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ABSTRACT

We present a new method for the detection and measurement of a periodic signal in a data
set when we have no prior knowledge of the existence of such a signal or of its characteristics.
It is applicable to data consisting of the locations or times of discrete events. We use
Bayes' theorem to address both the signal detection problem, and the estimation problem
of measuring the characteristics of a detected signal. To address the detection problem,
we use Bayes' theorem to compare a constant rate model for the signal to models with
periodic structure. The periodic models describe the signal plus background rate as a
stepwise distribution in m bins per period, for various values of m. The Bayesian posterior
probability for a periodic model contains a term which quanti�es Ockham's razor, penalizing
successively more complicated periodic models for their greater complexity even though
they are assigned equal prior probabilities. The calculation thus balances model simplicity
with goodness-of-�t, allowing us to determine both whether there is evidence for a periodic
signal, and the optimum number of bins for describing the structure in the data. Unlike
the results of traditional \frequentist" calculations, the outcome of the Bayesian calculation
does not depend on the number of periods examined, but only on the range examined.
Once a signal is detected, we again use Bayes' theorem to estimate various parameters of
the signal, such as its frequency or the shape of the lightcurve. The probability density
for the frequency is inversely proportional to the multiplicity of the binned events, which is
simply related both to the combinatorial entropy of the binned distribution and to the �2

measure of its mis�t to a uniform distribution used in the \epoch folding" method for period
detection. The probability density for the lightcurve shape produces lightcurve estimates
that are superpositions of stepwise distributions with various phases and number of bins,
and which are thus smoother than a simple histogram. Error bars for the lightcurve shape
are also easily calculated. The method also handles gaps in the data due to intermittent
observing or dead time. We apply the method to simulated data generated with both
stepwise and sinusoidal lightcurves and demonstrate that it can sensitively detect such
signals, and accurately estimate both the signal frequency and its shape, even when the
lightcurve does not have a stepwise shape. We also describe a test for nonperiodic source
variability that is a simple modi�cation of our period detection procedure.

Subject Headings: analytical methods | numerical methods | pulsars | X-rays: general
| gamma-rays: general
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1. INTRODUCTION

A problem that frequently arises in astronomy is to determine if there is a periodic
signal present in data. In some cases it is known that a periodic signal of known shape
and/or period is present but di�cult to �nd because of additive noise. For an excellent
Bayesian treatment of this problem in the case of additive Gaussian noise see Bretthorst
(1988). In this paper we are concerned with the problem of detecting a periodic signal for
which we have no prior knowledge of its period or shape. Usually the experimenter has
some reason to suspect the presence of a periodic signal but in other cases the search for
a periodicity represents an unexplored avenue with important consequences if successful.
One example of the latter is the recently reported regularity in the distribution of galaxy
redshifts (Broadhurst et al. 1990).

There are two special cases of general interest, depending on whether the appropriate
sampling distribution is Gaussian or Poisson. This particular study is motivated by astro-
nomical data in which the objective was the detection of X-ray pulsars. The data are the
arrival times of individual X-ray photons, some or all of which are background events, and
the appropriate sampling distribution is the Poisson distribution. Our method is directly
applicable to data consisting of any event locations (e.g. spatial locations or redshifts), not
just time series.

Our method detects a signal by using Bayesian probability theory to compare a con-
stant model for the signal to members of a class of models with periodic structure. The
periodic models describe the signal plus background with a stepwise function, resembling a
histogram, with m phase bins per period (Figure 1). Such a model is capable of approxi-
mating a lightcurve of essentially arbitrary shape. If the result of these calculations implies
the presence of a periodic signal, we use Bayesian methods to estimate the signal frequency
and the shape of the lightcurve.

Fig.1 Periodic model,Mm, assumes the periodic signal plus background can be modeled
by a stepwise distribution in m bins as illustrated here.

The stepwise model is useful for several reasons. It is a usefully realistic representation
of the lightcurves observed in X-ray and gamma-ray astronomy, where time series consisting
of the arrival times of events are common. The pulses observed from periodic sources in the
X-ray and gamma-ray bands often have very small duty cycles, occupying one or two isolated
bins in a histogram of folded event times. Additionally, many of the calculations required
for a Bayesian analysis can be performed analytically with this model, making numerical
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calculations more e�cient than would be possible with, say, Fourier series models. Finally,
a Bayesian analysis with this model bears a close relationship to the well known \epoch
folding" method for detecting periodic signals (Leahy et al. 1983), and illuminates some of
the strengths and weaknesses of that method.

The calculations required to detect and measure signals with stepwise models are
straightforward and could be presented very brie
y to an audience familiar with Bayes-
ian probability theory. Many of the results follow from basic Bayesian analysis with the
multinomial distribution (such as arises in analyzing tosses of coins or a die). But Bayesian
methods are not in wide use in the physical sciences. Accordingly, we describe our calcu-
lation in some detail, intending it to be self-contained and pedagogical as well as o�ering
a solution to an important research problem. Our main results are simple and intuitively
appealing, and we brie
y summarize them here as an outline of this paper before proceeding
to the detailed calculations themselves.

We begin with a brief review of Bayesian methods and terminology in x 2. We show
how to use Bayes' theorem to estimate the values of parameters in a parametrized model:
the Bayesian posterior probability density for a parameter, �, given some data, D, and a
model, M , is proportional to the product of a prior density for the parameter, p(� j M),
and the likelihood function familiar from traditional \frequentist" statistics, L(�):

p(� j D;M) / p(� jM) L(�): (1:1)

If there are many parameters, Bayes' theorem yields a joint density. We note that the impli-
cations of a joint density for a subset of the parameters are simply obtained by \marginaliz-
ing": integrating out the unwanted parameters. No satisfactory procedure for accomplishing
this is available in frequentist statistics. We then show how to use Bayes' theorem to com-
pare competing parametrized models by calculating the probability of a model as a whole.
The probability for model M , given competing models speci�ed by I, is of the form,

p(M j D; I) / p(M j I) Lglobal; (1:2)

the product of a prior probability and the global likelihood for the model. The global
likelihood is calculated from the familiar likelihood function and the prior density for the
model parameters by marginalizing. We show that the resulting global likelihood can be
written in the form,

Lglobal = Lmax 
�; (1:3)

the product of the maximum likelihood of the model and a factor called the Ockham factor
associated with the model parameters. We show how the Ockham factor \corrects" the
maximum likelihood, used in many frequentist model assessment methods, in a manner
which quanti�es Ockham's Razor, automatically and objectively penalizing complicated
models.

Likelihood functions play a key role in Bayesian methods. Accordingly, we derive a
general likelihood function for arrival time data in x 3. This likelihood function has been
used in frequentist analyses of astrophysical data by others (e.g., Cleveland 1983). We note
how its use in Bayesian calculations allows simple treatment of gaps in data, such as might
arise from dead time or intermittent observing.

In x 4 we specialize this likelihood function to the constant and stepwise models used
in this work, and we assign the priors needed to use Bayes' theorem. We show that the
likelihood function for the stepwise model leads one to count data falling in various phase
bins in the same manner as is done in the commonly used \epoch folding" method.

In x 5 we perform the calculations needed to compare periodic and constant models using
Bayes' theorem. The key function of the data arising in the analysis is the multiplicity of
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the binned event times,

W =
N !

n1! n2! : : : nm!
; (1:4)

where nj(!; �) is the number of events falling into the j'th of m phase bins, given the
frequency, !, and phase, �, and N is the total number of events. The multiplicity is the
number of ways the binned distribution could have arisen \by chance," giving our results
intuitively appealing interpretations. We show that the probability of a periodic model
when the period and phase of the signal are known beforehand is inversely proportional to
the multiplicity of the binned distribution it leads to, and that this probability has Ockham
factors penalizing it in a way that increases with the number of bins, m. When the frequency
and phase are unknown, the probability of a periodic model is proportional to the integral of
the inverse multiplicity over frequency and phase. It thus depends on the range of frequency
searched, but not on the number or location of the frequencies at which the multiplicity
statistic is calculated. The frequency range enters the Ockham factor penalizing the model
for its unknown frequency.

In x 6 we describe how to use Bayes' theorem to estimate the frequency of a signal if the
model comparison calculations show a signal is present. We eliminate all model parameters
except the frequency by marginalizing. Again the multiplicity plays a key role: those
frequencies which lead to a binned distribution with small multiplicity (small probability of
arising \by chance") are assigned a high probability.

In x 7 we perform similar calculations to estimate the shape of the lightcurve of a
detected signal. Here marginalization of all parameters except those describing the shape
leads to shape estimates that are weighted superpositions of stepwise models with varying
frequencies, phases, amplitudes, and numbers of bins, leading to an estimate that can be
substantially smoother than the basic stepwise functions comprising our model space. We
also show how to calculate error bars for the estimated lightcurve.

We illustrate our method in x 9 by applying it to simulated data. We �rst apply it to
data simulated from a piecewise constant rate, and compare with the results of an epoch
folding (EF) method analysis. Our method clearly detects the signal and correctly identi�es
the number of bins needed to model the signal. In contrast the EF method leads to a 2.5
� detection which is not usually considered signi�cant. Then we apply it to data simulated
from a sinusoidal signal, demonstrating the ability of the method to correctly detect and
estimate smooth signal shapes.

In x 8 we elaborate on the relationship between our method and other better-known
statistics. We show that the logarithm of the multiplicity is well-approximated by the com-
binatorial entropy of the binned distribution (a measure of its complexity), so that our
method chooses the frequencies near those leading to binned distributions with minimum
entropy. A further approximation shows that when no periodic signal is present, the loga-
rithm of the multiplicity is approximately proportional to the �2 statistic used in the epoch
folding (EF) method. However, the Bayesian calculation uses the statistic in a very di�erent
manner. To test for the presence of a periodic signal, the EF method calculates �2 at a num-
ber of frequencies, assigns a signi�cance to the maximum �2 value found, and adjusts this
signi�cance to account for the number of frequencies searched. Bayesian methods instead
average the multiplicity over frequency, so that only the range of frequencies examined,
and not the number, enters the calculation. To account for the unknown phase, Collura
et al. (1987) have advocated averaging �2 over phase for each examined frequency. Bayesian
methods instead average the multiplicity, approximately proportional to the exponential of
�2=2.

A concluding section summarizes our results, and a \recipe" for analyzing arrival time
data with our method is given in Appendix A. Appendix B outlines a modi�ed version of
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the method to deal with signi�cant data gaps. Additionally, Appendix C describes a simple
modi�cation of our method that leads to a test for nonperiodic source variability, somewhat
similar in spirit to the test proposed by Collura et al. (1987).

We close the introduction by emphasizing that this work only scratches the surface
of what Bayesian methods have to o�er astrophysicists for analyzing complicated data. In
regard to analyzing event locations or arrival times, other useful models could be considered,
either simpler or more complicated than the class examined here (some simple models with
direct relationships to frequentist tests with the Rayleigh and Z2

n statistics are discussed
in Loredo 1992b). More generally, we hope our work demonstrates some of the practical
and conceptual advantages of Bayesian methods over more traditional methods in a manner
that encourages their application to other, very di�erent problems.

2. BAYESIAN INFERENCE

We adopt the Bayesian approach to statistical inference in this work. In this section
we brie
y describe the methods and terminology employed in the remainder of this paper.
We will not enter the debate over the conceptual superiority of Bayesian or more stan-
dard \frequentist" methods here. Interested readers can �nd further details and references
regarding conceptual and methodological aspects of Bayesian inference elsewhere (Loredo
1990; 1992a,b).

In Bayesian inference, the viability of each member of a set of rival hypotheses, fHig,
is assessed in the light of some observed data, D, by calculating the probability of each
hypothesis, given the data and any background information, I, we may have regarding
the hypotheses and data. Following a notation introduced by Je�reys (1961), we write
such a probability as p(Hi j D; I), explicitly denoting the background information by the
proposition, I, to the right of the bar. At the very least, the background information must
specify the class of alternative hypotheses being considered, and the relationship between
the hypotheses and the data (the statistical model).

The basic rules for manipulating Bayesian probabilities are the sum rule,

p(Hi j I) + p(H i j I) = 1; (2:1)

and the product rule,

p(Hi; D j I) = p(Hi j I)p(D j Hi; I)

= p(D j I)p(Hi j D; I): (2:2)

The various symbols appearing as arguments should be understood as propositions; for
example, D might be the proposition, \N photons were counted in a time T ." The symbol
H i signi�es the negation of Hi (a proposition that is true if Hi is false, so that one of
the alternatives to Hi is true), and (Hi; D) signi�es the logical conjunction of Hi and D (a
proposition that is true only if Hi and D are both true). The rules hold for any propositions,
not just those indicated above. In particular, we will have occasion to use equation (2.1)
with I replaced by the proposition (D; I).

Throughout this work, we will be concerned with exclusive hypotheses, so that if one
particular hypothesis is true, all others are false. For such hypotheses, the sum and product
rules imply the generalized sum rule,

p(Hi +Hj j I) = p(Hi j I) + p(Hj j I); (2:3)
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and the normalization rule, X
i

p(Hi j I) = 1: (2:4)

Here a \+" within a probability symbol stands for logical disjunction, so that Hi +Hj is a
proposition that is true if either Hi or Hj is true.

One of the most important calculating rules in Bayesian inference is Bayes' theorem,
found by equating the two right hand sides of equation (2.2) and solving for p(Hi j D; I):

p(Hi j D; I) = p(Hi j I) p(D j Hi; I)

p(D j I) : (2:5)

Bayes' theorem describes a type of learning: how the probability for each member of a
class of hypotheses should be modi�ed on obtaining new information, D. The probabilities
p(Hi j I) for the hypotheses in the absence of D are called their prior probabilities, and the
probabilities p(Hi j D; I) including the informationD are called their posterior probabilities.
The quantity p(D j Hi; I) is called the sampling probability for D, or the likelihood for Hi,
and the quantity p(D j I) is called the prior predictive probability for D, or the global
likelihood for the entire class of hypotheses.

All of the rules we have written down so far show how to manipulate known probabilities
to �nd the values of other probabilities. But to be useful in applications, we additionally
need rules that assign numerical values or functions to the initial direct probabilities that
will be manipulated. For example, to use Bayes' theorem, we need to know the values of
the three probabilities on the right side of equation (2.5). These three probabilities are not
independent; the sum and product rules imply that,

p(D j I) =
X
i

p(Hi j I) p(D j Hi; I): (2:6)

That is, the denominator of Bayes' theorem, which does not depend on Hi, must be equal
to the sum of the numerator over Hi. It thus plays the role of a normalization constant.

Usually, we will treat priors and likelihoods as direct probabilities: we assign priors
either from invariance and consistency requirements (which in problems more complicated
than those we treat here can lead to use of the maximum entropy principle), or simply
from intuition, and we use likelihoods derived from the Poisson distribution. Then we
calculate the value of the global likelihood with equation (2.6), and use all three quantities
to evaluate Bayes' theorem. But other approaches are possible. We may, for example, assign
the likelihood and the global likelihood directly, and solve equation (2.6) for the prior.

2.1. Parameter Estimation

In astrophysics we frequently consider sets of hypotheses (\parameterized models") that
are labeled, not by discrete numbers, but by the possible values of a continuous parameter,
�. In such cases the quantities of interest become probability densities. For example, given
some background information, M , specifying a parametrized model with one parameter, �,
p(� j M) is the prior density for �, which means that p(� j M)d� is the prior probability
that the true value of the parameter is in the interval [�; �+ d�]. We use the same symbol,
p(: : :), for densities and probabilities; the nature of the argument will identify which use is
intended.

Bayes' theorem, and all the other rules just discussed, hold for densities, with all sums
replaced by integrals. For example, the global likelihood for model M can be calculated
with the continuous counterpart of equation (2.6),

p(D jM) =

Z
d� p(� jM) p(D j �;M): (2:7)
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If there is more than one parameter, multiple integrals are used. If the prior density and
the likelihood are assigned directly, the global likelihood is just a normalization constant,
and the posterior density for the parameters is simply proportional to the product of the
prior and the likelihood.

The use of Bayes' theorem to determine what one can learn about the values of param-
eters from data is called parameter estimation, though strictly speaking, Bayesian inference
does not provide estimates for parameters. Rather, the Bayesian solution to the parameter
estimation problem is the full posterior distribution, p(� j D;M), and not just a single point
in parameter space. Of course, it is often useful to summarize this distribution for textual,
graphical, or tabular display in terms of a \best-�t" value and \error bars." Possible sum-
marizing best-�t values are the posterior mode (most probable value of �) or the posterior
mean,

h�i =
Z
d� � p(� j D;M): (2:8)

If the mode and mean are very di�erent, the posterior distribution is too asymmetric to
be adequately summarized by a single estimate. An allowed range for a parameter with
probability content C is provided by a credible region, or highest posterior density (HPD)
region, R, de�ned by Z

R
d� p(� j D;M) = C; (2:9)

with the posterior density inside R everywhere greater than that outside it. We sometimes
speak picturesquely of the region of parameter space that is assigned a large density as the
\posterior bubble." More sophisticated treatment of best-�t parameter values and ranges is
possible using decision theory, but these simple, intuitive summaries will be adequate here.

As an example, consider estimating the mean, �, of a Gaussian distribution with known
standard deviation, �, from N samples with a sample mean of �x. The likelihood function
for such data is proportional to a Gaussian distribution for � with mean �x and standard
deviation �=

p
N . If the available prior information leads to a prior density for � that

is constant, or at least virtually constant near the peak of the likelihood, the posterior
distribution will be just this same Gaussian. This distribution is the full Bayesian solution
to the problem of estimating �. But we will often simply summarize it by its posterior
mean or mode, �x, and the 68.3% (\one sigma") credible region of �x � �=

p
N . These are

the usual estimates from frequentist statistics. But the equality of Bayesian and frequentist
estimates will not generally hold for likelihoods that are not Gaussian. Examples of this
are provided in Loredo (1992a) and in the remainder of this work.

2.2. Nuisance Parameters

Frequently a parametrized model will have more than one parameter, but we will want
to focus attention on a subset of the parameters. For example, in this work we will want to
focus on the implications of the data for the frequency of a periodic signal, independent of the
signal's amplitude, shape, or phase. The uninteresting parameters are known as nuisance
parameters. As always, the full Bayesian inference is the full joint posterior distribution
for all of the parameters; but its implications for the parameters of interest can be simply
summarized by integrating out the nuisance parameters. Explicitly, if model M has two
parameters, � and �, and we are interested only in �, then it is a simple consequence of the
sum and product rules that,

p(� j D;M) =

Z
d� p(�; � j D;M): (2:10)
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For historical reasons, the procedure of integrating out nuisance parameters is calledmargin-
alization, and p(� j D;M) is called the marginal posterior distribution for �. Equation (2.7)
for the global likelihood is a special case of marginalization in which all of the model pa-
rameters are marginalized out of the joint distribution, p(D; � jM) = p(� jM)p(D j �;M).

The use of marginalization to eliminate nuisance parameters is one of the most important
technical advantages of Bayesian inference over standard frequentist statistics. Indeed,
the name \nuisance parameters" originated in frequentist statistics because there is no
general frequentist method for dealing with such parameters; they are indeed a \nuisance"
in frequentist statistics. Marginalization plays a very important role in this work. Its
broader implications for analyzing astrophysical data will be discussed elsewhere.

2.3. Model Comparison

Often more than one parametrized model will be available to explain a phenomenon, and
we will wish to compare them. The models may di�er in form or in number of parameters.
Use of Bayes' theorem to compare competing models by calculating the probability of
each model as a whole is called model comparison. Bayesian model comparison has a
built-in \Ockham's Razor": Bayes' theorem automatically penalizes complicated models,
assigning them large probabilities only if the complexity of the data justi�es the additional
complication of the model.

Model comparison calculations require the explicit speci�cation of two or more speci�c
alternative models, Mi. We take as our background information the proposition that one
of the models under consideration is true. Symbolically, we might write this as I = M1 +
M2+ : : :, where the \+" symbol here stands for disjunction (\or"). Given this information,
we can calculate the probability for each model with Bayes' theorem:

p(Mi j D; I) = p(Mi j I) p(D jMi; I)

p(D j I) : (2:11)

The proposition (Mi; I) is true if and only if model Mi is true, that is, it is equivalent to
the proposition Mi itself. Thus p(D jMi; I) = p(D jMi), which we recognize as the global
likelihood for model Mi, which we can calculate according to equation (2.7). The term in
the denominator is again a normalization constant, obtained by summing the products of
the priors and the global likelihoods of all models being considered. Model comparison is
thus completely analogous to parameter estimation: just as the posterior distribution for a
parameter is proportional to its prior times its likelihood, so the posterior probability for a
model as a whole is proportional to its prior probability times its global likelihood.

It is often useful to consider the ratios of the probabilities of two models, rather than
the probabilities directly. The ratio, Oij = p(Mi j D; I)=p(Mj j D; I), is called the odds
ratio in favor of model Mi over model Mj. From equation (2.11),

Oij =
p(Mi j I)
p(Mj j I)

p(D jMi)

p(D jMj)

� p(Mi j I)
p(Mj j I) Bij ; (2:12)

where the �rst factor is the prior odds ratio, and the second factor is called the Bayes
factor. The Bayes factor is the ratio of the global likelihoods of the models: Bayesian model
comparison relies on the ratio of global likelihoods, not maximum likelihoods. Note that
the normalization constant in equation (2.11) drops out of the odds ratio; this can make
the odds ratio somewhat easier to work with. The odds ratio is also conceptually useful
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when one particular model is of special interest. For example, in this work we will compare
a constant rate model with a class of periodic alternatives, and will thus calculate the odds
in favor of each alternative over the constant model.

If we have calculated the odds ratios, Oi1, in favor of each model over model M1, we
can �nd the probabilities for each model by inverting equation (2.12), giving

p(Mi j D; I) = Oi1PNmod
j=1 Oj1

; (2:13)

where Nmod is the total number of models considered, and of course O11 = 1.
A crucial consequence of the marginalization procedure used to calculate global likeli-

hoods is that the Bayes factor automatically favors simpler models unless the data justify
the complexity of more complicated alternatives. Thus even if we assign equal prior prob-
abilities to competing models, simpler models can have larger posterior probabilities than
their competitors. This can be understood as follows.

Imagine comparing two models: M1 with a single parameter, �, and M0 with � �xed at
some default value �0 (so M0 has no free parameters). To calculate the Bayes factor B10 in
favor of modelM1, we will need to perform the integral in equation (2.7) for modelM1. We
can �nd a simple and illuminating approximation to this integral as follows. First, we note
that in most cases the likelihood function, L(�) = p(D j �;M1), is much more peaked than
the prior, so that the prior is essentially constant over the range of signi�cant likelihood. If
�̂ is the maximum likelihood value of of �, we can thus approximate equation (2.7) as,

p(D jM1) � p(�̂ jM1)

Z
d� L(�): (2:14)

Next, we write the integral of the likelihood function as the product of its maximum ampli-
tude and a characteristic width, ��. An approximate characteristic width might be the full
width at half maximum of the peak, or twice the standard deviation of the peak. Alter-
natively, if the integral can be calculated exactly, the width can be de�ned as the integral
divided by the peak value. Writing the integral in this manner gives,

p(D jM1) � p(�̂ jM1) L(�̂) ��: (2:15)

Finally, we write p(�̂ jM1) as the reciprocal of a characteristic width of the prior, ��. Thus
the global likelihood for M1 is approximately,

p(D jM1) � L(�̂) ��
��

: (2:16)

Since model M0 has no free parameters, no integral need be calculated to �nd its global
likelihood, which is simply the likelihood for model M1 evaluated at the default value,

p(D jM0) = L(�0): (2:17)

Thus the Bayes factor in favor of the more complicated model is,

B10 � L(�̂)
L(�0)

��

��
: (2:18)

The likelihood ratio in the �rst factor can never be less than unity; that is, it can never
favor the simpler model because M1 contains it as a special case. But since the posterior
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width, ��, is narrower than the prior width, ��, the second factor penalizes the complicated
model for any \wasted" parameter space that gets ruled out by the data. The Bayes factor
will thus favor the more complicated model only if the likelihood ratio is large enough to
overcome this penalty.

Equation (2.15) for the global likelihood has the form of the best-�t likelihood times
the factor that penalizes M1. In general, one can always write the global likelihood of a
model with one or more parameters (denoted collectively by �) as the maximum value of
its likelihood times some factor, 
�:

p(D jM) � Lmax 
�: (2:19)

This implicitly de�nes 
� as equation (2.7) divided by the maximum likelihood. The quan-
tity 
� is called the Ockham factor associated with the parameters, �. It is so named because
it corrects the maximum likelihood usually considered in statistical tests in a manner that
quanti�es the qualitative notion behind \Ockham's Razor": simpler explanations are to
be preferred unless there is su�cient evidence in favor of more complicated explanations.
Bayes' theorem both quanti�es such evidence and determines how much additional evidence
is \su�cient" through the calculation of global likelihoods. We will see examples of this in
x 5 below.

For model M1 in our example above, 
� � �� p(�̂ j M1) � ��=��. If the likelihood
function is Gaussian, it is simple to show that the characteristic width of the posterior that
leads to the correct value of the integral in equation (2.14) is �� = ��

p
2�, where �� is the

standard deviation of the posterior distribution for �. Thus for likelihood functions that
are nearly Gaussian near their peak,


� �
p
2� �� p(�̂ jM): (2:20)

We will see Ockham factors of this form arising at several places in this work.
As we noted above, Bayesian model comparison requires the speci�cation of at least two

competing models. There is no Bayesian counterpart to frequentist \goodness-of-�t" tests
that seek to reject a single \null" hypothesis without specifying an alternative. However,
it is often the case that Bayesian model comparison calculations with speci�c alternatives
require evaluation of the same statistic as frequentist tests that are allegedly alternative-
free. The present work will provide an example of this. Indeed, rigorous frequentist studies
characterize statistics, not only by their ability to reject a default model (often characterized
by the \false alarm" probability), but also by their ability to correctly identify one of two
alternative models (characterized by the \power" of the test). From the Bayesian point of
view, there is no such thing as an alternative-free test, for any choice of test statistic implies
a direction of departure from the null hypothesis that implicitly refers to a speci�c class of
alternative models.
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3. LIKELIHOOD FUNCTION FOR ARRIVAL TIME DATA

As shown above, the likelihood function plays a key role in Bayesian inference, encoding
all the information the data provide about the hypotheses of interest. In this section we
derive a general likelihood function for arrival time data with an arbitrary time-dependent
rate, r(t). We then specialize to the models of interest in this work in the following section.

The data are the arrival times for each of N events, D = ftig, i = 1 to N , over
some observing interval of duration T . The probability for D given some speci�ed rate
function|the likelihood function|can be calculated as follows.

We divide the observation period into small time intervals, �t, each containing either
no event or one event. From the Poisson distribution, the probability of seeing n events in
an interval �t about time t is,

pn(t) =
[r(t)�t]ne�r(t)�t

n!
: (3:1)

We have assumed that the rate does not vary substantially within �t, so the average rate in
the interval is approximately equal to the rate at any time within the interval. If N and Q
are the number of time intervals in which one event and no event are detected, respectively,
then the likelihood function is given by

p(D j r; I) =
NY
i=1

p1(ti)

QY
k=1

p0(tk): (3:2)

From equation (3.1), with n = 0 and 1,

p0(t) = e�r(t)�t; (3:3)

and
p1(t) = r(t)�t e�r(t)�t; (3:4)

so the likelihood function takes the form,

p(D j r; I) = �tN

"
NY
i=1

r(ti)

#
exp

2
4�N+QX

k=1

r(tk)�t

3
5

= �tN

"
NY
i=1

r(ti)

#
exp

�
�
Z
T
dt r(t)

�
: (3:5)

In the last equation we have identi�ed the sum of r(t)�t over all the observed intervals with
the integral of the rate over the intervals, with the range of integration T = (N + Q)�t.
This identi�cation holds even if �t is long enough that r(t) varies substantially within the
intervals, in which case r(t) must be replaced with its average value over the interval in the
above equations.

Equation (3.5) is the general likelihood function we use throughout this work. The
intervals, �t, could correspond to the precision of the clock recording the arrival times.
But when used in Bayes' theorem, the �tN factor in the likelihood will cancel with the
same factor in the global likelihood, so inferences will not depend on the size of �t, and are
well-behaved even in the limit in which the time intervals become in�nitesimal.
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Note that in equation (3.5) the time T is the total duration of the intervals in which
it is known that either no event or one event was detected. These intervals need not be
contiguous; there can be gaps during which there are no data. These \o�" intervals are
excluded from the integration range, T . This is the case for intervals that are o� due to
a known \dead time" associated with the detected events, or intervals that are \o�" for
any other reason (telemetry delays, intermittent observing, etc.). Formally, such intervals
should be included in equation (3.2) by adding a factor of the form,

No�Y
k=1

pany(tk); (3:6)

where k runs over the No� intervals during which there is no information, and pany(tk) is
the probability of seeing any number of events (0, 1, 2, : : :) in an interval of size �t at time
tk. This probability is,

pany(tk) =
1X
n=0

pn(tk); (3:7)

where pn(tk) is the Poisson probability given in equation (3.1). Since the Poisson distri-
bution is normalized, we �nd immediately that pany(tk) = 1. Thus the likelihood function
given by equation (3.5) is unchanged, so long as we exclude all \o�" intervals from our
analysis, and particularly from the integration over T . In this way our analysis accounts
for known gaps in the data, regardless of the cause of the gaps. (If the gaps are of unknown
duration, as is sometimes the case for detectors with complicated dead time behavior, a
more complicated analysis is necessary.)

We close this section by pointing out some distinctions between analyzing Poisson dis-
tributed event arrival times and analyzing sampled time series with Gaussian noise distri-
butions. First, as is apparent from equation (3.5), the likelihood function for arrival times
requires calculation of the product of the rates at the times of each event. In contrast, the
likelihood function for sampled time series is the product of Gaussians for each sample,
which requires calculation of the sum of the rates at the times of each sample, because
the rates appear in exponents. If, for example, one uses sinusoidal signal models, sums
of sinusoids resembling a Fourier series appear in the analysis of sampled time series, but
products of sinusoids appear in the analysis of arrival time series. A second distinction
is that sampled time series are often uniformly sampled, allowing e�cient calculation of
the necessary sums with fast Fourier transforms if sinusoidal models are used. In contrast,
arrival times are never on a uniform grid. Because of these distinctions, the calculations re-
quired for analyzing the two types of time series are very di�erent, and models appropriate
for sampled time series may not be appropriate for arrival time series.

4. CONSTANT AND PERIODIC MODELS

In this section we specialize equation (3.5) to the models considered in this paper.
In addition, we assign prior probabilities for the parameters of the models, and for the
models themselves, to prepare us to use Bayes' theorem to perform model comparison and
parameter estimation in later sections.
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4.1. Constant Model

The simplest model for the data has a constant event rate, A. We denote the information
specifying this one-parameter model by the symbolM1. Setting r(ti) = A in equation (3.5),
the likelihood function for this model is,

p(D j A;M1) = �tNANe�AT : (4:1)

We will assume that the informationM1 leads to a prior density for A that is constant from
A = 0 to some upper limit, Amax. Thus the normalized prior for A is,

p(A jM1) =
1

Amax
: (4:2)

We will �nd that our results depend only very weakly (some results not at all) on the form
of this prior or on the value of Amax, and will be well-behaved even in the limit where
Amax !1.

4.2. Periodic Stepwise Likelihood

As noted in the introduction, our model for a periodic signal is a stepwise function with
a constant rate in each of m bins per period (m � 2). This is not a single model, but a
class of models, one for each choice of m. We denote the information specifying each such
model by the symbol Mm. Model Mm has (m+2) parameters: an angular frequency ! (or
alternatively a period, P , with ! = 2�=P ); a phase, �, specifying the location of the bin
boundaries; and m values, rj , specifying the rate in each phase bin, with j = 1 to m. The
value of the subscript j corresponding to any particular time t is given by,

j(t) = int[1 +mf(!t+ �) mod 2�g=2�]: (4:3)

We sometimes denote the full set of m values of rj by the symbol ~r.
To facilitate comparison with the constant model, it is convenient to re-express the rj

parameters. We write the rate as the time-averaged rate, A, times a normalized stepwise
function that describes the shape of the periodic lightcurve. The average rate is,

A =
1

m

mX
j=1

rj : (4:4)

The lightcurve shape is completely described by the fraction of the total rate per period
that is in each phase bin. These fractions are,

fj =
rjPm
k=1 rk

=
rj
mA

: (4:5)

Equations (4.4) and (4.5) let us write rj in terms of A and fj:

rj = mAfj : (4:6)

In this way the m values of rj are replaced by A and the m values of fj . There are still only
m degrees of freedom associated with the rate because by de�nition the fj must satisfy the
constraint,

mX
j=1

fj = 1; (4:7)
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so only (m� 1) of them are free. We sometimes denote the full set of m values of fj by the

symbol ~f .
With this form for the rj parameters, the likelihood function for model Mm can be

calculated using equation (3.5), giving

P (D j !; �;A; ~f;Mm) = �tN

"
NY
i=1

mAfj(ti)

#
exp

2
4�N+QX

k=1

mAfj(tk)�t

3
5

= �tN (mA)N

2
4 mY
j=1

f
nj
j

3
5 exp

2
4�mA mX

j=1

fj�j(!; �)

3
5 ; (4:8)

where j(tk) is given by equation (4.3), nj = nj(!; �) is the number of events that fall into
phase bin j, and �j(!; �) is the total integration time for bin j. We have implicitly assumed
that the intervals �t are small compared to the width, P=m, of the rj bins, so that each
event has an unambiguous bin assignment for given ! and �.

The integration times �j(!; �) depend on ! and � (and m), thus the exponential term
depends on all of the model parameters. But in many cases this term will be essentially
independent of all parameters except A, as we now show.

Unless the \o�" times are concentrated in particular bins, we expect the integration
time per bin to be approximately T=m. Thus we write the sum in the exponential as follows;

mA
mX
j=1

fj�j = AT
mX
j=1

fj
�j

T=m

= AT
mX
j=1

fjsj; (4:9)

where we have de�ned the bin time factors sj(!; �) by

sj(!; �) =
�j(!; �)

T=m
: (4:10)

Like the �j, the sj are not new parameters; they are numbers that are determined by the
data and the model parameters !, �, and m.

If the observing interval, T , is a contiguous interval containing an integral number of
periods, then �j = T=m, so sj = 1 for all j. More generally, the observing interval will not
be an integral number of periods, and may have gaps, so the sj will di�er from unity. But
as long as the number of periods in the observing interval is large, and as long as the gaps
are not somehow concentrated in certain bins, the sj will be very close to unity, and to a
good approximation the sum in equation (4.9) will be equal to AT

P
j fj = AT . Then the

likelihood function is well approximated by,

P (D j !; �;A; ~f;Mm) = �tN (mA)Ne�AT

2
4 mY
j=1

f
nj
j

3
5 : (4:11)

We use this likelihood function in the remainder of this work. If the observing duration
does not contain a large number of periods, or if there is signi�cant dead time, the sj may
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depart signi�cantly from unity, complicating the analysis. In Appendix B we discuss a
simple modi�cation to the method to deal with this problem in an approximate manner.

Note that when m = 1, so that the single value of the shape parameter f1 = 1, equation
(4.11) takes the same form as equation (4.1). Thus model M1 is the m = 1 case of model
Mm, as suggested by our notation.

4.3. Priors for Periodic Model Parameters

We will assume that we do not have any prior information linking the frequency, phase,
and lightcurve shape, so that the priors for !, �, and ~r are all independent of one another.
We will further assume that there is no prior information linking the shape of the lightcurve
to its average value. When reparametrized in terms of A and ~f , the joint prior will thus be
of the form,

p(!; �;A; ~f jMm) = p(! jMm) p(� jMm) p(A jMm) p(~f jMm): (4:12)

We may know the frequency or both the frequency and the phase a priori (as when searching
for X-ray pulsations from a radio pulsar at the radio pulsation frequency), in which case
the priors for the frequency and phase are �-functions (more simply, we could just always
keep them to the right of the bar in probability symbols). We discuss this case in the next
section. Here we will assign priors assuming that little is known about the model parameters
a priori, aside from their physical signi�cance.

The prior density for � we take to be uniform over the interval [0; 2�],

p(� jMm) =
1

2�
: (4:13)

Formally, this prior can be derived from an invariance argument requiring investigators
with di�erent origins of time to reach the same conclusions. A similar invariance argument,
this time requiring observers with di�erent units of time to reach the same conclusions
(Bretthorst 1988), leads to a prior density for ! of the form,

p(! jMm) =
1

! ln !hi
!lo

; (4:14)

where [!lo; !hi] is a prior range for ! and the ln !hi
!lo

factor is a normalization constant ensuring

that the integral of p(! jMm) over the prior range is equal to 1. This density is uniform in
the logarithm of !. Since our likelihood function requires there to be at least several periods
in the data set, we usually set !lo = 20�=T , so that there are at least 10 periods in the data
set for every frequency considered. We typically set !hi = 2�N=T , corresponding to twice
a \Nyquist limit" (since the events do not come at uniform intervals, there is often useful
information at considerably higher frequencies than the \Nyquist frequency" of �N=T ).
Changing the value of !hi by a factor of a few does not greatly a�ect our results, because
!hi enters calculations only through the logarithmic factor in equation (4.14).

We noted that this nonuniform prior arises from an invariance property: invariance of
conclusions with respect to scale changes in time. In addition, this prior is form-invariant
with respect to reparameterization in terms of the period, P . That is, an investigator
working in terms of !, and using a 1=! prior, will reach the same conclusions as another
investigator working in terms of P , and using a 1=P prior. This would not be true for a
prior of another form. To the extent that parameterizations in terms of ! and P are both
\natural," this form invariance is desirable.
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The average rate, A, is not the same quantity as the constant rate that appears in model
M1, so technically we should use a di�erent symbol for it. If we knew that the rate was
constant, so that fj = 1=m for all j, we expect our inferences about A under model Mm to
be identical to those under modelM1. Combined with our assumption of independent priors
for the shape and average rate, this requires that we use the same prior for the average rate
under Mm and the constant rate under M1. Accordingly, our prior is,

p(A jMm) =
1

Amax
: (4:15)

Since the A parameters for all of the models enter their respective likelihood functions in
the same way, and have the same priors, no confusion is caused by using the same symbol
for them.

Finally, we must assign a prior joint density for ~f . We simply assume that all values
between 0 and 1 are equally probable subject to the constraint that

P
fj = 1. Thus we

write,

p(~f j I) = Km�

0
@1� mX

j=1

fj

1
A ; (4:16)

where �(x) denotes the Dirac Delta-function, and Km is a normalization constant that
depends on the value of m.

We can evaluate Km from the requirement that
R
d~f p(~f j I) = 1. The required integral

is a special case of the generalized Beta integral that we will require later:

Z
1

0
dx1 : : :

Z
1

0
dxmx

k1�1
1 : : : xkm�1m �

0
@a� mX

j=1

xj

1
A =

�(k1) : : :�(km)

�(k)
ak; (4:17)

where k =
P

j kj , and �(x) is the Gamma function, with �(n) = (n � 1)! when n is a
positive integer. To evaluate Km, we consider the case with a = 1 and all kj = 1, so k = m.

Thus
R
d~f p(~f j I) = Km=(m� 1)!, so

Km = (m� 1)!: (4:18)

Our speci�cation of model Mm is now complete.

4.4. Priors for Model Comparison

Finally, we need to assign a prior probability to each model as a whole in order to
perform model comparison calculations. We will consider the hypotheses of the presence
and absence of a periodic signal to be equally probable a priori. Thus we assign equal prior
probabilities of 1=2 to the class of nonperiodic models and to the class of periodic models.
Since the nonperiodic class contains only the constant (m = 1) model, we have

p(M1 j I) = 1

2
; (4:19)

where we use the symbol I to denote the information specifying the classes of models we
are comparing, as in x 2. The periodic class will consist of some �nite number of stepwise
models with m varying from m = 2 to m = mmax. We consider each member of this class
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to be equally probable a priori, so that the probability of 1=2 assigned to the periodic class
is spread equally among the � = mmax � 1 members of this class. Thus,

p(Mm j I) = 1

2�
: (4:20)

Alternatively, we could view our stepwise models as a single model, and m as a discrete
parameter in this model; the 1=� factor in equation (4.20) then plays the role of a 
at prior
distribution for the parameter m.

We now have all the probabilities we need. We note that either model class could
be expanded to more comprehensively cover the possible forms of periodic or nonperiodic
signals. For example, we could enlarge the periodic class to contain sinusoidal or other
simple functional models (Loredo 1992b). Or we could enlarge the nonperiodic class to
include varying but nonperiodic models, such as the stepwise model discussed in Appendix
C, or a simple polynomial variation with time. In either case, we would further spread the
prior probability of 1=2 over the additional members of the model class. Alternatively, if
we knew the precise shape of a possible signal a priori, we could shrink the periodic model
class, assigning its full prior probability of 1=2 to a single model.

5. ODDS RATIOS FOR SIGNAL DETECTION

In this section we use the likelihoods and priors from the previous section to test the
hypothesis that the signal is periodic. We do this by comparing members of the class of
stepwise periodic models to the constant model that comprises the nonperiodic class using
the model comparison methods of x 2. We calculate the global likelihoods for all models,
and use them to �nd the odds ratios, Om1, in favor of each periodic model over the constant
model. The probability for a model can be calculated from the odds ratios using equation
(2.13). In particular, the probability for the nonperiodic (constant) model is,

p(M1 j D; I) = 1

1 +
Pmmax

m=2 Om1
; (5:1)

and the probability that the signal is periodic is just the sum of the probabilities of the �
periodic models,

p(m > 1 j D; I) =
Pmmax

m=2 Om1

1 +
Pmmax

m=2 Om1
; (5:2)

This is simply [1� p(M1 j D; I)]. The ratio of equation (5.2) to equation (5.1) is the odds
ratio, Oper, in favor of the hypothesis that the signal is periodic,

Oper =
mmaxX
m=2

Om1: (5:3)

When Oper is greater than unity (p(m > 1 j D; I) > 1=2), there is evidence for a periodic
signal, the magnitude of Oper indicating the strength of this evidence.

We discuss three cases: the case when the period and phase of the signal is known, that
when only the period is known, and that when neither the period nor the phase is known.
In all cases the shape of the lightcurve will be considered unknown.
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5.1. Period and Phase Known

Our �rst case is of little practical interest: if we do not know the shape of the lightcurve,
it is not meaningful to say we know the phase. However, if the phase is �xed, the needed
calculations can be done analytically, and the result can be readily interpreted in terms of
the Ockham factors described in x 2, facilitating our understanding of the results for more
complicated cases.

As explained in x 2, we need the global likelihoods of the models to perform model
comparison. These are calculated by integrating the product of the prior and the likelihood
for each model as illustrated in equation (2.7). From equations (4.1) and (4.2), the global
likelihood for the constant model is,

p(D jM1) =

Z Amax

0
dA p(A jM1) p(D jM1; A; I)

=
�tN

Amax

Z Amax

0
dA ANe�AT

=
�tN
(N + 1; AmaxT )

AmaxTN+1
: (5:4)

Here 
(n; x) denotes the incomplete Gamma function de�ned by,


(n; x) =

Z x

0
yn�1e�ydy; (5:5)

where the usual Gamma function �(n) = 
(n;1).
With ! and � known, the global likelihood for a periodic model is similarly calculated by

integrating the product of equations (4.11), (4.15), and (4.16) over A and ~f . The integral
over A is the same as that just performed for the constant model, and the constrained
integral over ~f can be performed using the generalized Beta integral of equation (4.17).
The result is,

p(D j !; �;Mm) =

Z
d~f

Z Amax

0
dA p(A jMm) p(~f jMm) p(D j !; �;A; ~f;Mm)

=
�tNmN (m� 1)!

Amax

Z Amax

0
dA ANe�AT

Z
d~f

mY
j=1

f
nj
j �

0
@1� mX

j=1

fj

1
A

=
�tN (m� 1)! N ! 
(N + 1; AmaxT )

AmaxTN+1(N +m� 1)!

mN

Wm(!; �)
; (5:6)

where Wm(!; �) is the multiplicity of the binned distribution of events, the number of ways
the particular set of nj values can be made by distributing N events in m bins,

Wm(!; �) =
N !

n1! n2! : : : nm!
: (5:7)

The multiplicity is a function of ! and � because the nj are. Note that mN is the total
number of possible arrangements of N events in m bins, so equation (5.6) is inversely
proportional to the ratio of the number of ways the observed nj can be made to the total
number of ways N events can be placed in m bins.
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The probability of a model is proportional to its global likelihood. Thus from equation
(5.6) we �nd the intuitively appealing result that the probability of a periodic model is
inversely proportional to the multiplicity of its resulting binned distribution. Crudely, if
the number of ways the binned distribution could have arisen \by chance" is large, the
probability that the distribution is due to a genuinely periodic signal is small.

The many factors common to the global likelihoods in equations (5.4) and (5.6) cancel
when we calculate the odds ratio comparing one of the periodic models to the constant
model. Using the prior probabilities for the models given by equations (4.19) and (4.20),
the odds ratio in favor of an m-bin periodic model over the constant model, conditional on
! and �, is,

Om1(!; �) =
1

�

�
N +m� 1

N

�
�1

mN

Wm(!; �)
: (5:8)

Note that Amax has canceled out of the odds ratio, so that the result of comparing the models
is independent of the prior range for A. This is generally the case in model comparison
calculations when a parameter is common to all models being considered, and its value
is independent of the values of the other parameters: only the ranges associated with the
additional parameters a�ect the outcome.

Values of Om1(!; �) > 1 indicate that model Mm is more probable than the constant
rate model for the frequency and phase considered. From the conditional odds ratios we
can easily calculate the odds ratio, Oper(!; �), in favor of the periodic class of models over
the constant model,

Oper(!; �) =
mmaxX
m=2

Om1(!; �): (5:9)

This is the conditional counterpart to equation (5.3). Note that Oper(!; �) could exceed
unity even if no single periodic model is more probable than the constant model. This can
arise in practice when there is a weak periodic signal present whose shape is not well-modeled
by a single stepwise curve, so that probability is spread over several stepwise models.

5.2. Ockham Factors

The odds ratios Om1(!; �) contain Ockham factors that penalize models with larger
numbers of bins. As noted in x 2, we can see this by writing the global likelihood for each
model as the product of its maximum likelihood and a remaining factor, the Ockham factor.

The constant model has an Ockham factor associated with its single parameter, the
rate, A. To �nd it, we di�erentiate equation (4.1) with respect to A, and choose A so the
derivative vanishes, leading to a maximum likelihood value for A of N=T , as we might have
guessed. Thus the maximum value of the likelihood itself is,

Lmax;1 = �tNNNT�Ne�N : (5:10)

From this result and equation (5.4), the global likelihood for M1 can be written,

p(D jM1) = Lmax;1
eNN�N
(N + 1; AmaxT )

AmaxT
= Lmax;1 
A; (5:11)

where we have identi�ed the Ockham factor associated with the parameter A,


A =
eNN�N
(N + 1; AmaxT )

AmaxT
: (5:12)

20



When AmaxT � N (i.e., the prior upper limit for A is larger than the observed rate), as
will usually be the case, the incomplete Gamma function is equal to N ! to a very good
approximation. Using Stirling's approximation, N ! � p2�N NNe�N , we �nd that,


A �
p
2�

N1=2=T

Amax
: (5:13)

It is easy to show that the standard deviation of the posterior distribution for A is N1=2=T
(the familiar \root-N" result; see Loredo 1992a); thus the Ockham factor associated with
A is approximately

p
2� times the posterior standard deviation divided by the prior range,

the Gaussian limit described in x 2, equation (2.20).
The Ockham factors associated with the parameters of a periodic model can be found

in a similar manner. As with the constant model, the maximum likelihood value of A is
N=T . We show below that maximization of equation (4.11) with respect to the fj leads to
maximum likelihood values of fj = nj=N , as one might expect. Thus the maximum value
of the likelihood for a known ! and � is,

Lmax;m(!; �) =
h
�tNNNT�Ne�N

i 24mNN�N
mY
j=1

n
nj
j

3
5 : (5:14)

We have grouped terms to facilitate comparison with the calculations for the constant
model. We can now write the global likelihood in equation (5.6) as,

p(D j !; �;Mm) = Lmax;m(!; �)

�
eNN�N
(N + 1; AmaxT )

AmaxT

�
�

�
N +m� 1

N

�
�1NN

Q
j nj!

N !
Q

j n
nj
j

; (5:15)

where we have identi�ed a combination of factorials that are equal to a binomial coe�cient,�
N +m� 1

N

�
=

(N +m� 1)!

N ! (m� 1)!
: (5:16)

Comparing equation (5.15) with equation (5.12), we see that we can write the global likeli-
hood for Mm as,

p(D j !; �;Mm) = Lmax;m(!; �) 
A 
m; (5:17)

where 
A is given by equation (5.12), and the Ockham factor associated with the m values
of fj is,


m =

�
N +m� 1

N

�
�1NN

Q
j nj !

N !
Q

j n
nj
j

: (5:18)

Using Stirling's approximation for the various factorials, one can show that


m �
r
N

2�

�
1 +

m� 1

N

�
�(m� 1

2 )
2
4(m� 1)!

mY
j=1

p
2�nj

N

3
5 : (5:19)

We show below that the posterior standard deviation for fj is approximately
p
nj=N , thus

the term in brackets is the product of the prior and
p
2� times the posterior standard
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deviations, as described in x 2, equation (2.20). The remaining factors arise because the
Gaussian approximation is not adequate for the bounded, constrained fj parameters.

Using equations (5.11) and (5.17), we can write the odds ratio in equation (5.8) as the
product of a prior odds ratio (1=�), a maximum likelihood ratio, and and Ockham factor:

Om1(!; �) =
1

�
Rm1 
m; (5:20)

where the ratio of the maximum values of the likelihoods of the models is,

Rm1 � Lmax;m(!; �)

Lmax;1

=
�m
N

�N mY
j=1

n
nj
j : (5:21)

Note that 
A has cancelled out of the odds ratio. Our remark above regarding the can-
cellation of Amax in the odds ratio applies to Ockham factors as well: when a parameter
is common to all models being compared, and its inferred value is not correlated with the
values of the other parameters, only the Ockham factors associated with the additional
parameters a�ect the outcome of model comparison calculations.

To illustrate the e�ect of the Ockham factor, 
m, assume that we only had one model,
with �xed m, in the periodic model class (so � = 1). Then the prior odds for this model
over the constant model would be unity. However, the Ockham factor in equation (5.21)
implements an \Ockham's razor," strongly favoring the simpler constant rate model, M1,
unless the data justify the model Mm with its larger number of free parameters. The e�ect
of the Ockham factor can be appreciated most readily for the special case where the total
number of events, N , is an integer multiple of the number of bins, m, and the events fall
uniformly in the bins, so that nj = N=m, an integer. In this case the likelihood ratio
Rm1 = 1, as we expect, so the odds ratio is equal to the Ockham factor, which takes the
value,


m =

�
N +m� 1

N

�
�1
mN

N !

�
N

m
!

�m
: (5:22)

Figure 2a shows a plot of log10 
m versus the total number of events, N , while the number of
bins is held constant at m = 6. For N � 500 events, 
m � 10�5. Figure 2b shows log10
m
versus m for N �xed at 420 events. In this case for 5 bins (m = 5), 
5 = 9:3�10�5, and for
10 bins, 
10 = 2:0�10�8. In all cases, the Ockham factor strongly penalizes the complicated
models, and the odds ratio favors the constant model, even though the likelihood ratio itself
does not favor one model over another for this hypothetical 
at data set, and even though
the models are assigned equal prior probabilities.

These results may be surprising to those familiar with more traditional frequentist
approaches to model comparison based on best-�t likelihood ratios or their logarithms,
(e.g., di�erences in �2, such as are used in the F -test). Likelihood ratios can never favor
the simpler of two nested models; at best, the ratio can be unity. In such tests \Ockham's
Razor" must be invoked to justify the selection of the simpler model when the likelihood
ratio does not favor the more complicated one too strongly, the simplicity of the simpler
model supposedly making it more plausible a priori. In the Bayesian analysis a quantitative
a posteriori Ockham factor arises as a derivable consequence of the basic sum and product
rules of probability theory. Thus model probabilities and odds ratios can favor simpler
models even when likelihood ratios do not.
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Fig.2 Logarithm of the Ockham factor, 
m, for N uniformly distributed events. (a)

m versus N for m = 6 bins. (b) 
m versus m, for N = 420 events. Only points with N=m
an integer are plotted. Models with smaller Ockham factors are penalized over models with
larger Ockham factors. Thus, the penalty increases with increasing number of bins.

5.3. Period Known, Phase Unknown

We now treat the more practically useful case of known period or frequency, but un-
known phase and shape. This is the state of knowledge one might be in when, say, searching
for X-ray pulsations from a radio pulsar at the known frequency of the radio pulsations.
The global likelihood for a model with m bins and known frequency is given by,

p(D j !;Mm) =

Z 2�

0
d�

Z
d~f

Z Amax

0
dA p(� jMm) p(A jMm) p(~f jMm)�

p(D j !; �;A; ~f;Mm): (5:23)

This is simply equation (5.6), multiplied by the prior for �, and integrated over �. Thus,

p(D j !;Mm) =
�tN (m� 1)! N ! 
(N + 1; AmaxT )

2�AmaxTN+1(N +m� 1)!

Z 2�

0
d�

mN

Wm(!; �)
: (5:24)

The integral must be evaluated numerically. Numerical integrals over � are most e�ciently
done by integrating over one bin width (� = 0 to 2�=m), and multiplying the result by m,
since phase shifts larger than one bin width simply correspond to cyclicly permuting the
fj , which does not change the value of the multiplicity.

From equations (5.4) and (5.24), the odds ratio in favor of an m-bin model with known
frequency is,

Om1(!) =
1

2��

�
N +m� 1

N

�
�1 Z 2�

0
d�

mN

Wm(!; �)
; (5:25)

that is, it is the odds ratio for the case with known period and phase, equation (5.8),
averaged over phase. This is smaller than Om1(!; �), maximized with respect to �, by an
additional Ockham factor that penalizes the model for its unknown phase (the 1=2� factor
is just the part of 
� arising from the prior for �).
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As in equation (5.9), the odds ratios given by equation (5.25) can be used to calculate
the odds ratio in favor of the periodic class, Oper(!), according to,

Oper(!) =
mmaxX
m=2

Om1(!): (5:26)

This odds ratio, or equivalently, the probability of the periodic class given by equation (5.2),
is the quantity one would use to detect a signal at a frequency which is known a priori (say,
from measurements at another wavelength), when the shape of the lightcurve is unknown.

5.4. Period and Phase Unknown

Finally, if the frequency or period is also unknown, we can �nd the global likelihood for
an m-bin model by multiplying equation (5.24) by the prior for ! and integrating over !;

p(D jMm) =
�tN (m� 1)! N ! 
(N + 1; AmaxT )

2�Amax(N +m� 1)! TN+1 ln !hi
!lo

Z !hi

!lo

d!

!

Z 2�

0
d�

mN

Wm(!; �)
: (5:27)

Using this global likelihood, the odds ratio in favor of Mm with unknown period and phase
is,

Om1 =
1

2�� ln !hi
!lo

�
N +m� 1

N

�
�1 Z !hi

!lo

d!

!

Z 2�

0
d�

mN

Wm(!; �)
: (5:28)

As before, this expression must be evaluated numerically. If there is signi�cant evidence
for a periodic signal, the integral is usually completely dominated by a single peak in
the inverse multiplicity, even for moderately small numbers of events. The integration
introduces an additional Ockham factor penalizing the model for its unknown frequency (the
1= ln !hi

!lo
factor is the part of 
! arising from the normalization constant for the prior for !).

This Ockham factor, which arises from marginalizing !, is the Bayesian counterpart to the
adjustment of the signi�cance of a frequentist period search for the number of independent
periods searched. We elaborate on the distinction between these methods below.

The odds ratios given by equation (5.28) can be used to calculate the odds ratio in
favor of the hypothesis that a periodic signal of unknown frequency and unknown shape is
present by calculating Oper using equation (5.3).

If the results of the signal detection calculations just described lead us to conclude that
a periodic signal is present, then the problem becomes one of estimating the frequency and
shape of the lightcurve. These problems are considered in the next two sections.

6. ESTIMATION OF THE FREQUENCY

Our signal detection calculations have focused on the global likelihoods for various
models. For parameter estimation, we will focus instead on the posterior distribution for
model parameters, in which the global likelihood merely plays the role of a normalization
constant.

Assuming the truth of a particular model, Mm, Bayes' theorem for the posterior distri-
bution for the frequency reads,

p(! j D;Mm) = p(! jMm)
p(D j !;Mm)

p(D jMm)
: (6:1)
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The probabilities on the right hand side are given by equations (4.14), (5.24), and (5.27).
The result is,

p(! j D;Mm) =
C

!

Z
d�

1

Wm(!; �)
: (6:2)

where C is a normalization constant,

C =

�Z !hi

!lo

d!

!

Z 2�

0
d�

1

Wm(!; �)

��1
: (6:3)

If we wish to estimate the phase and frequency jointly, a similar calculation, using equations
(4.13), (4.14), (5.6), and (5.27), gives,

p(!; � j D;Mm) =
C

!

1

Wm(!; �)
: (6:4)

These marginal distributions show that the multiplicity, Wm(!; �), of the binned arrival
times contains all the information provided by the data about the frequency and phase (it
is a \su�cient statistic" for the frequency and phase) when we are not interested in the exact
shape of the lightcurve. These distributions straightforwardly summarize the information
provided by the data about the frequency and phase. In particular, a \best" frequency can
be found by locating the maximum of equation (6.2) (giving the mode) or by calculating
the posterior mean for ! (as illustrated in equation (2.8)). The probability that the true
frequency is in any speci�ed range can be found simply by integrating equation (6.2) over
that range.

Note that the normalization constants for the priors, Amax, 2�, and ln(!hi=!lo), do not
appear, making the posterior very insensitive to the prior ranges for the parameters. This
is a general characteristic of Bayesian calculations: the results of parameter estimation tend
to be very insensitive to the prior range of parameters, being essentially equal to limiting
results obtained with in�nite range. This is in contrast to model comparison calculations,
which can depend more sensitively on the range through the Ockham factor (e.g., the odds
ratio Om1 is inversely proportional to ln(!hi=!lo)).

These calculations are all conditional on the choice of a particular model, Mm. But
the Bayesian model comparison calculations of the previous section do not isolate a single
model; rather, they assign a probability to each possible model (just as Bayesian parameter
estimation does not produce a single point in parameter space, but rather a posterior
\bubble"). Formally, our estimate of the frequency should include the information provided
by all of the models, essentially marginalizing over m, which we can consider a discrete
nuisance parameter. We can perform this calculation as follows.

As we did in equation (5.2), let (m > 1) stand for the proposition, \the signal is
periodic, not constant." Then a complete description of our knowledge of the frequency of
the periodic signal is given by the marginal distribution,

p(! j m > 1; D; I) =
mmaxX
m=2

p(Mm; ! j m > 1; D; I)

=
mmaxX
m=2

p(Mm j D; I) p(! j D;Mm); (6:5)

where p(Mm j D; I) can be calculated from the odds ratios in equation (5.28) using equation
(2.13), and p(! j D;Mm) is given by equation (6.2). Equation (6.5) is a weighted sum of
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the marginal posteriors for all the periodic models being considered, from those with m = 2
to m = mmax.

Though equation (6.5) is the full Bayesian estimate for the frequency, we �nd in practice
that it is often adequate simply to compute equation (6.2), conditional on the most probable
choice of m (that with the largest Om1).

Though in principle the parameter estimation problem of determining the frequency
should be treated after the model comparison problem of determining whether a periodic
signal is present, in practice one will begin by calculating the inverse multiplicity averaged
over phase in equation (6.2) throughout a range of frequencies, and for each of several
values of m. The locations of important peaks will be noted, and additional values should
be calculated in their vicinity to enable accurate calculation of the integrals required for
calculating the normalization constant, C, and for calculation of the odds ratios needed for
signal detection. We discuss this calculation procedure further in Appendix A.

7. ESTIMATION OF THE LIGHTCURVE SHAPE

It may be of interest to estimate the shape of the lightcurve. The lightcurve is entirely
speci�ed by the stepwise function r(t) = rj(t). Since rj(t) = mAfj(t), the uncertainty in the
rate at some time will depend on the uncertainties of bothA and the fj value for the speci�ed
time. However, the uncertainty in the shape of the lightcurve does not depend on how well
its overall amplitude has been determined, so we will seek to estimate r(t)=A = mf(t) (with
f(t) � fj(t)), instead of r(t).

The estimate of f(t) at one particular time is not simply the estimate of a particular
fj parameter, because the value of j corresponding to t depends on the frequency and
phase, which are usually not known. Additionally, the estimate will depend on which
model (number of bins) is chosen. Formally, since the shape of the signal is determined
by the choice of the model and by the values of all of the model parameters except A, the
full Bayesian shape estimate is the joint posterior distribution, p(Mm; !; �; ~f j D; I), with
A eliminated by marginalizing. We will call this distribution the shape distribution. The
shape distribution is so complicated as to be almost useless by itself. In this section we seek
to summarize its implications in an intuitively accessible manner.

The �rst summary we will seek is the most probable shape. In principle this shape should
be found by jointly maximizing the shape distribution with respect to all of its parameters.
In practice, this is a formidable task, so instead we factor the shape distribution according
to,

p(Mm; !; �; ~f j D; I) = p(Mm j D; I) p(! j D;Mm) p(� j !;D;Mm) p(~f j !; �;D;Mm):
(7:1)

Then we maximize each factor in sequence. First we identify the most probable number of
bins from the odds ratio calculations of x 5. Then we �nd the most probable frequency for
this model from the marginal distribution for ! given by equation (6.2). Then we �nd the
most probable phase given these choices for the number of bins and the frequency. Finally,
we �nd the fj values that are most probable, given these choices for the other parameters.
The resulting shape should be nearly the most probable shape. Not surprisingly, we show
below that it is the shape that assigns fj = nj(!; �)=N , with m, !, and � chosen as just
speci�ed.

Unfortunately, though the most probable shape is easily found from the results of pre-
vious detection and estimation calculations, it tells us little about the extent of the shape
distribution, the variety of shapes that are consistent with the data. So we seek an alterna-
tive summary that accessibly portrays the \width" of the shape distribution. The particular
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summary we will o�er can be motivated as follows. Imagine creating a movie by perform-
ing a Monte Carlo calculation that samples the shape distribution. For each frame of the
movie, we sample a choice of m from p(Mm j D; I), then sample a frequency and phase

from p(! j D;Mm) and p(� j !;D;Mm), then sample fj values from p(~f j !; �;D;Mm), and

�nally draw the curve speci�ed by (m;!; �; ~f) in black on the frame. Viewing this movie,
we will not see any particular stepwise curve, but will instead see a blurred greyscale \im-
age" that is darkest near points that many shape samples went through, and lightest near
points that lie only on shapes with small probabilities, and which are thus seldom sampled.
This blurred image will more completely portray the extent of the shape distribution than
a single highly probable curve.

It is not feasible to make such a movie, but we show how straightforward calculations
can be used to e�ectively draw \contours" of the image one might see in such a movie.
We do this by calculating, for each time, t, the mean and standard deviation of r(t)=A,
averaging over the entire shape distribution. Nearly all of the analytical and numerical
integrals required are already available from detection and estimation calculations, so this
shape estimate can be readily calculated. It is a weighted superposition of stepwise curves
with various numbers of bins and various frequencies, phases, and fj values, and can be
considerably smoother than a stepwise curve. It is somewhat similar in spirit to the recently
proposed kernel density estimates for lightcurves (de Jager, Swanepoel and Raubenheimer
1986).

In the remainder of this section, we �rst show how to �nd the most probable values
of the fj parameters, assuming that optimum values of m, !, and � have been chosen as
outlined above. Then we show how to �nd the mean and standard deviation estimate of
r(t)=A at a speci�ed time in three steps. First, we �nd the estimate for speci�ed m, !, and
�. Then we average over frequency and phase. Finally, we average over m, superposing
models with various numbers of bins.

7.1. Most Probable Stepwise Model

Before actually �nding the most probable stepwise model, we elaborate on when it
may provide an adequate shape estimate. We saw earlier that the Ockham factor strongly
penalizes more complicated models with larger numbers of bins (Fig. 2(b)). Therefore we
expect that if the odds ratio, Om1, is computed for two di�erent choices of m, its value
for the smaller m will be greater unless the data provide su�cient justi�cation for a larger
number of bins. Thus peaks in a plot of Om1 versus m indicate evidence for structure on
timescales of order P=m.

Since the evidence provided by the data depends on the number of events counted, it
is to be expected that as N increases, peaks can occur at larger and larger values of m if
the data arise from a su�ciently structured signal. Thus peaks in Om1 versus m must be
interpreted as indicating the degree of complexity of the lightcurve supported by the data.

If Om1 exhibits a single strong peak, this is evidence that the lightcurve is well repre-
sented by a single stepwise model. In such cases, the most probable stepwise model may
adequately represent the information in the data. In other cases, Om1 may be large for
several values of m, indicating that no particular stepwise curve exhausts the structure in
the data. It is only in the former case that the most probable shape we are about to derive
should be considered to be a useful shape estimate.

We assume most probable values of m, !, and � have been selected from the marginal
and conditional distributions in equation (7.1). We thus seek the fj values which maximize

p(~f j !; �;D;Mm). This distribution is the joint conditional distribution for ~f and A,
marginalized with respect to A. The joint distribution is the product of the likelihood given
by equation (4.11) and the priors for A and ~f given by equations (4.15) and (4.16), divided
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by the global likelihood (conditional on ! and �) given by equation (5.6). Integrating out
A gives,

p(~f j !; �;D;Mm) =
(N +m� 1)!

N !
Wm(!; �)

mY
j=1

f
nj
j : (7:2)

To �nd the mode, we can concentrate on the ~f -dependent part,

F =
mY
j=1

f
nj
j : (7:3)

When we maximize this with respect to the fj, we must enforce the constraint that
P

j fj =
1. We can perform the constrained maximization by using a Lagrange multiplier, maximiz-
ing the expression,

F 0 = F + �

0
@1� mX

j=1

fj

1
A ; (7:4)

with respect to the fj and the Lagrange multiplier, �. This leads to the not too surprising
result,

f̂j =
nj
N
; (7:5)

where the circum
ex denotes the mode.

7.2. Conditional Mean of fj
As a �rst step toward a more informative summary of the shape distribution, we now

seek the posterior mean of fj when m, !, and � are speci�ed. We can also consider this
as an alternative summary to the mode if we are seeking a single curve to summarize the
shape distribution. The di�erence between the mode and the mean will give us a sense of
the asymmetry in the posterior (since each fj is bounded below by 0 and above by 1, if the
mode is not at fj = 1=2 for all j, which is only possible for m = 2, the posterior must be
asymmetric).

The mean (expected value) of fj is given by,

hfj j !; �;mi �
Z
d~f fj p(~f j !; �;D;Mm): (7:6)

We can perform the integral easily using the generalized Beta integral, equation (4.17). The
result is,

hfj j !; �;mi = nj + 1

N +m
: (7:7)

The mean is di�erent from the mode, as expected. However, when nj � 1 and N � m
the mean and the mode essentially coincide, so in such cases we need not worry about the
asymmetry; the mean and mode give nearly indistinguishable estimates. We prefer the
mean because it is easier to perform more complicated calculations (such as those required
when ! or � are unknown) with the mean.

The standard deviation of the marginal posterior for fj , de�ned by

�j � h(fk � hfki)2i1=2

=
�hf2k i � hfki2�1=2 ; (7:8)
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provides a measure of the uncertainty of the value of fj (we have suppressed the conditioning
on ! and � for clarity). To calculate it, we need the second moment of fj , which again is
easily calculated using the generalized Beta integral: hf2j i = (nj + 2)(nj + 1)=(N + m +

1)(N +m). This, combined with equations (7.7) and (7.8), give

�j =

r
hfji(1� hfji)
N +m+ 1

: (7:9)

If hfji � 1 and N � m, the uncertainty in fj is approximately
p
nj=N , the \root-n" result

we might have guessed.

7.3. Averaging Over Frequency and Phase

Recall that all of these results are conditional on ! and � (and the choice ofm). When !
or � are unknown, we need to estimate f(t) at a particular time, t, which may not correspond
to estimating a particular fj , since the uncertainty in ! and � make j(t) uncertain. We
can take into account our uncertainty in ! and � by marginalizing. This can all be done
numerically using the results already found. For example, for hf(t) j mi we have,

hf(t) j mi =
Z
d!

Z
d�

Z
d~f fj(t) p(!; �; ~f j D;Mm)

=

Z
d!

Z
d�

�Z
d~f fj(t) p(~f j !; �;D;Mm)

�
p(!; � j D;Mm)

=

Z
d!

Z
d� hfj(t) j !; �;mi p(!; � j D;Mm); (7:10)

that is, we just average the conditional result we found above over the marginal posterior
for ! and � (conditional on m) given by equation (6.4), choosing the appropriate value of
j in the integral as ! and � vary. Calculation of the second moment proceeds analogously,
allowing us to calculate the standard deviation of the estimate of f(t). Of course, if the
frequency is known, the integrals over ! should be eliminated from equation (7.10).

Note that the estimate provided by equation (7.10) is essentially a weighted superposi-
tion of stepwise lightcurves, each with di�erent phase and frequency, with weights given by
the probability densities for various choices of frequency and phase. It is thus not a stepwise
function, but rather a somewhat smoothed version of a stepwise function.

7.4. Superposing Stepwise Models

All of our lightcurve estimates so far have been conditional on the choice of a single
best (most probable) number of bins. But, as we noted in our derivation of equation (6.5),
Bayesian model comparison leads to a probability distribution for the models, p(Mi j D; I);
it does not isolate a single model. Thus a more complete estimate of the rate should
marginalize over m as well as the various model parameters. We can calculate the marginal
posterior mean for r(t)=A = mf(t) as follows;

hr(t)=A j m > 1i =
mmaxX
m=2

m

Z
d!

Z
d�

Z
d~f fj(t) p(Mm; !; �; ~f j D; I)

=
mmaxX
m=2

m p(Mm j D; I)
Z
d!

Z
d�

�Z
d~f fj(t) p(~f j !; �;D;Mm)

�
�

p(!; � j D;Mm)

=
mmaxX
m=2

m p(Mm j D; I) hf(t) j mi; (7:11)
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where hf(t) j mi is given by equation (7.10), and p(Mm j D; I) can be calculated from
the odds ratios in equation (5.28) using equation (2.13). An analogous equation holds for
the second moment, allowing calculation of the standard deviation for f(t). The resulting
estimate is even more \smoothed" than that produced by equation (7.10) because it contains
contributions with di�erent numbers of bins. It may still have a signi�cantly \boxy" shape,
however.

8. RELATION TO EXISTING STATISTICS

Our Bayesian calculation bears a close relationship to other statistical methods already
in use. In particular, the multiplicity that plays a key role in our analysis is related to
entropy and to the �2 statististic used in the epoch folding method. In this section we
elucidate these relationships, and highlight some of the distinctions between our Bayesian
calculation and more familiar frequentist methods. A more extensive comparison will appear
elsewhere (Loredo 1992b).

8.1. Multiplicity and Entropy

Using Stirling's approximation for the factorials appearing in equation (5.7), we can
approximate the logarithm of the multiplicity as follows:

� lnW (!; �) � ln
Cp
N

+
1

2

mX
j=1

lnnj +N
mX
j=1

nj
N

ln
nj
N
; (8:1)

where C = (2�)m�1. The last, leading order term is proportional to the con�gurational
entropy, H(!; �), of the folded lightcurve (binned data) which is de�ned as,

H(!; �) = �
mX
j=1

nj
N

ln
nj
N
: (8:2)

Thus the joint posterior for the frequency and phase is approximately inversely proportional
to the exponential of N times the entropy,

p(!; � j D;Mm) / e�NH(!;�): (8:3)

Thus the most probable frequency and phase, for a given choice of the number of bins, are
those leading to the lightcurve with minimum entropy.

8.2. Multiplicity and \Chi-Squared"

We can connect our results with the �2 statistic by making a further approximation.
Consider evaluating the multiplicity when the binned data are nearly uniform, with nj �
N=m. This would be the case if there was no periodic signal, or if there was a signal but !
was not close to a harmonic of the true frequency. Writing,

ln
nj
N

= ln
nj

N=m
� lnm; (8:4);

we expect the argument of the �rst logarithm to be near unity. Using the expansion lnx �
(x� 1)� 1

2(x� 1)2, the entropy can be approximated by,
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: (8:5)
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The �rst sum is just
P

j nj �
P

j(N=m) = N �N = 0, so we �nd,

H(!; �) � logm� 1

2N

mX
j=1

(nj �N=m)2

nj

= logm� 1

2N
�2(!; �); (8:6)

where �2(!; �) is the same �2 statistic used in the epoch folding method. Using this
approximation in equation (8.3), we have shown that, roughly,

p(!; � j D;Mm) / e�
2=2: (8:7)

Note, however, that the approximation breaks down just in the interesting case where
the binned data are nonuniform so there is evidence for a period. Note also that, were
we interested in the frequency alone, marginalizing the phase corresponds to averaging
the exponential of �2=2 over phase, not averaging �2 itself, as has been advocated in the
literature (Collura, et al. 1987).

It is interesting to compare how the multiplicity is used in Bayesian calculations with
how the popular epoch folding (EF) method uses the �2 statistic, an approximation of the
logarithm of the multiplicity. In EF (see, e.g., Leahy et al. 1983) one assumes that there is
indirect evidence for a periodic signal if we can reject the null hypothesis that the data is
consistent with a constant rate model. The null hypothesis is tested by examining values
of the �2 mis�t between a 
at distribution and the histogram resulting from binning the
events for various periods. The percent con�dence level, C, associated with the test is found
by identifying the maximum observed �2 value, �2obs, and calculating

C = 100[1�Qm�1(�
2
obs)]

Nper

� 100[1�NperQm�1(�
2
obs)]; (8:8)

where Qm�1(�
2
obs) is the area above �

2
obs in the �

2 distribution for m�1 degrees of freedom,
and Nper is the number of independent �

2 values found. If C is near 100%, there is evidence
against the null hypothesis, which is interpreted as evidence for a periodic signal. Typically,
C>�95% is considered to be the threshold of believability; signals with a smaller con�dence
level are discounted as 
uctuations.

Several problems complicate such analyses (Leahy et al. 1983, Collura et al. 1987). The
most widely recognized problem is the choice of Nper. One would like to examine a large
number of frequencies to ensure �nding any peaks, yet it is obvious that values of �2 found
for two neighboring frequencies cannot really be independent, since the �2 values must
eventually coincide as the frequencies get closer and closer together. Thus some criterion
must be proposed to quantify the notion of independence. Once Nper is determined, a
related problem arises: which Nper frequencies should be examined? Again, one wants
to make sure that a signi�cant peak is found, but it is not fair to choose the frequencies a
posteriori to maximize �2. This would lead one to overestimate the signi�cance of a possible
pulsation.

Rigorously, bothNper and the location of the frequencies must be determined a priori. In
the most careful studies, this is done by examining many hypothetical data sets in a Monte
Carlo study. Usually, the frequencies are chosen on a regular grid, and Nper is chosen to be
the largest number of examined periods for which the con�dence level is accurately given
by equation (8.8). Unfortunately, this number can vary by a factor of 2 to 3 depending on
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what underlying \true" lightcurve is used in the simulations, so serious subjectivity remains
in the choice of Nper.

An additional problem is the choice of number of bins. Only one choice can be fairly
used, for if one were to examine �2 values found with di�erent numbers of bins, di�cult
problems regarding the independence of the resulting values would arise. Again, the only
existing guidelines for the choice of bin number are results from Monte Carlo simulations,
where the bin number is chosen to optimize the ability to detect the underlying signal.
Again, the result depends on the assumed underlying shape, and varies by a factor of 2 to
3 depending on what shapes are assumed.

Finally, only recently have Collura et al. (1987) pointed out, in another context, that
the choice of phase can greatly a�ect EF results. Typically, analysts have ignored the signal
phase, implicitly setting � = 0. In our own simulations, we have found that �2 can easily
vary by as much as a factor of 2 as � varies over [0; 2�=m]. Thus accounting for possible
values of � is crucial. Rather than examining a grid of � values and facing the resulting
problems of independence, Collura et al. average �2 over phase, and use simulations to
show that, at least asymptotically, the phase-averaged �2 still follows the �2 distribution.
Unfortunately, we are unaware of any published period searches that have recognized the
problems associated with choosing �, and the need to use a phase-averaged �2 or some
other method to account for uncertainty in �.

From the Bayesian point of view, all of these problems arise because of the inability of
frequentist methods to handle nuisance parameters. It is true that not knowing the fre-
quency (or phase or number of bins) for the signal should decrease the signi�cance of the
result. Bayesian methods accomplish this in a unique, objective manner through marginal-
izing. The unknown frequency is accounted for by averaging (integrating) over frequency
rather than by maximizing. Only the range of frequencies searched is relevant; the actual
number of frequencies used in the integration is irrelevant. The unknown phase is also ac-
counted for by integrating, but the Bayesian calculation tells us exactly what to integrate:
a probability distribution for the phase. This distribution is approximately the exponential
of the �2 quantity averaged in the frequentist treatment. Finally, the unknown number of
bins can also be accounted for by summing; alternatively, an optimum number of bins can
be found. But this optimum number is determined a posteriori by the observed data, not
by a priori Monte Carlo simulations of hypothetical data. It is a measure of the complexity
of the observed data, and is not determined to optimize detection in a class of unobserved,
hypothetical data sets.

The Bayesian calculation also clearly distinguishes the tasks of signal detection and
parameter estimation. We are not aware of any astronomical work on using the EF method
to �nd rigorous estimates and con�dence regions for the period of a detected signal. Most
studies seem to consider the width of the �2 peak to give a rough estimate of the fre-
quency resolution. Since �2 is roughly the logarithm of the probability for !, this greatly
overestimates the uncertainty of the frequency. The Bayesian marginal distribution for !
determines ! with an accuracy that can be orders of magnitude greater than that found
from the width of the �2 peak.

An apparent advantage of the EF method, and other frequentist methods based on
rejecting a constant signal model with a \goodness-of-�t" test, is that they do not assume a
particular periodic model for the signal (though they require such a model to determine Nper

and the number of bins). In contrast, any Bayesian signal detection calculation must make
explicit assumptions about the nature of the periodic or nonperiodic signal that might have
produced the data. However, we have demonstrated that a Bayesian calculation with an
explicit choice of signal models leads one to consider essentially the same statistic examined
in an apparently alternative-free frequentist test: our piecewise constant model leads one
to bin the data and calculate a quantity related to �2. Similar results are known for many
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other popular goodness-of-�t statistics. For example, Loredo (1992b) demonstrates that the
frequentist Rayleigh and Z2

n tests for periodicity use exactly the same statistics required
in Bayesian model comparisons with speci�c smooth models for the signal. In this way,
Bayesian thinking illuminates the assumptions implicit in the choice of a goodness-of-�t
statistic.

We believe that the ability of Bayesian methods to treat nuisance parameters, and the
need to explicit identify alternatives in a Bayesian analysis, make Bayesian results both
more precise and more intuitive than their frequentist counterparts. Because the signal
model must be speci�ed, Bayesian methods force one to identify all nuisance parameters
relevant to the problem being considered. And because unknown parameters can be cor-
rectly accounted for by marginalizing, Bayesian probabilities can be taken at face value:
they indicate directly the intuitive degree of certainty one should have in the stated con-
clusions, given the assumptions of the analysis. In contrast, it is not unusual to consider a
\2�" (or even \5�") frequentist result to be only just believable, despite the fact that the
probability of such results being false alarms is formally only 0.05 (or 6�10�7 for 5�). This
nonintuitive behavior arises, we believe, because nuisance parameters are often unidenti�ed
and always incorrectly eliminated in frequentist analyses.

Bayesian calculations can correctly handle nuisance parameters because they consider
probabilities of hypotheses, conditional on the observed data. When the hypothesis of
interest is the disjunction of several simpler hypotheses, the probability of the interest-
ing hypthesis is simply the sum of the probabilities of its constituents (here the periodic
hypothesis is the disjunction of many simpler periodic models). For historical and philo-
sophical reasons, frequentist theory deems probabilities of hypotheses to be meaningless,
and so must rely on probabilities of hypothetical data, conditional on a single hypothesis.
This causes problems when the hypothesis of interest is the disjunction of many simpler
hypotheses, because one particular hypothesis must be assumed true in the analysis. Thus
the superiority of Bayesian methods for treating nuisance parameters arises from very ba-
sic and fundamental distinctions between the Bayesian and frequentist viewpoints. But
even apart from such formal, somewhat philosophical considerations, the Bayesian notion
of the probability of an hypothesis seems to us to be a much more intuitive measure of the
plausibility of an hypothesis than frequentist probabilities of more extreme data.

9. APPLICATION TO SIMULATED DATA

In this section we illustrate the use of our Bayesian method by applying it to simulated
data. We perform detection and estimation calculations both for data from a stepwise signal
and data from a smooth, sinusoidal signal.

For our �rst example, we simulated data from a stepwise lightcurve with 7 bins. The
period of the signal was P = 2:05633 s (! = 3:05553 s�1), and we simulated data over
an observing interval of T = 60 s (about 29 periods). The average signal rate was 4.6 s�1

(� 9:5 events per period). Approximately 76% of this rate was in a constant background;
16% (� 1:5 events per period) was in a 1-bin pulse in bin 2, and 8% (� :75 events per
period) was in a 1-bin pulse in bin 4. A total of 276 events were simulated. The simulated
data were analyzed \blind," though by construction the signal period was chosen to be in
the \twice Nyquist" range we standardly search, and the number of bins was chosen to be
in the range 2 to 12 (we typically use mmax = 12 to 15, a computationally convenient range
that is capable of representing the simulated and real lightcurves we have analyzed).

In Figure 3 we have plotted Om1(!) (eqn. (5.25)) in the range !lo = 20�=T to !hi =
2�N=T (twice e�ective Nyquist frequency), for m = 7 and � = 1. This is the quantity that

33



Fig.3 Om1(!) versus ! for m = 7 bins, for data simulated from a stepwise rate function
with 7 bins and ! = 3:05553 described in the text.

Fig.4 Om1 versus m for data simulated from a stepwise rate function with 7 bins.

one would calculate were the frequency and number of bins known, and one would then
evaluate it only at the known frequency.

We plot it for illustrative purposes. Were the frequency and number of bins known,
Figure 3 shows that the odds ratio in favor of a periodic signal would be greater than
2:5 � 105 to 1. But if the frequency and number of bins are not known, the evidence for
a periodic signal decreases due to the Ockham factors associated with m and !. This is
illustrated by Figure 4, which shows Om1 versus m, as given by equation (5.28). Here the
odds ratio in favor of the m = 7 model has dropped from 2:5� 105 to 10.9. The odds ratio
in favor of a periodic signal is the sum of the odds ratios for the models considered; here
we �nd Oper = 13:03, corresponding to a 93% probability that the signal is periodic, given
the class of models assumed.

Since this is strong evidence for a signal, we considered a signal to be present, and
estimated its frequency and shape. Figure 5 shows the marginal posterior density for !,
for m = 7. The large-scale plot shows a strong and extremely narrow peak near the true
frequency.
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Fig.5 Marginal posterior density for !, for m = 7 bins, for data simulated from a
stepwise rate function with 7 bins and ! = 3:05553. Inset shows a detail of the narrow
peak; the dashed vertical line indicates the true frequency.

The inset details this peak, which is indeed at the true frequency; the frequency is mea-
sured with an accuracy of approximately 0.6 mHz (for comparison, the \Nyquist frequency"
1=T = 17 mHz). Figure 6 shows the estimated lightcurve shape, calculated according to
equation (7.11). We calculated the mean and standard deviation for r(t)=A at 49 times,
and plotted the two resulting (mean�standard deviation) curves as solid lines. The true
underlying rate is shown with a dotted line. The shape estimate satisfactorily reproduces
the true shape to within the uncertainties.

Fig.6 Shape estimate for data simulated from a stepwise rate function with 7 bins and
2:05633 s period. Solid curves show �1 standard deviation estimates; dotted curve shows
true shape.

The same data were then analyzed using the epoch folding (EF) method. In Figure 7
the �2 statistic is plotted versus ! for m = 7 bins. The values of �2 were calculated on
a grid spacing of �! = �=4T , for a total of 1065 \independent" frequencies in the same
frequency range as used for the Om1(!) calculation. To account for the unknown phase, at
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Fig.7 Phase-averaged �2 versus ! for m = 7 bins, from an epoch folding analysis of the
same data used in Figure 3.

Fig.8 Percent con�dence associated with phase-averaged �2, versus !, for m = 7 bins,
from an epoch folding analysis of the same data used in Figure 3.

each trial frequency we averaged �2 itself over phase, as advocated by Collura et al. (1987).
The �2 values were converted to percent con�dence levels, C, using (8.8) , and are shown

plotted in Figure 8 versus ! (rigorously, a con�dence level should be associated only with
the single highest peak).

The highest peak at ! = 3:0507 s�1 (P = 2:0596 s), has a C = 98:7%, corresponding
to 2.5 �, which is not usually considered a signi�cant detection. In addition the con�dence
associated with the largest peak is only 1.4 times that of the next highest peak. In contrast
the second highest peak in Om1(!) is down by four orders of magnitude.

Next we considered data simulated using a smooth, sinusoidal lightcurve, to see how the
method behaves when the lightcurve is not in the stepwise model class. The rate function
we used was of the form,

r(t) = A [1 + f sin(!t+ �)] ; (9:1)

where A is the time-averaged rate, f is the pulsed fraction, which must lie in the interval
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Fig.9 Om1 versus m for data simulated from the sinusoidal rate function described in
the text.

[0; 1], and ! and � are the usual frequency and phase. For the simulations, we set A = 1
s�1, f = 0:5, ! = 2� s�1 (P = 1 s), and � = �=4. Thus on the average there is one pulsed
event for every two periods. We simulated several 200 s observations. In approximately
half of the observations, no signal was detected (using either the Bayesian calculation or the
EF method), and so no parameter estimates were made. Figures 9{11 illustrate the results
from one of the simulations in which the signal was detected. Figure 9 shows the odds
ratio Om1 versus m; the prior range for the frequency was the usual Nyquist range. Note
that no particular model is signi�cantly more probable than its competitors; the smooth
underlying shape causes the probability to be distributed over several models. Figure 10
shows the marginal distribution for the frequency; this distribution peaks within 0.5 mHz
of the true frequency, and is only � 1:7 mHz wide. Finally, Figure 11 shows the \1�" region
for the estimated signal shape, with the true sinusoidal shape shown as a dotted curve.
The superposition of stepwise curves with various numbers of bins and various phases and
frequencies has nicely estimated the sinusoidal shape to within the uncertainty provided by
the sparse data.

We wish to emphasize that we do not consider our model to be optimal for detecting
pulsations from smooth lightcurves; other smooth parametric models (such as the sinusoidal
and exponentiated sinusoidal models considered in Loredo 1992b) can more sensitively de-
tect such signals because they can model the signal with fewer parameters, and so pay a
smaller Ockham penalty. The best way to search for a signal whose shape is truly unknown
is to include smooth models in the periodic class in addition to the stepwise model, so
that both \spiky" and smooth signals can be optimally detected. However, our simulations
demonstrate that our general model can usefully detect smooth signals, and accurately
estimate their frequency and shape.
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Fig.10 Marginal posterior density for !, for m = 3, for data simulated from a sinusoidal
rate function with ! = 2�. Inset shows a detail of the narrow peak; the dashed vertical line
indicates the true frequency.

Fig.11 Shape estimate for data simulated from a sinusoidal rate function with 1 s period.
Solid curves show �1 standard deviation estimates; dotted curve shows true shape.

10. CONCLUSIONS

Bayesian probability theory has yielded a solution to the important problem of the de-
tection of a periodic signal in a data set consisting of the locations or times of individual
events, when we have no a priori knowledge about the nature of the periodic signal. This
has been accomplished by using Bayes' theorem to calculate the probabilities of nonperiodic
and periodic models. The class of periodic models we adopt spans a wide variety of shapes,
and the probability of the class as a whole is found by marginalizing (integrating) over all
the shapes it can describe. At �rst sight this might appear to be an overwhelming computa-
tional problem. But our choice of models allows us to perform the needed marginalizations
analytically, leading to an algorithm with computational speed comparable to that of the
popular epoch folding method based on �2.

The probability of a model contains a factor|the Ockham factor|that is a quantitative
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expression of Ockham's razor. It penalizes the periodic models for their greater complexity
in a manner determined by the data and the structure of the models, and not by subjective
criteria. In traditional statistical tests, Ockham's razor is invoked to justify considering
simpler models to be more plausible a priori. In the Bayesian analysis the Ockham factor
is a derivable consequence of the basic sum and product rules of probability theory and
arises a posteriori; our calculations assume the nonperiodic and periodic model classes to
have equal prior probabilities, and the members of the periodic class to also have equal prior
probabilities. The calculation thus balances model simplicity with goodness-of-�t, allowing
us to determine both whether there is evidence for a periodic signal, and the optimum
number of bins for describing the structure in the data.

When there is appreciable probability for the periodic models, the problem becomes one
of estimating the period and shape of the lightcurve. We have derived Bayesian solutions
to both of these problems. With our models, the posterior probability density for the
signal frequency is shown to be inversely proportional to the multiplicity or con�gurational
entropy of the binned events. The probability is a maximum for the period corresponding
to minimum entropy.

When there are gaps in the observing period (e.g., from dead time, or intermittent
observing) our method can be applied without modi�cation. However, to simplify the
calculations, we have assumed that the gaps a�ect the phase bins nearly uniformly. This
may not be the case if a strong periodic signal is observed with signi�cant dead time, since
the dead time will accumulate preferentially in highly populated bins. Appendix B outlines
a simple modi�cation to deal with signi�cant data gaps which is computationally e�cient.

The ability of Bayesian methods to straightforwardly handle gaps, determine the opti-
mum number of bins, and quantify Ockham's razor, are features which are unique to the
Bayesian approach. We believe these features commend the use of our method, and in
Appendix A we provide a \recipe" for those interested in applying the method. In Ap-
pendix C we show how the same approach can also be used to test for nonperiodic source
variability. Further, since the features mentioned above are generic to Bayesian inference,
we believe our work motivates the application of Bayesian methods to a much wider variety
of statistical problems arising in astrophysical data analysis.
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APPENDIX A.

RECIPE FOR USE OF THE METHOD

We present here a brief outline of how one might perform the numerical calculations
required to implement our method. We outline calculations for searching for pulsations
at an unknown frequency. When the frequency is known a priori, several steps can be
eliminated.

Logically, one should address the model comparison problem before actually estimating
the parameters of any particular model, and our paper followed this logical path. But
practically, solution of the model comparison problem requires one to calculate the quantities
needed to address the estimation problem for each model, so numerical calculations must
proceed in a somewhat reversed order, as follows.

1. Decide on the frequency range (!hi; !lo) to search. We typically use !lo = 20�=T
and !hi = �N=T to 2�N=T . Also, determine the maximum number of bins that will be
considered, mmax. We routinely use mmax = 12 to 15 for the sparse data sets we have
analyzed; long data sets with a lot of structure may require a larger value.

2. For each value of m being considered, calculate Om1(!) given by equation (5.25) on a
grid of ! values. These values should be stored, as they will be required for estimating ! in
step 4. A grid spacing �! � �=10T is usually adequate to locate any signi�cant peaks; we
then �ll in more points to resolve strong peaks. The numerical integral in equation (5.25)
can be adequately calculated with the trapezoidal rule, but for sparse data sets (N<�103)
the integral can be calculated exactly, as follows. The multiplicity Wm(!; �) is a stepwise
function of �; its value changes only when � changes enough to move an event across a
bin boundary. Thus, starting at � = 0, as one bins events to calculate Wm(!; �), note the
smallest distance in phase between an event and the following bin boundary. Multiply the
resulting Wm(!; �) value by this distance, increment � by the distance, and iterate until
� reaches its upper limit, accumulating the desired integral. Whether �nding the integral
exactly or with a quadrature rule, the integration is most e�ciently done by integrating
over the interval [0; 2�=m] and multiplying the result by m, since other phases correspond
to cyclicly permuting the bins, which does not change the value of Wm(!; �).

3. For each m, Om1 is found by multiplying the Om1(!) values found in step 2 by the
prior for !, equation (4.14), and integrating over !. Equation (5.2) or (5.3) can then be used
to calculate the probability or odds for the periodic class to determine if there is evidence
for a periodic signal, in which case the following steps are performed to get frequency and
shape estimates.

4. For each m, the marginal distribution for ! is the product of Om1(!) and the prior
for !, normalized with respect to ! (compare equations (5.25) and (6.2)). The information
needed to calculate this distribution is already available from steps 2 and 3. The marginal
distribution conditional on the most probable value of m is usually an adequate summary of
the information about !. Alternatively, the results for various m can be averaged together
using equation (6.5) and the values of Om1 found in step 3. This is the most complete
summary of the information provided by the data about the frequency.

5. Finally, shape estimates can be found as follows. For eachm, the phase and frequency
averaged estimates are calculated according to equation (7.10). The innermost phase inte-
gral is performed as outlined in step 2, and the outermost frequency integral is performed
by summing over frequency. To speed the calculation, we only consider frequencies that are,
say, at least 1% as probable as the most probable frequency. Also, the calculation is most
e�ciently done if the mean and second moment of f(t) are calculated simultaneously, for
all desired values of t, in the innermost integration over �. The resulting moments for each
m should then be combined using equation (7.11), with the model probabilities already
available from step 3. The standard deviation is then found from the mean and second
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moment using equation (7.8), and curves are plotted as a function of t indicating the mean
� the standard deviation.

On the question of computational speed, we have found that the Bayesian detection
calculations can be performed at least as quickly as the calculations required by the EF
method (with phase-averaged �2). Most of the computational burden arises from binning
the events, which is required for both methods. By pre-computing an array of natural
logarithms of factorials that are repeatedly required in the evaluation of the multiplicity,
the remaining calculations required for the Bayesian method can be performed relatively
quickly.

APPENDIX B.

A MODIFIED SOLUTION FOR SIGNIFICANT DATA GAPS

An important feature of our method is that it is computationally tractable, because we
can analytically marginalize over the fj parameters. However, this relies on the assumption
that any data gaps are not concentrated in certain bins, so that the argument of the ex-
ponential in equation (4.8) becomes independent of the fj. This corresponds to assuming
that the bin time factors, sj, are all nearly equal to one. If the number of periods in the
observing time is small, or if a strong periodic signal is present, the data gaps may not a�ect
the phase bins uniformly, leading to sj values di�ering signi�cantly from unity. We now
consider a useful solution for this case, which again permits an analytic marginalization of
the fj parameters. It is not a rigorous Bayesian solution, in a sense elaborated upon below;
but it should prove useful in situations where our earlier approximation fails.

We will rede�ne the fj parameters to guarantee that the argument of the exponential
in equation (4.8) is independent of the fj , regardless of the values of the sj . We do this by
writing rj as,

rj = mAfj=sj; (B:1)

where rj , m, A, and sj have the same meaning as before. The shape of the lightcurve is
now described by hj = fj=sj , and the fj are related to the rj according to,

fj =
rjsj
mA

=
rj�j
AT

: (B:2)

Thus fj is now the fraction of events expected to fall into bin j, and again
P

j fj = 1. This

new de�nition of fj insures that
P

fj�j = AT , so that equation (4.8) becomes

P (D j !; �;A; ~f;Mm) = �tN (mA)Ne�ATS(!; �)

2
4 mY
j=1

f
nj
j

3
5 ; (B:3)

where the binning factor, S(!; �), is given by

S(!; �) =
mY
j=1

s
�nj
j : (B:4)

The sj are completely determined by the data and the model parameters !, � and m.
So far we have simply reparametrized our earlier model. In fact, when sj = 1 for all

j, this is an equivalent parametrization to the one used in the body of our paper. But our
treatment of this model will di�er from that of the original models with respect to the prior
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probabilities we assign to the parameters. We take all the priors to be of the same form as
those presented in x 4. But since we have rede�ned the fj parameters, this corresponds to
a di�erent state of prior information than that assumed above. We again assume the same
broad prior joint density for ~f (equation (4.16)), which enables the marginalization of ~f to
be carried out using a generalized Beta integral as before. The result for p(D j !; �;Mm) is
the same as equation (5.6) with the addition of the binning factor in the numerator.

The results of x 5 for the odds ratio, and x 6 for the posterior probability of the frequency,
follow as before with the inclusion of the binning factor. For example, equation (5.25)
becomes

Om1(!) =
1

2��

�
N +m� 1

N

�
�1 Z 2�

0
d�

S(!; �)mN

Wm(!; �)
: (B:5)

It is of interest to consider the e�ect of the binning factor on Om1(!; �):

Om1(!; �) =
1

�

�
N +m� 1

N

�
�1
S(!; �)mN

Wm(!; �)
: (B:6)

When the binning factor is unity, Om1(!; �) is inversely proportional to the probability of
the distribution occurring by chance. For example, if N = 100 events and m = 6 bins, the
probability of all events falling into one bin by chance would be m�N = 1:5� 10�78. If this
distribution occurred for some combination of ! and �, it would be strong evidence in favor
of a periodic signal. However, if this con�guration arose simply because all of the recorded
time intervals of data happened to correspond to one bin for a particular choice of ! and �,
we would not consider the con�guration improbable, it would simply be a consequence of
the gaps in the data. For this case S(!; �) = m�N , which when multiplied by the inverse of
the probability gives 1 for the last factor in equation (B.6). Thus the binning factor ensures
that the odds ratio behaves as expected, not favoring the periodic model when apparent
periodicity is due to gaps in the data.

Finally we consider the e�ect of the binning factor on the estimation of the lightcurve
shape. In x 7 this was discussed in terms of the mode, mean and variance of the joint
probability density distribution of the fj . Since the shape is now described by hj = fj=sj,
the replacements for equations (7.5), (7.7) and (7.9) are as follows.

ĥj =
nj
sjN

; (B:7)

hhj j !; �;mi = nj + 1

sj(N +m)
: (B:8)

�j =
1

sj

r
sjhhji(1� sjhhji)

N +m+ 1
: (B:9)

The full estimate of the shape obtained by marginalizing over !, � and m, can be computed
from equations (7.10) and (7.11) by replacing f(t) by h(t).

This treatment of signi�cant gaps is equivalent to the analysis presented in the body of
this work when there are no gaps, and behaves reasonably when large gaps are present, as
noted in the discussion following equation (B.6). But it is not a rigorous Bayesian solution
for the following reason. This analysis has assumed a constant prior for the reparameterized
fj values. Using equation (B.1), we can map this prior onto the rate parameters, rj . It
is clear from this equation that the resulting prior will depend on the sj values, which are
determined by the data. However, a prior probability cannot depend on the data. It is for
this reason that this calculation is not rigorously Bayesian.
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APPENDIX C.

STEPWISE MODEL FOR SOURCE VARIABILITY

Many astrophysical sources are observed to exhibit nonperiodic variability on a variety
of temporal scales. The stepwise model, used in this paper, can just as easily represent a
nonperiodic variable lightcurve. Therefore, our calculations can also be used to compare a
constant rate model to a variable model, or to compare both constant and variable nonpe-
riodic alternatives to periodic models. This provides a Bayesian counterpart to the method
proposed by Collura et al. (1987). All that is necessary is to set the period , P = 2�=!,
equal to the total duration of the observations (including any gaps). With ! �xed in this
way the desired odds ratio is given by equation (5.25), or if the data contain gaps, by equa-
tion (B.5). In this problem data gaps from intermittent observing will likely result in bin
integration factors, sj , which di�er signi�cantly from unity.

When the odds ratio is greater than unity, indicating that the source is variable, the
problem becomes one of estimating the characteristic time scale(s) of the variability and the
shape of the lightcurve. The former can be determined from the dependence of the odds
ratio on the number of bins, m, which will exhibit one or more maxima as a result of the
Ockham factor. The lightcurve shape can be obtained from the equations of x 7, modi�ed
in the case of data gaps according to Appendix B.

In this variability model, the phase, �, merely determines where the bin boundaries are.
As � is increased from zero, the bin at the end of the observed interval \wraps around" and
picks up events at the beginning of the interval. Thus this model has a periodic boundary
condition. If this is not desirable, the period can be lengthened by the width of one bin to
prevent \wrap around." If this is done, however, the modi�cation of Appendix B must be
implemented, because the bins on the boundaries will have signi�cant gaps.
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11. FIGURE CAPTIONS

Figure 1: Periodic model,Mm, assumes the periodic signal plus background can be modeled
by a stepwise distribution in m bins as illustrated here.

Figure 2: Logarithm of the Ockham factor, 
m, for N uniformly distributed events. (a)

m versus N for m = 6 bins. (b) 
m versus m, for N = 420 events. Only points with N=m
an integer are plotted. Models with smaller Ockham factors are penalized over models with
larger Ockham factors. Thus, the penalty increases with increasing number of bins.

Figure 3: Om1(!) versus ! for m = 7 bins, for data simulated from a stepwise rate function
with 7 bins and ! = 3:05553 described in the text.

Figure 4: Om1 versus m for data simulated from a stepwise rate function with 7 bins.

Figure 5: Marginal posterior density for !, for m = 7 bins, for data simulated from a
stepwise rate function with 7 bins and ! = 3:05553. Inset shows a detail of the narrow
peak; the dashed vertical line indicates the true frequency.

Figure 6: Shape estimate for data simulated from a stepwise rate function with 7 bins and
2:05633 s period. Solid curves show �1 standard deviation estimates; dotted curve shows
true shape.

Figure 7: Phase-averaged �2 versus ! for m = 7 bins, from an epoch folding analysis of
the same data used in Figure 3.

Figure 8: Percent con�dence associated with phase-averaged �2, versus !, for m = 7 bins,
from an epoch folding analysis of the same data used in Figure 3.

Figure 9: Om1 versus m for data simulated from the sinusoidal rate function described in
the text.

Figure 10: Marginal posterior density for !, form = 3, for data simulated from a sinusoidal
rate function with ! = 2�. Inset shows a detail of the narrow peak; the dashed vertical line
indicates the true frequency.

Figure 11: Shape estimate for data simulated from a sinusoidal rate function with 1 s
period. Solid curves show �1 standard deviation estimates; dotted curve shows true shape.
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