Bayesian Analysis Users Guide
Release 4.00, Manual Version 1

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: larry@bayes.wustl.edu

August 21, 2013
Contents

Manual Status
17

1 An Overview Of The Bayesian Analysis Software
1.1 The Server Software
1.2 The Client Interface
1.2.1 The Global Pull Down Menus
1.2.2 The Package Interface
1.2.3 The Viewers

2 Installing the Software

3 the Client Interface
3.1 The Global Pull Down Menus
3.1.1 the Files menu
3.1.2 the Packages menu
3.1.3 the WorkDir menu
3.1.4 the Settings menu
3.1.5 the Utilities menu
3.1.6 the Help menu
3.2 The Submit Job To Server area
3.3 The Server area
3.4 Interface Viewers
3.4.1 the Ascii Data Viewer
3.4.2 the fid Data Viewer
3.4.3 Image Viewer
3.4.3.1 the Image List area
3.4.3.2 the Set Image area
3.4.3.3 the Image Viewing area
3.4.3.4 the Grayscale area on the bottom
3.4.3.5 the Pixel Info area
3.4.3.6 the Image Statistics area
3.4.4 Prior Viewer
3.4.5 fid Model Viewer
3.4.5.1 The fid Model Format

27

29

31

31

36

41

42

46

47

47

48

49

49

51

56

56

58

58

60

60

60

62

65

65
8.5 Outputs From The Bayes Analyze Package .. 167
 8.5.1 The “bayes.params.nnnn” and “bayes.model.nnnn” Files 169
 8.5.1.1 The Bayes Analyze File Header .. 169
 8.5.1.2 The Global Parameters .. 174
 8.5.1.3 The Model Components ... 175
 8.5.2 The “bayes.output.nnnn” File ... 177
 8.5.3 The “bayes.probabilities.nnnn” File ... 181
 8.5.4 The “bayes.log.nnnn” File ... 184
 8.5.5 The “bayes.status.nnnn” and “bayes.accepted.nnnn” Files 187
 8.5.5.1 The “bayes.model.nnnn” File .. 188
 8.5.6 The “bayes.summary1.nnnn” File ... 189
 8.5.7 The “bayes.summary2.nnnn” File ... 190
 8.5.8 The “bayes.summary3.nnnn” File ... 191
 8.6 Bayes Analyze Error Messages ... 192

9 Big Peak/Little Peak ... 197
 9.1 The Bayesian Calculation .. 199
 9.2 Outputs From The Big Peak/Little Peak Package 206

10 Metabolic Analysis ... 209
 10.1 The Metabolic Model .. 213
 10.2 The Bayesian Calculation ... 215
 10.3 The Metabolite Models .. 218
 10.3.1 The IPGD$_D2O$ Metabolite .. 218
 10.3.2 The Glutamate.2.0 Metabolite .. 222
 10.3.3 The Glutamate.3.0 Metabolite .. 225
 10.4 The Example Metabolite ... 226
 10.5 Outputs From The Bayes Metabolite Package 228

11 Find Resonances ... 229
 11.1 The Bayesian Calculations ... 231
 11.2 Outputs From The Bayes Find Resonances Package 236

12 Diffusion Tensor Analysis .. 237
 12.1 The Bayesian Calculation ... 239
 12.2 Using The Package ... 244

13 Big Magnetization Transfer ... 249
 13.1 The Bayesian Calculation ... 249
 13.2 Outputs From The Big Magnetization Transfer Package 252

14 Magnetization Transfer ... 255
 14.1 The Bayesian Calculation ... 257
 14.2 Using The Package ... 261
15 Magnetization Transfer Kinetics 267
 15.1 The Bayesian Calculation 269
 15.2 Using The Package 273

16 Given Polynomial Order 277
 16.1 The Bayesian Calculation 279
 16.1.1 Gram-Schmidt 279
 16.1.2 The Bayesian Calculation 280
 16.2 Outputs From the Given Polynomial Order Package 282

17 Unknown Polynomial Order 285
 17.1 Bayesian Calculations 287
 17.1.1 Assigning Priors 288
 17.1.2 Assigning The Joint Posterior Probability 289
 17.2 Outputs From the Unknown Polynomial Order Package 291

18 Errors In Variables 295
 18.1 The Bayesian Calculation 297
 18.2 Outputs From The Errors In Variables Package 300

19 Behrens-Fisher 303
 19.1 Bayesian Calculation 303
 19.1.1 The Four Model Selection Probabilities 306
 19.1.1.1 The Means And Variances Are The Same 307
 19.1.1.2 The Mean Are The Same And The Variances Differ 309
 19.1.1.3 The Means Differ And The Variances Are The Same 310
 19.1.1.4 The Means And Variances Differ 311
 19.1.2 The Derived Probabilities 312
 19.1.3 Parameter Estimation 313
 19.2 Outputs From Behrens-Fisher Package 314

20 Enter Ascii Model 321
 20.1 The Bayesian Calculation 323
 20.1.1 The Bayesian Calculations Using Eq. (20.1) 323
 20.1.2 The Bayesian Calculations Using Eq. (20.2) 324
 20.2 Outputs Form The Enter Ascii Model Package 327

21 Test Your Own ASCII Model 329

22 Ascii Model Selection 331

23 Phasing An Image 333
 23.1 The Bayesian Calculation 334
 23.2 Using The Package 340
List of Figures

1.1 The Start Up Window .. 21
1.2 Example Package Interface 23

3.1 The Start Up Window ... 30
3.2 The Files Menu .. 31
3.3 The Load Image Selection Menu 33
3.4 The Packages Menu .. 37
3.5 The Working Directory Pull Down Menu 42
3.6 The Working Directory Pop up 43
3.7 The Settings Pull Down Menu 44
3.8 The McMC Parameters Pop up 44
3.9 The Edit Server Pop up ... 45
3.10 The Submit Job Widget Group 48
3.11 The Server Widget Group 49
3.12 The Ascii Data viewer .. 50
3.13 The fid Data viewer ... 52
3.14 The Fid Data Viewer Display Type 53
3.15 The Fid Data Viewer the Options Menu 54
3.16 The Image Viewer ... 57
3.17 The Image Viewer Right Mouse Menu 58
3.18 The Prior Viewer .. 63
3.19 The Fid Model Viewer .. 66
3.20 The Data Model and Residuals 69
3.21 The Plot Information popup 70
3.22 The Posterior Probabilities 71
3.23 The Posterior Probabilities Vs Parameter Value 73
3.24 The Posterior Probabilities Vs Parameter Value a Skewed Example 74
3.25 The Expected Log Likelihood 76
3.26 The Scatter Plots .. 77
3.27 The Log Probability Plot 79
3.28 The Text Results Viewer 81
3.29 The Bayes Condensed File 84
3.30 Fortran/C Model Viewer 87
3.31 Fortran/C Model Viewer 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>the Find Resonances interface</td>
<td>230</td>
</tr>
<tr>
<td>12.1</td>
<td>Diffusion Tensor Interface</td>
<td>238</td>
</tr>
<tr>
<td>12.2</td>
<td>Diffusion Tensor Parameter Estimates</td>
<td>246</td>
</tr>
<tr>
<td>12.3</td>
<td>Diffusion Tensor Posterior Probability For The Model</td>
<td>246</td>
</tr>
<tr>
<td>13.1</td>
<td>The Big Magnetization Package Interface</td>
<td>250</td>
</tr>
<tr>
<td>13.2</td>
<td>Big Magnetization Transfer Example Fid</td>
<td>252</td>
</tr>
<tr>
<td>13.3</td>
<td>Big Magnetization Transfer Expansion</td>
<td>253</td>
</tr>
<tr>
<td>13.4</td>
<td>Big Magnetization Transfer Peak Pick</td>
<td>254</td>
</tr>
<tr>
<td>14.1</td>
<td>Magnetization Transfer Interface</td>
<td>256</td>
</tr>
<tr>
<td>14.2</td>
<td>Magnetization Transfer Peak Pick</td>
<td>262</td>
</tr>
<tr>
<td>14.3</td>
<td>Magnetization Transfer Example Data</td>
<td>263</td>
</tr>
<tr>
<td>14.4</td>
<td>Magnetization Transfer Example Spectrum</td>
<td>264</td>
</tr>
<tr>
<td>15.1</td>
<td>Magnetization Transfer Kinetics Interface</td>
<td>268</td>
</tr>
<tr>
<td>15.2</td>
<td>Magnetization Transfer Kinetics Arrhenius Plot</td>
<td>274</td>
</tr>
<tr>
<td>15.3</td>
<td>Magnetization Transfer Kinetics Water Viscosity Table</td>
<td>275</td>
</tr>
<tr>
<td>16.1</td>
<td>Given Polynomial Order Package Interface</td>
<td>278</td>
</tr>
<tr>
<td>16.2</td>
<td>Given Polynomial Order Scatter Plot</td>
<td>284</td>
</tr>
<tr>
<td>17.1</td>
<td>Unknown Polynomial Order Interface</td>
<td>286</td>
</tr>
<tr>
<td>17.2</td>
<td>The Distribution of Models</td>
<td>290</td>
</tr>
<tr>
<td>17.3</td>
<td>Unknown Polynomial Order Package Posterior Probability</td>
<td>292</td>
</tr>
<tr>
<td>18.1</td>
<td>Errors In Variables Interface</td>
<td>296</td>
</tr>
<tr>
<td>18.2</td>
<td>Errors In Variables McMC Values File</td>
<td>302</td>
</tr>
<tr>
<td>19.1</td>
<td>the Behrens-Fisher interface</td>
<td>304</td>
</tr>
<tr>
<td>19.2</td>
<td>Behrens-Fisher Hypotheses Tested</td>
<td>305</td>
</tr>
<tr>
<td>19.3</td>
<td>Behrens-Fisher Console Log</td>
<td>315</td>
</tr>
<tr>
<td>19.4</td>
<td>Behrens-Fisher Status Listing</td>
<td>316</td>
</tr>
<tr>
<td>19.5</td>
<td>Behrens-Fisher McMC Values File, The Preamble</td>
<td>317</td>
</tr>
<tr>
<td>19.6</td>
<td>Behrens-Fisher McMC Values File, The Middle</td>
<td>318</td>
</tr>
<tr>
<td>19.7</td>
<td>Behrens-Fisher McMC Values File, The End</td>
<td>319</td>
</tr>
<tr>
<td>20.1</td>
<td>Enter Ascii Model Interface</td>
<td>322</td>
</tr>
<tr>
<td>21.1</td>
<td>Test Your Own Ascii Model Interface</td>
<td>330</td>
</tr>
<tr>
<td>22.1</td>
<td>Ascii Model Selection Interface</td>
<td>332</td>
</tr>
<tr>
<td>23.1</td>
<td>Absorption Model Images</td>
<td>334</td>
</tr>
<tr>
<td>23.2</td>
<td>Bayes Phase Interface</td>
<td>335</td>
</tr>
<tr>
<td>23.3</td>
<td>Bayes Phase Listing</td>
<td>341</td>
</tr>
</tbody>
</table>
List of Tables

8.1 Multiplet Relative Amplitudes .. 157
8.2 Bayes Analyze Models .. 173
8.3 Bayes Analyze Short Descriptions 186
Appendix D

McMC Values Report

The McMC Values report is the main output report from the various packages that run Markov chain Monte Carlo simulations. The report consists of three parts, the first part is shown in Fig. D.1. This part of the report is essentially a listing of the parameter file that was used when the package was run. These parameters consist of the various parameter settings used to control the Markov chain Monte Carlo simulations, the top part of this listing. The middle part consists of the information about the various prior probabilities and finally the bottom part of the parameter file is any configuration parameters that are set for this particular package. The parameter listings at the top of Fig. D.1 are standardized across all packages. Additionally, when prior probabilities are show, there format is also standardized. For those looking closely at this figure, you may notice that I have reformed this first part of the report to get it to paginate correctly.

The middle part of the Mcmc Values report is shown in Fig. D.2. The middle part of the Mcmc Values report lists the simulation that had maximum posterior probability. Since simulations are essentially defined by their posterior probabilities, the first part of this report shown the posterior probability, the likelihood and the prior probability. The NonLinear parameter estimates are just the parameters that had maximum posterior probability. Note that this is a listing of the parameters which were actually used in the Markov chain Monte Carlo simulation. For packages that use marginalization, beneath the nonlinear parameters are the estimated amplitudes. For packages that do not use marginalization, but treat amplitudes like nonlinear parameters, this section does not occur. When multiple data sets are processed these amplitudes will be repeated one time for each data set. Finally, the last part of this center section is the estimated noise standard deviation for each data set.

The last part of the Mcmc Values report is shown in Fig. D.3. The bottom part of the Mcmc Values report is the heart of this report. Before I discuss the parameter estimates, I want to draw your attention to the top part of this lower section, Fig. D.3, in particular the line containing “Log probability for the Model:”; This line is the expected logarithm of the likelihood computed using thermodynamic integration, see Chapter C for more on how this number is computed. It contains the mean and standard deviation parameter estimates. Each nonlinear parameter is listed at the front. These nonlinear parameters are followed by the amplitudes, and then the estimated noise standard deviation for each data set. The mean values estimates are computed by averaging the value of a parameter from all of the Markov chain Monte Carlo simulations. Similarly, the standard deviation is the standard deviation of the parameter estimates taken from all Markov chain Monte
Parameter File Listing for the Given Exponential package

! BayesExpGiven Package
! Created 03-Oct-2011 16:21:18 by larry

 Output Dir = BayesOtherAnalysis
 Number Of Abscissa = 1
 Number Of Columns = 1
 Number Of Sets = 1
 File Name = BayesOtherAnalysis/001.dat
 McMC Simulations = 96
 McMC Repeats = 30
 Total Mcmc Samples = 2880
 Kill Count = 9
 Minimum Annealing Steps = 101
 Histogram Type = Binned
 Outlier Detection = Disabled
 Number Of Priors = 3

<table>
<thead>
<tr>
<th>Param Name</th>
<th>Low</th>
<th>Mean</th>
<th>High</th>
<th>Std Dev</th>
<th>Norm</th>
<th>Prior</th>
<th>Ordered</th>
<th>Param Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>2.432E+00</td>
<td>8.109E-01</td>
<td>-3.7417E+00</td>
<td>Gaussian</td>
<td>LowHigh</td>
<td>NonLinear</td>
</tr>
<tr>
<td>Amplitude</td>
<td>-1.000E+06</td>
<td>0.000E+00</td>
<td>1.000E+06</td>
<td>3.000E+05</td>
<td>-3.6262E+00</td>
<td>Gaussian</td>
<td>NotOrdered</td>
<td>Amplitude</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.000E+06</td>
<td>0.000E+00</td>
<td>1.000E+06</td>
<td>3.000E+05</td>
<td>-3.6262E+00</td>
<td>Gaussian</td>
<td>NotOrdered</td>
<td>Amplitude</td>
</tr>
</tbody>
</table>

Package Parameters = 2
Number of Exp = 2
Constant = YES

Figure D.1: The McMC Value report is the main report from packages that run Markov chain Monte Carlo simulations. The report consists of three parts, the first part is shown here. This part of the report is essentially a listing of the parameter file that was used when the package was run. These parameters consists of the various parameter settings used to control the Markov chain Monte Carlo simulations, the top part of this listing. The middle part consists of the information about the various prior probabilities and finally the bottom part of the parameter file is any configuration parameters that are set for this particular package.
McMC Values Report for the Given Exponential Package (2 Exp with a Constant)

---------------------- Simulation With Maximum Posterior Probability ----------------------
Probability: -0.11967275E+03
Likelihood: -0.10055787E+03
Prior: -0.19114882E+02
Number of Parameters: 2
Number of Derived: 2
Number of Model Vectors: 3
Number of Outliers: 0
Number of Sets: 1

NonLinear Parameter Estimates
<table>
<thead>
<tr>
<th>Param#</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rate_1</td>
<td>1.42948109E-04</td>
</tr>
<tr>
<td>2</td>
<td>Rate_2</td>
<td>9.95064682E-01</td>
</tr>
</tbody>
</table>

Amplitude Estimate, (Peak Posterior)
<table>
<thead>
<tr>
<th>Set#</th>
<th>Amp%</th>
<th>Amplitude_Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Amplitude_1</td>
<td>3.75907093E+01</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Amplitude_2</td>
<td>-1.25075235E+02</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Constant</td>
<td>3.76596504E+01</td>
</tr>
</tbody>
</table>

Derived Parameters Estimates
<table>
<thead>
<tr>
<th>Derived#</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time_1</td>
<td>6.99545652E+03</td>
</tr>
<tr>
<td>2</td>
<td>Time_2</td>
<td>1.00495880E+00</td>
</tr>
</tbody>
</table>

Noise Std Dev Estimates By Set
<table>
<thead>
<tr>
<th>NoiseStdDev#</th>
<th>Name, Set</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NoiseStdDev, Set 1</td>
<td>7.71617382E-01</td>
</tr>
</tbody>
</table>

---------------------- End Simulation With Maximum Posterior Probability ----------------------

Figure D.2: The middle part of the Mcmc Values report is the simulation that had maximum posterior probability. Since simulations are essentially defined by their posterior probabilities, the first part of this report shown the posterior probability, the likelihood and the prior probability. The NonLinear parameter estimates are just the parameters that had maximum posterior probability. Note that this is a listing of the parameters which were actually used in the Markov chain Monte Carlo simulation. For packages that use marginalization, beneath the nonlinear parameters are the estimated amplitudes. Note when multiple data sets are processed these amplitudes will be repeated one time for each data set. Next are the derived parameters and finally, the estimated noise standard deviation for each data set.
The average log posterior probability was: \(-122.3195\) \(\pm 1.04559\)
The average log prior params: \(-19.6689\) \(\pm 0.46091\)
The average log likelihood: \(-102.6507\) \(\pm 0.95375\)
Log probability for the model: \(-105.1542\)

The expected parameter values (mean value of the probability distributions):

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Mean Value</th>
<th>Std. Dev.</th>
<th>Peak Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate_1</td>
<td>6.7091E-01</td>
<td>2.7748E-01</td>
<td>1.4294E-04</td>
</tr>
<tr>
<td>Rate_2</td>
<td>1.0824E+00</td>
<td>1.4160E-01</td>
<td>9.9507E-01</td>
</tr>
<tr>
<td>Time_1</td>
<td>6.6185E+00</td>
<td>1.3560E+02</td>
<td>6.9956E+03</td>
</tr>
<tr>
<td>Time_2</td>
<td>9.3557E-01</td>
<td>9.1777E-02</td>
<td>1.0049E+00</td>
</tr>
<tr>
<td>Amplitude_1, Set 1</td>
<td>-3.5316E+01</td>
<td>3.6191E+01</td>
<td>3.7590E+01</td>
</tr>
<tr>
<td>Amplitude_2, Set 1</td>
<td>-8.9779E+01</td>
<td>3.5956E+02</td>
<td>-1.2507E+02</td>
</tr>
<tr>
<td>Constant, Set 1</td>
<td>7.5224E+01</td>
<td>2.3974E+00</td>
<td>3.7590E+01</td>
</tr>
<tr>
<td>AmpRms.Set.1</td>
<td>1.3197E+02</td>
<td>1.2581E+01</td>
<td>1.3592E+02</td>
</tr>
<tr>
<td>NoiseStdDev, Set 1</td>
<td>7.8098E-01</td>
<td>9.3566E+01</td>
<td>7.1617E+01</td>
</tr>
</tbody>
</table>

Figure D.3: The bottom part of the Mcmc Values report is the heart of this report. It contains the mean and standard deviation parameter estimates. Each nonlinear parameter is listed at the front. These nonlinear parameters are followed by the amplitudes, and then the estimated noise standard deviation for each data set. The mean values estimates are computed by averaging the value of a parameter from all of the Markov chain Monte Carlo simulations. Similarly, the standard deviation is the standard deviation of the parameter estimates taken from all Markov chain Monte Carlo simulations. The Peak Value is just a repeat of what is shown in the center section of this report and is shown for informational purposes.
Carlo simulations. The Peak Value is just a repeat of what is shown in the center section of this report and is shown for informational purposes.

The McMC values report is meant as a kind of summary of every important aspect of the analysis. As noted the first part of this report contains the setup information. This information includes things like the number of Markov chain simulations run, the number of repeats gathered, the total number of samples gathered and the minimum number of annealing steps. The middle part of the report is a print out of the simulation that had maximum posterior probability. This print out includes probabilities, posterior, prior and likelihood and it includes the parameters that had maximum posterior probability. Note that Markov chain Monte Carlo simulations explore the posterior probability, they do not actually locate the maximum. Consequently, the parameters printed in this section are strictly the parameters that had maximum posterior for all of the simulations gathered in the analysis; they are not strictly the parameters that maximized the posterior. The bottom part of this report contains the mean and standard deviation parameter estimates and it contains an estimate and standard deviation of the various probabilities. Finally, it also includes the expected value of the logarithm of the likelihood. Because each model in each Ascii package is different, this section of the report varies from package to package, and in the case of the Ascii Model packages the report varies with the loaded model. Finally, the bottom part of this report contains the mean and standard deviation estimates.
Bibliography

[43] Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.

