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ABSTRACT

We extend the Bayesian method of Gregory and Loredo (1992) for the detection of

a periodic signal of unknown shape and period, to the case where the noise sampling

distribution is independent Gaussian. The analysis readily handles nonuniformily

sampled data and allows for an unknown noise variance. The method is applied to

the radio astronomy data for the interesting X-ray binary system LS I +61�303,

which exhibits periodic radio outbursts with a period of 26.5 days. Several authors

have suggested that the peak 
ux density of the outbursts exhibit a periodic or

quasi-periodic modulation of approximately 1600 days. Our Bayesian analysis of

the outburst peak 
ux densities provides strong support for such a modulation. We

derive the posterior probability density function of the modulation period and the

estimated mean shape of the modulation based on the available 
ux density data. The

probability density for the modulation period exhibits a broad peak in the range 1599

to 1660 days (68 % credible region) with a mean value of 1632 days. The RMS 
ux

density deviation from the mean shape, amounting to 45 mJy, is much larger than the

measurement errors of � 10 mJy which suggest additional complexity in the source

which is yet to be understood. The next maximum in the long term 
ux modulation is

predicted to occur near July 22, 1999 (Julian day 2,451,382).

Subject headings: Bayesian methods, period detection, Gregory-Loredo method, LS I

+61�303, X-ray binaries, pulsars, time series analysis

1. INTRODUCTION

LS I +61�303 (V615 Cas, GT 0236+610, 2CG 135+01) is particularly interesting among

high-mass X-ray binaries because of its strong variable emission from radio to X-ray and probably


-ray (Gregory and Taylor 1978, Kni�en et al. 1997). At radio wavelengths it exhibits periodic
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radio outbursts with a period of 26.5 days (Taylor and Gregory 1982, 1984) and there is recent

evidence for an approximately 5 fold 26.7 � 0.2 day modulation of the 2-10 keV X-ray 
ux

(Paredes et al. 1997). However, the radio outbursts are not stable in phase. Outburst maxima

have been seen from phase 0.45 to 0.95, but bright maxima seem to occur near 0.6 (Paredes,

Estella, & Rius 1990). Furthermore the peak 
ux of the outbursts are known to exhibit a long

term � 4 year modulation (Gregory et al. 1989, Marti 1993, Marti and Paredes 1995). The most

recent estimate of the time scale of the long term modulation is 1598 � 13 days (Peracaula 1997).

In the period 1977 August to 1992 August a total of 14 outbursts were recorded by a variety of

groups. However, beginning in January 1994 (Ray et al. 1997) detailed monitoring was performed

(several times a day) with the National Radio Astronomy Observatory Green Bank Interferometer

(GBI). This has yielded high quality data for an additional 44 cycles to date. From the GBI data,

Ray et al. (1997) reported a secular change in the outburst phase indicating either orbital period

evolution, or a drift in orbital phase. Based on the �rst 2 years of the GBI data (28 cycles) they

�nd only weak evidence for the proposed long term periodic outburst peak 
ux modulation.

In this paper we will focus on the variations in the outburst peak 
ux. In a companion paper

(Gregory et al. 1998, Paper II) we address the nature of the outburst phase and its relationship

to the outburst peak 
ux. We use Bayesian analysis to assess the relative probabilities of three

hypotheses for explaining the outburst peak 
ux variations. Included is the hypothesis that the

outburst peak 
ux is periodically modulated. For this purpose we exploit the Gregory-Loredo

(GL) Bayesian method (Gregory and Loredo 1992a, b, 1993, 1996; henceforth referred to as

GL1, GL2, GL3 and GL4). This method is well suited for the detection and measurement of a

periodic signal when we have no speci�c prior knowledge of its shape. In GL1 and GL2 details

of the theory were presented for the case of a time series where the appropriate noise sampling

distribution is the Poisson distribution. For an example of its use in X-ray astronomy see Gregory

and Loredo (1996); henceforth referred to as GL4. The focus of the current paper is to generalize

the GL method to time series with independent Gaussian noise. In this respect the results are

quite general and could be applied to a wide variety of time series. The analysis of LS I +61�303

data in this and a companion paper (Gregory et al. 1998) serves as an interesting example of its

capabilities.

In section 2 we consider the hypotheses to be tested and present the data. In section 3 we

develop the appropriate equations for the GL method for the case where the noise sampling

distribution is Gaussian. In section 4 we apply the method to an analysis of the LS I +61�303

outburst 
ux data and show the case for a periodic modulation is very strong. In sections 5

and 6 we obtain the Bayesian estimate of the period and light curve for the 
ux modulation. In

section 7 we discuss the results and examine the question of quasi-periodic 
ux modulation. Our

conclusions are presented in section 8.
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2. Hypothesis Space and Data

In a Bayesian analysis the �rst step is to de�ne the hypothesis space of interest. In this

problem we are interested in hypotheses concerning a time series with associated Gaussian errors.

In the particular case of LS I +61�303 the time series consist of the times and peak 
ux densities

of the radio outbursts.

We consider three hypotheses concerning the outburst peak 
ux behavior. They are:

ABBREVIATION HYPOTHESIS

HC Deviations of the outburst peak 
ux values from a

constant value are consistent with Gaussian random noise.

HP Outburst peak 
ux values have a modulation

which is periodic but of a priori unknown shape

and period.

HNP Outburst peak 
ux values have a non periodic

modulation of unknown shape.

As we will see shortly hypotheses HC and HNP are limiting cases of a family of periodic

models capable of describing a periodic structure of arbitrary shape for use with HP . To this list

we might like to add a hypothesis to represent a quasi-periodic modulation but this is beyond the

scope of the present work.

The data consists of the estimated time and 
ux density corresponding to the peak of each

outburst. These are listed in table 1 together with an error estimate for each quantity and a

literature reference.

In addition to the long term variation in outburst 
ux, there was considerable variation in

peak 
ux from outburst to outburst which was much larger than measurement errors of � 10 mJy.

The RMS variation in 
ux between adjacent outbursts was 33 mJy. Close inspection of the GBI

data during periods when the 26.5 day outbursts are very weak or undetectable, indicates the

existence of shorter duration 
aring with amplitudes of up to 100 mJy. These 
ares also appear

to be present at other times as well but are superposed on the larger 26.5 day outbursts. They

are probably responsible for the 33 mJy outburst to outburst RMS 
ux variation noted above.

Indeed the data on LS I +61�303 indicate a rich variety of structures much like the layers of an

onion. We have adopted the approach of trying to understand one layer of complication at a time.
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The objective in this paper is the study of the long term modulation of the 26.5 day outbursts

leaving a detailed study of the 
ares for later. To this end we have assumed an error of 33 mJy

for the well de�ned outburst and 50 mJy in three cases where the coverage was not as complete.

Because of the complications to the outburst light curve arising from the 
ares we did not use any

sophisticated peak �nding routines, such as cross correlation analysis, but instead simply took the

highest data value for each outbursts and estimated the time error from shape of the underlying

outburst. In section 3 we discuss precisely how the 
ux error information is used in our Bayesian

analysis.

As mentioned above there are times when the outbursts are very weak and not well enough

de�ned to derive a meaningful error for the outburst time. However, there is still useful information

concerning the 
ux modulation and since this occurs on a time scale of approximately 4 years the

timing accuracy required is not high. So these outbursts were still included, if the coverage was

su�cient, to provide information about the peak 
ux density. These are indicated by a blank in

the timing error column. Similarly in two cases it was only possible to obtain a lower limit on the


ux density but it was still possible to obtain useful information on the outburst times although

with a larger estimated error.

Although the Julian date of the highest data points are given to two decimal places, to

identify the peaks measurements used, we have assumed outburst timing error as quoted in the

error column. Only the subset of Table 1 data values with a corresponding 
ux error listed were

used in the 
ux modulation analysis of this paper. For this analysis we do not make any use of the

outburst timing errors. In the companion paper (Gregory et al. 1998) we make use of the subset

of Table 1 with a quoted timing error, in a study of the outburst phase variations. We caution

against the use of Table 1 for studies of variability on still shorter time scales. Such analysis

should be carried out with the original data set.

In this and the companion paper we do not address the question of the possible frequency

dependence of the phenomena under study. The literature contains observations spanning a wide

frequency range. The GBI observations at 2.8 and 8.3 GHz are dominant in the period after

January 1994. Prior to this the majority of observations were at 5.0 and 10.5 GHz. To reduce

any possible frequency dependence and access the longest time base we have restricted the current

analysis to the range 5.0 to 10.5 GHz.

3. Gregory-Loredo Method, Gaussian Noise Case

The GL method addresses the problem of the detection and characterization of a periodic

signal in a time series when we have no speci�c prior knowledge of the existence of such a signal

or of its characteristics, including shape. The method was developed in GL1, GL2 and GL3 to

deal with photon arrival time data in X-ray and 
-ray astronomy, where the appropriate sampling

distribution is the Poisson distribution. A discussion of the usefulness of this approach relative



{ 5 {

to other common period �nding algorithms is given in GL2 an GL4. In the current work we are

dealing with radio 
ux density measurements, i.e. analyzing a sampled time series with Gaussian

noise. Our analysis does not assume uniform sampling; the Bayesian approach allows us to draw

optimal inferences about the nature of the signal for what ever data is available. We can represent

any data value di by the following equation:

di = dpi + ei; (1)

where dpi = the value of di predicted by the model and ei is a noise term representing the

uncertainty in di. In general ei consists of the random measurement errors plus any real signal

in the data that cannot be explained by the model. For example suppose the data contain two

periodic signals, Pa and Pb, and the model assumes only Pa is present. In this connection the Pb
signal acts like an additional unknown noise term. In the absence of detailed knowledge of the

noise distribution, other than that it has a �nite variance, the maximum entropy principle tells us

that a Gaussian distribution would be the most conservative choice (i.e. maximally non committal

about the information we don't have). For a justi�cation of this argument see the work of E. T.

Jaynes (e.g. \Probability Theory: The Logic of Science", available at http://bayes.wustl.edu/, to

be published by Cambridge University Press). In this paper we will assume the noise variance is

�nite and adopt a Gaussian distribution for ei with a variance �2i .

In a Bayesian analysis where the variance of ei is unknown, but assumed to be the same

for all data points, we can treat � as an unknown parameter. The full Bayesian inference is a

joint posterior distribution for all of the parameters; but its implication for any parameter of

interest can be summarized by integrating out the uninteresting parameters. For example if we

are interested in the period, we treat � as a nuisance parameter and integrate out this parameter.

This procedure of integrating out nuisance parameters is called marginalization. Marginalizing

over � has the desirable e�ect of treating anything in the data that can't be explained by the

model as noise and this leads to the most conservative estimates of model parameters. We can

also use Bayes's theorem to compute p(� j D;Model; I) to learn about the e�ective noise in �tting

the model to the data. For a more detailed discussion of marginalization see sections 2.2 and 2.3

of GL2.

In the current problem we do not assume all the �i are the same. We let si = the

experimenter's estimate of �i, prior to �tting the model and examining the model residuals. Our

estimates, si, are given in Table 1. The �i values are not known but the si values are our best

estimates which also contain information on the relative weight we want to associate with each

point. Since we do not know the absolute values of the �i we introduce a parameter called the

noise scale parameter, b, to allow for this. It could also be called a noise weight parameter. Several

di�erent de�nitions of b are possible including �2i = b s2i and �i = b si. The de�nition we will use

in this paper is given by,
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1

�2i
=

b

s2i
: (2)

Again marginalizing over b has the desirable e�ect of treating anything in the data that

can't be explained by the model as noise, leading to the most conservative estimates of model

parameters. Since b is a scale parameter we will assume a Je�reys prior (see section 3.2). A nice

feature of this prior is that it corresponds to to assuming a Je�reys prior for �i as well.

We can also use Bayes's theorem to compute p(b j D;Model; I). If the most probable estimate

of b � 1, then the model is doing a good job accounting for everything that is not noise based

on our si estimates. If b < 1 then either the model is not accounting for signi�cant features in

the data or the initial noise estimates, si, were low. We hasten to point out that the Bayesian

approach to model selection involves the direct comparison of the global probabilities of competing

models. The global probability of any model requires marginalizing over all the model parameters

which gives rise to an Occam penalty associated with each parameter (see GL2 section 2.3 for

details).

3.1. Periodic Model

Hypothesis HP represents a class of models with periodic structure. The periodic models

describe the signal plus any arbitrary o�set with a stepwise function, resembling a histogram, with

m phase bins per period. Clearly, such a stepwise model is capable of approximating a light curve

of arbitrary shape. Although such a model is well suited to describe \spiky" periodic signals,

our simulations in GL2 demonstrated that this model can usefully detect smooth signals and

accurately estimate their frequency and shape.

HP represents the whole class of stepwise periodic model for which Mm is one speci�c

member with m bins. The Bayesian posterior probability for a periodic model contains a term

which quanti�es Occam's razor, penalizing successively more complicated periodic models for their

greater complexity even though they are assigned equal prior probabilities. We will be interested

in calculating p(HP j D; I) by marginalizing over a range of Mm models corresponding to a prior

range of m values, from m = 2 to 12.

p(HP j D; I) =
mmaxX
m=2

p(Mm j D; I); (3)

where from Bayes's theorem,

p(Mm j D; I) = p(Mm j I)p(D jMm; I)

p(D j I) : (4)

The term in the denominator is a normalization constant, obtained by summing the products of

the priors and the global likelihoods of all models being considered.
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We consider each member of this class to be equally probable a priori, so that the probability

assigned to the periodic class is spread equally among the � = mmax � 1 members of this class.

Thus,

p(Mm j I) = 1

�
p(HP j I) (5)

Alternatively, we could view our stepwise models as a single model, and m as a discrete

parameter in this model; the 1=� factor in equation (5) then plays the role of a 
at prior

distribution for the parameter m.

For each choice of m the model contains m + 3 parameters: an angular frequency ! (or

alternatively a period P = 2�=!), a phase (position of �rst bin relative to the start of the data),

an unknown noise scale factor, b, plus m parameters describing the shape of the periodic light

curve. A remarkable feature of the stepwise model is that it enables marginalization of the m

shape parameters to be performed analytically, leaving only the period and phase to be integrated

numerically.

3.2. Likelihood Function for the Stepwise Model

The next step is to evaluate the global likelihood p(D j Mm; I) for the stepwise model. We

will let rj represent the light curve value in bin j. The value of the subscript j corresponding to

any particular sample time t is given by,

j(t) = int[1 +mf(!t+ �) mod 2�g=2�]: (6)

We sometimes denote the full set of m values of rj by the symbol ~r.

We can expand the global likelihood according to equation (7) where we substitute for � our

speci�c model parameters.

p(D jMm; I) =

Z
d!

Z
d�

Z
db

Z
d~r p(! jMm; I)p(� jMm; I)p(b jMm; I)

� p(~r jMm; I)p(D j !; �; b; ~r;Mm; I): (7)

Next we need to select priors for the parameters and compute the likelihood

p(D j !; �; b; ~r;Mm; I). Following the arguments given in GL2, the prior density for � we

take to be uniform over the interval [0; 2�],

p(� jMm; I) =
1

2�
; (8)
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and b and ! to have a Je�reys prior of the form,

p(b jMm; I) =
1

b ln bhi
blo

; (9)

In our calculations we set bLO = 0:05 and bHI = 1:95.

p(! jMm; I) =
1

! ln !hi
!lo

; (10)

where [!lo; !hi] is a prior range for ! and the ln !hi
!lo

factor is a normalization constant ensuring

that the integral of p(! j Mm; I) over the prior range is equal to 1. This density is uniform in the

logarithm of !. The Je�reys prior arises from an invariance property: invariance of conclusions

with respect to scale changes in time (E. T. Jaynes 1968 and his unpublished \Probability Theory:

The Logic of Science"). In addition, this prior is form-invariant with respect to reparameterization

in terms of P . That is, an investigator working in terms of P , and using a 1=P prior, will reach

the same conclusions as an investigator working in terms of !, and using a 1=! prior. This

would not be true for a prior of another form, for example a uniform prior. To the extent that

parameterization in terms of P and ! are both equally \natural", this form of invariance is

desirable. Of course if the prior range of a scale parameter is small when expressed as a fraction

of the center value, then the conclusions will not di�er signi�cantly from those arrived at by

assuming a uniform prior.

The likelihood function requires there to be at least several periods in the data set so we set

Phi = 2�=!lo = T=3, where T = 7523 d, the data duration. We set Plo = 2�=!hi = 800 d, or

1=2 the previous estimate of the period. Changing the value of !hi by a factor of a few does not

greatly a�ect our results, because !hi enters calculations only through the logarithmic factor.

3.2.1. Evaluating p(D j !; b = 1; �; ~r;Mm; I)

We �rst write the likelihood for the m bin model, Mm, as a function of all the parameters

assuming b = 1, which corresponds to �i = si. Equation (6) tells us which stepwise bin any

particular sample di falls in, for a given ! and �. The predicted value of di in bin j is rj . The

di�erence (di � rj) is assumed to have a Gaussian distribution with variance �2i . Assuming each

di is independent we can now write the desired likelihood as a product of Gaussians.

p(D j !; b = 1; �; ~r;Mm; I) =
mY
j=1

"
(2�)�

nj
2 f

njY
i=1

(si)
�1g exp

�
��
2

�#
; (11)

where nj = number of samples in bin j and,

� =

njX
i=1

(di � rj)
2

s2i
=

njX
i=1

d2i
s2i

� 2rj

njX
i=1

di
s2i

+ r2j

njX
i=1

1

s2i
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= Wjfd2Wj � 2rjdWj + r2jg
= Wj

h
fr2j � 2rjdWj + (dWJ)

2g+ d2Wj � (dWj)
2
i

= Wj(rj � dWj)
2 + �2Wj; (12)

where,

Wj =

njX
i=1

1

s2i
; (13)

and,

dWj =

Pnj
i=1

di
s2
iPnj

i=1
1
s2
i

=

Pnj
i=1

di
s2
i

Wj
; (14)

and,

d2Wj =

Pnj
i=1

d2i
s2
i

Wj
; (15)

and,

�2Wj =

njX
i=1

(di � dWj)
2

s2i

= Wjfd2Wj � (dWj)
2g: (16)

3.2.2. Marginalizing over ~r

To marginalize over the shape parameters, ~r, we need to introduce a prior for ~r and evaluate,

p(D j !; b = 1; �;Mm; I) =
mY
j=1

"
(2�)�

nj

2 f
njY
i=1

(si)
�1g exp

 
��

2
Wj

2

!
R

#
; (17)

where,

R =

Z rmax

rmin

drj p(rj jMm; I) exp

 
�Wj(rj � dWj)

2

2

!
: (18)

In general rj is not necessarily a positive quantity so we treat it as a location parameter and

assume a 
at prior distribution for each rj in the range rmin to rmax, thus

p(rj jMm; I) =
1

�r
=

1

rmax � rmin
: (19)

In the present problem rj stands for a 
ux density which is always positive. The prior range

used in the analysis of the LS I +61�303 data was rmin = 0:0 mJy to rmax = 400 mJy In terms of

this prior equation (17) becomes,
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p(D j !; b = 1; �;Mm; I) = (2�)�
N
2 (�r)�mf

NY
i=1

(si)
�1g exp

0
@� mX

j=1

�2Wj

2

1
A

�
mY
j=1

"Z rmax

rmin

drj exp

 
�Wj(rj � dWj)

2

2

!#
: (20)

We can evaluate the integral over rj in terms of the complimentary error function,

erfc(y) =
2p
�

Z
1

y
exp(u2)du (21)

With u2 =Wj(rj � dWj)
2=2, we can write,

Z rmax

rmin

drj exp(�Wj(rj � dWj)
2

2
) =

r
�

2
(Wj)

�1=2 [erfc(yjmin)� erfc(yjmax)] ; (22)

where,

yjmin =

s
Wj

2
(rmin � dWj

) ; yjmax =

s
Wj

2
(rmax � dWj

) (23)

Substituting into equation (20) we obtain �nally,

p(D j !; b = 1; �;Mm; I) = (2�)�
N
2 (�r)�mf

NY
i=1

(si)
�1g(�

2
)m=2 exp(�

mX
j=1

�2Wj

2
)

�
mY
j=1

fW�1=2
j [erfc(yjmin)� erfc(yjmax) ]g: (24)

3.2.3. Evaluating p(D j !; �; b;Mm; I) for b 6= 1

In the general case b 6= 1, which results in a few minor changes to our earlier equations. We

need to replace all references to Wj by bWj and si by sib
�

1

2 with the exception that both dWj and

d2Wj remain the same. Equation (24) becomes,

p(D j !; b; �;Mm; I) = (2�)�
N
2 (�r)�mf

NY
i=1

(si)
�1g(�

2
)m=2b

N�m
2 exp(� b

2

mX
j=1

�2Wj)

�
mY
j=1

fW�1=2
j [erfc(yjmin)� erfc(yjmax) ]g; (25)
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where,

yjmin =

s
bWj

2
(rmin � dWj

) ; yjmax =

s
bWj

2
(rmax � dWj

) (26)

We can now rewrite equation (7) as,

p(D jMm; I) =
(2�)�

N
2 (�r)�mfQN

i=1(si)
�1g(�2 )m=2

2� ln !hi
!lo

ln bhi
blo

Z
d!

!

Z
d�

Z
db

b
b
N�m
2 exp(� b

2

mX
j=1

�2Wj)

�
mY
j=1

fWj
�1=2 [erfc(yjmin)� erfc(yjmax) ]g: (27)

For very small data sets it is possible that there will be less than two samples in one or more

bins. See appendix A for a discussion on a modi�cation to handle small data sets.

We can extract useful information about what the data and our prior information have to say

about the noise scale parameter, b, by computing the marginal posterior probability density of b.

In Figure 1(a) we have plotted what we call the projected probability of b for the prior range of

b = 0:05 � 1:95. It is equal to the product of the projection of the multidimensional likelihood,

p(D j !; � b;m; I) on to the b axis times our prior for b. In this work we use the projected

probability because in practice is often a reasonably good approximation to the marginal and is

much easier to compute. The most probable value of b = 0:68 means that the e�ective noise for

model HP , namely everything that can't be �t by this model, is � 1=
p
0:68 = 1:21 times the

estimated noise sigma.

3.3. Likelihood Function for the Constant Model, HC

The constant model is just a special case of a periodic model when there is only one bin (i.e.

m = 1).

p(D j HC) = p(D jM1) (28)

Consequently the model has only two parameters: the unknown value of the constant signal level,

A, and the noise scale parameter, b. The prior ranges used were �A = 400 mJy and b = 0:05 to

1:95. The global likelihood for this model is given by,

p(D jM1) =
(2�)�

N
2 (�A)�1fQN

i=1(si)
�1g(�2 )1=2

ln bhi
blo

Z bhi

blo

db

b
b
N
2
�1W�1=2 exp(� b

2
�W

2)

� [erfc(yAmin)� erfc(yAmax) ] ; (29)
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Fig. 1.| Panel (a) shows the projected probability of the noise scale parameter b and panel (b)

the marginal probability of the number of bins, m, in the stepwise model.
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where,

W =
NX
i=1

1

s2i
; (30)

and,

yAmin =

s
bW

2
(Amin � dW ) ; yAmax =

s
bW

2
(Amax � dW ) (31)

3.4. Likelihood Function for the Non Periodic Modulation Model, HNP

The non periodic modulation model is just another special case of a periodic model, when

the period is equal to the duration of the data. In general the number of bins required to explain

a non periodic modulation is greater than for the periodic modulation so we need to consider a

wider range of m. Suppose the data does contain a real periodic modulation whose shape can be

adequately described with 5 bins. To attempt to describe this modulation with a non periodic

model to the same accuracy would require 5� T=P bins, where T = data duration and P = the

period. In this case we would expect the probability of the periodic model to be much greater due

to the heavier Occam penalty that would be levied against the non periodic model because of the

much larger number of bins that would be required. Of course the periodic model would su�er an

additional Occam factor due to the unknown period search range but here the penalty increases

only logarithmically with range. A prior range of m = 2 to 20 was used for the non periodic model.

The non periodic modulation model has m+ 2 parameters: m shape parameters, bin phase

and the noise scale parameter, b. HNP represents the whole class of stepwise non periodic models

for which Nm is one speci�c member with m bins. The global likelihood for this model is given by,

p(HNP j D; I) =
mmaxX
m=2

p(Nm j D; I); (32)

The global likelihood for Nm, the same as that for Mm without the ! terms, is given by,

p(D j Nm) =
(2�)�

N
2 (�r)�mfQN

i=1(si)
�1g(�2 )m=2

2� ln bhi
blo

Z
d�

Z
db

b
b
N�m
2 exp(� b

2

mX
j=1

�2Wj)

�
mY
j=1

fWj
�1=2 [erfc(yjmin)� erfc(yjmax) ]g: (33)
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4. Model Selection

The �rst question is a detection problem, \Is there evidence for a periodic signal regardless

of the exact shape, period and phase of the signal?" We address the detection question by

using Bayesian probability theory to compare the relative probabilities of the three competing

hypotheses presented in section 2

It is useful to consider the ratios of the probabilities of the HP to each of the other two

models. The ratio, OPC = p(HP j D; I)=p(HC j D; I), is called the odds ratio in favor of model HP

over the constant model HC . Application of Bayes's theorem leads to,

OPC =
p(HP j I)
p(HC j I)

p(D j HP )

p(D j HC)
� p(HP j I)
p(HC j I) BPC (34)

where the �rst factor is the prior odds ratio, and the second factor is called the Bayes factor. The

Bayes factor is the ratio of the global likelihoods of the models. In a similar fashion we can write

OPNP =
p(HP j I)
p(HNP j I)

p(D j HP )

p(D j HNP )
� p(HP j I)
p(HNP j I) BPNP (35)

BPC is computed from equations (3), (27), (28) and (29) and BPNP from the �rst two equations

plus (32) and (33).

Bayesian model comparison relies on the ratio of global likelihoods, not maximum likelihoods.

A crucial consequence of the marginalization procedure used to calculate global likelihoods is that

the Bayes factor automatically favors simpler models unless the data justify the complexity of

more complicated alternatives. Each parameter of a model that is marginalized over, in the process

of computing the global likelihood, introduces an Occam's factor penalizing the model for wasted

prior parameter space that gets ruled out by the data (see GL2, section 2.3). Thus the greater

the model complexity the more Occam's penalties it must overcome in comparison with a simpler

model. Thus even if we assign equal prior probabilities to competing models, simpler models can

have larger posterior probabilities than their competitors. The calculation thus balances model

simplicity with goodness-of-�t, allowing us to determine both whether there is evidence for a

periodic signal and the optimum number of bins for describing the structure in the data.

The global likelihoods and the most probable value of the noise parameter, b, were computed

for each model. Recall that by marginalizing over b, anything in the data that cannot be described

by the model is assumed to be noise which leads to the most conservative estimates of model

parameters. If b < 1 then either the model is not accounting for signi�cant features in the data or

the initial noise estimates, si, were low. Equation (2) can be used to compute the derived values

of the outburst 
ux density noise sigma given the most probable b and the initial estimate of the

typical noise of si = 33 mJy. The most probable values of b and derived noise sigma are listed in

Table 2.
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It is clear that the periodic model is capable of explaining more of the structure in the data

than the other two models because its noise parameter is signi�cantly closer to one. The computed

Bayes factors are BPC = 1:2 � 108 and BPNP = 1:4 � 105. Not surprisingly the Bayes's factors

also strongly support the periodic model.

If we assume that a priori the three models are equally probable then the two odds ratios are

equal to their corresponding Bayes's factors. Keeping in mind that in this paper we are restricting

our hypothesis space to the three models, then the probability of HP can be related to the odds

ratios in the following way.

p(HP j D; I) =
p(HP j D; I)

p(HP j D; I) + p(HC j D; I) + p(HNP j D; I)
=

1

1 + 1
OPC

+ 1
OPNP

(36)

This leads to a value of p(HP j D; I) = 0:999989. We note that the estimated noise sigma for

even the periodic model of 45 mJy is considerably higher than the measurement uncertainty (5 to

10 mJy). This implies that there is scope for still more complex models to describe deeper levels

of the sources behavior. Eventually we hope to expand our hypothesis space to include additional

more complex models.

We also derive the most probable number of bins required to describe the periodic modulation

for our existing state of knowledge. The probability versus bin number m is shown in Figure 1(b)

and has a maximum for m = 6.

5. ESTIMATING THE PERIOD

Now that we have established the presence of a periodic 
ux modulation we apply Bayes's

theorem to determine the probability distribution of the modulation period or frequency, !. We

do this �rst for the m bin periodic model and later marginalize over m.

p(! j D;Mm; I) = p(! jMm; I)
p(D j !;Mm; I)

p(D jMm; I)
: (37)

In parameter estimation questions like this the global likelihood, p(D j Mm; I), merely plays

the role of a normalization constant. The result is,

p(! j D;Mm; I) =
C

!

Z bhi

blo

db

b
b
N�m
2

Z �=2�

�=0
d� exp(� b

2

mX
j=1

�2Wj)
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�
mY
j=1

fWj
�1=2 [erfc(yjmin)� erfc(yjmax) ]g; (38)

where C = is a normalization constant, equal to the integral of the right hand side of above

equation over !. The marginal contains all the information provided by the data about the

frequency when we are not interested in the exact shape of the light curve or its phase. This

distribution summarizes the information provided by the data about the frequency. In particular,

a \best" frequency can be found by locating the maximum of equation (38) (giving the mode)

or by calculating the posterior mean. The probability that the true frequency is in any speci�ed

range can be found simply by integrating the equation over that range.

Note that the normalization constants for the priors, �r, 2�, and ln(!hi=!lo), do not appear,

making the posterior very insensitive to the prior ranges for the parameters. This is a general

characteristic of Bayesian calculations: the results of parameter estimation tend to be very

insensitive to the prior ranges of parameters, being essentially equal to limiting results obtained

with in�nite range. This is in contrast to model comparison calculations, which can depend more

sensitively on the prior parameter ranges.

These calculations are all conditional on the choice of a particular model, Mm. But the

Bayesian model comparison calculations of the previous section do not isolate a single model;

rather, they assign a probability to each possible model (just as Bayesian parameter estimation

does not produce a single point in parameter space, but rather a posterior \bubble"). Formally,

our estimate of the frequency should include the information provided by all of the models,

essentially marginalizing over m, which we can consider a discrete nuisance parameter. We can

perform this calculation as follows.

We let (m > 1) stand for the proposition, \the signal is periodic, not constant." Then a

complete description of our knowledge of the frequency of the periodic signal is given by the

marginal distribution,

p(! j m > 1;D; I) =
mmaxX
m=2

p(Mm; ! j m > 1;D; I)

=
mmaxX
m=2

p(Mm j D; I) p(! j D;Mm; I); (39)

where

p(Mm j D; I) =
p(Mm j I) p(D jMm; I)Pmmax

m=2 p(Mm j I) p(D jMm; I)

=
p(D jMm; I)Pmmax

m=2 p(D jMm; I)
(40)
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and p(! j D;Mm; I) is from equation (38). Equation (39) is a weighted sum of the marginal

posteriors for all the periodic models being considered, from those with m = 2 to m = mmax = 12.

Figure 2(a) shows the posterior probability of the 
ux modulation period, obtained from

equation (39).

Figure 2(b) shows an exploded view of the peak 
ux modulation period probability

distribution The solid curve is the result after marginalizing the noise scale parameter over the

prior range b = 0:05 to 1.95 . For comparison we show the results assuming two �xed values of b.

The dashed curve corresponds to b = 1 and the dot dashed curve to b = 1:8. Recall that the typical


ux value in Table 1 of � 33 mJy, based on the scatter of adjacent outburst 
uxes is already much

larger than the individual 
ux measurement errors of � 10 mJy. The value of b = 1:8 comes from

assuming �i equal to the typical 
ux measurement error of 10 mJy, or b =
p
33=10 = 1:8 . In

section 4 we found that the most probable value of b = 0:68. Recall that if b < 1 then either the

model is not accounting for signi�cant features in the data or the initial noise estimates, si, were

low. The three choices for b: (a) marginalizing over a prior range, (b) b = 1:0, and (c) b = 1:8,

constitute three di�erent models. We can readily evaluate the global likelihood for each. The

relative global likelihood of the three is 2:1 � 106 : 1:1 � 106 : 1:0 . Thus, in spite of its greater

complexity, the model which treats b as a free parameter and marginalizes over it has the highest

probability. Figure 2(b) demonstrates that marginalizing over b leads to the most conservative

estimate of the period, in that it has a broader probability distribution. This example illustrates

the potential danger of a simple maximum likelihood analysis in which the measurement errors

are assumed to be the sole source of uncertainty. In this way one might be lead to conclude falsely

that the dot dashed curve in Figure 2(b) was our best estimate of the probability distribution for

the modulation period.

The mean of the probability distribution is at 1632 days with a 68:3% credible region

(posterior bubble) extending from 1599 to 1660 days. The 68:3% credible region includes other

recent estimates of 1598 � 13 days obtained by a very di�erent analyses (Marta 1997) and

1605 � 24 Marti 1993).

6. ESTIMATING THE PERIODIC LIGHT-CURVE SHAPE

In this section we estimate the shape of the periodic modulation together with the uncertainty

of the shape. The light curve is entirely speci�ed by the stepwise function r(t) = rj(t) where j is

the bin number corresponding to a time t. The estimate of r(t) at one particular time is not simply

the estimate of a particular rj parameter, because the value of j corresponding to t depends on

the frequency and phase, which are usually not known. Additionally, the estimate will depend on

which model (number of bins) is chosen. Formally, since the shape of the signal is determined by

the choice of the model and by the values of all of the model parameters, the full Bayesian shape

estimate for any given value of m is the joint posterior distribution, p(Mm; !; b; �; ~r j D; I). We
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Fig. 2.| Panel (a) shows the marginal probability of the peak 
ux modulation period of the LS I

+61�303 outbursts. Panel (b) gives an exploded view of the peak 
ux modulation period probability

distribution. The solid curve is the result after marginalizing over the noise scale parameter b, the

dashed curve is for b = 1 and the dot dashed curve for b = 1:8 .
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will call this distribution the shape distribution. The shape distribution is so complicated as to

be almost useless by itself. In this section we seek to summarize its implications in an intuitively

accessible manner.

6.1. Conditional Mean of rj

As a �rst step toward a more informative summary of the shape distribution, we now seek the

posterior mean of rj when m, !, b, and � are speci�ed. The mean (expected value) of rj is given

by,

hrj j !; b; �;mi =
Z rmax

rmin

drj rj p(rj j !; b; �;D;Mm; I); (41)

where,

p(rj j !; b; �;D;Mm; I) = p(rj jMm; I)p(D j !; b; �; rj ;Mm; I)=p(D j !; b; �;Mm; I): (42)

Combining results from section 3.2.1 and 3.2.3 we obtain,

p(D j !; b; �; rj ;Mm; I) =

Z
dr1 � � �

Z
drj�1

Z
drj+1 � � �

Z
drm p(r1; � � � ; rj�1; rj+1; � � � ; rm jMm; I)

� p(D j !; b; �; ~r;Mm; I); (43)

and,

p(D j !; b; �;Mm; I) =

Z
drj p(rj jMm; I)p(D j !; b; �; rj ;Mm; I); (44)

where,

p(D j !; b; �; ~r;Mm; I) =
mY
j=1

"
(2�)�

nj

2 f
njY
i=1

(si)
�1gb

nj

2 exp(�b�
2
Wj

2
)�

#
; (45)

where,

� = exp(�bWj(rj � dWj)
2

2
): (46)

Substituting equations (44), (43) and (45) into equation (42) and simplifying yields,

p(rj j !; b; �;D;Mm; I) =
�r exp(� bWj(rj�dWj)

2

2 )R rmax
rmin

drj exp(� bWj(rj�dWj)2

2 )
: (47)

We now have all the components to evaluate equation (41),

hrj j !; b; �;mi =
R rmax
rmin

drj rj exp(� bWj(rj�dWj)
2

2 )R rmax
rmin

drj exp(� bWj(rj�dWj)2

2 )
: (48)
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Equation (48) can be evaluated in terms of the complimentary error function,

hrj j !; b; �;mi = dWj +

p
2(exp(�bWj(rmax � dWj)

2=2)� exp(�bWj(rmin � dWj)
2=2))p

�bWj

h
erfc(

bWj

2 (rmin � dWj))� erfc(
bWj

2 (rmax � dWj))
i : (49)

Provided the boundaries of the integral are far from the peak (in units of the width of the

integrand) as they are in this problem, to a very good approximation one is just integrating over

full Gaussians yielding only the �rst term. In this paper we will use the equation,

hrj j !; b; �;mi = dWj (50)

The standard deviation of the marginal posterior for rj , de�ned by

h�j j !; b; �;mi = h(rj � hrji)2i1=2

=
h
hr2j i � hrji2

i1=2
�

h
hr2j i � dWj

2
i1=2

; (51)

provides a measure of the uncertainty of the value of rj . Following the analysis of hrj j !; b; �;mi
we can express equation (51) as:

h�j j !; b; �;mi2 = (bWj)
�1 +

p
2((rmax � dWj) exp(�bWj(rmax � dWj)

2=2) � (rmin � sWj) exp(�bWj(rmin � dWj)
2=2))p

�bWj

h
erfc(

bWj

2 (rmin � dWj))� erfc(
bWj

2 (rmax � dWj))
i (52)

Again to a very good approximation only the �rst term is important, thus

h�j j !; b; �;mi =
q
(bWj)�1; (53)

where Wj is determined by the estimated data errors si according to equation (13). To get a better

understanding for equation (53) assume all si = constant = s. Then we can rewrite equation (53)

as,

h�j j !; b; �;mi = sp
bnj

: (54)

Thus we see the \root-n" dependence we might have guessed. The noise scale parameter factor,p
b, occurring in the denominator allows for our earlier parameterization of the noise � (see

equation (2)).
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6.2. Averaging Over Frequency, Noise Scale Parameter and Phase

Recall that all of these results are conditional on !; b; � (and the choice of m). When !; b

and � are unknown, we need to estimate r(t) at a particular time, t, which may not correspond to

estimating a particular rj , since the uncertainty in !; b and � make j(t) uncertain. We can take

into account our uncertainty in !; b and � by marginalizing. This can all be done numerically

using the results already found. For example, for hr(t) j mi we have,

hr(t) j mi =

Z
d!

Z
db

Z
d�

Z
d~r rj(t) p(!; b; �; ~r j D;Mm; I)

=

Z
d!

Z
db

Z
d�

�Z
d~r rj(t) p(~r j !; b; �;D;Mm; I)

�
p(!; b; � j D;Mm; I)

=

Z
d!

Z
db

Z
d� hrj(t) j !; b; �;mi p(!; b; � j D;Mm; I); (55)

that is, we just average the conditional result we found above over the marginal posterior for !; b

and � (conditional on m), choosing the appropriate value of j in the integral as ! and � vary.

p(!; b; � j D;Mm; I) can be evaluated from equations (25), (26), (10), (9), and (8).

p(!; b; � j D;Mm; I) =
(!b)�1

Qm
j=1f(bWj)

�1F exp(� b
2

Pm
j=1 �

2
Wj)gR d!

!

R db
b

R
d�
Qm
j=1f(bWj)�1F exp(� b

2

Pm
j=1 �

2
Wj)g

; (56)

where,

F =

�
erfc(

bWj

2
(rmin � dWj))� erfc(

bWj

2
(rmax � dWj))

�
: (57)

Calculation of the second moment proceeds analogously, allowing us to calculate the standard

deviation of the estimate of r(t).

Note that the estimate provided by equation (55) is essentially a weighted superposition of

stepwise light curves, each with di�erent phase, noise scale factor and frequency , with weights

given by the probability densities for various choices of frequency, b and phase. It is thus not a

stepwise function, but rather a somewhat smoothed version of a stepwise function.

6.3. Superposing Stepwise Models

All of our light curve estimates so far have been conditional on the choice of a single best

(most probable) number of bins. But, as we noted in our derivation of equation (39), Bayesian

model comparison leads to a probability distribution for the models, p(Mm j D; I); it does not
isolate a single model. Thus a more complete estimate of the rate should marginalize over m as

well as the various model parameters. We can calculate the marginal posterior mean for r(t) as

follows;
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Fig. 3.| Panel (a) shows the shape estimate of the outburst peak 
ux modulation for LS I +61�303

and measured values plotted for two cycles of phase. The solid curves shown are the mean 
ux

�1 one standard deviation. Panel (b) compares the Bayesian 
ux modulation light curve with the

data.
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hr(t) j m > 1i =
mmaxX
m=2

p(Mm j D; I) hr(t) j mi; (58)

where hr(t) j mi is given by equation (55), and p(Mm j D; I) can be calculated from equation 4. An

analogous equation holds for the second moment, allowing calculation of the standard deviation

for r(t). The resulting estimate is even more \smoothed" than that produced by equation (55)

because it contains contributions with di�erent numbers of bins. It may still have a signi�cantly

\boxy" shape, however.

Figure 3(a) shows the shape estimate for the outburst peak 
ux modulation for LS I +61�303

plotted for two cycles of phase, derived from equation (58), with phase derived from time assuming

the most probable modulation period of 1653 days. The solid curves are the mean 
ux �1
standard deviation. The raw data are also plotted. The error bars on the data points re
ect the

e�ective noise in the data after removal of the estimated shape of the 
ux modulation. They are

much larger than the real 
ux measurement errors which are � 10 mJy. The di�erence between

the e�ective and real errors represents further structure in the data beyond what can be explained

by the present model. In appearance the estimated light curve is a somewhat distorted sine wave.

Figure 3(b) shows a comparison of our computed Bayesian 
ux modulation light curve with

the data versus time. In this plot the zero point of the time axis corresponds to Julian Date

2,443,366.775 by convention.

7. Discussion

It is clear that of the 3 models considered the periodic modulation model, HP , is the clear

winner. Here we consider whether we can distinguish between a periodic and quasi-periodic 
ux

modulations. The plot of the probability of the 
ux modulation period (Fig. 2(b)) shows a broad

maximum with two clear peaks separated by 34 days and a very weak 3rd peak again separated

from the middle by 34 days. Recall that in a Bayesian analysis a probability distribution quanti�es

what we know about the period for our present state of knowledge or information. Even if the

modulation were perfectly periodic our state of information (noisy nonuniform sampling with large

gaps) might not result in a probability distribution with a single peak. To investigate this further

we generated two simulated data sets by sampling the derived periodic 
ux light curve shown in

Figure 3(a) with the same sampling in time as our measured outburst peaks and added Gaussian

noise with � = si . The simulated data sets were processed in exactly the same way as the real

data set. The posterior probability of the 
ux modulation period for the two simulated data sets is

shown in Figure 4. One (dashed curve) exhibits a single peak at 1646 days while the second (solid

curve) has two peaks at 1587 and 1639 days. This comparison suggests that the multiple peak

structure seen in the real data is not the result of the nonuniform data sampling but simply due

to the e�ective noise. In light of this the mean of the probability density function in Figure 2(b)

of 1632 days is probably a more robust estimator of the modulation period than the peak value.
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Fig. 4.| The marginal probability of the modulation period for the peak 
ux for two simulated

data sets.



{ 25 {

The results from the analysis of these simulated data sets do not argue for the need for variations

in the modulation period, but we can't rule it out.

8. Conclusions

In this paper we have developed the equations for the GL method for the detection of a

periodic signal of unknown shape and period, for the case where the noise sampling distribution is

independent Gaussian. We show how to compute the global likelihood for our stepwise periodic

models. The stepwise model, can just as easily represent a non periodic variable light curve or a

constant light curve (m = 1). Therefore, our calculations can be used to compare both constant

and variable non periodic alternatives to periodic models.

Each parameter of a model that is marginalized over, in the process of computing the global

likelihood, introduces an Occam's factor penalizing the model for wasted prior parameter space

that gets ruled out by the data. Thus the greater the model complexity the more Occam's

penalties it must overcome in comparison with a simpler model. The calculation thus balances

model simplicity with goodness-of-�t, allowing us to determine both whether there is evidence for

a periodic signal and the optimum number of bins for describing the structure in the data.

The method does not require uniform sampling and has the ability to determine the e�ective

noise in the data (everything in the data that cannot be described by the model is treated

as noise), and properly allows for this in the computation of the models global likelihood and

parameter estimates. In section 5 we illustrated the dangers of simply assuming the measurement

errors in a maximum likelihood analysis.

We have applied the method to an interesting time series consisting of over 20 years of

radio measurements of LS I +61�303, and con�rmed the existence of a periodic or quasi-periodic

modulation of the radio outburst peak 
ux with a mean period of 1632 days with a 68:3% credible

region extending from 1599 to 1660 days. We also derived the mean shape of the modulation

which is consistent with an distorted sine wave. Currently the system is known to exhibit two

periodicities: the 26.5 day periodic outbursts and the 1632 day outburst peak 
ux modulation. The

estimated noise sigma from this analysis of 45 mJy is considerably higher than the measurement

uncertainties which implies that there is scope for still more complex models to describe deeper

levels of the source's radio properties which are now just beginning to be perceived and which

are likely to contribute greatly to our understanding of accretion regimes in binary systems. In

particular there is evidence for shorter duration 
aring (of order 100 mJy) which is particularly

noticeable at times when the peak outburst 
ux is a minimum, but is apparent at other times as

well. It is hoped that GBI monitoring program, operated by the NRAO, will continue the high

quality measurements of LS I +61�303 to permit these deeper source properties to be disentangled.

In a companion paper (Gregory et al 1998) we address the nature of the outburst phase variations

and their relationship to the outburst peak 
ux.
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A. Small Data Sets

We have already indicated that the GL method is e�ective even for nonuniform sampling.

Here we address the question of how small a data set the method can deal with. From the analysis

presented in this paper it is clear that the statistic �2Wj de�ned by equation (16) plays a central

role. For example equation (25) for p(D j !; b; �;Mm; I), depends very sensitively on the term

exp(� b
2

Pm
j=1 �

2
Wj). To permit useful inferences about light curve properties, there must be two

or more samples in each bin. For uniform sampling this means the sample size must be > 2 mmax.

Nonuniform samples satisfying this condition may still have less than two samples in one or more

bins for certain combinations of !; �;m. In this case �2Wj = 0, assuming we set Wj = 1 for

the unde�ned nj = 0 case. Bins with less than 2 samples would thus contribute to an arti�cial

reduction in
Pm

j=1 �
2
Wj and a corresponding enhancement in p(D j !; b; �;Mm; I).

A simple solution to this problem is to introduce another weight, wj , which is equals 0 if there

are less than 2 samples in the bin and equals 1 otherwise and,

replace
mX
j=1

�2Wj by

Pm
j=1wj �

2
Wj

1
m

Pm
j=1wj

(A1)

This e�ectively assigns a value of �2Wj to the bins with less than two samples equal to the

average value of �2Wj of bins with > 2 samples. This eliminates the spurious enhancements in

p(D j !; b; �;Mm; I) that would otherwise occur.
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Table 1. Estimated times and 
ux densities of outbursts.

Time Error Flux Error frequency Ref.

days days mJy mJy GHz #

43382.94 1.0 284. 33. 5.0 1

43570.00a 2.5 138. 10.5 1

43729.99a 2.5 180. 5.0 1

44100.97 2.0 100. 33. 5.0 1

44479.93 66. 33. 5.0 1

44840.03 1.0 309. 33. 5.0 2

45907.00 1.0 84. 33. 5.0 3

46990.63 1.0 184. 33. 5.0 4

47013.02 1.0 164. 33. 5.0 4

47416.00 2.0 64. 33. 8.4 5

47544.20 1.0 112. 33. 8.4 5

48738.80 1.0 198. 33. 8.4 6

49395.88 1.0 138. 33. 8.3 7

49421.77 1.0 200. 33. 8.3 7

49446.61 2.0 116. 33. 8.3 7

49472.19 1.0 227. 33. 8.3 7

49500.09 1.0 214. 33. 8.3 7

49530.19 1.0 167. 33. 8.3 7

49555.05 1.0 262. 33. 8.3 7

49580.98 1.0 170. 33. 8.3 7

49607.76 1.0 186. 33. 8.3 7

49634.92 1.0 294. 33. 8.3 7

49659.69 1.0 265. 33. 8.3 7

49689.71 1.0 296. 33. 8.3 7

49744.37 2.0 166. 50. 8.3 7

49794.32 1.0 283. 33. 8.3 7

49823.41 1.0 245. 33. 8.3 7

49850.01 1.0 169. 33. 8.3 7

49875.25 1.0 232. 33. 8.3 7

49902.04 1.0 300. 33. 8.3 7

49926.86 1.0 306. 33. 8.3 7

49954.94 1.0 244. 33. 8.3 7

49980.74 1.0 320. 33. 8.3 7

50006.58 1.0 236. 33. 8.3 7

50034.83 2.0 254. 50. 8.3 7

50060.72 1.0 242. 33. 8.3 7

50088.72 1.0 269. 33. 8.3 7

50114.35 1.0 229. 33. 8.3 7

50431.66 1.0 216. 33. 8.3 8

50458.60 62. 33. 8.3 8

50486.47 117. 33. 8.3 8

50516.55 1.0 193. 33. 8.3 8

50547.31 147. 33. 8.3 8

50568.25 2.0 119. 33. 8.3 8
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Table 1|Continued

Time Error Flux Error frequency Ref.

days days mJy mJy GHz #

50594.12 1.0 132. 33. 8.3 8

50627.13 101. 33. 8.3 8

50650.07 1.0 164. 33. 8.3 8

50675.00 1.0 188. 33. 8.3 8

50707.88 94. 33. 8.3 8

50722.83 1.0 186. 33. 8.3 8

50752.82 93. 33. 8.3 8

50781.63 100. 33. 8.3 8

50810.71 124. 33 8.3 8

50834.64 92. 33. 8.3 8

50856.58 61. 33. 8.3 8

50877.55 135. 33. 8.3 8

50903.40 120. 33. 8.3 8

References. | (1) Taylor and Gregory 1982; (2) Taylor

and Gregory 1984; (3) Gregory et al. 1989; (4) Nelson

1989; (5) Paredes et al. 1990; (6) Peracaula and Paredes

(Private Communication); (7) Ray et al. 1997; (8)

http://info.gb.nrao.edu/gbint/gbidata.html

aEstimated time with larger error because only the

outburst rise or decay measured.
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Table 2. Noise scale parameter, b, and RMS residuals values.

Model b Value RMS Residual (mJy)

HC Constant 0.2 74.

HP Periodic 0.68 45.

HNP Nonperiodic 0.33 56.


