
ferent, or real. Label them so that Iql| z |q2] > . 3ﬂ[éa[t__ThELe‘eXiSts

0 ) - l . " - "
a nonsingular matrix A such that 2 9 A takes the canonical "superdiagonal

form:
Cl 0 o ...
o~ jo oy 0.l |
AQA =0Q= (20-63)
) ¢] C3 -
R Cm

o
HI-Q

=

(o]
fia]

c, = 0 0 . 1... or, C, = q. (20-64)
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The result of raising Q to the n'th power is

"=ag"a (20-65)
and as n » «, the elements of 5“ arising from the greatest eigenvalue qmax = ql
become arbitrarily large compared to all others. If q; is nondegenerate,
so that it appears only in the first row and column of 5} we have

T

lim—4—=a._ % . @&} (20-66)
TR T %91 Lx=1 %
N—= g
1
T, A,
lim —d = 31 (20-67)
Horoo ; Qi3T4  a3Bi)
and the limiting transition probabilities are
- Q,. A, Q.. M |
pi(_) - 2] Ajl _ i3 Ml:l (20-68)
J 9 %41 9 My
where we have used the fact that the elements Ajl (3 =1, 2, ..., &) form

an eigenvector of @ with eigenvalue qq = qmax' so that, referring to (20-44b},

{(20-44c) , Ajl = ij where K 1s some constant. Using (20-47), (20-48), we

have finally,

£, _
1 (20-69)
ij fi

which is just what would be taken, on the freguenecy theory, as the definition

of the transition probability.
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Lecture 24

IRREVERSIBLE STATISTICAL MECHANICS I: HEIMS PERTURBATION THEORY

Back in Lectures 10 and 11, we saw how the principle of maximum entropy
leads us to the standard Gibbs formalism of equilibrium statistical mechanics,
via arguments very much shorter and simpler than the usual "ergodic' approach
of antiquity. The principle is therefore, at the very least, a useful
pedagogical device, by which known results may be derived more quickly.

But, of course, the real test of any new principle in science is not 1its
ability to re-derive known results, but its ability to give new results,
which could not be (or at least, had not been) derived without it. Since
we agree with standard formalism in all equilibrium problems, the only
place where new results are possible is in the extension to nonequilibrium
problems, where previously no general theory existed.

Another respect in which Lecture 11 was left incomplete, appears as
soon as we try to apply that formalism to real, nontrivial physical problems;
we need more powerful mathematicel toois. It is one of the most satisfying
things about this approach that both these needs--finding a mathematical
technique for complicated equilibrium problems, and setting up a general
formalism for nonequilibrium problems—--are met by a single mathematical
development. I'11 give it in this Lecture, and we'll see its applications

te equilibrium and nonequilibrium problems in the next two lectures.
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24,1 Density Matrix Formulation

So far, 1I've worked up a formalism in which the enumeration of the
possible “states of nature" could take place simply by listing all the
stationary quantum states. In other words, quantities that are constants
of the motion are the only things that T have allowed myself to specify so
far. Evidently, if we are ever going to get to non-equilibrium theory, we
have to generalize this to the case where I'm putting in information about
things which are not constants of the motion, so something can happen when
we let the equations of motion take over. If we started out with the
initial canonical probability asgignments of Lecture 11 and then solved
the Schroedinger equation for the time development, we would find nothing
at all happening. It would just sit there. Of course, that is as it ought
to be for the equilibrium case; but for the non-equilibrium case, we need a
little bit more.

Also, as just noted, even in the equilibrium case, I need to generalize
this before I can actually do the calculation for non-trivial physical
problems, because in practice I don't have the kind of information assumed
above. The thepry given so far presupposes au enumeration of the exact
energy levels in my system to start with, But in a realistic problem, I
can't calculate these. What we know is a Hamiltonian which, in the cases
we can actually solve, can eventually be split into a term Ho which is big

but simple and another term H., which is complicated but small,

1

H=H +H (24~1)

1

Then we have to do some kind of perturbation theory in order to find ap-
proximate values for the energy levels defined by the entire Hamiltonian.

To find them exactly is a problem that we haven't solved.
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It will happen in all non-trivial problems that the H1 simply does not
commute with Ho. So we have to learn how to generalize this mathematical
machine so we can put in information gbout quantities which den't commute
with each other. I can't enumerate states of nature simply by citing energy
levels; in fact, I don't even know the representation in which this would be
possible. For this reascn, In any representation I can find, the relative
phase of these quantum states has to get into the picture even for equilibrium
problems. Well, we know the way to do this is to restate this theory in
terms of the density matrix; let's turn to that now.

First, let's recall our basic definition of the demsity matrix. Again,
this is perfectly standard material which is in fifty textbooks on quantum
theory and statistical mechanics by now. Suppose that 1 have a state of
knowledge about a system; and for the time being, don't worry about how I
got this state of knowledge. I just want to describe it. There are various
states wl’ wz, «++, in which the system might be. I don't kinow which one it
is. All I know is described by assigning some probability v, to it being in
the state wi. Now, if I knew the system was in a definite quantum state $i

I could calculate the expectation value of any operator and come out with

some formula like this,

<F>i = in Fui dr (24-2)

where /dt stands for an integration over all particle co-ordinates and, if
there are spin indices in the probilem, for summation over all those. Now

the N functions that 1 started with are not necessarily orthogonal functioms.
They could be any 0ld set of conceivable states of the system. But each of
them could be expanded in a complete orthogonal set. Let's say that u, are

a complete orthonermal set of functions in which we can expand any state of

this system. TFor the moment, it doesn't matter what states they are; just
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any set that we know is complete. We could expand ¥; in terms of those,

getting some expansion coefficients aﬁl):

and then write

L 5 ()% (1) _
F { = Jlguk a, F(? uj aj )dT . (24-4)

*
Now the a, and aj are constants which can be taken ocutside,

_oT Rd) ()] . _
<F>i = é} a, aj u, F uj d {24-5)

and the integral (or sum)

* —
Juk FudrE, (24-6)

representation, so that

defines the matrix element ij, in the uy

(i)* (1)
<Fr = F.. a a,
i %% ki 'k 3

. (24-7)

The expectation:yalue of any quantity, if I am given the wave function y.,
is a quadratic form in these matrix elements ij. Now if I'm in this fix
where I don't know what the state is, the best expectation value I can
give you is not just one of these, but I ﬁave rto average it also over
these W, which represent my uncertainty as to what the actual state is,

_ _ B} _ (1)y* (i) -
F> = ;wi&F}i —Ziwi leé ij a, aj . (24-8)
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Qur expectation walues are now double averages.

Even if T knew the exact

quantum state, there are still statistical things in quantum theory (or,

to put 1t more cautiously, in the current "Copenhagen" interpretation of

that theory), which would allow me to give only expectation values in general,

I'm not even that well off,

I have to average over that ignorance (Wi) also.

I don't even know what the right state is, so

When you have a thing like (24-8), the only thing you can possibly do

with it is change the order of summations and see what happens.

that;

e (L)* (1)
<F> = Zk ij gwi ak aj .

then

Let me do

(24-9)

(24-10)

The summation over j builds me the matrix product of Fp; and then the sum-

mation over k is the sum of the diagonal elements, which we ¢all the trace.

Or, I could have written the sum with o and F interchanged.

In this

case I would now say the summation over k builds me the matrix product pF,

and then the summation over j gives the trace, so I could write this equally

well as

<Fr = E: Fk' pjk = Tr(Fp) = Tr{pF)

(24-11)
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This matrix p is, of course, called the density matrix, and you see that it

is a Hermitian matrix,

* —
ij = Djk s
or in matrix notation
DJr = pn - (24=-12)

The neat way to develep our quantum statistics, so the phases are
taken into account automatically, is in terms of the demsity matrix.
From now on I will express expectation values of any quantities I want
to talk about in the form (24-11). We started out with a problem of how
you gset up a probability assignmment which describes a certain state of
knowledge: now we've got the problem of setting up a density matrix which
degscribes a certain state of knowledge. Take a specific case; suppose
somebody measures the total magnetic moment of some spin system and they
give me a number M. I want to find a density matrix which describes what
I know about this spin system when you give me just this number; or rather
these three numbers, the three components {MX, My’ Mz}. At the very least

I want my density matrix to satisfy
. (24-~13)

In other words, if I give this density matrix to anybody else, and he tries
to predict the moments from the density matrix, he should be able to get
back the numbers that were given to me, by following the usual rule for
prediction in statistical mechanics. If he couldn't do that, then it
wouldn't make sense to gay that the density matrix "contained” the given
information {MX, My’ Mz}. This is all we are deing when we choose  to

satisfy (24-13},
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In general, there are an infinite number of density matrices which would
all do this. Again, I am faced with the problem of making a free choice of
a dengity matrix, which is "honest" in the sense that it doesn't assume things
that T don't know, and spreads out the probability as evenly as possible over

all possibilities allowed by what I do know. Well, we started out with

w
It

1 "Zi py log py

so, suppose we now take

|75}
I

4= - Lw, logw, (24-14)
i

and we might choose the density matrix which makes SA a maximum. If we took
that as our measure of amount of uncertainty, we would be in a little bit of
trouble. A sort of Gibbs paradox would show up. I said that these initial

states wi that we started out with are not necessarily orthogonal to each

other., In fact, I can have state ¢1 and T give it a probability wl; to the

state ¥, I give probabllity w Now, let's make a continuous change in the

9
problem such that w2==+ ¥y my state of knowledge shades continucusly into:

wl with a probability (Wl+w2). But nothing like that happens to SA' in

log w, — w, log w, would have to be replaced

S, as 1{;2 = tpl the term -w 1 5

A 2

1
suddenly by

—[wl+w2]log[wl+w2]

If we took this quantity S, as the measure of uncertainty about the system,

A
then you would have this phenomenon of sudden discontinuities in my un-
certainty when two wave functions suddenly become exactly equal. But my
intuitive state of knowledge has ne discentinuity when I do that. It goes
continuously from one case to another. That's one thing that would be wrong

if T tried to use this S, as my measure of uncertainty.

A
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There's another thing that would be even worse, and perhaps easler to
see. For a given density matrix, there's no upper limit to the SA that 1
could get. TIf SA is going to be the thing that counts, I'11 say I've got
26 different states, $a to ¥, - They all happen to be equal to ¢l but I

agsign probabilities v, to w, to them. Now, of course, my summation

26

- ;i; W log v,
over the alphabet—-my notation is not quite consistent, but I think you see
the point--my summation over all these terms could be a very large number,
I can introduce thousands of them. There would be no upper limit to the
%Zﬁ log w I could get if 1 used this SA'
Oon the other hand, there's one property that is unique. SA has no upper
bound. SA does have a lower bound. SA for a given density matrix has an

absolute minimum given by

SA > - Tr[plog p] . (24-15)

There's one and only only one way, in general, of setting up these states $i
and corresponding probabilities W, so that this lower bound is reached. When
I say "in general,” I mean if there are no degeneracies in the eigenvalues of
p. I think that I will not bother to give you the proof of this. The proot

is given in this second paper that I had a long time ago [Physical Review 108,

171, (1957)1.
Well, now what does log p mean? I have to do that for the next step.
o is a Hermitian matrix and there's a theorem in matrix theory that says,

there is a matrix S such that
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Sps T = T (24-16)

[ can always find some similarity transformation which would have made this
diagonal. Now, in the representation where p is diagonal, then by log o
I mean the diagonal matrix

log Py
log o,

log p = . {24=17)

-
-

log e

If T choose fot my hbasis Uy the particular set of functions wi for which SA
does reach its absolute minimum value, then the diagonal elements of p are
iust the probabilities W, assigned to these states. In other words, the
choice of possible states $i which makes SA a minimum for a given p, is the
one for which the probabillities W assigned to these states are the eigenvalues
of this matrix p.

The reason we had a Gibbs paradox at the beginning here was that I said
these different states wi that I'm taking into account are not necessarily
orthogonal. If states ¢1 and wz are not orghogomal and you tell me the
system is in state wl’ then, of course, the present Copenhagen interpretation
says: the probability that, if T did a measurement, I would actually find it
in ¢2, is not zero. It's the scalar product squared, [(wl,wz)lz; sometimes
called the transition probability from one state to another. I'm not writing
down the probabilities of mutually exclusive events unless I choose my states

wi to be orthogonal, and that's just what I do by making the choice that
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minimize SA' I'm going to say now that the SI for a density matrix is this

unique minimum value of SA:

51

-Tr(p log p) (24-18)

There are a number of other arguments why you choose (24-18) rather than some
other expressions that you could think of, and they are also given in this
previcusly mentioned paper. I want not to show you some examples of
equilibrium statistical mechanics using this and I want to develop a

general perturbation theory in which, if there's a complicated problem

I can break it down into a simple problem plus a small change. I want to
learn how to expand this density in powers of some small perturbation and

the perturbation theory we get will also be exactly the one we need for our
irreversible theory tomorrow. Now, we are back at the same problem that we

studied in Lecture 10, but the <F » are matrices, and the constraints are

k

<F>, = Tr(pF k=1, 2, ..., m . (24-19)

k k}’

This restricts my density matrix, I must find which density matrix will
maximize SI while agreeing with conditions we have imposed on it. Now,
the formal solution of this goes through in exactly the same way as we did
in Lecture 10. 1In fact, you recall that my proof back then was based

on the fact that when I have an ordinary discrete probability distribution

n n

2\ _
Z{:pi log Py /Py log uy (24-20)
i=1 i=1

the inequality becomes an equality if, and only if, P; = uy- Now, we have
a precisely similar situation here. You can prove that if p and ¢ are any

two density matrices, there is an inequality
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Tr[p log DJ > Tr[p log 0} (24-21)

I1'11 leave this as an "exercise for the reader™ to prove. The argument goes
through precisely the way I did it before. The solution to this problem was
given long ago by von Neumann (GSttinger Nachrichten, 1927).

The mathematical properties that I am talking about have been well

known for a long time; but the new viewpoint about the significance of those

properties is the thing that I'm selling here. These properties provide the
justification for choosing certain distributions in preference to certain
other ones. The density matrix that maximizes SI subject to these constraints
is again given by
N S AF. - - _
n o= 0 ) exp{ lFl ?LmFm} (24-22)
1 m

One would guess, of course, that it generalizes in some such way as thisg,
but T don't think your intuition would tell you whether the proper generaliza-
tion waé exactly this form. All the formal properties that T wrote down this
morning follow from this distribution just the game way that we gave before
with one exception, which I'1l get to after we've developed our mathematics
a little bit more.

Of course the number one must have expectation value of one,
<1* = Tr{pl) = Tr(p) . {(24-23)

This is one more condition just like the one this morning that Py had to be
equal to one. The normalizing factor which will guarantee that the trace of

this thing is one, is evidently
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ZQ0enenid ) = Tx exp[—?&lFl - -;\mym} (24-24)

which is the partition functiom.
Now perhaps I ought to say a word about what is meant by the exponential
of a matrix. If I have any functien eof an ordinary number x that I can expand

in a power series,

[

£(x) = Z a %, (24-25)

n=0
of course, there is nothing to stop me from defining the same funcition of a

matrix by the same power series,

fex]

£(M) = L a M’ . (24-26)

n=0
Then the question arises; does this converge to a definite matrix and if so
does the resultin matrix f(M) have any useful properties? There is a theorem:
if the original power series comverged for x equal to each of the eigenvalues
of the matrix M, then the power series is guaranteed to converge to a definite

matrix f(M). Now in particular the exponential functien,

et = § , (24~27)
1.
n=0

converges so well it has infinite radius of convergence and, therefore, the
exponential of any square matrix with finite elements is guaranteed to exist
and to be a well defined matrix.

The choosing of the Ak is again something which we do in order to make
the expectation values agree with the given data. Again it’s going to turn
out that same formal relations hold when we are talking matrices. Agaln we

have to sclve
_ _ 4 -
<Fk> = M log Z (24-28)
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for the kk. But to prove that this 1s right, we have to give a mathematical
argument that is a little more involved than that needed to prove (
It turns out that this argument 1s also fundamental to everything that I

want to talk about from now om, so let's take time ocut for it now.

24,2 Heims Perturbation Theory

T would like to develop what I call the Heims' perturbation theory.
This was worked out in about 1959 by my former student, Steve Heims, and
we published a very truncated account of it in the appendix to a paper on

gyromagnetic effects [Revs. Mcd. Physics 34, 143 (1962)]. You see we have

always the problem of evaluating exponentials of matrices. First, I would
like to work out the well-known perturbation expansion of this, I have a
matrix A, and the matrix eA is something that I can do. That is simple.

But the thing I really want to evaluate is

e(A+something else)

or
o
=

eA+€B - eA 1+ 2_, En g . (24-29)
n=1 o

And T will indicate that this something else is small by putting ¢ in it and
expanding in powers of . You see this is the typical situation we would have

if we tried to evaluate a density matrix

1
0 = E—exp{—AlFl - Aze — e - hmFm . (24-30)

Some of these operators might be simple so I could evaluate their exponentials:
then some others might be complicated and net commute with the others, and

they would mess up the whole problem. At that point I would resort to ap-

proximations. To put it in general form, let’s talk just A and B for a while,
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Let me form a quantity
-xA x(A+eR)
e e

where x is an ordinary number and by xA I mean the matrix in which every
element is multiplied by . If I let =z go to zero, this goes inte the unit
matrix. But it isn't quite the unit matrix, if ¢ is not zero. But how does
it vary with x? Well, by staring at this power series definition of the
exponential function, you can convince yourself very quickly that the same
rule for differentiating an exponential function works even if a matrix is

in the exponent. I have my choice of writing it either way:

—a = —fAe = —g A . (24=-31)

Therefore,

é%{}—erx(A+EB{i XA AeX(A+&:B) N e—XA(A+€B)eX(A+EB) (24-32)
Now two terms cancel, and € is just a number, so
- . - L
é%{% XAeX(A+CB{} - ®A Bex(A £B) (26-33)

I can't pull that B outside because in general it doesn't commute with
what is either to the left of it or to the right of it, Now that I've
differentiated this thing, let me integrate with respect to x and get it

back again:

g [ XA % (AFeB) -xA x{A+eB)
e e dx = g =] - l
dx J 1
1
© x —XlA XI(A+EB)
= ¢| e Be dxl . (24-34)

Q
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Now let me clean this up. Multiplying both sides by eXA from the left, we
find

X

) -x A )
eX(A+&B) = eXA 1+ E[ e 1 BeX(A+bB) dxl . (24-35)
o

x(A+eB)

This is an integral equation which e satisfies. Well now, if vou have

an integral equation, yvou grind out perturbation sclutions of it simply by
iteration—-i.e., substituting the equation into itself over and over again.

50, let me write this in still easier form,

xl(A+£B)

dx . (24-36)

® -X_A
ex(A+€B) - exA 1+ s[ . 1 Be .

The first iteration gives

1
-x. A x_(A+eR)
eX(A+€B) = exA 1+ chx e 1 Be 1 1+ eJ dxze 2 Be 2 f

0 Q
S

X
1
-x. A x A 2 -x. A (x,-x.0A =x.(A+eB)
= eXA 1 + cldx.e 1 Be 1+e J dx J dx e 1 Be 172 Be 2 s
1 2 10 2 J
)

and by repeated substitution we get

1
eA+EB = EA{; + eJe_XA BEXA dx +
1 Xi' ©
5 -%. A (X]—Xz)A XZA
£ dx1 dxze Be Be +
0 0 1 % %,
(x,.—x.JA x A { ( ( -x,A (x,-x,)A
273 3 | 3 172
Be Be 7 4+... 1 g ) dX]j dx2J dx3e Be . (24-37)
O O Q

We can keep playing this game as long as we please, and so this genecrates an
infinite series in powers of ¢. Or, we can terminate (24-37) at any finite
number of terms, replace A by A + ¢B in the last exponent, and it is an

exact equation. The exponential of any matrix is a well-behaved thing, so
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we can put in any ¢ we please—-large or small-- and the infinite series is
guaranteed to converge to the right thing., O0f course, if we have to take
more than about two terms of the series, then we'll be wound up in another
bad calculation and this whole method will not be too useful.

Let's summarize this: we have found the power series expansion

At+eB A
e ;{j e s (24-38)
n
n=1
in which 1
8, = { e TFB peXA ux (24-39)
o
1 X
1 —xlA (Xl—XZ) sz
82 = dxl dx2 e Be Be (24-40)
Qo [»]
and if we write
_ —XA _ XA
B(x) = e Be (24-41)
the general order term is
1 X ¥n-1
Sn = { dxl J dxz...[ dxn B(XI)B(XZ)"fB(Xn) . {24=-42)
Q o o

Now we have an "unperturbed" density matrix

EA
DO = ‘—m (24—43)
Tr (e
and a "perturbed" ome:
eA+EB
[ (24-44)
Tr |e
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In the unperturbed ensemble, any particular operator C has the expectation

value

<C>O = Tr(DOC) (24-45)
and in the perturbed ensemble, it will be instead,

<C> = Tr(pC) . (24-46)

And what I would really like to get is a power series expansion of <C>. So

let's write out the expansion we would like to get; using (24-38),

+

n

Tr eﬁ+€Bc] 7r () e Tr{eAsnc]

< = =

Tr[eA+€B} Tr(eA] +

En Tr[eAS ]
i=1 "

and divide by Tr(eA] to get, from (24-45),

b
> = “zi (26-47)
3

I've got everything reduced to expectation values calculated in the unperturbed
distribution, which I assumed was gomething simple that I could calculate.

But still this is in a little messy form. I've got the ratio of two infinite
gseries—-1 know they are well-behaved series. Both the numerator and denomi-
nator series have infinite radius of convergence. But, I would like to write
this as a single series over ¢ and get rid of this denominator. TIf I can
invert the power series for this denominator; that is, find the coefficients

a 1in
n
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then we'll have it. This equation is the same as

ll fa )
_ g . _
L=11+ ;;i e'<s > |[1 "t oa

or n-1

1=1+1§1 e <Sn> -a - Z«:Sk‘»oa

o n =1 n-k

Now if a power series in € is to vanish identically (i.e., for all c), the
coefficient of each term must be zero. So, my problem is: choose the a

s0 that

<S8 » = a +L <§. > a . (24-48)

This is a discrete version of a Volterra integral equation, and is solved as

follows. Define a sequence of operators Qn’

0; =8 (24-49)
Qy 7 5y = 5107, (24-50
n-1 _
Q =8, - 8.0 7, » ol (24-51)

=1

Taking the expectation value of (20-51) and comparing with (24-48), you see

that the desired solution is just
a = <Q> (24-52)

Now, returning to (24-47) with this result, we have

. ~ L0 .-k (9.8 m -
<Cx = <C>O + kgl 3 <SkC>O 1 - 21 & <Qn>o . (24-53)
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In expanding this, note that the double sum can be written as

Z: Si k-+m ii n ?if
£ <§, C> <Q » = € <5, C> <Q_ , > (24=54)
=1 =1 ko no ) =1 ko n-ko

and we might as well add the term with n=1, since it vanishes anyway, having

no terms at all. So, we have

= n-1
n
<> = <C>O + 2;& £ <SHC>0 - g;l <SkC>0<Qn_k>O - <Qn>O<C>0 (24-55)

and, comparing with (24-51), we get a pleasant surprise; patience and virtue
are rewarded at last with what we had no¢ right to expect in such a problem;

a neat and simple final result:

o
hn|

n ’ -
<C» = <C>sz;1 £ [<an>o - <Qn>o<c>?} . | (24-56)
The n'th order contribution to <C> is just the covariance, in the unperturbed
ensemble, of Qn with C. The first-order term in (24-56) has long been known;
to the best of my knowledge, Steve Heims was the first person to see that it
can be extended to all orders. In several years of living with this formula,
and seeing what it can do for us, I have come to regard it as easily the most
important general rule of statistical mechanics; almost every "useful"
calculation in the field can be seen as a special case of it,

So, this is the general perturbation expansion that we'll use. Every
caleulation I do from now on will be a special case of the application of
Heims' theorem (24-56). Now, the first order correction of course is alwavys

the most important one. The first order term has a symmetry property which

follows from this cyclic property of the trace, Eq. (24-11); and let me just
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show that to you. To first order, since Ql = Sl’ I have simply

] ]
<(r = <C>O = €r51C>0 - <Sl>0ac>0 (24=57)

but 1

so that

1
<g.> = J dx<e ¥4 poFA,

lo
o
1
[ dx Tr[e(l_x)A B Xﬂ
0
- . (24-58)
Tr[eAJ
Now, as in (24-11), it is true generallv that Tr{(FG) = Tr(GF); and so
o1
J dx Tr(éXA e(l—}{)A % Tr[eAB}
o) L
<g > = - = = <B> , {24-59)
Lo Tr[eA] Tr(eA) °
50 the first-order correction always reduces to
1
<C» — <C> = ¢ ( dx<e_XA BeXAC> - <B» <(C=» . (24-60)
o o o o
o
[At this point, we can verify Eq. (24-28). Make the choices
- - _ - A
A== AF) - .- A F ., eB = - 60 F . Then Z(a;..A ) = Tr(e"] and from
the definition of a deriwvative,
P e - S
> logz |1 |, 2y e A ] - [y ] (2461
T P S
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In the limit ﬁkkéo, only the first~order term survives, and so

Tr[éA S ] <B;*
3 78 X = 3 J\l > ] (24-63)
K k k

But, using (24-59), you see that this is just {(24-28)].

Now I want to show vou a very important symmetry property; if I inter-
change B and C in the right-hand side of (24-60), I don't change it. The
last term I have worked into a form where it 1s obvicus. We still have to

play with the first one a little bit. Again, let's write this as the ratio

of two traces. 1 1
f dx Tr[e(l_x)ﬁ Be™? ¢

1
dxce TR pXA o> - 0 - " J (24-64)
0 Tr ()

Q

This time I choose to interchange matrices as follows,

1 1
.
‘ dx Tr e(l-X)A BeXA C = J dx TrteXA Ce(l_x)A BJ . (24-65)

;

0 0

Now for any f(x}, we have

1 1
[ f(x)dx =J f{l-x)dx (24-66)
0 0

consequently we can write (24-65) as

1
[ dx Tr[e(l_x)A CeXA %} s (24-67)

o]

and writing this back as an expectation

1 l
J dx<e-XA BeXA(3> = J dx<e-XA CeXA B> ) (24-68)
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After all this, the only thing that has happened is that I've interchanged
B and C.

Now this is a very important symmetry property. If I perturb my dengity
matrix by adding in formation about B and I calculate what effect that makes
on my prediction of C, it is the same as if T had perturbed my density matrix
by putting in information about € and calculated what effect that makes on B.
In the next Lecture, I'1l show you a whole string of physical reciprocity
laws that come out of (24-68),

Again, I'm leaving you on a note where we have an enormous amount of
abstract stuff and you haven't seen the physical problem. In the next two

Lectures, we'll make up for that.
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SUMMARY OF BASIC RULES AND NOTATION
{Continued from inside front cover)

Continucus Distributions: If x is continuously variable, we denote the proba-
bility, given A, that it lies in the range (x, x+dx) by

(dx|n) = (x|a) ax

Thus the same bracket symbols ( ] ) are used for probabilities and probability
densities. This causes no confusion, since the distinction is determined by
whether the quantity is discrete or continuous. Rule 1 and Bayes' thecorem
then take the same form as above, gince dA andfor dB cancel out; and the
sunmations above become integrations.

Prior Probabilities: The initial information available to the robot at the
beginning of any problem is denoted by X. (AIX) is then the prior probability
of A. Applying Bayes' theorem to take account of new evidence E vields the
posterior probability (A[EX). In a posterior probability we gsometimes leave
off the X for brevity: (AFE) = (A‘EX)-

Prior probabilities are determined by Rule 4 when applicable; or more

generally by the principle of maximum entropy (Lect. 10): choose the p; =
(Ai|XJ so as to maximize H = - I; p; log p; subject to constraints represented
by X. In the continucus case this becomes: maximize H = - fp(x) log [p(x)/m(x)]

dx, where the measure m(x) is determined by invariance under the group of
transformations which convert the problem into an eguivalent one, for consist-~
ency in sense (b) above {Lect. 12).

Decision Theory: (Lect. 13). Enumerate the pcssible decisions Dy...D and
introduce a function L(D,,0.) representing the "loss” incurred by making
decision D; if 64 is the true state of nature. Make that decision D; which
minimizes the expected loss <L>; = L4 L(Di,ej)(ej'EX) over the postericr
distribution of Bj.

Probability and Fregquency: The above rules are shown to apply to general
inductive inferences, whether or not any random experiment is involved. Many
applications can be carried to completion without ever mentioning frequencias
{Lectures 5,6,8,9,11,14,18).

If a problem does involwve a random experiment, connections betwesen proba-
bility and frequency will appear as mathematical consequences of the theory.
Most randem exXperiments are exchangeable seguences (Lect. 17); here the proba-
bility of an event is numerically equal to the estimate of freqguency which
minimizes the expected square of the error. Conversely, if an experiment
has been repeated many times, the probability of any event at the next trial
approaches its cbserved frequency {(Lect. 16}.

Probabilitees derived from maximum entropy subject to constraints are
equal to the frequencies which can be realized in the greatest number of ways
subject to the same constraints {Lect. 10). Probabilities derived by invari-
ance under a transformation group are egual to the frequencies most likely
to be produced 1n the sense that they reguire the least "skill" (Lect. 12).



