Contents

1 An Overview Of The Bayesian Analysis Software 17
 1.1 The Server Software 17
 1.2 The Client Interface 20
 1.2.1 The Global Pull Down Menus 22
 1.2.2 The Package Interface 22
 1.2.3 The Viewers 25

2 Installing the Software 27

3 the Client Interface 29
 3.1 The Global Pull Down Menus 31
 3.1.1 the Files menu 31
 3.1.2 the Packages menu 36
 3.1.3 the WorkDir menu 41
 3.1.4 the Settings menu 42
 3.1.5 the Utilities menu 46
 3.1.6 the Help menu 47
 3.2 The Submit Job To Server area 47
 3.3 The Server area 48
 3.4 Interface Viewers 49
 3.4.1 the Ascii Data Viewer 49
 3.4.2 the fid Data Viewer 51
 3.4.3 Image Viewer 56
 3.4.3.1 the Image List area 56
 3.4.3.2 the Set Image area 58
 3.4.3.3 the Image Viewing area 58
 3.4.3.4 the Grayscale area on the bottom 60
 3.4.3.5 the Pixel Info area 60
 3.4.3.6 the Image Statistics area 60
 3.4.4 Prior Viewer 62
 3.4.5 fid Model Viewer 65
 3.4.5.1 The fid Model Format 65
8.5 Outputs From The Bayes Analyze Package 167
 8.5.1 The “bayes.params.nnnn” and “bayes.model.nnnn” Files 169
 8.5.1.1 The Bayes Analyze File Header 169
 8.5.1.2 The Global Parameters ... 174
 8.5.1.3 The Model Components ... 175
 8.5.2 The “bayes.output.nnnn” File 177
 8.5.3 The “bayes.probabilities.nnnn” File 181
 8.5.4 The “bayes.log.nnnn” File ... 184
 8.5.5 The “bayes.status.nnnn” and “bayes.accepted.nnnn” Files 187
 8.5.5.1 The “bayes.model.nnnn” File 188
 8.5.6 The “bayes.summary1.nnnn” File 189
 8.5.7 The “bayes.summary2.nnnn” File 190
 8.5.8 The “bayes.summary3.nnnn” File 191
 8.6 Bayes Analyze Error Messages 192

9 Big Peak/Little Peak ... 197
 9.1 The Bayesian Calculation .. 199
 9.2 Outputs From The Big Peak/Little Peak Package 206

10 Metabolic Analysis ... 209
 10.1 The Metabolic Model ... 213
 10.2 The Bayesian Calculation ... 215
 10.3 The Metabolite Models .. 218
 10.3.1 The IPGD_D2O Metabolite ... 218
 10.3.2 The Glutamate_2.0 Metabolite 222
 10.3.3 The Glutamate_3.0 Metabolite 225
 10.4 The Example Metabolite ... 226
 10.5 Outputs From The Bayes Metabolite Package 228

11 Find Resonances .. 229
 11.1 The Bayesian Calculations ... 231
 11.2 Outputs From The Bayes Find Resonances Package 236

12 Diffusion Tensor Analysis ... 237
 12.1 The Bayesian Calculation ... 239
 12.2 Using The Package .. 244

13 Big Magnetization Transfer ... 249
 13.1 The Bayesian Calculation ... 249
 13.2 Outputs From The Big Magnetization Transfer Package 252

14 Magnetization Transfer .. 255
 14.1 The Bayesian Calculation ... 257
 14.2 Using The Package .. 261
15 Magnetization Transfer Kinetics 267
15.1 The Bayesian Calculation 269
15.2 Using The Package 273

16 Given Polynomial Order 277
16.1 The Bayesian Calculation 279
16.1.1 Gram-Schmidt 279
16.1.2 The Bayesian Calculation 280
16.2 Outputs From the Given Polynomial Order Package 282

17 Unknown Polynomial Order 285
17.1 Bayesian Calculations 287
17.1.1 Assigning Priors 288
17.1.2 Assigning The Joint Posterior Probability 289
17.2 Outputs From the Unknown Polynomial Order Package 291

18 Errors In Variables 295
18.1 The Bayesian Calculation 297
18.2 Outputs From The Errors In Variables Package 300

19 Behrens-Fisher 303
19.1 Bayesian Calculation 303
19.1.1 The Four Model Selection Probabilities 306
19.1.1.1 The Means And Variances Are The Same 307
19.1.1.2 The Mean Are The Same And The Variances Differ 309
19.1.1.3 The Means Differ And The Variances Are The Same 310
19.1.1.4 The Means And Variances Differ 311
19.1.2 The Derived Probabilities 312
19.1.3 Parameter Estimation 313
19.2 Outputs From Behrens-Fisher Package 314

20 Enter Ascii Model 321
20.1 The Bayesian Calculation 323
20.1.1 The Bayesian Calculations Using Eq. (20.1) 323
20.1.2 The Bayesian Calculations Using Eq. (20.2) 324
20.2 Outputs From The Enter Ascii Model Package 327

21 Test Your Own ASCII Model 329

22 Ascii Model Selection 331

23 Phasing An Image 333
23.1 The Bayesian Calculation 334
23.2 Using The Package 340
List of Figures

1.1 The Start Up Window .. 21
1.2 Example Package Interface .. 23

3.1 The Start Up Window .. 30
3.2 The Files Menu .. 31
3.3 The Load Image Selection Menu 33
3.4 The Packages Menu .. 37
3.5 The Working Directory Pull Down Menu 42
3.6 The Working Directory Poopup 44
3.7 The Settings Pull Down Menu 44
3.8 The McMC Parameters Poopup 45
3.9 The Edit Server Popup ... 48
3.10 The Submit Job Widget Group 49
3.11 The Server Widget Group 49
3.12 the Ascii Data viewer ... 50
3.13 the fid Data viewer .. 52
3.14 The Fid Data Viewer Display Type 53
3.15 The Fid Data Viewer the Options Menu 54
3.16 The Image Viewer .. 57
3.17 The Image Viewer Right Mouse Menu 58
3.18 The Prior Viewer .. 63
3.19 The Fid Model Viewer .. 66
3.20 The Data Model and Residuals 69
3.21 The Plot Information popup 70
3.22 The Posterior Probabilities 71
3.23 The Posterior Probabilities Vs Parameter Value 73
3.24 The Posterior Probabilities Vs Parameter Value a Skewed Example 74
3.25 The Expected Log Likelihood 76
3.26 The Scatter Plots ... 77
3.27 The Log Probability Plot .. 79
3.28 The Text Results Viewer ... 81
3.29 The Bayes Condensed File 84
3.30 Fortran/C Model Viewer ... 87
3.31 Fortran/C Model Viewer ... 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 the Find Resonances interface</td>
<td>230</td>
</tr>
<tr>
<td>12.1 Diffusion Tensor Interface</td>
<td>238</td>
</tr>
<tr>
<td>12.2 Diffusion Tensor Parameter Estimates</td>
<td>246</td>
</tr>
<tr>
<td>12.3 Diffusion Tensor Posterior Probability For The Model</td>
<td>246</td>
</tr>
<tr>
<td>13.1 The Big Magnetization Package Interface</td>
<td>250</td>
</tr>
<tr>
<td>13.2 Big Magnetization Transfer Example Fid</td>
<td>252</td>
</tr>
<tr>
<td>13.3 Big Magnetization Transfer Expansion</td>
<td>253</td>
</tr>
<tr>
<td>13.4 Big Magnetization Transfer Peak Pick</td>
<td>254</td>
</tr>
<tr>
<td>14.1 Magnetization Transfer Interface</td>
<td>256</td>
</tr>
<tr>
<td>14.2 Magnetization Transfer Peak Pick</td>
<td>262</td>
</tr>
<tr>
<td>14.3 Magnetization Transfer Example Data</td>
<td>263</td>
</tr>
<tr>
<td>14.4 Magnetization Transfer Example Spectrum</td>
<td>264</td>
</tr>
<tr>
<td>15.1 Magnetization Transfer Kinetics Interface</td>
<td>268</td>
</tr>
<tr>
<td>15.2 Magnetization Transfer Kinetics Arrhenius Plot</td>
<td>274</td>
</tr>
<tr>
<td>15.3 Magnetization Transfer Kinetics Water Viscosity Table</td>
<td>275</td>
</tr>
<tr>
<td>16.1 Given Polynomial Order Package Interface</td>
<td>278</td>
</tr>
<tr>
<td>16.2 Given Polynomial Order Scatter Plot</td>
<td>284</td>
</tr>
<tr>
<td>17.1 Unknown Polynomial Order Interface</td>
<td>286</td>
</tr>
<tr>
<td>17.2 The Distribution of Models</td>
<td>290</td>
</tr>
<tr>
<td>17.3 Unknown Polynomial Order Package Posterior Probability</td>
<td>292</td>
</tr>
<tr>
<td>18.1 Errors In Variables Interface</td>
<td>296</td>
</tr>
<tr>
<td>18.2 Errors In Variables McMC Values File</td>
<td>302</td>
</tr>
<tr>
<td>19.1 the Behrens-Fisher interface</td>
<td>304</td>
</tr>
<tr>
<td>19.2 Behrens-Fisher Hypotheses Tested</td>
<td>305</td>
</tr>
<tr>
<td>19.3 Behrens-Fisher Console Log</td>
<td>315</td>
</tr>
<tr>
<td>19.4 Behrens-Fisher Status Listing</td>
<td>316</td>
</tr>
<tr>
<td>19.5 Behrens-Fisher McMC Values File, The Preamble</td>
<td>317</td>
</tr>
<tr>
<td>19.6 Behrens-Fisher McMC Values File, The Middle</td>
<td>318</td>
</tr>
<tr>
<td>19.7 Behrens-Fisher McMC Values File, The End</td>
<td>319</td>
</tr>
<tr>
<td>20.1 Enter Ascii Model Interface</td>
<td>322</td>
</tr>
<tr>
<td>21.1 Test Your Own Ascii Model Interface</td>
<td>330</td>
</tr>
<tr>
<td>22.1 Ascii Model Selection Interface</td>
<td>332</td>
</tr>
<tr>
<td>23.1 Absorption Model Images</td>
<td>334</td>
</tr>
<tr>
<td>23.2 Bayes Phase Interface</td>
<td>335</td>
</tr>
<tr>
<td>23.3 Bayes Phase Listing</td>
<td>341</td>
</tr>
</tbody>
</table>
24.1 Nonlinear Phasing Example .. 344
24.2 Nonlinear Phasing Interface ... 348

28.1 Image Pixels Example ... 362

A.1 Ascii Data File Format .. 368

D.1 The McMC Values Report Header ... 386
D.2 McMC Values Report, The Middle ... 387
D.3 The McMC Values Report, The End .. 388

E.1 Writing Models A Fortran Example .. 392
E.2 Writing Models A C Example ... 393
E.3 Writing Models, The Parameter File 395
E.4 Writing Models Fortran Declarations 399
E.5 Writing Models Fortran Example ... 402
E.6 Writing Models The Parameter File 403

G.1 The FD File Header .. 409

H.1 the Posterior Probability for the Number of Outliers 412
H.2 The Data, Model and Residual Plot With Outliers 414
List of Tables

8.1 Multiplet Relative Amplitudes ... 157
8.2 Bayes Analyze Models .. 173
8.3 Bayes Analyze Short Descriptions .. 186
404
Appendix F

the Bayes Directory Organization

When the interface is started for the first time, it will define a “Bayes” directory in the user home directory. This home directory is the default location. This default can be changed on the Settings/Preferences menu. After using the software for a while, the home directory will accumulate various subdirectories and files. Here is a typical example of what is in a typical Bayes Home directory:

<table>
<thead>
<tr>
<th>Bayes.Predefined.Spec</th>
<th>System.out.txt</th>
<th>exp4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BayesAsciiModels</td>
<td>exp1</td>
<td>exp7</td>
</tr>
<tr>
<td>BayesManual.pdf</td>
<td>exp2</td>
<td>plugins</td>
</tr>
<tr>
<td>System.err.txt</td>
<td>exp3</td>
<td>resources</td>
</tr>
</tbody>
</table>

Here is a brief description of these files and what is contained in them:

Bayes.Predefined.Spec is used by the Metabolite package and contains copies of the system and user modified metabolite files. For a description of the metabolite package and the metabolite file formations, see Chapter 10.

BayesAsciiModels is a subdirectory that contains both system and user defined Ascii Models. Each model consists of at least two files, the Fortran or C code defining the model, and a parameter file that specifies among other things the prior probabilities for the parameter in the model, see Chapters 20, 22, 21, 28 and 29. Additionally, if the user happens to use the Magnetization Transfer Kinetics package, then a WaterViscosityTable will also be present in this directory. For details on this file, see Chapter 15.

BayesManual.pdf is your default copy of this manual. The default copy of the manual is located in your Bayes directory in home directory. This manual is distributed with the software and the user may download updated copies of this manual. Downloaded copies of the manual are written into the current Bayes Home directory.

System.err.txt is a file containing Java error messages and is used by us to assist in diagnosing problems, should they occur.

System.out.txt is a file containing Java console messages and is used by us to assist in diagnosing problems, should they occur.
exp1, exp2, exp4, exp4, and exp7 are the working directories defined in this Bayes directory. Working directories are work areas where an analysis is stored while it is being setup, run and analyzed. Working directories can have any names, and are not necessarily prefixed by “exp”.

plugins is a directory created and used by Java. Plugins are installed in this directory as needed.

resources is a directory containing the Java properties files. This file contains various settings that are remembered by the system. For example, it contains the list of servers, their names, IP address, port numbers, etc.

The Work Directories named exp1, exp2, etc. are users defined working directories. These directories are used by the interface to contain an analysis. Only a single analysis is contained in a given working directory. However, multiple working directories can be in use at any given time. Just as the Bayes home directory contained a number of files and subdirectories, so too, the individual working directories contain a number of files and subdirectories. However the contents of these subdirectories is very similar. Here is a typical example of what is found inside a working directory:

Bayes.model.fid BayesOtherAnalysis fid images
BayesAnalyzeFiles dir.info image.fid model.compile

Each of these files and subdirectories are used by the interface for very specific purposes. Here is a very brief discussion of what these files and directories are used for:

Bayes.model.fid is written by packages that process fid data. For example, when the frequency finding program is run and a simulated model of the data is being viewed, that fid model is written into the Bayes.model.fid directory. This fid directory is in standard Varian fid file format and, consequently, the directory contains a fid, procpar and text file.

BayesAnalyzeFiles is a subdirectory contains outputs from the frequency finding package named Bayes analyze. For more on these files see Chapter 8.1.

BayesOtherAnalysis is a subdirectory that contains the inputs and outputs for most Ascii packages, i.e., exponential, enter Ascii, magnetization transfer, miscellaneous and histogram packages all use this directory to store inputs and outputs.

dir.info contains the current status of the analysis in this package. When the user leaves a directory for any reason, the interface writes this file and when the user rejoins this working directory the dir.info file is used to restore the analysis to its status at the time the user departed.

fid contains the current spectroscopic fid loaded into this working directory. This directory is in standard Varian fid file format.

image.fid contains the current image fid loaded into this working directory. This directory is in standard Varian image fid file format.

images contains the images and Abscissa currently loaded into this working directory. All images contained in this directory are in “4dfp” format, see Chapter G for a description of this file format.

model.compile is a subdirectory that is used whenever a model is built by the interface. This directory typically contains the last model built, a compile listing and if the compile was successful the executable.
Bibliography

[43] Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

