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Abstract. This paper gives an algorithm for calculating posterior probabilities using thermody-
namic integration. The thermodynamic integration calculations are accomplished by annealing an
ensemble of Markov chains with an adaptive schedule. The algorithm includes a method for deter-
mining “good” starting positions for the chains at each new value of the annealing parameter.

INTRODUCTION

At The 22nd Annual Conference on Bayesian Methods and Maximum Entropy in Sci-
ence and Engineering, John Skilling gave a presentation suggestively titled "How I Do
It" in which he presented a method for making Bayesian model selection calculations
[1]. Skilling’s method uses thermodynamic integration to calculate the posterior proba-
bilities. The thermodynamic integration calculations are accomplished by annealing an
ensemble of Markov chains. In this paper we present some details of Skilling’s method
as we have worked them out.

MODEL SELECTION

Given the set of propositionsMk = “The measured data are from modelk, gk(t,xk),”
k = 1, . . . ,K the goal of model selection is to determine which model has the highest
credibility in light of the observed data and known information. The propositions are
assumed to be mutually exclusive but not necessarily complete.

Model selection is performed by comparing the posterior probabilities for theK
models. Using Bayes rule, an expression for the posterior probability for modelk can be
written as

p(Mk|DI) ∝ p?(Mk|I)p?(D|MkI). (1)

In (1) the symbolD is a proposition that denotes the data produced in an observation
while the symbolI is a proposition denoting the prior information. Here the superscript
on p? denotes an unnormalized probability orpdf. In (1) the termp?(Mk|I) is a prior
probability and the termp?(D|MkI) is the likelihood. The prior must be assigned. Taking



the log of (1) yields

ln p(Mk|DI) = ln p?(D|MkI)+ ln p?(Mk|I)+Constant. (2)

For an incomplete set of models it is convenient to compare the models by computing
the natural log of the posterior odds ratio for each model:

ln(odds ratio) = ln

{
p(Mk|DI)

min[p(Mk|DI)]

}
. (3)

The value of the log odds ratio for modelk does not dependent on the constant in (2) and
so can be calculated usingln p?(D|MkI) andln p?(Mk|I). Because the priorp(Mk|I) is
assigned, calculation of the odds ratios reduces to calculating values that are proportional
to the likelihoodsp(D|MkI) or, equivalently, calculatingln p?(D|MkI).

Using Bayes’ Rule the posteriorpdf for the parameters of modelk can be written as:

p(xk|DMkI) =
p(xk|MkI)p?(D|MkxkI)

p?(D|MkI)
, (4)

where the normalizing constant

p?(D|MkI) =
∫

dxk p(xk|MkI)p?(D|MkxkI) (5)

is proportional to the desired likelihoods. While (5) is a formal expression for the likeli-
hoods, it is usually not useful for actually calculating the likelihoods. Multidimensional
integrals over the model parameters must be evaluated in order to calculate the like-
lihoods using (5). Becausep?(D|MkxkI) can only be evaluated for specific values of
xk these integrals cannot be evaluated analytically. In general, numerical evaluation of
multidimensional integrals using quadrature is difficult and becomes more difficult as
the dimensionality of the integral increases. The dimensionality of the integral required
to evaluate (5) can be high since it is equal to the number of parameters in the model
under consideration. In addition, the integrand often has one or more very large and very
narrow peaks so that a few small regions of the parameter space contribute most of the
integral’s value. Also, for some problems the dynamic range ofp?(D|MkxkI) is suffi-
ciently large so that only the log ofp?(D|MkxkI) can be expressed as a floating-point
number. In this case the likelihoods can not be evaluated using (5).

THERMODYNAMIC INTEGRATION

Thermodynamic integration is an indirect method for calculatingln p?(D|MkI) that
avoids the difficulties associated with the direct evaluation of (5). Thermodynamic inte-
gration comes originally from statistical thermodynamics but is derived here mathemat-
ically following [2].

Derivation of the method begins by introducing an annealing parameterβ into (4) and
defining

p(x|MDβ I)
4
=

p(x|MI){p?(D|MxI)}β

p?(D|Mβ I)
for 0≤ β ≤ 1 (6)



where
p?(D|Mβ I) =

∫
dx p(x|MI){p?(D|MxI)}β . (7)

In the expressions above, the subscriptk has been dropped fromM andx to simplify the
notation. Forβ = 1,

p?(D|Mβ I)
∣∣∣
β=1

= p?(D|MI) (8)

is the desired likelihood. Forβ = 0

p?(D|Mβ I)
∣∣∣
β=0

=
∫

dx p(x|MI) = 1 (9)

because a normalized prior for the model parameters must be assigned.
Using the chain rule,

d
dβ

ln p?(D|Mβ I) =
1

p?(D|Mβ I)
d

dβ
p?(D|Mβ I). (10)

Substituting (7) into the right-hand side of (10), taking the derivative and simplifying
the result yields

d
dβ

ln p?(D|Mβ I) =−
∫

dxEL(x)p(x|MDβ I), (11)

where
EL(x)

4
=− ln p?(D|MxI). (12)

The integral in (11) can be written as the expected value of the energyEL(x) so that

d
dβ

ln p?(D|Mβ I) =−〈EL(x)〉β . (13)

Integrating the equation above with respect toβ from 0 to 1 yields the desired expression
for the log likelihood:

ln p?(D|MI) =−
∫ 1

0
dβ 〈EL(x)〉β . (14)

CALCULATING THE LOG LIKELIHOOD

The method for calculatingln p?(D|MI) using (14) depends on the ability of the Markov
chain Monte Carlo method (MCMC) to easily approximate the expected value of func-
tions. For each value ofβ , the integrand of (14) is given by the expression

〈EL(x)〉β =
∫

dxEL(x)p(x|DMβ I). (15)



To approximate〈EL(x)〉β , a sample ofx is drawn from each of an ensemble ofJ Markov
chains1. Replacingp(x|DMβ I) in (15) with its Monte Carlo approximation,

p(x|DMβ I)≈ 1
J

J

∑
j=1

δ (x−x j), (16)

yields

〈EL(x)〉β ≈
1
J

J

∑
j=1

EL(x j). (17)

With 〈EL(x)〉β calculated for discrete values ofβ for 0≤ βi ≤ 1, the one dimensional
integral in (14) can be determined using any appropriate quadrature rule. For example,
using the Trapezoidal rule, the integral can be approximated by

∫ 1

0
dβ 〈EL(x)〉β ≈

i=I−1

∑
i=1

[〈EL(x)〉βi+1
−〈EL(x)〉βi

]∆β i

2
, (18)

whereβ1 = 0, βI = 1, and∆β i = βi+1−βi > 0 for i = 1, . . . , I −1. In the evaluation of
(17) for use in (18), the idea is to use the final samples drawn from the ensemble ofJ
Markov chains atβi to determine bothβi+1 and the starting positions for the chains at
βi+1. In [1] Skilling presented practical methods for accomplishing both of these tasks.

Putting aside for the moment the problem of determiningβi+1, we assume thatβi+1
has been determined and focus on determining starting positions for the chains atβi+1
from the ending positions of the chains atβi . It is convenient to assume that the model
has been reparametrized so thatp(x|MI) is uniform on the unit hypercube2. In this case,
no starting chain positions are needed forβ = 0 (i = 1) since theJ samples ofx can
be drawn directly using a uniform random number generator. For the assumed uniform
prior,

p?(x|MDβ I) = exp(−βEL(x)). (19)

Importance sampling with resampling [5, 6] is used to determine starting positions for
the chains atβi+1 from the ending positions of the chains atβi . At βi+1, the importance
weights are calculated for the endingx j at βi using the expression

w j =
p?(x j |MDβi+1I)
p?(x j |MDβi I)

= exp(−∆β iEL(x j)). (20)

1 Note that thex j can be drawn fromp(x|DMβ I) with MCMC using ln p?(D|MxI) (and the assigned
prior pdf for x) without needing to know the value of the normalizing constant in the denominator of (6).
This is important becauseln p?(D|MxI) can be calculated directly solving the dynamic range problem and
the normalizing constant is the quantity we wish to determine.
2 In the Markov chain Monte Carlo method, this reparametrization is necessary if the Hilbert curve is to
be used in a binary slice sampling algorithm [3, 4]. With the Hilbert curve a single integer can represent
two or more real parameters so that multi-dimensional slice sampling is reduced to one-dimensional slice
sampling. Use of the Hilbert curve with binary slice sampling avoids the problems often encountered in
setting the adjustable parameters of a multivariate MCMC method



The weights are then normalized so that

Wj = J
w j

∑J
j=1w j

. (21)

Using the normalized weights to form a Monte Carlo approximation gives

p(x|DMβi+1I)≈ 1
J

J

∑
j=1

Wjδ (x−x j). (22)

Resampling (22) according to the normalized importance weights so that the new
weights are non-negative integers yields a Monte Carlo approximation from which the
chain starting positions can be determined;

p(x|DMβi+1I)≈ 1
J

J

∑
j=1

Njδ (x−x j), (23)

where〈Nj〉= Wi and∑J
j=1Nj = J. BecauseNj can be zero some samples can be deleted

and becauseNj can be greater than one, some samples can be repeated. The values of
Nj are chosen so that for any bounded functionf (x)

〈 f (x)〉 ≈ 1
J

J

∑
j=1

Nj f (x j) (24)

and so that the expectation of the right-hand side of (24) converges (in some sense, see
[5]) to 〈 f (x)〉 asJ→ ∞. Because of this, the set of samples withNj copies ofx j for j =
1. . .J can be thought of as representative ofp(x|DMβi+1I) and so used as the starting
positions for the chains atβi+1. These starting positions are clearly not independent
so a sufficient number of chain steps must be taken so that the chain positions are
reasonably independent before the final chain positions are used to approximate the
value of〈EL(x)〉β+1.

In Skilling’s method for resampling the chains are first sorted according to their
weights so thatj = 1 corresponds to the chain with the minimum weight andj = J
corresponds to the chain with the maximum weight. After sorting, the integer valued
weights are determined forj = 1, . . . ,J using the expression

Nj =
J−1

∑
k=0

[
U

(
u+k−

j−1

∑
i=1

Wi

)
−U

(
u+k−

j

∑
i=1

Wi

)]
(25)

whereu∼ uniform(0,1) and the unit step function

U(x) =

{
1 for x > 0
0 for x≤ 0.

Figure 1 illustrates the determination ofNj for an example with five chains. The figure
is a vertically stacked bar chart where the width of each bar is the normalized weight
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FIGURE 1. Vertically stacked bar chart of normalized importance weights.

for each chain. The bars are stacked in order of increasing width because this ensures
that similarly-weighted chains are treated similarly3. The pointsu+ k for k = 0, . . . ,4
are also plotted on the bar chart. The value ofNj is equal to the number of points that
fall within the bar of widthWj . For the example in Figure 1,

p(x|DMβi+1I)≈ 1
5

(
δ (x−x1)+δ (x−x3)+3δ (x−x5)

)
. (26)

Because of the use of resampling some of the chains in the ensemble can begin
at the same starting positions. If too many of the chains begin at the same starting
positions then the MCMC will have to be run for many chain steps to achieve reasonably
independent samples. Because of this, it is prudent to choose∆β i so that most of theNj
are equal to one. In particular, it is important to avoid discarding most of the samples in
favor of a few samples with the highest weights. Choosing∆β i to achieve a fixed ratio
of the maximum weight to the minimum weight accomplishes these goals. Using (19) it
is straightforward to show that

∆β i =
ln

{
max(w j )
min(w j )

}

max[EL(x j)]−min[EL(x j)]
. (27)

The value ofmax(w j)/min(w j) should be slightly greater that one but not too much
greater. Use of (27) results in adaptive annealing that decreases∆β i (slows cooling)
whenmax[EL(x j)]−min[EL(x j)] increases indicating that the MCMC is having diffi-
culty.

Figure 2 illustrates the adaptive annealing that occurs in a problem proposed by Cor-
nelius Lanczos [7]. In this problem the data are obtained by evaluating0.0951exp(−t)+
0.8607exp(−3t)+1.5576exp(−5t) at t = 0.05m for 0≤m≤ 23and then rounding the

3 For example, if a group of 10 chains each have weightW = 2.4, then exactly 24 starting positions will be
taken from these chains. In contrast, random ordering of the chains would result in a Poisson distribution
of mean 24 for the number of starting positions taken from the group.
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FIGURE 2. Expected value of the energy for two different models.

result to two decimal places. In Figure 2,〈EL(x)〉βi
is plotted for the following models:

g1(t) = 3x1exp[−3x2t] andg2(t) = 3x1exp[−3x2t]+3x3exp[−3(x2+x4)t]. For the pur-
pose of making a clear illustration,max(w j)/min(w j) = 2 and an ensemble of 10 chains
were used.

SUMMARY

The following pseudo-code summarizes the calculation ofln p?(D|MI) using theselec-
tive annealingalgorithm presented in the previous section:

β1 = 0
Loop on theβ index i = 1,2, . . .

If βi = 0 {
Drawx j for j = 1, . . . ,J from the unit hypercube }

If βi 6= 0 {
Drawx j for j = 1, . . . ,J from p(x|DMβi I) using MCMC and the starting

positions determined atβi−1 }
Calculate〈EL(x)〉βi

using (17)
If βi = 1 {

I = i
Break out of theβ index loop }

Calculate∆βi using (27)
βi+1 = βi +∆βi
If βi+1 > 1 {

βi+1 = 1
∆βi = 1−βi }



Calculatew j for j = 1, . . . ,J using (20)
CalculateWj for j = 1, . . . ,J using (21)
Sort the chains according toWj
CalculateNj for j = 1, . . . ,J using (25)
Determine the chain starting positions forβi+1 usingNj andx j

End ofβ index loop
Calculateln p∗(D|MI) using (18)
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