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The Periodogram and its Optical Analogy. 
By ARTHUR SCHUSTER, F.R.S. 

(Received November 23,-Read December 7, 1905.) 

I have recently applied the periodogram method to the investigation of 
several fluctuating quantities, and the experience thus gained has led me to 

modify slightly the original definition.* Having always laid stress on the 
fact that the periodogram supplies by calculation the transformation which 
the spectroscope instrumentally impresses on a luminous disturbance, I may 
now enter a little more closely into this optical analogy, and thus lead up to 
what I hope will be the final definition. 

Consider a parallel beam of light falling on a grating, the reflected light 
being collected at the focus of an observing telescope in the usual way. For 

simplicity of calculation I assume that the grating considered is of a 

particular type, which, in a former paper, I have called a simple grating. 
Such a grating only gives two spectra of the first order. 

If 4 (Vt + x) be the velocity at any point of the incident beam, the 

displacement at the focus of the observing telescope ist 
hl cos/3 R 
27rfNVX 

where N 
whe = cos nx (Vt + ) d. (1) 

In these equations f denotes the focal length of the telescope, h is the 

length of the lines ruled on the grating, I the width of ruled space measured 
at right angles to the lines, N gives the number of lines, and 8/ the angle 
between the direction of the optic axis of the observing telescope and the 
normal to the grating. For the sake of shortness n is written for 27r/X. The 

quantity denoted by X is the wave-length of homogeneous light which would 
have its first principal maximum at the focus of the telescope. It may be 
said to be the wave-length towards which the telescope points, and its strict 
definition is given by the relation 

I (sin a -sin /) = NX, 

where a is the angle of incidence. 
In order not to complicate needlessly the calculations, I shall assume that 

the resolving power is sufficient to ensure that at any point of the spectrum 
* 'Cambridge Phil. Soc. Trans.,' vol. 18, p. 107. 
+ 'Phil. Mag.,' vol. 37, p. 545 (1894). 
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the vibrations are nearly homogeneous; this involves that the average 
squares of the velocities are sensibly equal to the average squares of the 

displacements multiplied by 472 V2/X2. The average square of the velocity 
at the focus of the telescope is in that case- 

/h22 cos2 / R2. 
f2N2X4 

where for l2 we must put its average value. This expression represents the 
measure of the intensity at the point considered. Its line and surface 

integrals may be called the total linear intensity and the total intensity 
respectively. 

In observing a spectrum, we associate with a particular wave-length all 
the light which lies in a straight line parallel to the rulings of the grating. 
The distribution of light along a vertical line for nearly homogeneous light 
takes place according to the law a-2 sin2 a, where a = 7r hy/f X, y being the 
vertical distance. Multiplying by dy, and integrating from minus to plus 
infinity, the total intensity in a vertical line is found to be Xf/h when the 

intensity at the central maximum is unity. With the value for the central 

intensity previously found, we now obtain the total linear intensity associated 
with X to be 

hl2 cos2 / R2 (2) 
fN2x3 (2) 

Changing the variable, the expression for R takes the form 

Xoo+NA 

J cos n (Vt - x) () dx, 
JXo 

where xo is put for Vt- NX. 
Write 

XO+ NA rfxo+NX 
A = cos nx q (x)dx; B= sin nx (x) dx. 

X0 JXO 

The mean value of R2 is then equal to the mean value of 

(A2+ B2). 

A grating such as that to which the above equations apply forms two 

spectra and absorbs part of the light; we must now estimate what 
fraction of the incident beam is utilised to form the spectrum under 
consideration. For this purpose we imagine homogeneous light to fall on the 

grating, and put ( (x) = cos nx. The mean value of - (A2 + B2) is then 

easily found to be -N2X2. By substitution into (2) we find that the total 
linear intensity in the central line is now 

hl2 cos2 R (3) 
s/xL~ 
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To either side of the principal maximum the intensity varies according to 
the law a2 sin2 a, where a is equal to rl cos //fX, : representing a 
distance measured at right angles to the spectroscopic line. The total 

energy measured in the focal plane of the telescope is obtained by multi- 

plying (3) with a-2 sin2 ad!, and integrating. This gives - hi cos /3. 
If the incident light is normal to the grating, its total energy is - hl, the 

factor representing the fact that we have taken the average square of the 

velocity which is half the square of the greatest velocity as the measure of 

intensity. We conclude that 4 cos /3 is the fraction of light utilised to form 
the spectrum. 

Taking account in (2) of this, we find that the type of spectroscope 
considered estimates the intensity of light passing through its central 
meridian as being 

2h2 cos 3 (A + B ), 
fN2a" 

where for A2 and B2 their mean values are to be substituted. 
To obtain the total light within a small angular distance d/3, we must 

multiply by Fd/3; as SNd = I cos ,/3d/, we find that the total energy within 
a range dX is 

Jh (A2+ B2) dX. NX3 

If the total energy of the light incident on the grating is unity, the energy 
assigned by the grating to a range dn is therefore finally-- 

A2 + 4B2 
rNXdn. (4) 

In the application of the periodogram it is more convenient to take the 
time as the independent variable. Defining therefore- 

rto+NT pto+NT 
A = cos it ( (t) dt, B = sin ct (t) dt, () 

to to 

A2+B 2 

(4) becomes equal to - - d?c. 
7rNT 

Leaving out the constant factor, I now define 

S = (A2+B2)/NT 

to be the ordinate of the periodogram. The definition differs from the 

previous one by the factor NT, which occurs in the denominator instead of its 

square. 
The present definition is not only justified by the close optical analogy 

which has now been formally proved, but also by the resulting convenience. 
I have Ipreviously shown that, in the absence of any homogeneous 

138 [Nov. 23, 
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periodicities, the average of A2 +B2 increases in proportion to the time 

interval, NT, which occurs in the limits of the integrals for A and B. It 
follows that for such variations, the ordinate of the periodogram as at 

present defined is independent of the time limits chosen. This is an 

advantage. On the other hand, the former definition gave directly the 

amplitude of the periodic variation when it was of an absolutely homo- 

geneous character. For such homogeneous variation the present ordinate 
increases proportionally to the time interval chosen. 

The optical analogy explains the reason of this, and gives its justification. 
When homogeneous light falls on an instrument of definite resolving power 
the light in the central meridian does not by itself give sufficient indication 
of the intensity of the incident light. It is only when correction has been 
made for the lateral spreading that the true intensity can be deduced, the 
correction depending on the resolving power. It is otherwise when the 

spectrum is continuous, for in that case the light lost by lateral spreading 
is replaced by that which properly belongs to the neighbouring wave-lengths. 
Hence, in this case, the intensity in the central meridian is a true measure 
of the intensity of the incident light. 

It need hardly be pointed out how constant use is made of the fact that 
increased resolving power (not increased dispersion) brings out the homo- 

geneous lines of a spectrum by increasing their intensity beyond that of the 
continuous background. It is correspondingly one of the principal advantages 
of the periodogram method that it gives a measure of the resolving power 
necessary to isolate a true homogeneous period from the irregular fluctuations. 

Light is thrown on parts of the previous investigation by a formula 

given by Lord Rayleigh for the intensity to be assigned to the homogeneous 
components of a disturbance. If b (x) be the velocity at any point of a linear 

disturbance, so that the total intensity is 

fp (x)} dx, 

Lord Rayleigh shows that the energy to be assigned to a range dn, where 
n, = 27r/X, is 

(A2 + B2) dn/.7r, 
in which 

-oA = os ( B = o (v) d- 

The average intensity spread over a certain length L may be estimated 

by taking ov and vo+ L as lower and upper limits of the integrals, and 

averaging the values obtained by a change of vo. The energy per unit 
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length would then be found on dividing the expression in (5) by L. We 
arrive in this manner at equation (4). 

I might have confined myself to this simple deduction had I not wished 
to lay stress on the equations for instrumental resolution. This seemed 
all the more desirable because for absolutely homogeneous radiation a 
definition of the periodogram based on the average intensity per unit length 
would fail. If a simple periodicity exists, its amplitude may easily be 
derived from the ordinate of the periodogram, for, if S be that ordinate, 
the amplitude is 2 (S/NT)1. 

In practical applications the function +(t) will generally be given for 
successive intervals (a) of the time. The integrals occurring in (5) are then 

replaced by summations, unless a harmonic analyser is used. It is most 
convenient to write in this case 

s (nI-l) a /27r s\ =(- a 2 \ 

A= E , cos s , B= ,sin n s , (6) 
s=0 \ / =0 

S = (A2 + B2) 2/NT, 

where fs represents the values which p (t) takes at the successive times 
considered. 

If we take p to be equal to the total number of separate values of + (t) 
used in the calculations, we may put 

S = (A2+ B2) /. (7) 
If a harmonic analyser be used, and a b are the two Fourier coefficients, 

S = 4 (2+ b2) NT = i (2 + b2) p, 

where ap represents the complete time interval to which the Fourier analysis 
has been applied. 
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