Contents

Manual Status

1 **An Overview Of The Bayesian Analysis Software** 17
 1.1 The Server Software .. 17
 1.2 The Client Interface .. 20
 1.2.1 The Global Pull Down Menus 22
 1.2.2 The Package Interface 22
 1.2.3 The Viewers .. 25

2 **Installing the Software** .. 27

3 **the Client Interface** ... 29
 3.1 The Global Pull Down Menus 31
 3.1.1 the Files menu ... 31
 3.1.2 the Packages menu 36
 3.1.3 the WorkDir menu .. 41
 3.1.4 the Settings menu 42
 3.1.5 the Utilities menu .. 46
 3.1.6 the Help menu ... 47
 3.2 The Submit Job To Server area 47
 3.3 The Server area .. 48
 3.4 Interface Viewers ... 49
 3.4.1 the Ascii Data Viewer 49
 3.4.2 the fid Data Viewer 51
 3.4.3 Image Viewer .. 56
 3.4.3.1 the Image List area 56
 3.4.3.2 the Set Image area 58
 3.4.3.3 the Image Viewing area 58
 3.4.3.4 the Grayscale area on the bottom 60
 3.4.3.5 the Pixel Info area 60
 3.4.3.6 the Image Statistics area 60
 3.4.4 Prior Viewer .. 62
 3.4.5 fid Model Viewer ... 65
 3.4.5.1 The fid Model Format 65
8.5 Outputs From The Bayes Analyze Package ... 167
 8.5.1 The “bayes.params.nnnn” and “bayes.model.nnnn” Files 169
 8.5.1.1 The Bayes Analyze File Header ... 169
 8.5.1.2 The Global Parameters ... 174
 8.5.1.3 The Model Components ... 175
 8.5.2 The “bayes.output.nnnn” File .. 177
 8.5.3 The “bayes.probabilities.nnnn” File ... 181
 8.5.4 The “bayes.log.nnnn” File ... 184
 8.5.5 The “bayes.status.nnnn” and “bayes.accepted.nnnn” Files 187
 8.5.5.1 The “bayes.model.nnnn” File ... 188
 8.5.6 The “bayes.summary1.nnnn” File .. 189
 8.5.7 The “bayes.summary2.nnnn” File .. 190
 8.5.8 The “bayes.summary3.nnnn” File .. 191
 8.6 Bayes Analyze Error Messages ... 192

9 Big Peak/Little Peak ... 197
 9.1 The Bayesian Calculation .. 199
 9.2 Outputs From The Big Peak/Little Peak Package 206

10 Metabolic Analysis ... 209
 10.1 The Metabolic Model ... 213
 10.2 The Bayesian Calculation .. 215
 10.3 The Metabolite Models ... 218
 10.3.1 The IPGD_D2O Metabolite ... 218
 10.3.2 The Glutamate_2.0 Metabolite ... 222
 10.3.3 The Glutamate_3.0 Metabolite ... 225
 10.4 The Example Metabolite .. 226
 10.5 Outputs From The Bayes Metabolite Package 228

11 Find Resonances ... 229
 11.1 The Bayesian Calculations .. 231
 11.2 Outputs From The Bayes Find Resonances Package 236

12 Diffusion Tensor Analysis ... 237
 12.1 The Bayesian Calculation .. 239
 12.2 Using The Package ... 244

13 Big Magnetization Transfer ... 249
 13.1 The Bayesian Calculation .. 249
 13.2 Outputs From The Big Magnetization Transfer Package 252

14 Magnetization Transfer .. 255
 14.1 The Bayesian Calculation .. 257
 14.2 Using The Package ... 261
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Magnetization Transfer Kinetics</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>15.1 The Bayesian Calculation</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>15.2 Using The Package</td>
<td>273</td>
</tr>
<tr>
<td>16</td>
<td>Given Polynomial Order</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>16.1 The Bayesian Calculation</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>16.1.1 Gram-Schmidt</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>16.1.2 The Bayesian Calculation</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>16.2 Outputs From the Given Polynomial Order Package</td>
<td>282</td>
</tr>
<tr>
<td>17</td>
<td>Unknown Polynomial Order</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>17.1 Bayesian Calculations</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>17.1.1 Assigning Priors</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>17.1.2 Assigning The Joint Posterior Probability</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>17.2 Outputs From the Unknown Polynomial Order Package</td>
<td>291</td>
</tr>
<tr>
<td>18</td>
<td>Errors In Variables</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>18.1 The Bayesian Calculation</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>18.2 Outputs From The Errors In Variables Package</td>
<td>300</td>
</tr>
<tr>
<td>19</td>
<td>Behrens-Fisher</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>19.1 Bayesian Calculation</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>19.1.1 The Four Model Selection Probabilities</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>19.1.1.1 The Means And Variances Are The Same</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>19.1.1.2 The Mean Are The Same And The Variances Differ</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>19.1.1.3 The Means Differ And The Variances Are The Same</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>19.1.1.4 The Means And Variances Differ</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>19.1.2 The Derived Probabilities</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>19.1.3 Parameter Estimation</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>19.2 Outputs From Behrens-Fisher Package</td>
<td>314</td>
</tr>
<tr>
<td>20</td>
<td>Enter Ascii Model</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>20.1 The Bayesian Calculation</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>20.1.1 The Bayesian Calculations Using Eq. (20.1)</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>20.1.2 The Bayesian Calculations Using Eq. (20.2)</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>20.2 Outputs From The Enter Ascii Model Package</td>
<td>327</td>
</tr>
<tr>
<td>21</td>
<td>Test Your Own ASCII Model</td>
<td>329</td>
</tr>
<tr>
<td>22</td>
<td>ASCII Model Selection</td>
<td>331</td>
</tr>
<tr>
<td>26</td>
<td>Phasing An Image</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>26.1 The Bayesian Calculation</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>26.2 Using The Package</td>
<td>352</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>27</td>
<td>Phasing An Image Using Non-Linear Phases</td>
<td>355</td>
</tr>
<tr>
<td>27.1</td>
<td>The Model Equation</td>
<td>355</td>
</tr>
<tr>
<td>27.2</td>
<td>The Bayesian Calculations</td>
<td>357</td>
</tr>
<tr>
<td>27.3</td>
<td>The VnmrJ and Vnmr Interfaces</td>
<td>359</td>
</tr>
<tr>
<td>28</td>
<td>Analyze Image Pixel</td>
<td>361</td>
</tr>
<tr>
<td>28.1</td>
<td>Modification History</td>
<td>363</td>
</tr>
<tr>
<td>29</td>
<td>Image Pixel Model Selection</td>
<td>365</td>
</tr>
<tr>
<td>A</td>
<td>Ascii Data File Formats</td>
<td>367</td>
</tr>
<tr>
<td>A.1</td>
<td>Ascii Input Data Files</td>
<td>367</td>
</tr>
<tr>
<td>A.2</td>
<td>Ascii Image File Formats</td>
<td>368</td>
</tr>
<tr>
<td>A.3</td>
<td>The Abscissa File Format</td>
<td>369</td>
</tr>
<tr>
<td>B</td>
<td>Markov chain Monte Carlo With Simulated Annealing</td>
<td>375</td>
</tr>
<tr>
<td>B.1</td>
<td>Metropolis-Hastings Algorithm</td>
<td>376</td>
</tr>
<tr>
<td>B.2</td>
<td>Multiple Simulations</td>
<td>377</td>
</tr>
<tr>
<td>B.3</td>
<td>Simulated Annealing</td>
<td>378</td>
</tr>
<tr>
<td>B.4</td>
<td>The Annealing Schedule</td>
<td>378</td>
</tr>
<tr>
<td>B.5</td>
<td>Killing Simulations</td>
<td>379</td>
</tr>
<tr>
<td>B.6</td>
<td>the Proposal</td>
<td>380</td>
</tr>
<tr>
<td>C</td>
<td>Thermodynamic Integration</td>
<td>381</td>
</tr>
<tr>
<td>D</td>
<td>McMC Values Report</td>
<td>385</td>
</tr>
<tr>
<td>E</td>
<td>Writing Fortran/C Models</td>
<td>391</td>
</tr>
<tr>
<td>E.1</td>
<td>Model Subroutines, No Marginalization</td>
<td>391</td>
</tr>
<tr>
<td>E.2</td>
<td>The Parameter File</td>
<td>394</td>
</tr>
<tr>
<td>E.3</td>
<td>The Subroutine Interface</td>
<td>396</td>
</tr>
<tr>
<td>E.4</td>
<td>The Subroutine Declarations</td>
<td>398</td>
</tr>
<tr>
<td>E.5</td>
<td>The Subroutine Body</td>
<td>399</td>
</tr>
<tr>
<td>E.6</td>
<td>Model Subroutines With Marginalization</td>
<td>400</td>
</tr>
<tr>
<td>F</td>
<td>the Bayes Directory Organization</td>
<td>405</td>
</tr>
<tr>
<td>G</td>
<td>4dfp Overview</td>
<td>407</td>
</tr>
<tr>
<td>H</td>
<td>Outlier Detection</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>415</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The Start Up Window ... 21
1.2 Example Package Interface ... 23

3.1 The Start Up Window ... 30
3.2 The Files Menu .. 31
3.3 The Load Image Selection Menu .. 33
3.4 The Packages Menu ... 37
3.5 The Working Directory Pull Down Menu 42
3.6 The Working Directory Popup ... 43
3.7 The Settings Pull Down Menu ... 44
3.8 The McMC Parameters Popup .. 44
3.9 The Edit Server Popup ... 45
3.10 The Submit Job Widget Group ... 48
3.11 The Server Widget Group .. 49
3.12 The Ascii Data viewer .. 50
3.13 The fid Data viewer .. 52
3.14 The Fid Data Viewer Display Type 53
3.15 The Fid Data Viewer the Options Menu 54
3.16 The Image Viewer .. 57
3.17 The Image Viewer Right Mouse Menu 58
3.18 The Prior Viewer .. 63
3.19 The Fid Model Viewer ... 66
3.20 The Data Model and Residuals ... 69
3.21 The Plot Information popup .. 70
3.22 The Posterior Probabilities .. 71
3.23 The Posterior Probabilities Vs Parameter Value 73
3.24 The Posterior Probabilities Vs Parameter Value a Skewed Example ... 74
3.25 The Expected Log Likelihood .. 76
3.26 The Scatter Plots .. 77
3.27 The Log Probability Plot .. 79
3.28 The Text Results Viewer .. 81
3.29 The Bayes Condensed File .. 84
3.30 Fortran/C Model Viewer ... 87
3.31 Fortran/C Model Viewer ... 88
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Multiplet Relative Amplitudes</td>
<td>157</td>
</tr>
<tr>
<td>8.2</td>
<td>Bayes Analyze Models</td>
<td>173</td>
</tr>
<tr>
<td>8.3</td>
<td>Bayes Analyze Short Descriptions</td>
<td>186</td>
</tr>
</tbody>
</table>
Chapter 13

Big Magnetization Transfer

The Big magnetization transfer package analyzes data where two sites are exchanging magnetization under the assumption that one of the sites is essentially infinite compared to the other. Consequently, the big site is essentially unchanging and the solution for the other site simplifies, Eq. (13.1) below. The interface to this package is shown in Fig. 13.1. To use this package, you must do the following:

Select the Big Magnetization Transfer package from the Package menu.

Load one or more Ascii data sets using the Files menu. When the data have been successfully loaded, the data are displayed in the Ascii Data viewer.

Check the Analysis Options/Find Outliers box if you suspect outliers are present in the data.

Review the prior probabilities for the K_d, R_d and R_w parameters using the Prior Viewer.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the the analysis on the selected server by activating the Run button.

Get the the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.

13.1 The Bayesian Calculation

The Big magnetization transfer problem is one in which a very large spin reservoir is exchanging magnetization with a much smaller spin reservoir. We will call the larger reservoir the Solvent, and the other the Small reservoir or resonance. When one reservoir is much greater than the other, the Solvent is unaffected by the transfer of magnetization to or from Small reservoir. Consequently, the solution to magnetization exchange equations simplify, one obtains

$$M_d(t) = M_{z0} \left(1 - \frac{2K_d}{R_w - K_d - R_d} \left[e^{-(R_d + K_d)t_i} - e^{-R_w t_i} \right] \right)$$

(13.1)
To use the Magnetization transfer kinetics package:

1. Load a two column ascii data set.
2. Review the prior range information and make appropriate changes.
3. Select the server to run the analysis.
4. Run the analysis using the “Run” button.
5. Use “Get Job” to get the results from the server.

Figure 13.1: The interface to the Big Magnetization Transfer Package is shown here. The Big magnetization transfer interface allows you to analyze magnetization transfer data where one of the two sites may be considered as infinite compared to the other, see text for details.
where M_{z0} is the initial Small reservoir magnetization, K_d is the rate at which the Small reservoir is exchanging magnetization to the Solvent, R_w is the inverse of the T_2 time for Solvent reservoir, R_d is the T_2 relaxation rate of the Small reservoir and this equation implicitly assumes that the magnetization is fully inverted.

Markov chain Monte Carlo is used to draw samples from the joint posterior probability for all of the parameters. Form these samples, the marginal posterior probability for each parameter is computed. For example the posterior probability for the exchange rate K_d is computed as

$$P(K_d|D) = \int P(K_dM_{z0}R_wR_d\sigma|D) dM_{z0}dR wdR_d\sigma$$ \hspace{1cm} (13.2)$$

where all of the parameters except the parameter of interest have been removed by marginalization. The joint posterior probability for the parameters, the integrand of this equation, is factored using Bayes’ theorem and the product rule to become

$$P(K_dM_{z0}R_wR_d\sigma|D) \propto P(K_dM_{z0}R_wR_d\sigma|I)P(D|K_dM_{z0}R_wR_d\sigmaI)$$ \hspace{1cm} (13.3)$$

where $P(K_dM_{z0}R_wR_d\sigma|I)$ is the joint prior probability for the parameters and $P(D|K_dM_{z0}R_wR_d\sigmaI)$ is the likelihood. The joint prior probability or the parameters is factored into independent prior probabilities for each of the parameters separately

$$P(K_dM_{z0}R_wR_d\sigma|I) = P(K_d|I)P(M_{z0}|I)P(R_w|I)P(R_d|I)P(\sigma|I).$$ \hspace{1cm} (13.4)$$

The prior probability for the standard deviation of the noise prior probability, $P(\sigma|I)$, is assigned a Jeffreys’ prior, $P(\sigma|I) \propto 1/\sigma$. The prior probability for the amplitude $P(M_{z0}|I)$, was assigned using a very broad unbounded Gaussian of zero mean having a standard deviation of 3×10^5. The remaining three prior probabilities, $P(K_d|I)$, $P(R_w|I)$ and $P(R_d|I)$ all default to a prior positive. However, the priors are under user control and they may changed by the user. The likelihood, $P(D|K_dM_{z0}R_wR_d\sigmaI)$ was assigned using a Gaussian prior probability having standard deviation σ. If we now collect all of the priors, assign the likelihood, and evaluate the integrals over both M_{z0} and σ, one obtains:

$$P(K_dM_{z0}R_wR_d\sigma|D) \propto P(K_d|I)P(R_w|I)P(R_d|I) \left[N\overline{d^2} - \overline{h^2} \right]^{-\frac{N}{2}}$$ \hspace{1cm} (13.5)$$

where $\overline{d^2}$ is the mean-square data value and is given by

$$\overline{d^2} = \frac{1}{N} \sum_{i=1}^{N} d_i^2.$$ \hspace{1cm} (13.6)$$

The sufficient statistic, $\overline{h^2}$, is given by

$$\overline{h^2} = \frac{T^2}{g}$$ \hspace{1cm} (13.7)$$

where T is the projection of the data onto the model and is given by

$$T = \sum_{i=1}^{N} d_i \left(1 - \frac{2K_d}{R_w - K_d - R_d} \left[e^{-(R_d+K_d)t_i} - e^{-R_wt_i} \right] \right)$$ \hspace{1cm} (13.8)$$
and g is the squared length of the model:

$$g = \sum_{i=1}^{N} \left(1 - \frac{2K_d}{R_w - K_d - R_d} \left[e^{-(R_d+K_d)t_i} - e^{-R_w t_i} \right] \right)^2.$$ \hspace{1cm} (13.9)

It is Eq. (13.5) that is targeted by the Markov chain Monte Carlo simulations using simulated annealing. Note that this posterior probability does not contain the initial magnetization. However, in the process of computing this quantity the maximum posterior probability estimate of this parameter is computed and output for each value of the exchange and relaxation rates. While not strictly the Bayesian estimate of this parameter, the distribution of these estimates provide good mean and standard deviation estimates of the initial magnetization.

13.2 Outputs From The Big Magnetization Transfer Package

The Big Magnetization Transfer Package is an example of a preloaded Enter Ascii model. Preloaded means that when the Big Magnetization Transfer package is selected, the interface copies an Ascii model, MtZBig.f, from the system directory into the current experiment and starts up the Enter Ascii package. Consequently, the outputs from this package are all Enter Ascii outputs. The Text output files from the Big Magnetization Transfer packages consist of: “Bayes.prob.model,” “BayesEnterAscii.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and a “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter 3. Additionally, the “Plot Results Viewer” can be used to view the output probability density functions. In addition to the standard data, model and residual plots there are probability density functions for the decay rate constants, decay times, the amplitudes for each data set for each exponential.

The full spectrum of data typical of this experiment is shown in Fig. 13.2. Note the presence of a water suppression artifact near 5ppm. To acquire this data one typically inverts the water,
Figure 13.3: The peak exchanging magnetization begins at its equilibrium value. When the Solvent is inverted, negative magnetization flows into the Small reservoir bringing this reservoir down. At different delay times the Solvent is more fully relaxed and the Small resonance begins to recover, until at the longest delay time the Small resonance has returned to equilibrium. It is the amplitudes of the Small resonance that serve as input to this analysis.

suppresses it, and finally acquires the Fid. The resonance exchanging magnetization with the water is the small resonances located at 11ppm. If we expand this region and then do a horizontal display, one obtains the spectra shown in Fig. 13.3. The Solvent resonance begins at its equilibrium value. When the Solvent resonances is inverted, negative magnetization flows into the Small reservoir bring its value down. At different delay times, different amounts of negative magnetization exchange with the Solvent resonance affecting its intensity in a predictable manner. The peak heights or amplitudes as determined by Bayes Analyze are used as input to the analysis. An example of data using a peak pick is shown in Fig. 13.3. Note that the Solvent resonance was inverted, as the Solvent exchanges negative magnetization with the Small resonance, the Small resonance is eventually pulled down. As the delay time increases the Small resonance has time to relax back toward equilibrium and eventually recovers.
Figure 13.4: The peak heights or amplitudes (as determined by Bayes Analyze) serve as input to the Big magnetization transfer package. Here the peak heights for the spectra shown in Fig. 13.3 were used as input to the analysis. Note the Solvent magnetization starts fully relaxed, then after the Solvent is inverted, the negative Solvent magnetization begins to bring the Small reservoir down. As a function of delay time this continues for a while and then eventually the Small resonance recovers back to equilibrium.
Bibliography

415

[43] Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

