Bayesian Analysis Users Guide
Release 4.00, Manual Version 1

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: larry@bayes.wustl.edu

October 21, 2016
Contents

1 An Overview Of The Bayesian Analysis Software 19
 1.1 The Server Software 19
 1.2 The Client Interface 22
 1.2.1 The Global Pull Down Menus 24
 1.2.2 The Package Interface 24
 1.2.3 The Viewers 27

2 Installing the Software 29

3 the Client Interface 33
 3.1 The Global Pull Down Menus 35
 3.1.1 the Files menu 35
 3.1.2 the Packages menu 40
 3.1.3 the WorkDir menu 45
 3.1.4 the Settings menu 46
 3.1.5 the Utilities menu 50
 3.1.6 the Help menu 50
 3.2 The Submit Job To Server area 51
 3.3 The Server area 52
 3.4 Interface Viewers 52
 3.4.1 the Ascii Data Viewer 53
 3.4.2 the fid Data Viewer 53
 3.4.3 Image Viewer 59
 3.4.3.1 the Image List area 59
 3.4.3.2 the Set Image area 62
 3.4.3.3 the Image Viewing area 62
 3.4.3.4 the Grayscale area on the bottom 63
 3.4.3.5 the Pixel Info area 63
 3.4.3.6 the Image Statistics area 64
 3.4.4 Prior Viewer 65
 3.4.5 Fid Model Viewer 68
 3.4.5.1 The fid Model Format 70
3.4.5.2 The Fid Model Reports ... 71
3.4.6 Plot Results Viewer ... 71
3.4.7 Text Results Viewer ... 74
3.4.8 Files Viewer .. 80
3.5 Common Interface Plots .. 80
3.5.1 Data, Model And Residual Plot 81
3.5.2 Posterior Probability For A Parameter 82
3.5.3 Maximum Entropy Histograms ... 83
3.5.4 Markov Monte Carlo Samples ... 83
3.5.5 Probability Vs Parameter Samples plot 86
3.5.6 Expected Log Likelihood Plot ... 88
3.5.7 Scatter Plots .. 88
3.5.8 Logarithm of the Posterior Probability Plot 91
3.5.9 Fortran/C Code Viewer .. 91
3.5.9.1 Fortran/C Model Viewer Popup Editor 94

4 An Introduction to Bayesian Probability Theory 99
4.1 The Rules of Probability Theory ... 99
4.2 Assigning Probabilities ... 102
4.3 Example: Parameter Estimation ... 109
4.3.1 Define The Problem ... 110
4.3.1.1 The Discrete Fourier Transform 110
4.3.1.2 Aliases .. 113
4.3.2 State The Model—Single-Frequency Estimation 114
4.3.3 Apply Probability Theory ... 115
4.3.4 Assign The Probabilities .. 118
4.3.5 Evaluate The Sums and Integrals 120
4.3.6 How Probability Generalizes The Discrete Fourier Transform 123
4.3.7 Aliasing ... 126
4.3.8 Parameter Estimates .. 132
4.4 Summary and Conclusions ... 136

5 Given Exponential Model 137
5.1 The Bayesian Calculation .. 139
5.2 Outputs From The Given Exponential Package 141

6 Unknown Number of Exponentials 143
6.1 The Bayesian Calculations ... 145
6.2 Outputs From The Unknown Number of Exponentials Package 148

7 Inversion Recovery 151
7.1 The Bayesian Calculation .. 153
7.2 Outputs From The Inversion Recovery Package 154
8 Bayes Analyze

8.1 Bayes Model .. 159
8.2 The Bayes Analyze Model Equation 161
8.3 The Bayesian Calculations ... 167
8.4 Levenberg-Marquardt And Newton-Raphson 171
8.5 Outputs From The Bayes Analyze Package 176
 8.5.1 The “bayes.params.mnnn” Files 177
 8.5.1.1 The Bayes Analyze File Header 178
 8.5.1.2 The Global Parameters .. 182
 8.5.1.3 The Model Components 184
 8.5.2 The “bayes.model.mnnn” Files 185
 8.5.3 The “bayes.output.mnnn” File 186
 8.5.4 The “bayes.probabilities.mnnn” File 190
 8.5.5 The “bayes.log.mnnn” File 193
 8.5.6 The “bayes.status.mnnn” and “bayes.accepted.mnnn” Files 196
 8.5.7 The “bayes.model.mnnn” File 197
 8.5.8 The “bayes.summary1.mnnn” File 198
 8.5.9 The “bayes.summary2.mnnn” File 199
 8.5.10 The “bayes.summary3.mnnn” File 200
 8.6 Bayes Analyze Error Messages 200

9 Big Peak/Little Peak .. 207

9.1 The Bayesian Calculation .. 209
9.2 Outputs From The Big Peak/Little Peak Package 216

10 Metabolic Analysis ... 219

10.1 The Metabolic Model ... 223
10.2 The Bayesian Calculation .. 225
10.3 The Metabolite Models ... 228
 10.3.1 The lPGD.D2O Metabolite 228
 10.3.2 The Glutamate.2.0 Metabolite 232
 10.3.3 The Glutamate.3.0 Metabolite 235
10.4 The Example Metabolite ... 236
10.5 Outputs From The Bayes Metabolite Package 238

11 Find Resonances .. 239

11.1 The Bayesian Calculations 241
11.2 Outputs From The Bayes Find Resonances Package 246

12 Diffusion Tensor Analysis 247

12.1 The Bayesian Calculation 249
12.2 Using The Package ... 254

13 Big Magnetization Transfer 259

13.1 The Bayesian Calculation 259
13.2 Outputs From The Big Magnetization Transfer Package 262
14 Magnetization Transfer
14.1 The Bayesian Calculation ... 267
14.2 Using The Package .. 271

15 Magnetization Transfer Kinetics
15.1 The Bayesian Calculation ... 277
15.2 Using The Package .. 281

16 Given Polynomial Order
16.1 The Bayesian Calculation ... 287
16.1.1 Gram-Schmidt .. 287
16.1.2 The Bayesian Calculation .. 288
16.2 Outputs From the Given Polynomial Order Package 290

17 Unknown Polynomial Order
17.1 Bayesian Calculations .. 295
17.1.1 Assigning Priors .. 296
17.1.2 Assigning The Joint Posterior Probability 297
17.2 Outputs From the Unknown Polynomial Order Package 299

18 Errors In Variables
18.1 The Bayesian Calculation .. 305
18.2 Outputs From The Errors In Variables Package 308

19 Behrens-Fisher
19.1 Bayesian Calculation .. 311
19.1.1 The Four Model Selection Probabilities 314
19.1.1.1 The Means And Variances Are The Same 315
19.1.1.2 The Mean Are The Same And The Variances Differ 317
19.1.1.3 The Means Differ And The Variances Are The Same ... 318
19.1.1.4 The Means And Variances Differ 319
19.1.2 The Derived Probabilities 320
19.1.3 Parameter Estimation ... 321
19.2 Outputs From Behrens-Fisher Package 322

20 Enter Ascii Model
20.1 The Bayesian Calculation .. 331
20.1.1 The Bayesian Calculations Using Eq. (20.1) 331
20.1.2 The Bayesian Calculations Using Eq. (20.2) 332
20.2 Outputs From The Enter Ascii Model Package 335

21 Enter Ascii Model Selection
21.1 The Bayesian Calculations .. 339
21.1.1 The Direct Probability With No Amplitude Marginalization 340
21.1.2 The Direct Probability With Amplitude Marginalization 342
21.1.2.1 Marginalizing the Amplitudes 343
21.1.2.2 Marginalizing The Noise Standard Deviation 348
Outlier Detection 475

Bibliography 479
List of Figures

1.1 The Start Up Window ... 23
1.2 Example Package Exponential Interface 25

2.1 Installation Kit For The Bayesian Analysis Software 31

3.1 The Start Up Window ... 34
3.2 The Files Menu .. 35
3.3 The Files/Load Image Submenu 37
3.4 The Packages Menu ... 41
3.5 The Working Directory Menu 46
3.6 The Working Directory Information Popup 47
3.7 The Settings Pull Down Menu 47
3.8 The McMC Parameters Popup 48
3.9 The Edit Server Popup .. 49
3.10 The Submit Job Widgets 51
3.11 The Server Widgets Group 52
3.12 The Ascii Data Viewer ... 54
3.13 The Fid Data Viewer ... 55
3.14 Fid Data Display Type ... 56
3.15 Fid Data Options Menu 58
3.16 The Image Viewer .. 60
3.17 The Image Viewer Right Mouse Popup Menu 61
3.18 The Prior Probability Viewer 66
3.19 The Fid Model Viewer .. 69
3.20 The Plot Results Viewer 72
3.21 Plot Information Popup 73
3.22 The Text Results Viewer 75
3.23 The Bayes Condensed File 78
3.24 Data, Model, And Resid Plot 81
3.25 The Parameter Posterior Probabilities 82
3.26 The Maximum Entropy Histograms 84
3.27 The Parameter Samples Plot 85
3.28 Posterior Probability Vs Parameter Value 86
3.29 Posterior Probability Vs Parameter Value, A Skewed Example 87
3.30 The Expected Value Of The Logarithm Of The Likelihood 89
22.1 Absorption Model Images .. 352
22.2 The Interface To The Image Phasing Package 353
22.3 Linear Phasing Package The Console Log 359

23.1 Nonlinear Phasing Example ... 362
23.2 The Interface To The Nonlinear Phasing Package 366

28.1 The Interface To The Analyze Image Pixels Package 412

29.1 The Interface To The Image Model Selection Package 416
29.2 Single Exponential Example Image 419
29.3 Single Exponential Example Data 420
29.4 Posterior Probability For The ExpOneNoConst Model 421

A.1 Ascii Data File Format ... 424

D.1 The McMC Values Report Header 450
D.2 McMC Values Report, The Middle 451
D.3 The McMC Values Report, The End 452

E.1 Writing Models A Fortran Example 456
E.2 Writing Models A C Example ... 457
E.3 Writing Models, The Parameter File 459
E.4 Writing Models Fortran Declarations 463
E.5 Writing Models Fortran Example 466
E.6 Writing Models The Parameter File 467

G.1 Example FDF File Header .. 473

H.1 The Posterior Probability For The Number of Outliers 476
H.2 The Data, Model and Residual Plot With Outliers 478
List of Tables

8.1 Multiplet Relative Amplitudes ... 165
8.2 Bayes Analyze Models ... 181
8.3 Bayes Analyze Short Descriptions 195
Appendix D

McMC Values Report

The McMC Values report is the main output report from the various packages that run Markov chain Monte Carlo simulations. The report consists of three parts, the first part is shown in Fig. D.1. This part of the report is essentially a listing of the parameter file that was used when the package was run. These parameters consist of the various parameter settings used to control the Markov chain Monte Carlo simulations, the top part of this listing. The middle part consists of the information about the various prior probabilities and finally the bottom part of the parameter file is any configuration parameters that are set for this particular package. The parameter listings at the top of Fig. D.1 are standardized across all packages. Additionally, when prior probabilities are show, there format is also standardized. For those looking closely at this figure, you may notice that I have reformed this first part of the report to get it to paginate correctly.

The middle part of the Mcmc Values report is shown in Fig. D.2. The middle part of the Mcmc Values report lists the simulation that had maximum posterior probability. Since simulations are essentially defined by their posterior probabilities, the first part of this report shown the posterior probability, the likelihood and the prior probability. The NonLinear parameter estimates are just the parameters that had maximum posterior probability. Note that this is a listing of the parameters which were actually used in the Markov chain Monte Carlo simulation. For packages that use marginalization, beneath the nonlinear parameters are the estimated amplitudes. For packages that do not use marginalization, but treat amplitudes like nonlinear parameters, this section does not occur. When multiple data sets are processed these amplitudes will be repeated one time for each data set. Finally, the last part of this center section is the estimated noise standard deviation for each data set.

The last part of the Mcmc Values report is shown in Fig. D.3. The bottom part of the Mcmc Values report is the heart of this report. Before I discuss the parameter estimates, I want to draw your attention to the top part of this lower section, Fig. D.3, in particular the line containing “Log probability for the Model:”; This line is the expected logarithm of the likelihood computed using thermodynamic integration, see Chapter C for more on how this number is computed. It contains the mean and standard deviation parameter estimates. Each nonlinear parameter is listed at the front. These nonlinear parameters are followed by the amplitudes, and then the estimated noise standard deviation for each data set. The mean values estimates are computed by averaging the value of a parameter from all of the Markov chain Monte Carlo simulations. Similarly, the standard deviation is the standard deviation of the parameter estimates taken from all Markov chain Monte Carlo simulations.
Figure D.1: The McMC Values Report Header

Parameter File Listing for the Given Exponential package

! BayesExpGiven Package
! Created 03-Oct-2011 16:21:18 by larry
!
 Output Dir = BayesOtherAnalysis
 Number Of Abscissa = 1
 Number Of Columns = 1
 Number Of Sets = 1
 File Name = BayesOtherAnalysis/001.dat
 McMC Simulations = 96
 McMC Repeats = 30
 Total Mcmc Samples = 2880
 Kill Count = 9
 Minimum Annealing Steps = 101
 Histogram Type = Binned
 Outlier Detection = Disabled
 Number Of Priors = 3

 Param Name Low Mean High Std Dev Norm Prior Ordered Param Type
 Rate 0.000E+00 0.000E+00 2.432E+00 8.109E-01 -3.7417E+00 Gaussian LowHigh NonLinear
 Amplitude -1.000E+06 0.000E+00 1.000E+06 3.000E+05 -3.6262E+00 Gaussian NotOrdered Amplitude
 Constant -1.000E+06 0.000E+00 1.000E+06 3.000E+05 -3.6262E+00 Gaussian NotOrdered Amplitude

Package Parameters = 2
 Number of Exp = 2
 Constant = YES

Figure D.1: The McMC Value report is the main report from packages that run Markov chain Monte Carlo simulations. The report consists of three parts, the first part is shown here. This part of the report is essentially a listing of the parameter file that was used when the package was run. These parameters consists of the various parameter settings used to control the Markov chain Monte Carlo simulations, the top part of this listing. The middle part consists of the information about the various prior probabilities and finally the bottom part of the parameter file is any configuration parameters that are set for this particular package.
McMC Values Report for the Given Exponential Package (2 Exp with a Constant)

-------------- Simulation With Maximum Posterior Probability --------------

Probability: -0.11967275E+03
Likelihood: -0.10055787E+03
Prior: -0.19114882E+02
Number of Parameters: 2
Number of Derived: 2
Number of Model Vectors: 3
Number of Outliers: 0
Number of Sets: 1

NonLinear Parameter Estimates

<table>
<thead>
<tr>
<th>Param#</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rate_1</td>
<td>1.42948109E-04</td>
</tr>
<tr>
<td>2</td>
<td>Rate_2</td>
<td>9.95064682E-01</td>
</tr>
</tbody>
</table>

Amplitude Estimate, (Peak Posterior)

<table>
<thead>
<tr>
<th>Set#</th>
<th>Amp%</th>
<th>Amplitude_Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Amplitude_1</td>
<td>3.75907093E+01</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Amplitude_2</td>
<td>-1.25075235E+02</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Constant</td>
<td>3.76596504E+01</td>
</tr>
</tbody>
</table>

Derived Parameters Estimates

<table>
<thead>
<tr>
<th>Derived#</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time_1</td>
<td>6.99554652E+03</td>
</tr>
<tr>
<td>2</td>
<td>Time_2</td>
<td>1.00495980E+00</td>
</tr>
</tbody>
</table>

Noise Std Dev Estimates By Set

<table>
<thead>
<tr>
<th>NoiseStdDev#</th>
<th>Name, Set</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NoiseStdDev, Set 1</td>
<td>7.71617382E-01</td>
</tr>
</tbody>
</table>

-------------- End Simulation With Maximum Posterior Probability --------------

Figure D.2: This is the back or bottom part of the mcmc values report generated by the Bayes Test Data package. This part of the report consists of an image mask. This mask is one byte per pixel with the horizontal axis being the readout direction and the vertical part being the phase encode. The locations of the ones are the pixels that have a signal, the zero pixels have noise but no signal. So the first nonzero pixel is curve of 2 and ro of 5. If you look at the list of slices at the bottom the first output is pe=2 and ro=5, the numerical values are the actual values used by the program to generate this pixel.
Figure D.3: The McMC Values Report, The End

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Mean Value</th>
<th>Std. Dev.</th>
<th>Peak Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate_1</td>
<td>6.70911E-01</td>
<td>2.77481E-01</td>
<td>1.42948E-04</td>
</tr>
<tr>
<td>Rate_2</td>
<td>1.08244E+00</td>
<td>1.41600E-01</td>
<td>9.95065E-01</td>
</tr>
<tr>
<td>Time_1</td>
<td>6.61852E+00</td>
<td>1.35603E+02</td>
<td>6.99555E+03</td>
</tr>
<tr>
<td>Time_2</td>
<td>9.35569E-01</td>
<td>9.17764E-02</td>
<td>1.00496E+00</td>
</tr>
<tr>
<td>Amplitude_1, Set 1</td>
<td>-3.53161E+01</td>
<td>3.61905E+01</td>
<td>3.75907E+01</td>
</tr>
<tr>
<td>Amplitude_2, Set 1</td>
<td>-8.97797E+01</td>
<td>3.59562E+01</td>
<td>-1.25075E+02</td>
</tr>
<tr>
<td>Constant, Set 1</td>
<td>7.52243E+00</td>
<td>2.39747E+00</td>
<td>3.76597E+01</td>
</tr>
<tr>
<td>AmpRms.Set.1</td>
<td>1.31971E+02</td>
<td>1.25815E+01</td>
<td>1.35923E+02</td>
</tr>
<tr>
<td>NoiseStdDev, Set 1</td>
<td>7.80983E-01</td>
<td>9.35638E-03</td>
<td>7.71617E-01</td>
</tr>
</tbody>
</table>

The expected parameter values (mean value of the probability distributions):

The Average Log Posterior Probability Was: -122.3195 1.04559
The Average Log Prior Params: -19.6689 0.46091
The Average Log Likelihood: -102.6507 0.95375
Log Probability for the Model: -105.1542

Figure D.3: The bottom part of the Mcmc Values report is the heart of this report. It contains the mean and standard deviation parameter estimates. Each nonlinear parameter is listed at the front. These nonlinear parameters are followed by the amplitudes, and then the estimated noise standard deviation for each data set. The mean values estimates are computed by averaging the value of a parameter from all of the Markov chain Monte Carlo simulations. Similarly, the standard deviation is the standard deviation of the parameter estimates taken from all Markov chain Monte Carlo simulations. The Peak Value is just a repeat of what is shown in the center section of this report and is shown for informational purposes.
Carlo simulations. The Peak Value is just a repeat of what is shown in the center section of this report and is shown for informational purposes.

The McMC values report is meant as a kind of summary of every important aspect of the analysis. As noted the first part of this report contains the setup information. This information includes things like the number of Markov chain simulations run, the number of repeats gathered, the total number of samples gathered and the minimum number of annealing steps. The middle part of the report is a print out of the simulation that had maximum posterior probability. This print out includes probabilities, posterior, prior and likelihood and it includes the parameters that had maximum posterior probability. Note that Markov chain Monte Carlo simulations explore the posterior probability, they do not actually locate the maximum. Consequently, the parameters printed in this section are strictly the parameters that had maximum posterior for all of the simulations gathered in the analysis; they are not strictly the parameters that maximized the posterior. The bottom part of this report contains the mean and standard deviation parameter estimates and it contains an estimate and standard deviation of the various probabilities. Finally, it also includes the expected value of the logarithm of the likelihood. Because each model in each Ascii package is different, this section of the report varies from package to package, and in the case of the Ascii Model packages the report varies with the loaded model. Finally, the bottom part of this report contains the mean and standard deviation estimates.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

