Bayesian Analysis Users Guide
Release 4.00, Manual Version 1

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: larry@bayes.wustl.edu

October 21, 2016
Contents

Manual Status

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1.1</td>
<td>19</td>
</tr>
<tr>
<td>1.2</td>
<td>22</td>
</tr>
<tr>
<td>1.2.1</td>
<td>24</td>
</tr>
<tr>
<td>1.2.2</td>
<td>24</td>
</tr>
<tr>
<td>1.2.3</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>35</td>
</tr>
<tr>
<td>3.1.1</td>
<td>35</td>
</tr>
<tr>
<td>3.1.2</td>
<td>40</td>
</tr>
<tr>
<td>3.1.3</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4</td>
<td>46</td>
</tr>
<tr>
<td>3.1.5</td>
<td>50</td>
</tr>
<tr>
<td>3.1.6</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>52</td>
</tr>
<tr>
<td>3.4.1</td>
<td>53</td>
</tr>
<tr>
<td>3.4.2</td>
<td>53</td>
</tr>
<tr>
<td>3.4.3</td>
<td>59</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>59</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>62</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>63</td>
</tr>
<tr>
<td>3.4.3.5</td>
<td>63</td>
</tr>
<tr>
<td>3.4.3.6</td>
<td>64</td>
</tr>
<tr>
<td>3.4.4</td>
<td>65</td>
</tr>
<tr>
<td>3.4.5</td>
<td>68</td>
</tr>
<tr>
<td>3.4.5.1</td>
<td>70</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>14 Magnetization Transfer</td>
<td>265</td>
</tr>
<tr>
<td>14.1 The Bayesian Calculation</td>
<td>267</td>
</tr>
<tr>
<td>14.2 Using The Package</td>
<td>271</td>
</tr>
<tr>
<td>15 Magnetization Transfer Kinetics</td>
<td>275</td>
</tr>
<tr>
<td>15.1 The Bayesian Calculation</td>
<td>277</td>
</tr>
<tr>
<td>15.2 Using The Package</td>
<td>281</td>
</tr>
<tr>
<td>16 Given Polynomial Order</td>
<td>285</td>
</tr>
<tr>
<td>16.1 The Bayesian Calculation</td>
<td>287</td>
</tr>
<tr>
<td>16.1.1 Gram-Schmidt</td>
<td>287</td>
</tr>
<tr>
<td>16.1.2 The Bayesian Calculation</td>
<td>288</td>
</tr>
<tr>
<td>16.2 Outputs From the Given Polynomial Order Package</td>
<td>290</td>
</tr>
<tr>
<td>17 Unknown Polynomial Order</td>
<td>293</td>
</tr>
<tr>
<td>17.1 Bayesian Calculations</td>
<td>295</td>
</tr>
<tr>
<td>17.1.1 Assigning Priors</td>
<td>296</td>
</tr>
<tr>
<td>17.1.2 Assigning The Joint Posterior Probability</td>
<td>297</td>
</tr>
<tr>
<td>17.2 Outputs From the Unknown Polynomial Order Package</td>
<td>299</td>
</tr>
<tr>
<td>18 Errors In Variables</td>
<td>303</td>
</tr>
<tr>
<td>18.1 The Bayesian Calculation</td>
<td>305</td>
</tr>
<tr>
<td>18.2 Outputs From The Errors In Variables Package</td>
<td>308</td>
</tr>
<tr>
<td>19 Behrens-Fisher</td>
<td>311</td>
</tr>
<tr>
<td>19.1 Bayesian Calculation</td>
<td>311</td>
</tr>
<tr>
<td>19.1.1 The Four Model Selection Probabilities</td>
<td>314</td>
</tr>
<tr>
<td>19.1.1.1 The Means And Variances Are The Same</td>
<td>315</td>
</tr>
<tr>
<td>19.1.1.2 The Mean Are The Same And The Variances Differ</td>
<td>317</td>
</tr>
<tr>
<td>19.1.1.3 The Means Differ And The Variances Are The Same</td>
<td>318</td>
</tr>
<tr>
<td>19.1.1.4 The Means And Variances Differ</td>
<td>319</td>
</tr>
<tr>
<td>19.1.2 The Derived Probabilities</td>
<td>320</td>
</tr>
<tr>
<td>19.1.3 Parameter Estimation</td>
<td>321</td>
</tr>
<tr>
<td>19.2 Outputs From Behrens-Fisher Package</td>
<td>322</td>
</tr>
<tr>
<td>20 Enter Ascii Model</td>
<td>329</td>
</tr>
<tr>
<td>20.1 The Bayesian Calculation</td>
<td>331</td>
</tr>
<tr>
<td>20.1.1 The Bayesian Calculations Using Eq. (20.1)</td>
<td>331</td>
</tr>
<tr>
<td>20.1.2 The Bayesian Calculations Using Eq. (20.2)</td>
<td>332</td>
</tr>
<tr>
<td>20.2 Outputs From The Enter Ascii Model Package</td>
<td>335</td>
</tr>
<tr>
<td>21 Enter Ascii Model Selection</td>
<td>337</td>
</tr>
<tr>
<td>21.1 The Bayesian Calculations</td>
<td>339</td>
</tr>
<tr>
<td>21.1.1 The Direct Probability With No Amplitude Marginalization</td>
<td>340</td>
</tr>
<tr>
<td>21.1.2 The Direct Probability With Amplitude Marginalization</td>
<td>342</td>
</tr>
<tr>
<td>21.1.2.1 Marginalizing the Amplitudes</td>
<td>343</td>
</tr>
<tr>
<td>21.1.2.2 Marginalizing The Noise Standard Deviation</td>
<td>348</td>
</tr>
</tbody>
</table>
H Outlier Detection 475
Bibliography 479
List of Figures

1.1 The Start Up Window ... 23
1.2 Example Package Exponential Interface 25

2.1 Installation Kit For The Bayesian Analysis Software 31

3.1 The Start Up Window ... 34
3.2 The Files Menu .. 35
3.3 The Files/Load Image Submenu 37
3.4 The Packages Menu ... 41
3.5 The Working Directory Menu 46
3.6 The Working Directory Information Popup 47
3.7 The Settings Pull Down Menu 47
3.8 The McMC Parameters Popup 48
3.9 The Edit Server Popup .. 49
3.10 The Submit Job Widgets 51
3.11 The Server Widgets Group 52
3.12 The Ascii Data Viewer 54
3.13 The Fid Data Viewer ... 55
3.14 Fid Data Display Type 56
3.15 Fid Data Options Menu 58
3.16 The Image Viewer .. 60
3.17 The Image Viewer Right Mouse Popup Menu 61
3.18 The Prior Probability Viewer 66
3.19 The Fid Model Viewer .. 69
3.20 The Plot Results Viewer 72
3.21 Plot Information Popup 73
3.22 The Text Results Viewer 75
3.23 The Bayes Condensed File 78
3.24 Data, Model, And Resid Plot 81
3.25 The Parameter Posterior Probabilities 82
3.26 The Maximum Entropy Histograms 84
3.27 The Parameter Samples Plot 85
3.28 Posterior Probability Vs Parameter Value 86
3.29 Posterior Probability Vs Parameter Value, A Skewed Example 87
3.30 The Expected Value Of The Logarithm Of The Likelihood 89
10.5 Bayes Metabolite IPGD_D20 Spectrum .. 230
10.6 Bayes Metabolite, The Fraction of Glucose ... 231
10.7 Glutamate Example Spectrum ... 233
10.8 Estimating The \(F_{c0} \), \(y \) and \(F_{a0} \) Parameters 236
10.9 Bayes Metabolite, The Ethyl Ether Example ... 237

11.1 The Find Resonances Interface With The Ethyl Ether Spectrum 240

12.1 The Diffusion Tensor Package Interface ... 248
12.2 Diffusion Tensor Parameter Estimates ... 256
12.3 Diffusion Tensor Posterior Probability For The Model 257

13.1 The Big Magnetization Package Interface ... 260
13.2 Big Magnetization Transfer Example Fid .. 263
13.3 Big Magnetization Transfer Expansion ... 263
13.4 Big Magnetization Transfer Peak Pick .. 264

14.1 The Magnetization Transfer Package Interface .. 266
14.2 Magnetization Transfer Package Peak Picking .. 272
14.3 Magnetization Transfer Example Data .. 273
14.4 Magnetization Transfer Example Spectrum ... 274

15.1 Magnetization Transfer Kinetics Package Interface 276
15.2 Magnetization Transfer Kinetics Package Arrhenius Plot 282
15.3 Magnetization Transfer Kinetics Water Viscosity Table 283

16.1 Given Polynomial Order Package Interface ... 286
16.2 Given Polynomial Order Scatter Plot ... 291

17.1 Unknown Polynomial Order Package Interface ... 294
17.2 The Distribution of Models On The Console Log 298
17.3 The Posterior Probability For The Polynomial Order 300

18.1 The Errors In Variables Package Interface .. 304
18.2 The McMC Values File Produced By The Errors In Variables Package 310

19.1 The Behrens-Fisher Interface .. 312
19.2 Behrens-Fisher Hypotheses Tested ... 313
19.3 Behrens-Fisher Console Log .. 323
19.4 Behrens-Fisher Status Listing .. 324
19.5 Behrens-Fisher McMC Values File, The Preamble 325
19.6 Behrens-Fisher McMC Values File, The Middle .. 326
19.7 Behrens-Fisher McMC Values File, The End .. 327

20.1 Enter Ascii Model Package Interface ... 330

21.1 The Enter Ascii Model Selection Package Interface 338
List of Tables

8.1 Multiplet Relative Amplitudes ... 165
8.2 Bayes Analyze Models .. 181
8.3 Bayes Analyze Short Descriptions 195
Chapter 6

Unknown Number of Exponentials

The unknown number of exponentials package estimates amplitudes and decay rate constants of an unknown number of exponential signal components in data that are known to contain sums of exponential signals. The data analyzed by this package are Ascii data files and may be input as Ascii files, peak picks, the amplitudes from a Bayes Analyze analysis run or extracted from an image stack. The unknown number of exponentials package is accessed by selecting the “Exponential” package on the package menu. When the Exponential package is selected, the interface shown in Fig. 6.1 is displayed. This interface is used in both the given and unknown number of exponentials packages. The unknown number of exponential package is selected by setting the model order to “Unknown”. Note when the model order is set to unknown, the “Constant” widget is grayed out, i.e., becomes inactive because the unknown number of exponentials package computes, among other things, the posterior probability a constant is present. To use the unknown number of exponentials package, you must do the following:

Select the exponential package from the Package menu.

Load one or more Ascii data sets using the Files menu.

Set the “Unknown” model order in the model order selection menu.

Check the Find Outliers check box if you suspect outliers are present in the data.

Review the prior probabilities assignment for the decay rate constants using the Prior Viewer.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the analysis on the selected server by activating the Run button.

Get the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.
Figure 6.1: The Unknown Exponential Interface

To use the Exponential package:

1. Load an ascii file.
2. Specify the number of exponentials or specify “unknown” to enable automatic model determination.
3. When the number of exponentials is given, specify whether or not a constant is present.
4. Select the server to run the analysis.
5. Run the analysis using the “Run” button.
6. Use “Get Job” to get the results from the server.

Figure 6.1: When the Exponential package is selected, the Exponentials interface is displayed. The unknown number of exponentials package is selected by setting the model order to “Unknown”. The prior viewer can be used to set the prior probability for the decay rate constants. Note in this package the posterior probabilities are marginal posterior probabilities, so there are no adjustable prior probabilities for the amplitudes.
6.1 The Bayesian Calculations

The Bayesian calculation is for the joint posterior probability for the number of exponentials and whether or not a constant offset is present in the data. As with all Bayesian calculations, one begins by relating the data to the parameters of interest. In this case the model which relates the unknown number of exponentials to the data is of the form

\[d_{ij} = C_j + \sum_{l=1}^{m} A_{lj} \exp\{-\alpha_l t_i\} + n_{ij} \]

(6.1)

where \(d_{ij} \) is the \(i \)th data value in the \(j \)th data set containing \(N_j \) data values. Note that the number of data values is data set dependent and may differ from one data set to the next, \(C_j \) is a constant offset in the \(j \)th data set and part of the calculation is to determine if this constant is present, \(m \) is the unknown number of exponentials, \(A_{lj} \) is the amplitude or intensity of the \(l \)th exponential in the \(j \)th data set, \(\alpha_l \) is the \(l \)th exponential decay rate constant, and \(n_{ij} \) is noise in the \(i \)th data value in the \(j \)th data set. Except for the lack of prior information about the number of exponentials \(m \), and whether or not the constant \(C_j \) is present, this is the given number of exponentials model, Eq. (5.1). However, now the Bayesian calculations are more substantial because both \(m \) and whether or not \(C_j \) are present must be part of the Bayesian calculation.

The calculation begins by first ranked the models from the simplest to the most complicated and then numbering them from 1 to the total number of models. In the program that implements this calculation the maximum number of exponentials is set to 4, consequently there are a total of 10 models. The model number is designate as \(u \) and when \(u = 1 \), the model is no exponential and no constant, \(u = 2 \) is no exponential and a constant, \(u = 3 \) is one exponential and no constant, etc., up to model 10, 4 exponentials and a constant. The model indicator, \(u \), is a discrete hypotheses that must be incorporated into the Bayesian calculation and its numerical value indicates both the number of exponentials and whether or not a constant offset is present.

To determine the model, i.e., estimates \(u \), one computes the posterior probability for the model indicator given the data and the prior information, \(P(u|DI) \). This posterior probability is computed by an application of Bayes’ theorem [1],

\[P(u|DI) = \frac{P(u|I)P(D|uI)}{P(D|I)} \]

(6.2)

where \(P(u|I) \) is the prior probability for the model indicator, \(P(D|uI) \) is the marginal direct probability for the data given the model indicator, and the denominator is

\[P(D|I) = \sum_u P(D|uI) = \sum_u P(u|I)P(D|uI) \]

(6.3)

is the normalization constant needed to ensure the total probability for the model indicator sums to one. If this posterior probability is normalized at the end of the calculation, then

\[P(u|DI) \propto P(u|I)P(D|uI) \]

(6.4)

The two terms on the right-hand side of this equation are the prior probability for the model indicator, \(P(u|I) \), which can be assign, and the direct probability for the all of the data given the model indicator, \(P(D|uI) \), which is much too complicated to see how it should be assigned.
However, this direct probability can be computed from the joint probability for all of the data and the parameters given the model indicator, \(P(D|A|\{\alpha\}|C|\{\sigma\}|uI) \), by application of the sum rule:

\[
P(u|DI) \propto P(u|I) \int d\{A\}d\{C\}d\{\alpha\}d\{\sigma\} P(D|A|\{\alpha\}|C|\{\sigma\}|uI)
\]

(6.5)

where all of the parameters except the model indicator have been removed by marginalization. The notation \(\{\cdot\} \), means all of the parameters of the indicated type. So for example \(\{A\} \) means all of the amplitudes appearing in the model. If there are 3 exponentials and 5 data sets there would be 15 total amplitudes. Also note that the parameters represented by \(\{C\} \) may or may not occur in any given model depending on the model indicator. So if the model indicator is even then \(\{C\} \) is present, otherwise its not. The right-hand side of this equation may be factored, one obtains

\[
P(u|DI) \propto P(u|I) \int d\{A\}d\{\alpha\}d\{C\}d\{\sigma\} P(\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|uI) P(D|u\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|I)
\]

(6.6)

where \(P(\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|uI) \) is the joint prior probability for all of the parameters appearing in model \(u \) and \(P(D|u\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|I) \) is the direct probability for all of the data given all of the parameters and the model indicator. Both of these probabilities are too complicated to see how they might be assigned, but the rules of probability theory can be used to factor these probabilities into increasingly simple terms: Assuming logical independence, i.e., changing the prior information about the amplitudes would not change the prior information about the decay rate constants, standard deviations, etc., then the joint prior probability for all of the parameters, \(P(\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|I) \) can be factored into a series is into a series of independent prior probabilities for each parameter:

\[
P(\{A\}|\{\alpha\}|\{C\}|\{\sigma\}|I) = \left[\prod_{j=1}^{m} \prod_{k=1}^{n} P(A_{kj}|I) \right] \left[\prod_{j=1}^{m} P(\alpha_j|I) \right] \left[\prod_{k=1}^{n} P(C_k|I) \right] \left[\prod_{k=1}^{n} P(\sigma_k|I) \right]
\]

(6.7)

where \(m \) is the number of exponentials in the model indicated by \(u \), \(n \) is the number of data sets, \(P(A_{kj}|I) \) is the prior probability for amplitude \(k \) in data set \(j \), \(P(\alpha_j|I) \) is the prior probability for the \(j \)th decay rate constant, \(P(C_k|I) \) is the prior probability for the constant offset in the \(k \)th data set, and \(P(\sigma_k|I) \) is the prior probability for the standard deviation of the noise in the \(k \)th data set. Note, that the prior probability for the constant offset, \(P(C_k|I) \), is only present when the model indicator is even. Also note that the dependence on the model indicator has been dropped in these priors, because knowing the number of exponentials and whether or not a constant is present would not change the prior information about the amplitudes and decay rate constants. Substituting the
prior, Eq. (6.7) back into the posterior, Eq. (6.6) to obtain

\[
P(u|DI) \propto P(u|I) \int d\{A\} d\{\alpha\} d\{C\} d\{\sigma\}
\]

\[
\times \left[\prod_{j=1}^{m} \prod_{k=1}^{n} P(A_{kj}|I) \right]
\]

\[
\times \left[\prod_{j=1}^{m} P(\alpha_j|I) \right]
\]

\[
\times \left[\prod_{k=1}^{n} P(C_k|I) \right]
\]

\[
\times \left[\prod_{k=1}^{n} P(\sigma_k|I) \right]
\]

\[
\times \left[\prod_{k=1}^{n} P(D_k|u A_{1k} \ldots A_{mk}\{\alpha\} C_k \sigma_k I) \right]
\]

(6.8)

as the posterior probability for the model indicator, where \(P(D_k|u A_{1k} \ldots A_{mk}\{\alpha\} C_k \sigma_k I)\) is the direct probability for data set \(D_k\) given both the parameters that occur in all data sets, the \(\{\alpha\}\), and the parameters specific to data set \(D_k\). These data set specific parameters are the constant offset \(C_k\) and the amplitudes of the \(m\) exponentials in the \(k\)th data set. Here these amplitudes have been designated as \(A_{1k} \ldots A_{mk}\).

If you examine the integrand of this posterior, you will discover that it is the joint posterior probability for the parameters given the model indicator. Consequently, this integrand is exactly the same as the integrand in the joint posterior probability given the model order, Eq. (5.3), and in what follows the same prior probabilities will be assigned in both problems. This will have the effect of making the parameter estimates from the unknown number of exponentials and the given number of exponentials essentially identical when the model indicators are the same.

Equation. (6.8) cannot be further simplified and the only recourse is to assign the various prior probabilities and evaluate the integrals. The prior probability for the model indicator, \(P(u|I)\), was assigned using a uniform prior probability:

\[
P(u|I) \propto \begin{cases}
1/10 & \text{if } 1 \leq u \leq 10 \\
0 & \text{otherwise}
\end{cases}.
\]

(6.9)

The prior probability for the noise standard deviation, \(P(\sigma_k|I)\), was assigned a Jeffreys’ prior

\[
P(\sigma_k|I) \propto \frac{1}{\sigma_k}.
\]

(6.10)

Note that the Jeffreys’ prior has not been bounded and normalized because the exact same normalization constant appears in all models tested by this calculation. The prior probabilities for the
amplitudes, \(P(A_{jk}|I) \), are assigned broad Gaussian prior probability:

\[
P(A_{jk}|I) = \left(\frac{2\pi\sigma^2_k}{\delta^2} \right)^{-\frac{1}{2}} \exp\left\{ -\frac{\delta^2}{2\sigma^2_k} A_{jk}^2 \right\}
\]

(6.11)

where \(\delta/\sigma_k \) plays the part of the standard deviation of this prior probability and cannot be changed by the user. In the program that implements this calculation \(\delta = 0.01 \).

The prior probabilities for the decay rate constants are under use control and the user may select the type of prior used. However, if the user does not set the prior probability for the decay rate constants, then the same default prior probability described in Chapter 5 Eq. (5.4) is used.

The model equation is symmetric under relabeling of the amplitudes and decay rate constants. This symmetry causes the joint posterior probability for the decay rate constants to be symmetric in the sense that if there is a peak at \(\alpha_1 = \beta \) and \(\alpha_2 = \gamma \), then there is also a peak at \(\alpha_1 = \gamma \) and \(\alpha_2 = \beta \); this symmetry is caused because the model does not tell us which exponential signal corresponds to to which model component. Consequently, a convention must be introduced which brakes this symmetry by identifying a model component with a signal component. This is done by forcing the decay rate constants to be ordered.

The full Bayesian calculation and the assignment of the prior probabilities is discussed in reference [16] and this paper is available in pdf by activating this link. Additionally, much more about exponential parameter estimation is contained in [15, 17]. The first paper describes the problem when the exponential model is given and is a simpler version of this problem, while the second paper discusses how the accuracy of the parameter estimates depends on the number of data values, signal-to-noise level and the rate of decay of the sample.

6.2 Outputs From The Unknown Number of Exponentials Package

The Text outputs from the unknown number of exponentials package consist of: “Bayes.prob.model,” “BayesExpGiven.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and a condensed output file “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter 3.

When the unknown number of exponentials package is running, the distribution of simulations having a given model indicator \(u \) is in constant flux. The unknown number of exponentials program writes the number of simulations having \(u = 1 \), \(u = 2 \), etc. to the console log after it completes each annealing step. This display serves as a kind of visual picture of the calculation of the posterior probability for the model indicator. A sample of this output is shown in Fig. 6.2. This listing was generated from a data set that contains three exponential plus a constant. When the annealing parameter is zero, the distribution of simulations reflects only the prior probability for the model. Because that prior probability is uniform, the simulations are essentially evenly distributed across all models. As the program runs, the annealing parameter is increased and the distribution of simulations begins to change to reflect the increasing importance of the likelihood. Typically the simulations begin to cluster around one or two models. This clustering continues until all the simulations have settled into the posterior probability for the model indicator.
Figure 6.2: The Distribution Of Models

<table>
<thead>
<tr>
<th>Phase</th>
<th>Annl Param</th>
<th><Likelihood></th>
<th><StdDevLike></th>
<th>0</th>
<th>0+C</th>
<th>1</th>
<th>1+C</th>
<th>2</th>
<th>2+C</th>
<th>3</th>
<th>3+C</th>
<th>4</th>
<th>4+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealing</td>
<td>0.000</td>
<td>-7.2157E+02</td>
<td>1.5195E+02</td>
<td>12</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>0.005</td>
<td>-5.6842E+02</td>
<td>1.6292E+02</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>21</td>
<td>4</td>
<td>24</td>
<td>3</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.011</td>
<td>-4.8783E+02</td>
<td>1.1564E+02</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>13</td>
<td>28</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>0.018</td>
<td>-4.3429E+02</td>
<td>8.3983E+01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>29</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>0.026</td>
<td>-3.9971E+02</td>
<td>5.2703E+01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>26</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>0.038</td>
<td>-3.8265E+02</td>
<td>3.4063E+01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>37</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>0.054</td>
<td>-3.7660E+02</td>
<td>3.6781E+01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>34</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>0.069</td>
<td>-3.6507E+02</td>
<td>1.7327E+01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>39</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>0.090</td>
<td>-3.6031E+02</td>
<td>1.3435E+01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>44</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>0.113</td>
<td>-3.5629E+02</td>
<td>8.9340E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>54</td>
<td>21</td>
<td>24</td>
</tr>
</tbody>
</table>

In addition to these text reports there is one new plot result, the posterior probability for the model order, Fig. 6.3. The abscissa is labeled with the model order. These model orders, 1, 2, 3, etc. are the number of exponentials in the model. When a constant is present this, the model order is changed to 1+C, 2+C, 3+C etc. to indicate the presence of one, two or three exponentials plus a constant. The vertical axis, is the posterior probability for the model indicator. Each probability is computed by counting the number of simulations having the indicated model divided by the total number of simulations. The "Plot Results Viewer" can be used to view the probability for the model indicator and the output probability density functions for the parameters in a given model order. In addition to the standard data, model and residual plots there are probability density functions for the decay rate constants, decay times, the amplitudes for each data set for each exponential and finally there are probability density functions for the standard deviation of the noise in each data set.
Figure 6.3: When the Unknown number of Exponentials package runs a new output plot is produced. The plot is of the posterior probability for the model order. The abscissa is labeled with the model order. These model orders are arbitrated as 1, 2, 3, etc. when the model is one, two or three exponentials without a constant. When a constant is present this label is changed to 1+C, 2+C, 3+C etc. to indicate the presence of one, two or three exponentials plus a constant.
Bibliography

479

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the Americain Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

