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Properties of Cross-Entropy Minimization 
JOHN E. SHORE, SENIOR MEMBER, IEEE, AND RODNEY W. JOHNSON 

A bsrruct- The principle of minimum cross-entropy (minimum directed 
divergence, minimum discrimination information) is a general method of 
inference about an unknown probability density when there exists a prior 
estimate of the density and new information in the form of constraints on 
expected values. Various fundamental properties of cross-entropy minimi- 
zation are proven and collected in one place. Cross-entropy’s well-known 
properties as an information measure are extended and strengthened when 
one of the densities involved is the result of cross-entropy minimization. 
The interplay between properties of cross-entropy minimization as an 
inference procedure and properties of cross-entropy as an information 
measure is pointed out. Examples are included and general analytic and 
computational methods of finding minimum cross-entropy probability den- 
sities are discussed. 

I. INTRODUCTION 

T HE PRINCIPLE of minimum cross-entropy provides 
a general method of inference about an unknown 

probability density qt when there exists a prior estimate of 
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4’ and new information about qt in the form of constraints 
on expected values. The principle states that, of all 
densities that satisfy the constraints, one should choose 
posterior q with the least cross-entropy H[q, p] 
/ dx q(x) log (q( x)/p( x)), where p is a prior estimate of 

Cross-entropy minimization was first introduced 
Kullback [l], who called it minimum directed divergence 
and minimum discrimination information. The principle 
maximum entropy [2], [3] is equivalent to cross-entropy 
minimization in the special case of discrete spaces and 
uniform priors. Cross-entropy minimization has a long 
history of applications in a variety of fields (for a list 
references, see [4]). Recently, the theory has been applied 
to problems in spectral analysis [5], speech coding [6], and 
pattern recognition [7]. 

It is useful and convenient to view cross-entropy minimi- 
zation as one implementation of an abstract information 
operator 0 that takes two arguments-a prior and new 
information-and yields a posterior. Thus, we write 
posterior q as q = p 0 I, where I stands for the known 
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constraints on expected values. Recently we have shown 
that, if the operator o is required to satisfy certain axioms 
of consistent inference, and if o is implemented by means 
of functional minimization, then the principle of minimum 
cross-entropy follows necessarily [4]. 

Cross-entropy minimization satisfies a variety of inter- 
esting and useful properties beyond those expressed or 
implied by the axioms in [4]. It is the purpose of this paper 
to state and prove these properties. For completeness, we 
also restate the axioms from [4] (Property 1, and (12), (14) 
and (16)). Some of the properties of cross-entropy minimi- 
zation just reflect well-known properties of cross-entropy 
[l], [8], but there are surprising differences as well. For 
example, cross-entropy does not generally satisfy a triangle 
relation involving three arbitrary probability densities. But 
in certain important cases involving densities that result 
from cross-entropy minimization, cross-entropy satisfies 
reverse triangle inequalities and triangle equalities. (See 
Properties 10, 12, and 13.) 

boldface Roman letters for sets of system states. We use 
lowercase Roman letters for probability densities, and up- 
percase script letters for sets of probability densities. Thus, 
let x be a state of some system that has a set D of possible 
states. Let 9 be the set of all probability densities 4 on D 
such that q(x) 10 for x E D and 

j-/q(x) = 1. 

We use a dagger t to distinguish the system’s unknown 
“true” state probability density qt E 9. When S c D is 
some set of states, we write q(x E S) for the set of values 
q(x) with x E S. 

New information takes the form of linear equality con- 
straints 

J dxq+(x)a,(x) = Qk (2) 
D 

and inequality constraints 

The combined properties of cross-entropy and cross- 
entropy minimization have recently been shown to be 
useful in the field of speech processing. In particular, one 
formulation of the standard linear prediction coding (LPC) 
equations is based on minimizing a distortion measure 
introduced by Itakura and Saito [9]. In [lo] it is shown that 
the Itakura-Saito distortion measure is a special case of 
asymptotic cross-entropy, and in [6] it is shown that the 
standard LPC equations can be obtained directly by cross- 
entropy minimization. They newly developed technique of 
speech coding by vector quantization [ 1 l] was also derived 
in [6] directly by cross-entropy minimization. Furthermore, 
the original derivation of vector quantization in [ 1 l] was 
carried out by exploiting properties of the Itakura-Saito 
distortion measure- for example, a triangle equality- that 
turn out to be special cases of some of the properties 
presented herein (Properties 12, 14, 15). These properties 
have since been used in refining Kullback’s classification 
method [l, p. 831, yielding a method that is optimal in a 
precise information- theoretic sense [7] and computa- 
tionally efficient. 

k q+(X>Ckb> 2 (‘k 

for known sets of functions ak, ck, and known values - - 
ak, ck. The probability densities that satisfy such con- 
straints always comprise a convex subset $ of q. (A set $ is 
convex if, given 0 5 A I 1 and q, r E 9, it contains the 
weighted average Aq + (1 - A)r.) We refer to the func- 
tions ak, ck as constraint functions and Sl as a constraint set. 
For a given constraint set there may of course be more 
than one set of constraint functions in terms of which it 
may be defined. We frequently suppress mention of a 
particular set of constraint functions, using the notation 
I = (4t E 4) to mean that qt is a member of the constraint 
set 4 c 9 and referring to I as a constraint. We use 
uppercase Roman letters for constraints. 

After introducing necessary definitions and notation in 
Section II, we first consider properties that are valid for 
both equality and inequality constraints on expected values 
(Section III), and then consider properties that are valid 
only for equality constraints (Section IV). We conclude 
with a brief discussion in Section V. We also include an 
Appendix in which we discuss general analytic and compu- 
tational methods for finding minimum cross-entropy poste- 

Let p E 9 be some prior density that is an estimate of qt 
obtained, by any means, prior to learning I. We require 
that priors be strictly positive: 

p(xED)>O. (4) 

(This restriction is discussed below.) Given a prior p and 
new information I, the posterior density q E $ that results 
from taking I into account is chosen by minimizing the 
cross-entropy H[q, p] in the constraint set $: 

mL PI = yyaq’, PI, (5) 

where 

WI, PI =/n~xq(x)log(q(x)/P(x)). (6) 
riors. 

II. DEFINITIONS AND NOTATION 
We introduce an “information operator” 0 that expresses 
(5) using the notation 

In this section, we introduce the same notation as in [4, q=poI. (7) 
sec. II]. The discussion here places somewhat greater em- 
phasis on mathematical questions relating to the existence The operator 0 takes two arguments-a prior and new 

of minimum cross-entropy solutions. (See also the discus- information- and yields a posterior. 

sion following Property 1.) For some subset S c D of states and x E S, let 

We use lowercase boldface Roman letters for system 
states, which may be multidimensional, and uppercase (8) 
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be the conditional density, given x E S, corresponding to number of examples of practical importance involve un- 
any q E 0. We use bounded constraint functions. 

q(xlx E s) = q*s 

as a shorthand notation for (8). 

(9) Proof of 1: See [12], [4, sec. IV-E]. 

In making the restriction (4) we assume that D is the set 
of states that are possible according to prior information. 
We do not impose a similar restriction on the posterior 
q = p o I since I may rule out states currently thought to be 
possible. If this happens, then D must be redefined before 
q is used as a prior in a further application of 0. The 
restriction (4) does not significantly restrict our results, but 
it does help in avoiding certain technical problems that 
would otherwise result from division by p(x). For more 
discussion, see [ 81. 

Property 2: The posterior satisfies q = p 0 I = p if and 
only if the prior satisfies p E $. 

Discussion: If one views cross-entropy minimization as 
an inference procedure, it makes sense that the posterior 
should be unchanged from the prior if the new information 
does not contradict the prior in any way. Consider the 
example of (AlO)-(A12). If uk = xk for k = 1;. *,n, then 
4(x) = P(X). 

When D is a discrete set of system states, densities are 
replaced by discrete distributions and integrals by sums in 
the usual way. In a more general setting for the discussion 
than we have chosen, D would be a measurable space, and 
p and q would be replaced by prior and posterior probabil- 
ity measures. By continuing to write in terms of probability 
densities, we would then be implicitly assuming some un- 
derlying measure with respect to which the rest were abso- 
lutely continuous. Indeed such a measure certainly exists if 
we demand that no event with zero prior probability can 
have positive posterior probability, which in the present 
context we are in effect demanding by assuming (4). 

Proof of 2: Property 2 follows directly from the prop- 
erty of cross-entropy that H[q, p] 2 0 with H[q, p] = 0 
only if q = p ([l, p. 141). 

Property 3 (Idempotence): ( p 0 I) 0 I = p 0 I. 
Discussion: Taking the same information into account 

twice has the same effect as taking it into account once. 

Proof of 3: Since (p 0 I) E g, idempotence follows 
from Property 2. - 

Property 4: Let constraints I, and I2 be given by I, = 
(qt E 9i) and I2 = (q+ E $), for constraint sets $,, 51Z c 9. 
If (p o I,) E $ holds, then 

III. PROPERTIES GIVEN GENERAL CONSTRAINTS 

This section concerns properties that apply in the case of 

poz,= (poZ,)o(z,Az,) = (p”z,)oz,=po(z,Az,) 
00) 

also holds. 

both equality and inequality constraints (2), (3). We follow 
the formal statement of each property with a brief discus- 
sion and then a proof or an appropriate reference. 
Throughout we assume a system with possible states D, 
probability density 4’ E 9, an arbitrary prior p E 9, and 
arbitrary new information I = (q+ E g), where 5l c 9 con- 
tains at least one density 4 such that H( q, p) < co. 

Discussion: If the result of taking information I, into 
account already satisfies constraints imposed by additional 
information I,, taking I2 into account in various ways has 
no effect. For example, let I, and I2 be the constraints 

Property 1 (Uniqueness): The posterior q = p 0 I is 
unique. 

and 
J mdxxq+(x) = a 
0 

/ wdxx2q+(x) = 2a2, 
0 

(11) 

Discussion: A solution to the cross-entropy minimization 
problem, if one exists, is unique provided only that H[ q, p] 
is not identically infinite as q ranges over the constraint set 
g. To guarantee that a solution exists, a little more is 
required. One condition that suffices for existence is that, 
in addition to containing a density q with finite cross- 
entropy, the constraint set 5l be closed. (We call 5l closed if 
it contains every probability density q that is a limit of 
densities qi E 9. Limits are taken in the sense that qi + q 
means / ] qi(x) - q(x)1 dx --) 0.) For 5l to be closed, it 
suffices in turn that the constraint functions be bounded. 
(And conversely, any closed convex set of probability 
densities can be defined by equality and inequality con- 
straints (2), (3) with bounded constraint functions, except 
that infinitely many may be required.) It is also possible to 
assert existence of p o I under less stringent conditions, 
which do not imply that 5l is closed-see Appendix A in 
this paper and [12, Theorem 3.31. This is fortunate, since a 

respectively. For an exponential prior p(x) = r exp (-rx), 
the posterior given I, is q = p 0 I, = (l/u) exp (-x/a) (see 
(AlO)-(A12)). The second moment of q is just 2a2, so that 
q satisfies 4Eg2, as well as q=qo(I,AI,), q=qoI,, 
and 4 = p o (I, A 12). If the right side of (11) were any- 
thing but 2a2, the result of p 0 (I, A 12) would be a trun- 
cated Gaussian or undefined and not an exponential [ 13, p. 
133- 1401. 

Proof of 4: Since (p 0 I,) E $l, holds and, by assump- 
tion, (p o Ii) E 4 also holds, it follows that (p 0 I,) E (g, 
n 4) holds. The first two equalities of (10) then follow 
directly from Properties 2 and 3. The last equality of (10) 
follows from q = p 0 I, having the smallest cross-entropy 
H[q, p] of all densities in $i and therefore in 6li rl 4. 

Property 5 (Invariance): Let F be a coordinate trans- 
formation from x E D toy E D’ with (rq)( y) = J-‘q(x), 
where J is the Jacobian J = a( y),G(x). Let T’9 be the set 
of densities rq corresponding to densities q E 9. Let (IY) 
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c (FD) correspond to 9 c 9. Then 

m+w) = rb4 (12) 

and 

f@wo 01 = H[POL PI 03) 
hold, where IY = ((rq+) E (I?)). 

Discussion: Equation (12) states that the same answer is 
obtained when one solves the inference problem in two 
different coordinate systems, in that the posteriors in the 
two systems are related by the coordinate transformation. 
Moreover, the cross-entropy between the posteriors and the 
priors has the same value in both coordinate systems. 

As an example, let y, and y2 be the real and imaginary 
parts of a complex sinusoidal signal; let x1 be the total 
power x1 = yf + yf, and let x2 be the phase, so that 

(y,, y2) = r-(x,, x2) = (x~/~cos(x~), xt/‘sin(x2)). 

Then the Jacobian is constant: 

J = det I +xl-‘/2 
cos(x2) -x;i2 sin (x2) 

Jxl- l/2 sin (x2) xy2cos (x2) 1 = l/2. 

Therefore, if the prior density p(x) is uniform in some 
region in the x coordinate space, the transformed prior 
(rp)( y) will be uniform on a corresponding region in they 
coordinate space. In particular, suppose 

p(x) = l/2mR2, 

i 

(OIxlIR2, --m<x2Qr) 

0, otherwise, 

which makes p uniform in a certain rectangle. Then we find 
that 

(rp)( y> = limR2~ 
(Y:+Y;-~) 

0, otherwise, 

which makes rp uniform on a certain disk. (Notice l/rR2 
= J~‘(1/2vrR2).) Let new information 1 specify the ex- 
pected power 

/, J 
ccdx, 71 dx,x,q+(x) = P. 

-57 
The resulting posterior q = p o I is exponential with respect 
to x1: 

4(x) = 
i 

Aexp[-Ax,], (OIx,IR2, -m<x2<n) 

0, otherwise, 

for certain constants A and X. The new information in the 
transformed coordinates, r1, is 

Proof of 5: See [4, sec. IV-E]. The proof of (12) 
follows directly from the fact that cross-entropy is trans- 
formation invariant. Equation (13) is just a special case of 
this invariance. 

Property 6 (System Independence): Let there be two sys- 
tems, with sets D, and D2 of states and probability densi- 
ties of states qj E 9, and q$ E g2. Letp, E 9, andp, E 9, 
be prior densities. Let I, = (qf E 4,) and 1, = (41 E g2) be 
new information about the two systems, where g, c 9, and 
g2 c q2. Then 

and 
(P,P2)"(4AI2) = (Pl”MP2~~2) (14) 

mm,, PlP21 = N41 PII + f&2, P213 (15) 

hold, where q, = p 0 I, and q2 = p 0 I,. 
Discussion: Property 6 states that it does not matter 

whether one accounts for independent information about 
two systems separately or together in terms of a joint 
density. Whether the two systems are in fact independent is 
irrelevant; the property applies as long as there are inde- 
pendent priors and independent new information. Exam- 
ples can be easily generated from the multivariate exponen- 
tial and multivariate Gaussian examples in the Appendix. 

Proof of 6: See [4, sec. IV-E]. 

Property 7 (Subset Independence): Let S,; . . ,S,, be dis- 
joint sets whose union is D. Let the new information I 
comprise information about the conditional densities qt * Si. 
Thus, I = I, A I2 A . . . AI,,, and 1, = ( qt * S, E $), where 
gi c Si and Sj is the set of densities on S,. Let M = (4’ E 
OR,) be new information giving the probability of being in 
each of the n subsets, where 9, is the set of densities q that 
satisfy 

J,” q(X) = mi 
I 

for each subset S,, where the mi are known values. Then 

(p”(IAM))*Si= (p*s,)g 06) 
and 

HIP”(~~M),P]=BmiH[yi,P;l+~milOg(~) 
i l 

b) 
hold, where pi = p *S,, qi = p, o I,, and the si are the prior 
probabilities of being in each subset, 

s, = / dxp(x). (18) 
s. 

j-dhj-42 (y: + y;)q’+( d = f’, Discussion: This property concerns situations in which 

and the resulting posterior q’ = (rp) 0 (U) has the form 
the set of states D decomposes naturally into disjoint 

of a bivariate Gaussian inside the disk: 
subsets Si, in which the new information I = I, A 1, 
A . . . AI,, comprises disjoint information about the condi- 

47 Y> = 
1 

2~exp[-~(y~+y,2)]~ (Y:+Y,25 R’) tional probability densities q+ *S, in each subset, and in 

0, otherwise 
which there is also new information M giving the total 
probability m, of being in each subset S,. Given this 

The two posteriors q and q’ are related by q’( y) = (rq)( y), information, there are two ways to obtain posterior condi- 
as stated in (12). tional densities for each subset. One way is to obtain a 
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conditional posterior ( p * Si) 0 1; from each conditional 
prior p * Si. Another way is to obtain a posterior q = p o (I 
A M) for the whole system and then to compute a condi- 
tional posterior q * Si. Property 7 states that the results are 
the same in both cases; it does not matter whether one 
treats an independent subset of system states in terms of a 
separate conditional density or in terms of the full system 
density. 

To illustrate Property 7, suppose that a six-sided die was 
rolled a large number of times. The frequencies with which 
the different die faces turned up were not recorded individ- 
ually, but the mean number of spots showing was de- 
termined separately for the odd results and for the even 
results. There is no prior reason to expect any face of the 
die to turn up more often than any other. Indeed, the 
probability for an odd number of spots showing was found 
to be 0.5. However, the mean number of spots showing, 
given that the number is odd, was found to be four; the 
mean number of spots showing, given that the number is 
even, also was found to be four. Given this information, we 
are asked to estimate the probability for each face of the 
die to turn up, as well as the conditional probability given 
whether the face is odd or even. Let S, = { 1,3,5} and 
S, = {2,4,6}. We will first solve the problem on S, and S, 
separately and then solve it on S, U S,. ~ 

In all cases, the prior is uniform. The prior p, on S, is 
p,(l) = p,(3) = p,(5) = l/3. The information I, giving the 
expected value for an odd number of spots is 

Is v!(n) = 4; 
1 

therefore, we compute a posterior q, = p, 0 I, on S, by 
minimizing H[q,, p,] subject to q,(l) + 3q,(3) + 5q,(5) = 
4. The result is 

q,(l) = 0.1162, q,(3) = 0.2676, q,(5) = 0.6162. (19) 

Similarly, the prior p2 on S, is p,(2) = ~~(4) = p,(6) = l/3, 
the posterior q2 is subject to the constraint 12, 2q,(2) + 
4q,(4) + 6q,(6) =. 4, and the result of minimizing 
ffk2, p21 is 

420) = l/3> 42(4) = 1;3, 426) = l/3. (20) 

On S, U S,, the prior p is p(1) = p(2) = . . . = p(6) = 
l/6. The information I,, which concerns qt *S,, may be 
expressed as q+(l) + 3qt(3) + 5q+(5) = 4(4+(l) + q+(3) + 
q+(5)). We therefore subject the posterior q to the con- 
straint 

-3q(l) - q(3) + q(5) = 0. (21) 
Similarly, because of 12, we have the constraint 

-2q(2) + 2q(6) = 0. (22) 
Finally, because of the information M, we subject q to the 
constraint 

40) - 4(2) + 40) - 44) + 4(5) - 46) = 0, (23) 

since this is equivalent to q(1) + q(3) + q(5) = 0.5 = q(2) 
+ q(4) + q(6). Upon minimizing H[q, p] subject to the 
constraints (21-(23), we find that q = p o (I, A I2 A M) is 

given by 

q(1) = 0.0581, q(2) = l/6, 

q(3) = 0.1338, q(4) = i/6, 

q(5) = 0.3081, q(6) = l/6. (24) 

To find the conditional probabilities q * S, and q * S,, we 
divide both columns in this result by 0.5; the results agree 
with q, and q2 as computed above ((19), (20)), and as 
stated in (16). 

Proof of 7: See [4, sec. IV-E]. 

Property 8 (Weak Subset Independence): For the same 
definitions and notation as Property 7, 

(poZj*si= (p*~i)o~i (25) 
and 

H[poI, p] = xr;H[q;, P;] + zr;lOg (1) (26) 
i i 1 

hold, where pi = p * Si, qi = pi 0 Ii, the si are the prior 
probabilities of being in each subset (18), and the ri are the 
posterior probabilities of being in each subset, 

ri=/sdx4(x), 
, 

(27) 

for q = p 0 I. 
Discussion: This property states that the two ways of 

obtaining the posterior conditional densities also lead to 
the same result in the case when one does not have 
information giving the total probability in each subset. 
Results for the full system posterior, however, will not in 
general be the same for the cases covered by Properties 7 
and 8. That is, q 0 I and q 0 (I A M) will not generally be 
equal. 

To illustrate Property 8, we solve the example problem 
from Property 7, omitting the information M that the 
probability of an odd (or of an even) number of spots is 
0.5. The separate solutions on S, and S, proceed exactly as 
before and yield the same posteriors q, and q2. The solu- 
tion on S, U S, differs from the previous one only in that 
we minimize H[q, p] subject to the constraints (21) and 
(22), but not subject to (23). The result, q’ = p 0 (I, A 12), 
is given by 

q’(1) = 0.0524, q’(2) = 0.1831, 

q’(3) = 0.1206, q’(4) = 0.1831, 

q’(5) = 0.2778, q’(6) = 0.1831, 

and differs from the previous result (24). Moreover, the 
subset probabilities r, and r, do not satisfy M: summing 
the two columns gives r, = 0.4508 and r2 = 0.5492. Divid- 
ing the two columns respectively by r, and r,, however, 
gives the same conditional probabilities as before: q’ * S, = 
q, and q’ * S, = q2 (see (19), (20)). 

Proof of 8: For q = p 0 I, let ri be given by (27). Then 
let R be information R = qt E 3, where %, is the set of 
densities satisfying (27). It follows from Property 4 that 
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p o I = p o (I A R) holds; (25) and (26) then follow from H[q,, qi] = 0, (32) reduces to 
Property 7. 

Property 9 (Subset Aggregation): Let S,, S,, . * * ,S,, be 
disjoint sets whose union is D. Let + be a transformation 
such that, for any q E 9, q’ = qq is a discrete distribution 
with 

q’(xi) =L’x4(X), 

Minimizing the left side subject to I, yielding q = p o I, is 
equivalent to minimizing the right side subject to I’. This 
proves (29) and (30). 

H[49Pl=Eri10g(~) 
i I 

= m% iGP1. 

where xi is a discrete state corresponding to x E Si. Thus 
the transformation $ aggregates the states in each. subset 
Si. Suppose new information I’ = (($q+) E S’) is obtained 

Property 10 (Triangle Relations): For any r E $, 

H[r, p] 2 H[r, ql + H[q, PI, (33) 
about the aggregate distribution $qt, where g’ is a convex where q = p o I. When I is deterfined by a finite set of 
set of discrete distributions. Then for any prior p E 9, equality constraints only, equality holds in (33). 

p*s;= (pd)*S;, (28) Proof of 10: We have 

(2% 
and 

H[J/(pol), GP] = H[P~ ~1 (30) 
all hold, where I = #-‘1’ is the information I’ expressed in 
terms of qt instead of in terms of +q+. (That is, I = (qf E 
i$;iz)i,;here (tc, - ‘Y) c 9 are the densities q such that 

Discussion: Note that (29) and (30), in which + is a 
many-to-one mapping, have the same form as the invari- 
ance property, which holds for one-to-one coordinate 
transformations I’ (see (12), (13)). Indeed, both invariance 
and subset aggregation can be viewed as special cases of a 
more general, measure-theoretic invariance. In mathemati- 
cal terms, the operator 0 is functorial. 

Proof of 9: Let the information I’ be a set of known 
expectations Zigkiqt’(xi), for k = 1; . . , m, or bounds on 
these expectations, where qf’ = $qt. In terms of qt, this 
becomes a set of known or bounded expectations 

where fk(x E Si) = gki is constant in each subset S,. The 
posterior q = p 0 I has the form 

H[q, p] = y$H[q’, pl. 

The densities q’ = (1 - t)q + tr belong to $l for all t E [0, l] 
since q E 9, r E g, and 4 is convex. For all such t we 
therefore have 

H[(l - t)q + tr, P] 2 H[q, PI, (34) 
or F(t) 1 F(O), where we have written F(t) for the left side 
of (34). It follows that F’(0) L 0 (provided F is differentia- 
ble at zero). We therefore set 

$ dx [(l - t)qb) + t+)] 
* log (1 - Mx) + tr(x) 

P(x) II 

> o - 
t=o 

and differentiate under the integral sign. (For justification 
of this step and the existence of ‘F’(O), see Csiszk [ 121, who 
gives the proof in a more general measure-theoretic setting.) 
The result is 

/dx [r(x) - q(x)][ 1 + logs] 2 0, 

dx) =p(x)exp +O- i hkfk(X) ) 
i i 

(31) 
which implies 

k=l 

where some of the terms in the summation over k may be 
/dxr(x)log$# ?/dxq(x)logf# 

omitted in the case of inequality constraints (see (A4)). 
Since fk is constant on each subset, (31) has the form 

and therefore H[r, p] 2 H[r, q] + H[q, p]. 

q(x E Si) = A,p(x E S,), where Ai is a subset dependent 
Assume I is determined by finitely many equality con- 

constant. This proves (28). In general, for any q, p E 33, 
straints. Since q = p 0 1, log (q(x)/p(x)) assumes the form 

the cross-entropy H[q, p] can be expressed [4] as 4(x) 

H[qy PI = ZriH[4iy Pi1 + Erilog (:)y 
logpo = -‘O- ii xkfk(x) 

(32) 
k=l 

i i I ( f (A4)) B t then c. .u 
wherep,=p*S;, qi= q*Si, 

Si=LdXP(X), and ri =Ldxq(x). 
/dxr(x)log$$= -ii,- i hkfk 

k=l 

I , 

In the present case we have qi = pi from (28). Since =/dxq(x)log$j = H[q, p], 
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Since r and q both satisfy the equality constraints. The 
equality 

+ dxr(x)log- J 
4(x) 
p(x) 

then implies H[r, p] = H[r, q] + H[q, p]. 
Property 11: 

ff[q+, POZ] 5 H[q?, PI (35) 

holds with equality if and only if p o Z = p. 
Discussion: This property states that the posterior q = 

p 0 Z is always closer to qi, in the cross-entropy sense, than 
is the prior p. 

Proof of II: Since qt E $l holds, (35) follows directly 
from (33) with r = qt. 

IV. PROPERTIES GIVEN EQUALITY CONSTRAINTS 

This section concerns properties that apply when some 
of the new information is in the form of equality con- 
straints (2) only. Throughout we assume a system with 
possible states D and an arbitrary prior p E 9. 

Property 12: Let the system have a probability density 
qt E 9, and let there be information Z = (qt E g) that is 
determined by a finite set of equality constraints only. 
Then 

f&l+, PI = f&I+> 41 + fk PI 
holds, where q = p o I. 

(36) 

Discussion: This triangle equality is important for appli- 
cations in which cross-entropy minimization is used for 
purposes of pattern classification and cluster analysis [7]. 
Since the difference H[qt, p] - H[qt, q] is just H[q, p], 
and since H[q, p] is a measure [l] of the information 
divergence between q and p, Property 12 shows that 
H[ p 0 I, p] can be interpreted as the amount of informa- 
tion provided by Z that is not inherent in p. Stated differ- 
ently, H[ p 0 I, p] is the amount of information-theoretic 
distortion introduced if p is used instead of p 0 I. Since for 
any prior p and any density r E KO with H(r, p) < co, 
there exists a finite set of equality constraints Z, such that 
r = p 0 Z, (see Appendix B), H[r, p] is generally the amount 
of information needed to determine r when given p, or the 
amount of information-theoretic distortion introduced if p 
is used instead of r. 

Proof of 12: Equation (36) follows directly from (33) 
since qt E 4 holds. 

Property 13: Let the system have a probability density 
qt E Q, and let there be information I, = (q’ E 9,) and 
information Z2 = (qt E $), where g,, $ E 9 are constraint 
sets with a nonempty intersection. Suppose that $, is 
determined by a set of equality constraints (2) only. Then 

(P”ZMZ,AZ*) =P”(Z,AZz) (37) 

and 

H[q, ~1 = H[q, q,] + H[q,, ~1 (38) 

hold, where q = p o (Z, A Zz) and q, = p 0 I,. 
Discussion: When I, is determined by equality con- 

straints, (37) holds whether (p 0 Z,) E 4 (compare with 
Property 4). Property 13 is important for applications in 
which constraint information arrives piecemeal, and states 
that intermediate posteriors can be used as priors in com- 
puting final posteriors without affecting the results. Think- 
ing in terms of inference procedures, one might think of 
(37) as obvious and wonder why it does not hold for 
general constraints. But p o I, # p unless p E g,, so that 
some information about p can generally be lost on the left 
side of (37). From this point of view, it is somewhat 
surprising that (37) holds at all. 

As an example of Property 13, we consider minimum 
cross-entropy spectral analysis [5]. If one describes a sto- 
chastic band-limited discrete-spectrum signal in terms of a 
probability density qt( x) = qt(x,, . + . ,xn), where xk is the 
energy at frequency fk, known values of the autocorrelation 
function can be expressed as expectations of qt, namely, 

R,=@ ( B2xkcos(27itrfk))qi(x), 
k 

where R, is the autocorrelation value at lag t,.. Let I, be a 
limited set of autocorrelations R,, . . . , R,. Then, for a 
prior pw with a flat (white) power spectrum Pk = 
/ dx xkpw(x) = P, the power spectrum of the posterior 
qLpC = p w 0 I, is just the mth order maximum-entropy or 
linear predictive coding (LPC) spectrum [5]. Let Z, be the 
set of autocorrelation samples R,+,, Rm+2, . . . that to- 
gether with I, fully determine the power spectrum of qt. 
Then (37) yields qF = pw 0 (Z, A Z2) = qLpC 0 (Z, A Z2). 

Proof of 13: The density q, has the form (A4), 

q,(x) =Pb)exp -k i Qd4 . 
i k=l i 

For an arbitrary density q E 9, the cross-entropy with 
respect to q, satisfies 

q(x)exp &I+ %+!Jx) 

H[q, 411 =~kd+~ [ 
PWk 

1 
=Hh PI + h,+/&k4~h,~,(-+ 

k 

If q satisfies q E 4,, this becomes 

H[q, 411 = H[q, ~1 + A,+ &bA, (39) 
k 

where X,, h,, and a, are constants. Since H[q, q,] and 
H[ q, p] differ by a constant on gl, it follows that they have 
the same minima on any subset of g,. Since (g, n S,) c $, 
holds, this proves (37). Moreover, (39) and (A5) yield (38) 
which is also a special case of (33). 

Property 14: Suppose there are two underlying proba- 
bility densities qt and qi. Let I, and Z2, respectively, stand 
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for the sets of equality constraints Property 15 (Expected Value Matching): Let Z be the 

/dxJ(x)ql(x) =I;;(‘), i= 1;-.,m, (40) constram~ 
%+x,x k, 

( )f ( > =J 
k = l;**,m (46) 

and D 

/dxf;(x)q$(x) = Z$c2), i = l,...,s, (41) 
for a fixed set of functions fk, and let q = p 0 Z be the result 
of taking this information into account. Then, for an 

where s 2 m. Then 

(P442) =poz2 

arbitrary fixed density q* E 9, the cross entropy H[q*, q] 
= H[q*, p o I] has a minimum value, as the fk vary, when 

(42) the constraints (46) satisfy 

holds. Moreover, if tii), tiL2), and tii) are the Lagrangian 
multipliers associated with q, = p o Zr, q,2 = q, 0 Z2, and 
q2 = p 0 Z2, respectively, then 

and 

A(;) = jq + h(y), k=O,l;..,m, 

jp = jp) 
k k 3 k = m -t- 1; . . ,s, 

(43) 

(44) 

ff[q,, pl = H[q,> q,] + H[q,, PI + i h!‘)(F,(‘)- Cc2)) 
r=l 

(45) 
also hold. 

Discussion: Property 10 can apply to situations in which 
q] and qi are system probability densities at different times 
and in which qj or estimates of qf are considered to be 
good estimates of 44. If Z2 is determined in part by expecta- 
tions of the same functions as I,, but with different ex- 
pected values, then the results of taking I, into account are 
completely wiped out by subsequently taking Z, into 
account. As an example, consider frame-by-frame mini- 
mum cross-entropy spectral analysis in which Zi is 
determined by autocorrelation samples in frame i at a fixed 
set of lags (s = m). Equation (42) shows that the results for 
frame i are the same whether the assumed prior is an 
original prior p, the posterior from frame i - 1, or some 
intermediate estimate. (However, there may be computa- 
tional or bandwidth-reduction advantages to using p o Zip, 
as a prior in frame i.) Note that if s 1 m and F$‘) = F,‘2) 
for r = l;.. , m, Property 14 reduces to Property 13. 

Proof of 14: From (A4) we have 

q,(x) =p(x)exp -A$)- 2 A$iz,(x) , 
i k=l i 

where the ti;) are chosen to satisfy the constraints (40). 
Similarly, 

%2(X) = 4,bbxP -q2’ - i A(;24zk( x) 
k=l 

holds, This is of the form p(x)exp[-A(o2) - Z,~(,~)U,(X)], 
with A($ = x(i) + h(k2) (k z 0 . . . ,m) and h(k2) = tii2) (k = 
m + l;.. ,s), and it is a probability density satisfying the 
constraints (41); it is therefore equal to p o Z, = q2, which 
proves (43), (44). Equation (45) follows from straightfor- 
ward applications of (A5). 

fk = .f: = DdX q*b)fkb). J 

Discussion: This property states that for a density q of 
the general form (A4), H[q*, q] is smallest when the expec- 
tations of q match those of q*. In particular, note that 
q = p 0 Z is not only the density that minimizes H[q, p], 
but also is the density of the form (A4) that minimizes 
H[qt, q]! Property 15 is a generalization of a property of 
orthogonal polynomials [14, p. 121 that in the case of 
speech analysis [ 15, ch. 21 is called the “correlation match- 
ing property” [lo]. 

Proof of 15: The cross-entropy H[q*, q] is given by 

+jdxq*(x+O+I:h,fk(x)) 

= ,dv*(-+og bz*k-+~~ + &I + Ehkfk*, 
k 

(47) 

where we have used (A4). Since the multipliers X, are 
functions of the expected values fk, variations in the ex- 
pected values are equivalent to variations in the multipliers. 
Hence, to find the minimum of H[q*, q], we solve 

&H[q*, q] = 0 = 2 +& 
k k 

where we have used (47). It follows from (A9) that the 
minimum occurs when fk = f$. 

V. GENERAL DISCUSSION 

Property 1 and (12) (14), and (16) are the inference 
axioms on which the derivation in [4] is based. It is 
important to recognize that it is these inference properties, 
and not the corresponding cross-entropy properties (( 13), 
(15) and (17)) that characterize cross-entropy minimiza- 
tion. For more information on this distinction, see [4, sec. 
VI] and [8]. 

An interesting aspect of the results presented in this 
paper is the interplay between properties of cross-entropy 
minimization as an inference procedure and properties of 
cross-entropy as an information measure. The well-known 
[l] and unique [8] properties of cross-entropy as an infor- 
mation measure in the case of arbitrary probability densi- 
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ties are extended and strengthened when one of the densi- 
ties involved is the result of cross-entropy minimization, 
showing that cross-entropy minimization is optimal in a 
sense that has not been appreciated previously. In particu- 
lar, (35) shows that p o Z is at least as close to qt as is p; in 
the case of equality constraints, (36) shows that H[ p 0 I, p] 
is the amount of information provided by Z that is not 
inherent in p, and Property 15 shows that p 0 Z is not only 
closer to qt than is p, but it is the closest possible density 
of the form (A4). Indeed, the combination of these proper- 
ties has led to an information-theoretic method of pattern 
analysis and classification [l l] that is a refinement of a 
method due to Kullback [l, p. 831. 
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APPENDIX A 
MATHEMATICS OF CROSS-ENTROPY MINIMIZATION 

We derive the general solution for cross-entropy minimization 
given arbitrary constraints, and we illustrate the result with the 
important cases of exponential and Gaussian densities. In gen- 
eral, however, it is difficult or impossible to obtain a closed-form 
analytic solution expressed directly in terms of the known ex- 
pected values rather than in terms of the Lagrangian multipliers. 
We therefore discuss a numerical technique for obtaining the 
solution, namely the Newton-Raphson method. This method is 
the basis for a computer program that solves for the minimum 
cross-entropy posterior given an arbitrary prior and arbitrary 
expected value constraints. 

Given a positive prior density p and a finite set of equality 
constraints 

s q(x)dx= 1, (AlI 

/fk(-++) dx =fk, k = l,...,m, 

we wish to find a density q that minimizes 

(A21 

subject to the constraints. For conditions that imply the existence 
of a unique minimum, see the discussion of Property 1 (unique- 
ness). One standard method for seeking the minimum is to 
introduce Lagrangian multipliers p and X, (k = 1,. . ,m) corre- 
sponding to the constraints, forming the expression 

l”g$‘$dx + b jdx) dx + iii I, jfk(-+dx) dx, 
k=l 

and to equate the variation, with respect to q, of this quantity to 
zero: 

log% + 1 + p + i Xkfk(X) = 0. 
k=l 

(A3) 

Solving for q leads to 

dx) =P(x)exp -xo- 2 Xk.fk,(x) (A41 
k=l 

where we have introduced X, = /3 + 1. 
In fact, the q, if it exists, that minimizes H[ q, p] has this form 

with the possible exception of a set S of points on which the 
constraints imply that q vanishes. (Such a situation would arise, 
for instance, if we had a constraint /q( x)f(x) dx = 0, where 
f(x) > 0 when x E S and f(x) = 0 when x Q? S.) Informally, we 
could then imagine some of the Lagrangian multipliers becoming 
infinite in such a way that the argument of exp in (A4) becomes 
-cc when x E S.) Conversely, if a density q is found that is of 
this form and satisfies the constraints, then the minimum cross- 
entropy density exists and equals q [ 121, [ 11. For simplicity in the 
following, we assume the set S is empty. 

The cross-entropy at the minimum can be expressed in terms 
of the X, and the f, by multiplying (A3) by q(x) and integrating. 
The result is 

H[q,p] = -&- i hkfk. (A9 
k=l 

It is necessary to choose A, and the X, so that the constraints 
are satisfied. In the presence of the constraint (Al) we may 
rewrite the remaining constraints in the form 

j(fktx) -fk)dx) dx = 0. G46) 

If we find values for the A, such that 

j(f,(x)-.6)p(x)exp (-~,hfdx))dx=O, 

i = l;..,m, (A71 

we are assured of satisfying (A6); and we can then satisfy (Al) by 
setting 

x0= logjp(x)exP (- s h,fktx)) dx. 
k=l 

CA81 

If the integral in (A8) can be performed, one can sometimes find 
values for the X, from the relations 

-&h,=f,. 
k 

(A91 

The situation for inequality constraints is only slightly more 
complicated. Suppose we replace all the equal signs in (A2) by 
I (We lose no generality thereby; we can change inequalities 
with L into inequalities with 5 by changing the signs of the 
corresponding fk and fk, and any equality constraint is equivalent 
to a pair of inequality constraints.) The q that minimizes H( q, p) 
subject to the resulting constraints will in general satisfy equality 
for certain values of k in the modified (A2), while strict inequality 
will hold for the rest. We can still use the solution (A4), subject- 
ing the Lagrange multipliers to the conditions A, I 0 for k such 
that equality holds in the constraint, and A, = 0 for k such that 
strict inequality holds in the constraint. 

It unfortunately is usually impossible to solve (A7) or (A9) for 
the A, explicitly, in closed form; however, it is possible in certain 
important special cases. For example, consider the case in which 
the prior p(x) is a multivariate exponential, 

Pcx> = kfi, (l/ak)exp[-Xk/ukl~ WO) 
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where x = (x,; . ,x,) and the xk each range over the positive 
real line, and in which the constraints are 

JdXXkdX) =%, (All) 

k= I,... , n. Solving (A9) in order to express the minimum 
cross-entropy posterior directly in terms of the known expected 
values Xk yields 

q(x) = v(l/%)exp[-xk/nkl. (A121 

Thus, the density remains multivariate exponential, with the prior 
mean values uk being replaced by the newly learned values Xk. 

Now consider the case in which the xk range over the entire 
real line, and in which the prior density is Gaussian, 

One such method is the Newton-Raphson method, which is 
for finding solutions for systems of equations that, like (A7), are 
of the form 

~(i(x,,~‘~,X,) = 0, i = l;..,m. Gw 

The method starts with an initial guess at the solution, Xc’) = 
(AC’:‘,. . . ,tiz), and produces further approximate solutions 
$2’ x(3’ . . . in succession. If the initial guess x”) is close enough 
to a solution of (A16), if the F. are continuously differentiable, 
and if the Jacobian [ a&/axj] is nonsingular, then the x”) will 
converge to the solution in the limit as r + cc. 

The method is based on the fact that, for small changes Atir) 
in the arguments ti’), we have the approximate equality 

up to a term of order ~(a$‘)). We therefore take As’) to be a 
Suppose that the constraints are (Al 1) and solution of the linear equation 

J ( dx xk - ZQ2q(x) = vk. 

In this case the minimum cross-entropy posterior is 

q(x) = I-J (2av,)-“2exp [ - (xk - Xk)2/2vk]. 

Thus, the density remains multivariate Gaussian, with the prior 
means and variances being replaced by the newly learned values. 

Here is an example of a simple problem for which the solution 
of (A7) cannot be expressed in closed form. Consider a discrete 
system with n states xi and prior probabilities p(x,) = p, (j = 
1,. . .,n). The discrete form of (Al) is 

” 

x qj= l, 

J=l 

(‘413) 

where q, = q(xj). Suppose the only other constraint is that the 
mean m of the indices j is prescribed: f( xj) = j, and 

n 
z jqi= m. 

jzz1 . 

Then (A4) becomes q, = pjexp [ -A, - Xj], which we write as 
qJ = upjzJ by introducing the abbreviations a = exp [ -X0] and 
z = exp[-X]. From (A16) and (A17) we then obtain 

n 

i i 

-I 

a= lx P/Z’ 
j=l 

and 

i (j-m)p,zJ=O. 
j=l 

6415) 

The problem then reduces to finding a positive root of the 
polynomial in (A15). As in the continuous case, there are special 
forms for the prior that lead to important particular solutions. 
But when n > 5, the roots of the polynomial (other than zero) 
cannot in general be written as explicit closed-form expressions 
in the coefficients for arbitrary priors. Numerical methods of 
solution therefore become important. Our obtaining a polynomial 
equation in the present example was an accidental consequence 
of the fact that the values of the constraint function f formed a 
subset of an arithmetic progression (j = 1,2, . . .). Thus, for 
more general types of problems, numerical methods are even 
more important. 

and set Xcr+‘) = Xc’) + Agr). In applying the Newton-Raphson 
method to cross-entropy minimization, we let Fi(X) be propor- 
tional to the discrete form of the left side of (A7); we set 

4(X”)) = i f. p. p j=, lJ Jex (-+f~i)’ 6418) 

a&(x(r)) 
= -j,.tjfk,PjexP (-z,gL’fuj)y (A191 ah, 

where f,, = f,( x1) - A, and we have removed a factor of 
exp [ -Z,X(L)fu]. With the abbreviation 

we express the right sides of (Alg) and (A19) in matrix notation 
as [ fdiag (g)g], and [ f diag ( g)2f ‘lik, respectively, where diag (g) 
is the diagonal matrix whose diagonal elements are the g,, and f ’ 
is the transpose off. The solution of (A17) is then given by 

AX’*)=[(fdiag(g)‘f’)-‘fdiag(g)]g. 

We remark that the quantity in brackets is the Moore-Penrose 
generalized inverse [ 161 of the matrix diag (g)f ‘. The approach 
just described has been made the basis for a computer program 
1171, written in APL, for solving cross-entropy minimization 
problems with arbitrary positive discrete priors p and equality 
constraints specified by matrices f. The approach is particularly 
convenient for programming in APL since the generalized inverse 
is a built-in APL primitive function [ 181. To solve a minimum 
cross-entropy problem with 500 states and 10 constraints, the 
program typically requires 15 seconds of central processing unit 
(CPU) time when running under the APL SF interpreter on a 
DEC-10 system with a KI central processor. 

Gokhale and Kullback [ 191 describe a somewhat different 
algorithm, also based on the Newton-Raphson method, that has 
been implemented in PL/I. Agmon, Alhassid, and Levine [20], 
[21] describe yet another cross-entropy minimization algorithm 
and a Fortran implementation. Tribus [13] presents programs in 
Basic that compute singly and doubly truncated Gaussian distri- 
butions as maximum entropy distributions with prescribed means 
and variances. 



482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 4, JULY 1981 

APPENDIX B 
REMARKONTHEDISCUSSIONOFPROPERTY 12 

[51 
In the discussion of Property 12, it was stated that for any 

prior p and any density r E 9 with H(r, p) < 00, there exists a 
finite set of equality constraints I, such that r = p o I,. In fact, at 
most two are needed. Let 

PI 

f,(x) = y’ 
L 

r(x) # 0 

r(x)=O, 
[71 

f,=O, PI 

l%(PGWW? 
fi(X) = 0 L r(x)#O 

r(x)=O, [91 

L= -ff(r,p), 1101 
and impose constraints 

jd-dfdx) dx =.k 
[Ill 

@I) 

jdx)f,(-d dx =.k 032) WI 

The first constraint implies (p o I)(x) = 0 where r(x) = 0. On 1131 
the complementary set, where r(x) # 0, define q(x) by (A4) will 
all A, = 0 except A, = 1; this gives a function q that satisfies the 

114] 

second constraint as well as the first and also agrees with r. [I51 
Hence r = q is the result of minimizing H(q, p) with respect to 
(Bl) and (B2). 1161 

[II 

PI 

[31 

141 

[I71 
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