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Abstract. In the Biomedical Medical Research laboratory in St. Louis Missouri there is an ongoing
project to characterize water diffusion in fixed baboon brain using diffusion weighted magnetic res-
onance imaging as a means of monitoring development throughout gestation. Magnetic resonance
images can be made sensitive to diffusion by applying magnetic field gradients during the pulse
sequence. Results from the analysis of diffusion weighted magnetic resonance images using a full
diffusion tensor model do not fit the data well. The estimated standard deviation of the noise exhibit
structures corresponding to known baboon brain anatomy. However, the diffusion tensor plus a con-
stant model overfits the data: the residuals in the brain are smaller than in regions where there is no
signal. Consequently, the full diffusion tensor plus a constant model has too many parameters and
needs to be simplified. This model can be simplified by imposing axial symmetry on the diffusion
tensor. There are three axially symmetric diffusion tensor models, prolate, oblate, and isotropic; and
two other models, no signal and full diffusion tensor, that could characterize the diffusion weighted
images. These five models may or may not have a constant offset, giving 10 total models that poten-
tially describe the diffusion process. In this paper the Bayesian calculations needed to select which
of the 10 models best characterizes the diffusion data are presented. The various outputs from the
analysis are illustrated using one of our baboon brain data sets.

INTRODUCTION

The problem we would like to solve is to determine which of the 10 models mentioned
in the abstract best describes the diffusion process given our baboon brain data. Each
model represents the three-dimensional displacement distribution of the water in a given
pixel. The data consists of a series of diffusion weighted 1H magnetic resonance images.
Figure 1 is the first 12 of the 45 diffusion weighted images used in this paper. Each image
has been made sensitive to the diffusion of water (1H2O) by the application of magnetic
field gradients. Magnetic field gradients sensitive the images to diffusion along the di-
rection of the gradients. The stronger the gradients the greater the signal attenuation due
to water motion. Gradients are vector quantities having both magnitude and direction.
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FIGURE 1. In diffusion weighted images, the images are made sensitive to diffusion of water by
application of magnetic field gradients. These gradients sensitive the experiment to motion along the
direction of the gradients. The gradients starts at zero, left image, and increases going to the right. For the
right-most image the signal from the rapidly-diffusing water in formalin, a liquid bathing the brain, has
disappeared, and only the more slowly diffusing water signal in brain tissue is visible.

In generating the gradient vectors, we used spherical coordinates. The magnitude of the
diffusion sensitizing gradients was uniformly increased for each successive diffusion
weighted image. However, the two angles associated with the gradient direction were
randomly sampled using a uniform random number generator.

In the images shown in Fig. 1, the brain is surrounded by formalin in water. Formalin
is an aqueous solution and the free diffusion of water in formalin is faster than in the
brain tissue. One can tell that these images are sensitive to diffusion, because the signal
from the water in formalin has disappears as the gradients increase.

THE DIFFUSION TENSOR MODEL

In isotropic diffusion, the solution of the diffusion equation is a Gaussian that gives the
probability that a water molecule will diffuse a given distance. However, in anisotropic
media, like baboon brain, diffusion is directionally dependent. The reason for this is sim-
ple, in brain nerve fibers have orientations, and diffusion along the fiber is different from
diffusion across the fiber. In anisotropic media, the probability that a water molecule will
diffuse a given distance is given by a symmetric three dimensional Gaussian distribution.
The Gaussian is symmetric because the rate of diffusion from a to b is the same as the
rate of diffusion from b to a; i.e., no flow. Consequently, the Gaussian has a total of 6
independent parameters. In the reference frame of the diffusion gradients, this Gaussian
is related to the diffusion data by

di = Aexp
{
−κgi ·T ·g†

i

}
+C+ni (1)

where the di are the intensities of one pixel from all 45 of the images. The amplitude A
represents an arbitrary scale introduced by the spectrometer. The diffusion tensor, T , is
defined as

T =

 Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

 , (2)

where Duv is the diffusion coefficient along the uv direction. The ith gradient vector is
represented symbolically by gi. The constant C may be thought of as the component of
the magnetic resonance signal that arises from highly constrained water molecules. The
noise in the ith data value has been represented symbolically by ni.
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The constant κ , appearing in Eq. (1), is a conversion factor and is given by

κ = γ
2
δ

2(∆−δ/3) (3)

where γ is the magnetogyric ratio of of the nucleus of interest, δ is the duration of the
diffusion encoding gradient and ∆ is a delay between the onset of two diffusion encoding
gradients. The two delay times are controlled by the experimenter when they setup the
experiment. The magnetogyric ratio is a characteristic of the nuclide being observed, 1H
in this case.

In writing this model as a single pixel model we have made a number of simplifying
assumptions. First, magnetic resonance images are taken in the time domain. The image
is formed by taking a discrete Fourier transform. The discrete Fourier transform is a
information preserving transform, so one can work either in the time domain or in
the image domain and the Bayesian calculations are essentially unchanged. However,
assuming that adjacent pixels do not interact is an approximation.

Magnetic resonance images are images of spin density as modified by relaxation de-
cay of the signal. Spin densities are strictly positive real quantities having zero imagi-
nary part. However, the discrete Fourier transform of the magnetic resonance data have
nonzero positionally dependent phases. These phases vary linearly with position and
they mix the real and imaginary parts of the discrete Fourier transform. The three phase
parameters needed to unmix the real and imaginary parts of the discrete Fourier trans-
form can in principle be estimated and the effects of these phases removed. The second
simplifying assumption is that we can perform these phase calculations independent of
the the Bayesian calculations presented in this paper. The Bayesian calculations needed
to estimate the three phases are given in [1].

The images shown in Fig. 1 are the real part of these phased images, i.e., they are
spin density maps. The imaginary parts of these images, not shown, have signal-to-noise
ratios of less than one, indeed essentially zero, except where there are artifacts in the
images, for example at sharp boundaries in the image. The third simplifying assumption
is that there is no need to model the imaginary part of these images.

The diffusion tensor, T , is a real symmetric matrix. Real symmetric matrices may be
diagonalized using the eigenvalues and eigenvectors of T . The eigenvalues of T will
be designated as λ1, λ2 and λ3. These eigenvalues are the magnitude of the diffusion
along the three principle directions of the diffusion tensor. These principle directions are
specified by the eigenvectors of the diffusion tensor. These eigenvectors form a unitary
rotation matrix, R. Rotation matrices in three dimensions are characterized by three Euler
angles, φ , θ , and ψ . This rotation matrix R may be written by a series of three rotations
given by

R≡

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 (4)

where the right most matrix is a rotation about z through an angle φ , followed by a
rotation about y through an angle θ (center matrix). Finally, the third rotation, left most
matrix, is a rotation about z through an angle ψ . When multiplied out the rows of this
matrix are the eigenvectors needed to diagonalized the diffusion tensor.
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TABLE 1. The Diffusion Tensor Models
Model Indicator Model Name A = 0 C = 0 Eigenvectors Angles

1 No Signal Yes Yes N/A None
2 Constant Yes No N/A None
3 Isotropic No Yes λ1 = λ2 = λ3 None
4 Isotropic+Const No No λ1 = λ2 = λ3 None
5 Pancake No Yes λ1 < λ2 = λ3 ψ = 0
6 Pancake+Const No No λ1 < λ2 = λ3 ψ = 0
7 Football No Yes λ1 > λ2 = λ3 ψ = 0
8 Football+Const No No λ1 > λ2 = λ3 ψ = 0
9 Full Tensor No Yes λ1 > λ2 > λ3 ψ 6= 0

10 Full Tensor+Const No No λ1 > λ2 > λ3 ψ 6= 0

Using the eigenvalues and the rotation matrix, R, the diffusion tensor model, Eq. (1),
may be transformed into

di = Aexp
{
−κgi ·RV R† ·g†

i

}
+C+ni. (5)

The matrix V is a diagonal matrix and is given by

V ≡

 λ1 0 0
0 λ2 0
0 0 λ3

 . (6)

For a full diffusion tensor model, the parameters of interest would be the three eigenval-
ues, the Euler angles, the amplitude and the constant (if present).

In the problem we are addressing, the models we wish to test are specified by imposing
symmetries on the diffusion tensor. For example, if the diffusion is isotropic then λ1 =
λ2 = λ3 and the diffusion spherical. In spherical diffusion all of the Euler angles are zero
and the rotation matrix is one. Similarly, if the diffusion is prolate (football shaped), then
λ2 = λ3, the diffusion is symmetric about its long axis and the angle ψ is zero. The full
list of models is given in Table 1.

For more on the diffusion tensor model see [2, 3, 4]. There you will find an extensive
explanation of the diffusion tensor model.

THE BAYESIAN CALCULATIONS

The problem is to compute the posterior probability for the model indicator given the
diffusion tensor data using Bayesian probability theory [5, 6]. There are 10 models and
so 10 calculations that must be done. However, all of the calculations are essentially
identical and we give only the calculation for the full diffusion tensor model plus a con-
stant. The other calculations may be obtained by imposing the appropriate symmetries
and removing the priors for any parameters that do not occur. The posterior probabil-
ity for the model indicator, u, is represented symbolically by P(u|DI). This posterior
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probability is computed by application of Bayes’ theorem [7], one obtains

P(u|DI) =
P(u|I)P(D|uI)

P(D|I)
(7)

where P(u|I) is the prior probability for the model indicator, which we assigned using a
uniform prior probability. P(D|uI) is the direct probability for the data given the model
indicator, and P(D|I) is a normalization constant and is given by

P(D|I) =
10

∑
u=1

P(uD|I) =
10

∑
u=1

P(u|I)P(D|uI). (8)

If we normalize P(u|DI) at the end of the calculation, then the posterior probability for
the model indicator is proportional to the direct probability for the data given the model
indicator:

P(u|DI) ∝ P(D|uI). (9)

This direct probability is a marginal probability and is given by

P(D|uI) =
∫

dΩP(ΩD|uI)

=
∫

dΩP(Ω|uI)P(D|ΩuI)
(10)

where we are using Ω to stand for all of the parameters appearing in the model. For
the full diffusion tensor plus a constant model, Ω ≡ {A,C,θ ,φ ,ψ,λ1,λ2,λ3,σ}. We
have added one additional parameter, σ , to this list. This additional parameter represents
what is known about the noise. Factoring the prior probability for the parameters into
independent prior probabilities for each parameter one obtains:

P(D|uI) =
∫

dΩP(A|I)P(C|I)P(θ |I)P(φ |I)P(ψ|I)P(σ |I)
× P(λ1|I)P(λ2|I)P(λ3|I)P(D|ΩuI).

(11)

The prior probability for σ , P(σ |I), was assigned using a Jeffreys’ prior probabil-
ity and σ was removed by marginalization. Strictly speaking, to use a Jeffreys’ prior
probability one must bound and normalize the Jeffreys’ prior and then at the end of the
calculation allow these bounds to go off to infinity as a limit. However, in this calculation
the parameter σ appears in each model in exactly the same way and so any normaliza-
tion constant associated with bounding and normalizing the Jeffreys’ prior cancels when
these model probabilities are normalized. Additionally, the Student’s t-distribution that
results from removing σ is so strongly convergent that the use of a Jeffreys’ prior prob-
ability is harmless in this problem.

All other prior probabilities were assigned using fully normalized prior probabilities.
The prior probabilities for the three angles were assigned using uniform prior proba-
bilities. The prior probabilities for the amplitude, the constant and the three eigenvalues
were assigned using normalized Gaussian prior probabilities. If X represents one of these
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parameters, then

P(X |HX LX) =


(
2πSd2

X
)− 1

2 exp
{
−(MeanX −X)2

2Sd2
X

}
If LX ≤ X ≤ HX

0 otherwise

(12)

where LX and HX are the low and high parameter values. The ‘Mean’ value of the
Gaussian prior probability was set to the center of the low-high interval:

MeanX = (LX +HX)/2. (13)

The standard deviation of this Gaussian was set so that the entire interval, low to high,
represents a 3 standard deviation interval:

SdX = (HX −LX)/3. (14)

The model equation is symmetric under exchange of labels on the eigenvalues. This
symmetry manifests itself in the posterior probability. If there is a peak in the posterior
probability at λ1 = a and λ2 = b then there is also a peak at λ1 = b and λ2 = a.
Consequently, the prior probabilities for the eigenvalues were assigned using Eq. (12)
subject to the additional condition λ1 > λ2 > λ3; which breaks this symmetry and leaves
a single global maximum in the posterior probability. This condition is equivalent to
defining what we mean by eigenvalue one: we mean the largest eigenvalue.

The direct probability for the data given the parameters, P(D|ΩuI), was assigned
using a Gaussian prior probability for the noise:

P(D|ΩuI) = (2πσ
2)−

N
2 exp

{
− Q

2σ2

}
(15)

where N is the total number of data values (images) and Q is given by

Q =
N

∑
i=1

(
di−Aexp

{
−cg†

i ·RV R† ·gi

}
−C
)2

. (16)

Using Eq. (15), keeping the prior probabilities in symbolic form, and evaluating the
integral over the standard deviation of the noise, the posterior probability for the model
indicator is given by

P(u|DI) ∝ P(D|uI)

∝

∫
dAdCdθdφdψdλ1dλ2dλ3P(A|I)P(C|I)P(θ |I)P(φ |I)P(ψ|I)

× P(λ1|I)P(λ2|I)P(λ3|I)
[

Q
2

]−N
2

.

(17)

This equation is the solution to the model selection calculation for the full diffusion
tensor plus a constant model. As noted, to obtain the posterior probability for the other
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models all one needs to do is to apply the appropriate symmetries to this model. For
example, the posterior probability for the isotropic diffusion tensor, u = 3, has equal
eigenvalues, no angles and no constant. Consequently, the model equation is given by:

di = Aexp
{
−κg ·g†

λ1

}
+ni (18)

where g ·g† is the total squared length of the gradients, and only a single eigenvalue, λ1,
is present. Additionally, for the isotropic case, the rotation matrix, R, is the identity
matrix and has been multiplied out. Using this model and imposing the appropriate
symmetries on Eq. (17), the posterior probability for the isotropic diffusion tensor is
given by

P(u = 3|DI) ∝

∫
dAdλ1P(A|I)P(λ1|I)

[
Q
2

]−N
2

(19)

where Q is now given by

Q≡
N

∑
i=1

(
di−Aexp

{
−κg ·g†

λ1

})2
. (20)

By imposing the appropriate symmetries on Eq. (17), the posterior probabilities for all
of the other models may be easily derived.

DISCUSSION

Implementing this calculation can be formidable because evaluation of the integrals in
Eq. (17) is highly nontrivial. These integrals vary in complexity from no integral, the ‘No
Signal’ model, to as complicated as an 8 dimensional integral, the full diffusion tensor
plus an constant model. Nonetheless, this is the calculation that we implement using a
Metropolis-Hastings Markov chain Monte Carlo simulation with simulated annealing.

In the program that implements the calculation we try to keep the Markov chain Monte
Carlo simulations at a stationary point. By a stationary point we mean that for a given
value of the annealing parameter the expected value of the parameters and the logarithm
of the likelihood are stationary. Stationary in the sense that we can run the Markov chain
over many cycles taking as many samples as we please and neither the mean value of
the parameters nor the mean value of the logarithm of the likelihood change.

The model indicator is treated just like any other parameter. The model indicator is
varied using a Gaussian proposal that allows the model indicator to move as much as
3 at one standard deviation and by as much as 6 at two standard deviations. Conse-
quently, the program can quickly explore the entire model space. However, unlike most
parameters when the model indicator changes, the number of parameters may change.
Additionally, because of the exponential nature of the diffusion tensor, the region of pa-
rameter space corresponding to the stationary point changes when the model indicator
changes. One must have a scheme for proposing diffusion tensor parameters that ensures
the simulation is at or near a stationary point for a given value of the annealing parame-
ter. Cloning diffusion tensor parameters, i.e., finding a diffusion tensor of the proposed
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type and copying its parameters, is not a good option because for high values of the
annealing parameter most proposed model indicators are not present in the numerical
simulations. We solved this proposal problem by initializing all ten model from the pri-
ors. When the program proposes a new model indicator it switched to the indicated set
of parameters. These parameters are then simulated until they reach equilibrium. The
simulation is either accepted or rejected using the standard Metropolis-Hastings criteria.
For low values of the annealing parameter, changes in model indicator are readily ac-
cepted. Consequently, the parameters associated with a given model indicator are never
very far from equilibrium. So, simulating the proposed model until the parameters reach
equilibrium is not as time consuming as proposing the parameters from the prior. See
[8, 9, 10] for more on Markov chain Monte Carlo and see [11, 12] for more on how to
use simulated annealing to perform model selection calculations.

A typical NMR image might have 32,786 pixels per slice, so the numerical calcula-
tions for even a single slice are formidable. As a result, the calculations were imple-
mented in parallel using the so called shared memory model. Parallelization occurs at
the pixel level, so multiple pixels are processed simultaneously. We run the calculations
on a 64 node Silicon Graphics Altix 3000 supercomputer running the Intel Itanium 2
processors. A typical slice requires roughly 2 hours elapse time to analyze using 32 pro-
cessors. Figure 2 is one example of the types of outputs obtained using the data shown
in Fig. 1. This particular output is the expected model indicator and we will have more
to say about this figure shortly.

The program was tested on simulated and real data. In the tests using simulated data,
we generated data having known model indicators and parameters with signal-to-noise
ratio of about 30, a signal-to-noise ratio typical of real data. Then using this data we ran
the analysis to see how well the model selection worked. In these data the identification
is near 100% with errors occurring only when the generated data looks like one of the
submodes. For example, if the generated data was full diffusion tensor having λ2 nearly
equal to λ3 then the program understandably identifies the data as a football diffusion
tensor rather than a full diffusion tensor.

The program that implements the Bayesian calculation is a Metropolis-Hastings
Markov chain Monte Carlo simulation. Consequently, it has samples from each marginal
posterior probability for each parameter appearing in each high probability model. How-
ever, the program does not output these samples directly; rather images of various aver-
ages of these samples are output. For example, Fig. 2 is the expected model indicator.
The expected model indicator is computed as

〈u〉=
10

∑
u=1

uP(u|DI) (21)

where the posterior probability for the model indication, P(u|DI), is computed from the
Markov chain Monte Carlo samples.

If you examine Fig. 2 you will discover that outside the sample container, the mean
model is the ‘No Signal’ model, as it should be. Inside the sample container, in the space
occupied by formalin, the mean model is the ‘Isotropic’ diffusion model. Again this is
the how one would hope the expected model would behave. Inside the brain tissue, the
expected model is more complicated. However, we can say that the expected model
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Full Tensor + Const

Full Tensor

Football + Const

Football

Pancake + Const

Pancake

Isotropic + Const

Isotropic

Const

No Signal

FIGURE 2. The Expected model value behaves as expected: outside the sample container the ‘No
Signal’ model is selected, while in the container in the formalin the ‘isotropic’ model is selected. Finally
inside the brain tissue the model selected are more complex and follow the anatomical structures of the
brain.

always contains a constant, Fig. 3, and in the cortex the expected model is a football
plus a constant model.

Figure 3 is an image of the fraction of the total signal contained in the constant. The
expected fractional constant is computed in a way analogous to Eq. (21). The mean
fractional constant is computed for each of the 10 models and these mean fractional
constants are then weighted by the posterior probability for each model. If fu is the
mean fractional constant computed from the Markov chain Monte Carlo samples for the
uth model, then the expected fractional constant is given by

〈 f 〉=
10

∑
u=1

fuP(u|DI). (22)

The fractional constant is defined as the the ratio of the constant to the total signal
intensity. If a model does not contain a constant, for example the isotropic model, then
the expected fractional constant is defined to be zero. The fractional constant image
looks as if we have cropped the image. However, this is not the case. The image shown

11



FIGURE 3. The expected fractional constant is the constant amplitude divided by the total signal
amplitude. It is an expected value in that it is a weighted average computed for each model weighted
by the posterior probability for that model. Models that do not contain a constant, by definition, have a
constant equal to zero.

in Fig. 3 is exactly what comes out of the calculation. In regions where there is ‘No
Signal’ there is no constant and, so, no fractional constant. Similarly, in regions where
the diffusion is isotropic, for example in the formalin, there is no constant and so no
fractional constant. The only region where a diffusion tensor plus a constant model is
selected is in the brain tissue, and as this image illustrates, in brain the constant is always
selected.

In addition to computing the expected fractional constant, the program also outputs
the expected average diffusion coefficient, Fig. 4, and the expected fractional anisotropy,
Fig. 5. In the brain the expected value of the average diffusion coefficient does not have a
lot of structure. However, had we not included the constant this would not have been the
case. It is always important to have the correct model, and this is especially important
when dealing with exponentials. If an exponential model is not correct, the parameter
estimates one obtains from that model will not reflect the “true” decay of the signal,
[13]. In this analysis if the constant had not been included the expected value of the
diffusion coefficient would reflect the constant offset; for a fixed amplitude, increasing
the constant will decrease the expected diffusion coefficient, similarly decreasing the
constant causes the diffusion coefficient to rise, i.e., the signal must decay faster.

The expected fractional anisotropy, Fig. 5, is the standard deviation of the three
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FIGURE 4. The expected average diffusion coefficient is also output from the program. It is a weighted
average computed from the average value of the eigenvalue weighted by the posterior probability for that
model. By definition the ‘No Signal’ has zero diffusion coefficient.

eigenvalues, the λ ’s, divided by the average eigenvalue. By definition the ‘No Signal’
and all the ‘Isotropic’ models have zero fractional anisotropy. As with all of the other
outputs discussed, the mean fractional anisotropy is computed for each of the 10 models,
and then the weighted average is formed by multiplying each mean fractional anisotropy
by the posterior probability for the model. As discussed with the fractional constant,
the fractional anisotropy only has nonzero values when an anisotropic diffusion tensor
model is selected. In this case that means inside the brain and then only in regions where
the model is not isotropic. In this brain the fractional anisotropy is large only in the
cortex (at the outer surface of the brain). In the underlying developing white mater, the
fractional anisotropy is almost zero.

SUMMARY AND CONCLUSIONS

Bayesian probability theory has been used to compute the posterior probability for the
model indicators given the 10 models shown in Table 1. The calculation is implemented
using a Metropolis-Hastings Markov chain Monte Carlo simulation with simulated
annealing. In this calculation the model indicator is treated as a discrete parameter
and sampled in a way exactly analogous to any other parameter in a Markov chain.
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FIGURE 5. The expected fractional anisotropy is the standard deviation of the three eigenvalues, the
λ ’s, divided by the average eigenvalue. It is a weighted average computed from the eigenvalues from
each model weighted by the posterior probability for that model. By definition the ‘No Signal’ and all the
‘Isotropic’ models have zero fractional anisotropy.

New model indicators are proposed. The parameters are simulated until they reach
equilibrium at a given value of the annealing parameter and the model indicator is either
accepted or rejected according to the Metropolis-Hastings algorithm. As noted in the
introduction, we are now in the process of applying these calculations to diffusion tensor
images of fixed baboon brains as a function of gestational age. This work, to be reported
elsewhere, is giving us new insights into the diffusion of water molecules and how the
maturation of the brain affects diffusion.
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