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ABSTRACT

We start from the observation that the human brain does plausible
reasoning in a fairly definite way. It is shown that there is only a single
set of rules for doing this which is consistent and in qualitative corre-
spondence with common sense. These rules are simply the equations of
probability theory, and they can be deduced without any reference to
frequencies.

We conclude that the method of maximum-entropy inference and
the use of Bayes’ theorem are statistical techniques fully as valid as any
based on the frequency interpretation of probability. Their introduction
enables us to broaden the scope of statistical inference so that it includes
both communication theory and thermodynamics as special cases.

The program of statistical inference is thus formulated in a new
way. We regard the general problem of statistical inference as that
of devising new consistent principles by which we can translate “raw”
information into numerical values of probabilities, so that the Laplace—
Bayes model is enabled to operate on more and more different kinds
of information. That there must exist many such principles, as yet
undiscovered, is shown by the simple fact that our brains do this every
day.
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1. INTRODUCTION

Shannon’s theorem 2, in which the formula H (py...p,) = — > p; log p; is
deduced,! is a very remarkable argument. He shows that a qualifative requirement,
plus the condition that the information measure be consistent, already determines a,
definite mathematical function. Actually, this is not quite true, because he chooses
the condition of consistency (the composition law) in a particular way so as to make
H additive. Any continuous differentiable function f(H) for which f' (H) > 0 would
also satisfy the qualitative requirements and a different, but equally consistent,
composition law. Thus a qualitative requirement plus the condition of consistency
determines the function H only to within an arbitrary monotonic function. The
content of communication theory would, however, be exactly the same regardless of
which monotonic function was chosen. Shannon’s H thus involves also a convention
which leads to simple rules of combination.

This interesting situation led the writer to ask whether it might be possible
to deduce the entire theory of probability from a qualitative requirement and the
condition that it be consistent. It turns out that this is indeed possible. In terms of
the resulting theory we are enabled to see that communication theory, thermody-
namics, and current practice in statistical inference, are all special cases of a single
principle of reasoning.

In developing this theory we find ourselves in the fortunate position of having
all the hard work already done for us. The methodology has been supplied by
Shannon, the necessary mathematics has been worked out by Abel? and Cox?®, and
the qualitative principle was given by Laplace*. All we have to do is fit them
together.

Laplace’s qualitative principle is his famous remark?® that “Probability theory
is nothing but common sense reduced to calculation.” The main object of this paper
is to show that this is not just a play on words, but a literal statement of fact.

One of the most familiar facts of our experience is this: that there is such a thing
as common sense, which enables us to do plausible reasoning in a fairly consistent
way”'®. People who have the same background of experience and the same amount
of information about a proposition come to pretty much the same conclusions as to
its plausibility. No jury has ever reached a verdict on the basis of pure deductive
reasoning. Therefore the human brain must contain some fairly definite mechanism
for plausible reasoning, undoubtedly much more complex than that required for
deductive reasoning. But in order for this to be possible, there must exist consistent
rules for carrying out plausible reasoning, in terms of operations so definite that
they can be programmed on the computing machine which 18 the human brain. This
is the “experimental fact” on which our theory is based. We know that it must
be true, because we all use it every day. Our direct knowledge about this process
is, however, only qualitative in much the same way as is our direct experience of
temperature. For that reason it is necessary to use the methodology of Shannon.
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2. LAPLACE’S MODEL OF COMMON SENSE

We now turn to development of our first mathematical model. We attempt to
associate mental states with real numbers which are to be manipulated according
to definite rules. Now it is clear that our attitude toward any given proposition
may have a very large number of different “coordinates”. We form simultaneous
judgments as to whether it is probable, whether it is desirable, whether it is in-
teresting, whether it is amusing, whether it is important, whether it is beautiful,
whether it is morally right, etc. If we assume that each of these judgments might
be represented by a number, a fully adequate description of a state of mind would
then be represented by a vector in a space of a very large, and perhaps indefinitely
large, number of dimensions.

Not all propositions require this. For example, the proposition, “The refrac-
tive index of water is 1.3”, generates no emotions; consequently the state of mind
which it produces has very few coordinates. On the other hand, the proposition,
“Your wife just wrecked your new car,” generates a state of mind with an extremely
large number of coordinates. A moment’s introspection will show that, quite gen-
erally, the situations of everyday life are those involving the greatest number of
coordinates. It is just for this reason that the most familiar examples of mental
activity are the most difficult ones to reproduce by a model. We might speculate
that this is the reason why natural science and mathematics are the most successful
of human activities; they deal with propositions which produce the simplest of all
mental states. Such states would be the ones least perturbed by a given amount of
imperfection in the human brain.

The simplest possible model is one-dimensional. We allow ourselves only a
single number to represent a state of mind, and wish to discover how much of
mental activity we can reproduce subject to that limitation. For the time being we
call these numbers plausibilities, reserving the term “probability” for a particular
quantity to be introduced later.

The way in which states of mind are to be reduced to numbers is at this stage
very indefinite. For the time being we say only that greater plausibility must always
correspond to a greater number, and we assume a continuity property which can be
stated only imprecisely: infinitesimally greater plausibility should correspond only
to an infinitesimally greater number.

We denote various propositions by letters 4, B, C,. ... By the symbolic product
AB we mean the proposition “Both A and B are true.” The expression (A + B) is
to be read, “At least one of the propositions 4, B is true.” The plausibility of any
proposition A will in general depend on whether we accept sme other proposition
B as true. We indicate this by the symbol

(A|B) = conditional plausibility of A, given B.
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Thus, for example,

AB|C) = plausibility of (AandB), given C.
&
(4 + B|CD) = plausibility that at least one of the propositions 4, B is true,
given that both C and D are true,
(A|C) > (B|C) means that, on data C, A is more plausible than B.

In order to find rules for manipulation of these symbols, we are guided by two
requirements:
1) The rules must correspond qualitatively to common sense. (2-1)
2) The rules must be consistent. This is used in two ways:

If a result can be arrived at in more than one way,
we must obtain the same result for every possible (2-2)

sequence of operations on our symbols.

The rules must include deductive logic as a special case.

In the limit where propositions become certain (2-3)

or 1mpossible in any way, every equation must reduce

to a valid ezample of deductive reasoning.

By a successful model we mean any set of rules satisfying these conditions. If
we find that we have any freedom of choice left after imposing them, we can exercise
that freedom to adopt conventions so as to make the rules as simple as possible.
If we find that these requirements are so restrictive that there is in effect only one
possible model satisfying them, are we entitled to claim that we have discovered the
mechanism by which the brain does “one-dimensional” plausible reasoning? Except
for the proviso that the human mind is imperfect, it seems that to deny that claim
would be to assert that the human mind operates in a deliberately inconsistent way.

We now seek a consistent rule for obtaining the plausibility of AB from the plau-
sibilities of A and B separately. In particular, let us find the plausibility (AB|C).
Now in order for AB to be true on data C, it is first of all necessary that B be true;
thus the plausibility (B|C) must be involved. If B is true, it is further necessary
that A be true; thus (A|BC) is needed. I, however, B is false, then AB is false
independently of any statement about A. Therefore (A|C) is not needed; it tells us
nothing about AB that we did not already have in (A|BC). Similarly, (A4|B) and
(B|A) are not needed; whatever plausibility A or B might have in the absence of
data C, could not be relevant to judgments of a case where we know from the start
that C' s true. .

We could, of course, interchange A and B in the above paragraph, so that
knowledge of (A|C) and (B|AC) would also suffice. The fact that we must obtain
the same value for (AB|C) no matter which procedure we choose is one of our
conditions of consistency.
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Thus, we seek some function F'(z,y) such that

(AB|C) = F(A[BC),(B|C)]. (2-4)

It is easy to exhibit special cases which show that no relation of the form (AB|C) =
F[(A|C}),(B|C)], or of the form (AB|C) = F[(A|C),(A|B),(B|C)]; could satisfy
conditions (2-1), (2-2), (2-3).

Condition (2-1) imposes the following limitations on the function F (z,y). An
increase in either of the plausibilities (A|BC') or (B|C) must never produce a de-
crease in (AB|C). Furthermore, F (z,y) must be a continuous function, otherwise
we could produce a situation where an arbitrarily small increase in (A|BC) or (B{C')
still results in the same large increase in (AB|C'). Finally, an increase in either of the
quantities (A|BC) or (B|C) must always produce some increase in (AB|C'), unless
the other one happened to represent impossibility. Thus condition (2-1) requires

that

oF )
f F(z,y)must be a continuous function, with (3—) >0
x

>

oF -
and (3_> > 0. The equality sign can apply only when (2-5)
Y

| (AB|C) represents impossibility. )

The condition of consistency (2-2) places further limitations on the possible
form of the function F'(z,y). For we can calculate (ABD|C) from (2-4) in two
different ways. If we first group AB together as a single proposition, two applications
of (2-4) give us

(ABD|C) = F[(AB|DC),(D|C)] = F {F[(A|BDC),(B|DC)],(D|C)} .
But if we first regard BD as a single proposition, (2-4) leads to
(ABDI|C) = F[(A|BDC),(BD|C)| = F{(A|BDC), F[(B|DC),(D|C)]}
Thus, if (2-4) is to be consistent, F (z,y) must satisfy the functional equation
F[F(z,y),z] = Flz,F (y,2)]. (2-6)

Conversely, it is easily shown by induction that if (2-6) is satisfied, then (2-4)
is automatically consistent for all possible ways of finding any number of joint
plausibilities, such as (ABCDEF|G). This functional equation turns out to be one
which was studied by N.H. Abel.? Its solution, given also by Cox,? is

p[F(z,y)] =p(z) p(y), (2-7)

where p(x) is an arbitrary function. By (2-5) it must be a continuous monotonic
function. Therefore our rule necessarily has the form

PI(ABIC)] = p[(A|BC)] p[(BIC)],
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which we will also write, for brevity, as’

p(AB|C) = p(A|BC) p(B|C). (2-8)

The condition (2-3) above places further restrictions on the function p(z).
Assume first that A is certain, given C'. Then (AB|C) = (B|C), and (A|BC) =
(A|C) = (A|A). Equation (2-8) then reduces to

p(B|C) =p(A]4) p(B|C)
and this must hold for all (B|C'). Therefore,
Certainty must be represented by p = 1. (2-9)

If for some particular degree of plausibility (A|BC'), the function p (A|BC) be-
comes zero or infinite, then (2-8) says that (B|C) becomes irrelevant to (AB|C).
This contradicts common sense unless (A|BC') corresponds to impossibility. There-
fore

p cannot become zere or infinite

for any degree of plausibility other than impossibility. (2-10)
Now assume that A is impossible, given C. Then (AB|C) = (A|BC) = (A|C),
and (2-8) reduces to
p(A|C) =p(A|C) p(BIC)
which must hold for all {B|C). There are three choices for p(A|C) which satisfy
this; p(A|C) =0, or 400, or —oo. But by (2-9) and (2-10) the choice —co must be
excluded, for any continuous monotonic function which has the values +1 and —oo

at two given points necessarily passes through zero at some point between them.
Therefore

Impossibility must be represented by p =10, or p = co. (2-11)

Evidently the plausibility that A is false is determined by the plausibility that
A is true in some reciprocal fashion. We denote the denial of any proposition by
the corresponding small letter; i.e.

a = “A 1s false”

b= “B 1s false”

We could equally well say that A = “a is false,” ete. Clearly, (A + a) is always true,
and Aa is always false.

Since we already have some rules for manipulation of the quantities p(A4|B),
it will be convenient to work with p(A|B) rather than (A|B). For brevity in the
following derivation we use the notation

[A1B] = p(A[B).
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Now there must be some functional relationship of the form
[a| B] = S [A]B] (2-12)

where by (2-1), §(z) must be a monotonic, decreasing function. Since the proposi-
tions @ and A are reciprocally related, we must have also

[A|B] = S|a|B]. (2-13)
Therefore the function S (z) must satisfy the functional equation
S[S(z)] ==. (2-14)

To find another condition which S(z) must satisfy, apply (2-8) and (2-12)
alternately as follows:

[ABIC] = [A[BC][BIC] = §[a|BC] [BIC] = [BIC] { {ﬁf'g] } S (2a1s)

The original expression [AB|C] is symmetric in 4 and B. So also, therefore, is the
final expression; thus

[AB|C] = [4|C] s{%%}. (2-16)

The expressions (2-15) and (2-16) must be equal whatever A, B, C, may be. In
particular, they must be equal when b = AD. But in this case,

[bA|CT = [bC] = S[BIC],

[aB|C] = [a|C] = S{A|C].

Substituting these into (2-15) and (2=16), we see that S (z) must also satisfy the

functional equation
S S
"y [—@} —y s [—(_)J . (217)
x y
R. T. Cox® has shown that the only continuous differentiable function satisfying
both (2-14) and (2-17) is
S(z) =(1—a™)¥/m (2-18)

where m is any non—zero constant. Therefore the reciprocal relation between [a| B]
and [A|B] necessarily has the form

[AIB]™ + [a|B]™ = 1. (2-19)

Suppose we represent impossibility by p = 0. Then, from (2-19), m must
be chosen positive. However, use of different values for m does not represent any
freedom of choice that we did not already have in the arbitrariness of the function



8 E.T.JAYNES

p(z). The only condition on p(z) is that it be a continuous monotonic function
which increases from 0 to 1 as we go from impossibility to certainty. If the function
p1 () satisfies this condition, so also does the function

pa (z) = [p1 («)]" .
Therefore if we write (2-19) in the form
p(A|B)+p(a|B) =1 (2-20)

in which p(z) is understood to be an arbitrary monotonic function, Eq. (2-20) is
just as general as is (2-19).

Suppose, on the other hand, that we represent impossibility by p = oc. Then
we must choose m negative. Once again, to say that we can use different values of
m does not say anything that is not alrecady said in the statement that p(z) is an
arbitrary monotonic function which increases from 1 to oo as we go from certainty
to impossibility. The equation

(R S
p(AIB) " p(a|B)

1 (2-21)

1s also just as general as (2-19).

An entire consistent theory of plausible reasoning can be based on (2-21) as
well as on (2-20). They are not, however, different theories, for if p; (z) satisfies
(2-21), the equally good function

satisfies (2-20), and says exactly the same thing. If we agree to use only functions
of type (2-20), we are not excluding any possibility of representation, but only
removing a certain redundancy in the mathematics.

From (2-20) we can derive the last of our fundamental equations. We seek an
expression for the plausibility of (A 4+ B), the statement that at least one of the
propositions A, B 1s true. Noting that if D = A 4+ B, then d = ab, we can apply
(2-20) and (2-8) in alternation to get

p(A+BIC) = 1-p(ab|C) = 1 - p(albC) p(3[C)
— 1= [1 = p(AIC)] p(HC) = p(BIC) + p(AH|C)
= p(BIC) + p(AIC) [L - p(BIAC)]
| p(A + BIC) = p(A|C) + p(B|C) - p(ABIC). (2-22)

Equations (2-8) and (2-22) are the fundamental equations of the theory of proba-
bility. From them all other relations follow.
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We have found that the most general consistent rules for plausible reasoning
can be expressed in the form of the product and sum rules (2-8) and (2-22), in
which p(z) is an arbitrary continuous monotonic function ranging from 0 to 1. It
might appear that different choices of the function p(z) will lead to models with
different content, so that we have found in effect an infinite number of different
possible consistent rules for plausible reasoning. This, however, is not the case, for
regardless of which function p(z) we choose, when we start to use the theory we find
that it is always p, not z, that has a definitely ascertainable numerical value. To
demonstrate this in the simplest case, consider n propositions Ay, Ay, ..., A, which
are mutually exclusive; i.e., p(4;4;|C) = p(A:|C)éi;. Then repeated application
of (2-22) gives the usual sum rule

p(Ar+.. .+ A4lC) =) p(ALC). (2-23)
k=1

If now the Ay are all equally likely on data C (this means only that data C' gives
us no reason to expect that one of them is more valid than the others), and one of
them must be true on data C, the p(A;|C) are all equal and their sum is unity.
Therefore we necessarily have

p(A0) = = (2:24)

This is Laplace’s “Principle of Insufficient Reason.” No matter what function p(z)
we choose, there is no escape from the result (2-24). Therefore, rather than saying
that p is an arbitrary monotonic function of (A|C), it is more to the point to say that
(A|C) is an arbitrary monotonic function of p, in the interval 0 < p < 1. It is the
connection of the numbers (A|C') with intuitive states of mind that never gets tied
down in any definite way. In changing the function p(z), or better = (p), we are not
changing our model, but just displaying the fact that our intuitive sensations provide
us only with the relation “greater than,” not any definite numbers. Throughout
these changes, the numerical values of and relations between, the quantities p remain
unchanged.

All this is in very close analogy with the concept of temperature, which also
originates only as a qualitative sensation. Once it has been discovered that, out of
all the monotonic functions represented by the readings of different kinds of ther-
mometers, one particular definition of temperature (the Kelvin definition) renders
the equations of thermodynamics especially simple, the obvious thing to do is to re-
calibrate the scales of the various thermometers so that they agree with the Kelvin
temperature. The Kelvin temperature is no more “correct” than any other; it is
simply more convenient.

Similarly, the obvious thing for us to do at this point is to adopt the convention
p(r) = z, so that the distinction between a plausibility and the quantity p (which
we henceforth call the probability ) disappears. This means only that we have found a
way of calibrating our “plausibility—meters” so that the consistent rules of reasoning
take on a simple form. The content of the theory would, however, be exactly the
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same no matter what function p(x) was chosen. Thus, there is only one consistent
model of common sense.
From now on, we write our fundamental rules of calculation in the form

(AB|C) = (A|BC) (B|C) = (B|AC) (4]C) (2-25)
(A+ BiC) = (4]C) + (B|C) — (AB|C). (2-26)

Laplace’s model of common sense consists of these rules, with numerical values
determined by the principle of insufficient reason.

Out of all the propositions which we encounter in this theory, there is one
which must be discussed separately. The proposition X stands for all of our past
experience. There can be no such thing as an “absolute” or “correct” probability; all
probabilities are conditional on X at least, and X is not only different for different
people, but 1t 1s continuelly changing for any one person. If X happens to be
irrelevant to a certain question, then this observation is unnecessary but harmless.
We often suppress X for brevity, with the understanding that even when it does not
appear explicitly, it is still “built into” all bracket expressions: (A|B) = (A|BX).
Any probabilities conditional on X alone are called a—priori probabilities. In an
a—priori probability we will always insert X explicitly: (A4|X).

It is of the greatest importance to avoid any impression that X is some sort
of hidden major premise representing a universally valid proposition about nature;
it 1s simply whatever initial information we have at our disposal for attacking the
problem. Alternatively, we can equally well regard X as a set of hypotheses whose
consequences we wish to investigate, so that all equations may be read, “If X were
true, then ---” It makes no difference in the formal theory.

3. DISCUSSION

It 1s well known that criticism of the theory of Laplace, and pointing out of its
obvious absurdity, has been a favorite indoor sport of writers on probability and
statistics for decades. In view of the fact that we have just shown it to be the
only way of doing plausible reasoning which is consistent and in agreement with
common sense, it becomes necessary to consider the objections to Laplace’s theory
and 1f possible to answer them.

Broadly speaking, there are three points which have been raised in the litera-
ture. The first is that any quantity which is only subjective, i.e. which represents a
“degree of reasonable belief,” in Jeffreys’ terminology,® cannot be measured numer-
ically, and thus cannot be the object of a mathematical theory. Secondly, there is a
widespread impression that even if this could be accomplished, a quantity which is
different for different observers is not “real,” and cannot be relevant to application.?
Thirdly, there is a long history of pathology associated with this view; it is tempting
and easy to misuse it.

The latter is of course not a valid objection to any theory, and we need only
answer the first two. The arguments of Sec. 2 almost answer the first, but there re-
mains the question of finding numerical values of probabilities in cases where there
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is no apparent way of reducing the situation to one of “equally possible” cases. We
must hasten to point out that the notion of “equally possible” has, at this stage,
nothing whatsoever to do with frequencies. The notion of frequency has not yet
appeared 1n the theory. Now the question of how one finds numerical values of
probabilities is evidently an entirely different problem than that of finding a consis-
tent definition of probability, and consistent rules for calculation. In physics, after
the Kelvin temperature is defined, there remains the difficult problem of devising
experiments to establish its numerical value. Similarly, after our model has been
set up, the problem of reducing “raw” information to a statement of probability
numerical values remains.

Most of the objections to Laplace’s theory which one finds in the literature!!
consist of applying it to some simple problem, and pointing out that the result
flatly contradicts common sense. However, study of these examples will show that
in every case where the theory leads to results which contradict common sense, the
person applying the theory has additional information of some sort, relevant to the
question being asked, but not actually incorporated into the equations. Then his
common sense utilizes this information unconsciously and of necessity comes to a
different conclusion than that provided by the theory.

Here is one of Polya’s examples.!! A boy is ten years old today. According to
Laplace’s law of succession, he has the probability % of living one more year. His
grandfather is 70, According to the same law, he has the probability % of living
one more year. Obviously, the result contradicts common sense. Laplace’s law of
succession, however, applies only to the case where we have absolutely no prior
information about the problem.'® In this example it is even more obvious that we
do have a great deal of additional information relevant to this question, which our
common sense used but we did not allow Laplace’s theory to use.

Laplace’s theory gives the result of consistent plausible reasoning on the basis
of the information which was put into 1. The additional information is often of
a vague nature, but nevertheless highly relevant, and it is just the difficulty of
translating it into numerical values which causes all the trouble. This shows that
the human brain must have extremely powerful means, the nature of which we have
not yet imagined, for converting raw information into probabilities.

We can see from this why Laplace’s theory was incomplete and why it will
always remain incomplete. It is simply that there is no end to the variety of kinds of
partial information with which we might be confronted, and therefore no end to the
problem of finding consistent ways of translating that information into probability
statements. Here again there 1s a close analogy with physics. Whenever research
involving temperature extends into some new field, science is dependent on the
ingenuity of experimenters in devising new procedures which will give the Kelvin
temperature in terms of observed quantities. Physicists must continually invent
new kinds of thermometers; and users of probability theory must continually invent
new kinds of “plausimeters.” Laplace’s theory is incomplete in the same sense, and
for the same reason, that physics is incomplete; but Laplace’s basic model occupies
the same fundamental position in statistics as do the laws of thermodynamics in
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physics.

The principle of insufficient reason is only one of many techniques which one
needs in current applications of probability theory, and it needs to be generalized
before it is applicable to a very wide range of problems.'* In the following sections
we will show two principles available for doing this. The first has been made possible
by information theory, and the second comes from a relation between probabilities
and frequencies.

Consider now the second objection, that a probability which is only subjective
and different for different people cannot be relevant to applications. It seems to the
writer that this is the exact opposite of the truth; o s only a subjective probability
which could possibly be relevant to applications. What is the purpose of any appli-
cation of probability theory? Simply to help us in forming reasonable judgments in
situations where we do not have complete information. Whether some other person
may have complete information is quite irrelevant to our problem. We must do the
best we can with the information we have, and it is only when this is incomplete
that we have any need for probability theory. The only “objective” probabilities are
those which describe frequencies observed in experiments already completed. Before
they can serve any purpose in applications they must be converted into subjective
judgments about other situations where we do not know the answer.

If a communication engineer says, “The statistical properties of the message
and noise are known,” he means only that he has some knowledge about the past
behavior of some particular set of messages and some particular sample of noise.
When he infers that some of these properties will hold also in the future and designs
a communication system accordingly, he is making a subjective judgment of exactly
the type accounted for by Laplace’s theory, and the sole purpose of the statistical
analysis of past events was to obtain that subjective judgment.

Two engineers who have different amounts of statistical information about mes-
sages will assign different n-gram probabilities and design different coding systems.
Each represents rational design on the basis of the available information, and 1t is
quite meaningless to ask which is “correct.” Of course, the man who has more ad-
vance knowledge about what a system is to do will generally be able to utilize that
knowledge to produce a more efficient design, because he does not have to provide
for so many possibilities. This is in no way paradoxical, but just simple common
sense.

Similarly, if a medical researcher says, “This new medicine is effective in 85 per
cent of the cases,” he means only that this is the frequency observed in past exper-
iments. If he infers that it will hold approximately in the future, he 1s making a
subjective judgment which might be (and often is) entirely erroneous. Nevertheless,
it was the most reasonable judgment he could have made on the basis of the infor-
mation available. The judgment, and also its level of significance, are accounted for
by Laplace’s theory. Its conclusions are, for all practical purposes, identical with
those provided by the method of confidence intervals,'® and it is our contention that
the validity of the latter method depends on this agreement.
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4. THE PRINCIPLE OF INSUFFICIENT REASON

Two conditions are necessary before we can assign probabilities by means of
the principle of insufficient reason:

We must be able to analyze the situation into an
enumeration of the different possibilities which (4-1)

we recognize as mutually exclusive and exhaustive.

Having done this, we must then find that the
available information grves us no reason to prefer (4-2)
any possibility to any other.

In practice these conditions are hardly ever met unless there is some evident
element of symmetry in the problem, as is usually the case in games of chance. Note,
however, that there are two different ways in which condition (4-2) may be satisfied.
It may be the consequence of complete ignorance, or it may be the consequence of
positive knowledge.

Suppose a person, known to be very dishonest, is going to toss a die. Observer
A is allowed to examine the die, and he has at his disposal all the facilities of the
National Bureau of Standards. He performs thousands of experiments with scales,
calipers, microscopes, magnetometers, x-rays, neutron beams, etc., and finally is
convinced that the die is perfectly symmetrical. Observer B is not told this; he
knows only that a die is being tossed by a shady character. He suspects that it is
biased, but has no idea in which direction. Condition (4-2) is satisfied for both, and
they will both assign probability % to each face. The same probability assignment
may describe either knowledge or ignorance. This seems paradoxical: why doesn’t
A’s extra knowledge make any difference?

Well, it dees make a difference, and a very important one, but the difference
requires time to “develop.” Suppose that the first toss gives a “3.” To observer
B this constitutes evidence that the die is biased to favor 3, and so on the second
throw B will assign different probabilities which take this into account. Observer
A, however, will continue to assign probability é to each face, because to him the
evidence of symmetry carries overwhelmingly greater weight than does the evidence
of one throw.

It is now fairly clear what will happen. To observer B, every throw of the die
represents new evidence about its bias, which causes him to change his probability
assignments for the next throw. Under certain circumstances, his assignments are
given by a generalization of Laplace’s law of succession. To observer A, the evidence
of symmetry continues to carry greater weight than does the evidence of the random
experiment, and he persists in assigning probability %. Fach observer has done
consistent plausible reasoning on the basis of the information available to him, and
Laplace’s theory accounts for the behavior of each (Sec. 6).

This difference in behavior is not, however, accounted for by any theory based
on a frequency definition of probability, because when you define a probability sim-
ply as a frequency you deprive yourself of any way of saying that you have evidence
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unless it is in the form of an observed frequency. Everything which the National
Bureau of Standards can tell us must be ignored, because it has no frequency in-
terpretation.

5. THE ENTROPY PRINCIPLE

A biased die, colored black with white spots, has been tossed many times onto
a black table, and we have recorded the experiment with a camera, obtaining a
multiple exposure of uniform density. From the blackening of the film we cannot
determine the relative frequencies of the different faces, but only the average number
of spots which were on top. This average is not 3.5, as we might expect from an
honest die, but 4.5. On the basis of this information, what are the probabilities for
the different faces?

Automobiles of make : have weight W; and length L;. We observe a cluster of
1000 cars packed bumper to bumper, occupying a total length of 3 miles. As these
cars pass an intersection they go over a machine which weighs each one and totals
the result, not retaining the record of the individual weights. Therefore we have
only the total length and total weight of the 1000 cars. What can we infer about
the number of cars of each make in the cluster?

During an earthquake, 100 windows were broken into 1000 pieces. What is the
probability for a window to be broken into exactly m pieces?

These are examples of problems where condition (4-1) is satisfied but not
condition (4-2). They can be formulated in a general way as follows. The quantity
z can assume the discrete values z;...x,. There are k functions fi (z),..., fr (z)
for which we know the average values

fo= pife(e), 1<r<k (5-1)
=1

The problem is to find the p;. If ¥ < (n — 1), there are not enough conditions
to determine the p; in the sense of a mathematical solution of (5-1) and > p; =
1. We cannot use the principle of insufficient reason because we have too much
information; there are reasons for preferring some possibilities to others. There are
many probability assignments which would all agree with the available information.
Which 1s the most reasonable one to adopt?

Consider the third example above, and restate it as: the average window is
broken into 10 pieces. If we were to conclude that eazch window is broken into
10 pieces, this would be in complete agreement with all the available information.
However, our common sense tells us that it would not be a reasonable probability
assignment; we would be assuming far more than was given in the statement of the
problem. It is more reasonable to assign probability p,, = % for a window to be
broken into m pieces, where m = 8,9,10,11,12. But this still assumes more than
was warranted by the given information. It says, for example, that it is impossible
for a window to be broken into 13 pieces. Evidently we regard a broad distribution
as more reasonable than a sharply peaked one, and there is no value of m for which
we would be justified in assigning p,, = 0.
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To make a long story short, we want the probability assignment which assumes
nothing beyond what was given in the statement of the problem. Shannon’s theorem
2 tells us that the consistent measure of the “amount of uncertainty” in a probability
distribution is its entropy, and therefore we must choose the distribution which
has maximum entropy subject to the constraints (5-1). Any other distribution
would represent an arbitrary assumption of some kind of information which was
not given to us. The maximum-—entropy distribution is “maximally noncommittal”
with respect to missing information.

The solution follows immediately from the method of Lagrangian multipliers,
by arguments which are very well known in a different context. The results are
expressed compactly if we define the partition function:

n

Z(Ar A=) expl-Aifile) — ... — NS (2)]. (5-2)

=1

Then the maximum-entropy distribution is
pi = exp[—=Xo — A fi (@) = .. — Mg fy (2)] (5-3)

with the A, determined by
Ao =log Z (5-4)

and

(e (@) = =

At first glance it seems idle and trivial that we should have to do all this in
order to learn how to say nothing. The important point, however, is that we have
here found a consistent way of saying nothing in a new language; the language
of probability theory. The triviality fades away entirely when we notice that the
problem of inferring the macroscopic properties of matter from the laws of atomic
physics is of exactly the type we are considering. All of thermodynamics, including
the prediction of every experimentally reproducible feature of irreversible processes,
i3 contained in the above solution.!'617:18

This is so easy to demonstrate that we will sketch the argument here. In
any macroscopic experiment the exact microscopic state of a system is never under
control or observation; there will be perhaps

101020 _ (101010) 1g1@

log Z, 1<r<k (5-5)

different quantum states compatible with a given set of experimental conditions.
Although the microscopic state is changing rapidly, the time required for any rea-
sonably complete “sampling” of so many states is still rather long; perhaps 1010"°
years. When we repeat the experiment we will surely not repeat the microscopic
state, Therefore, any property which is experimentally reproducible must be char-
acteristic of each of the great majority of the class C, of microscopic states allowed
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by the experimental conditions. This is not necessarily the same as the subjec-
tive class C, consisting of all reasonably probable states in the maximum-entropy
distribution.!® Clearly, the only properties which we will be able to predict defi-
nitely from the maximum-entropy distribution will be those characteristic of the
great majority of the states in class C,.

Now if it is found that the class P, of properties predictable by maximum-—
entropy inference is identical with the class P, of experimentally reproducible prop-
erties, the theory is entirely successful. This would by no means imply that the class
C, is identical with the class C.. If, however, the class P, is found to differ in any
way from the class P,, we would be forced to conclude that C, # C.. But this could
be true only if there exist new physical states, or new constraints on the possible
physical states, which we did not take into account in our initial numeration.

Therefore, strictly speaking, we should not assert that maximum-entropy in-
ference must lead to correct predictions. But we can assert something even more
important: if the class of predictable properties is found to differ in any way from
the class of experimentally reproducible properiies, that fact would in itself demon-
strate the existence of new laws of physics. Assuming that this occurs and the new
laws are eventually worked out, then maximum-entropy inference based on the new
laws will again have this property.

From this we see that maximum-entropy inference is precisely the appropriate
tool for reasoning from the microscopic to the macroscopic. Its characteristic prop-
erty is that it does not allow us to form any conclusions which are not indicated by
the available evidence. Any other distribution would permit one to draw conclusions
not warranted by the evidence.

Historically, maximum-entropy inference was discovered, in its mathematical
aspects, by Boltman about 1870, and greatly advanced by Gibbs around 1900. The
result 1s what the physicist calls statistical mechanics. However, the interpretation
of the mathematical rules has always been a subject of great confusion, because of
the illusion that probabilities must be given a frequency interpretation. This made
it appear that the rules could be justified only by demonstrating a certain physical
property called ergodicity, or in modern terms, metric transitivity. All attempts to
demonstrate this have, however, failed. Until the discovery of Shannon’s theorem 2,
it was not possible to understand just what we were doing in statistical mechanics, or
to have any confidence in it for the prediction of irreversible processes. However, we
can now see that statistical mechanics is a much more powerful tool than physicists

had realized.

6. PROBABILITY AND FREQUENCY

Although the word “frequency” has appeared a few times above, we have not
so far made any use of it in developing the basic theory or in demonstrating its
application to thermodynamics. This has been done deliberately in order to em-
phasize the fact that the notions of probability and frequency are entirely distinct.
Many of the most important applications of probability theory can be justified and
carried to completion without ever introducing the notion of frequency. However, in
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cases where a random experiment provides most or all of the available information,
there should exist some relationship between the observed frequency of the event
and the probability which we assign to it. Similarly, if an event can be regarded
as a possible result of a random experiment, there may in some cases be a relation
between the probability which we assign to it, and the relative frequency with which
we expect 1t to occur. Such relations must, of course, be deduced from the theory
and not postulated.
To demonstrate the latter relation, we introduce the propositions
Ay = “The probability of A in each case is p.” (6-1)
Np = “In N trials, A was (or will be) true n times.” (6-2)

The probability (N,|4,), obtained immediately from the sum and product rules
(2-25), (2-26), is the binomial distribution

alat) = () (1= o (6-3)

As a function of n, this attains a maximum value when n is within one unit of Np,
so that the most probable frequency is substantially equal to the probability.

Note that the phrase “in each case,” in (6-1) is essential. To demonstrate this,
we look more closely at the derivation of (6-3) from our basic rules. Define the
proposition

B, = “A is true in the n’th trial.” (6-4)

Now according to (2-25) we have
(BZBerp) = (B2|BlAp) (B1l4,)

which reduces to

(Ba|Ap) (B4 |4p) = P

only if (By|B,A,) = (B2|A,); i.e. the probability of A at the second trial which is
nvolved in (6-3) is that based on A4, and knowledge of the result of the first trial.
It is equal to p, as assumed in (6-3), only if knowing the result of the first trial
would have given us no reason to change the assignment. This in spite of the fact
that in (6-3) we are predicting a frequency entirely on the basis of Ap, since only A,
appears to the right of the vertical stroke. Even though we are not given the results
of any trial, the expected frequency still depends on whether such knowledge would
have been relevant.

This again corresponds to common sense. To take the most extreme case,
suppose we are tossing a coin and A stands for “heads.” Let it be a very dishonest
coin, and define the proposition

Cp = “The coin has either two heads or two tails,
and the probability of the former is p.” (6-5)
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Now on the basis of this evidence alone, it is still true that the probability of “heads”

in each particular throw is p. But no one expects the relative frequency of heads to
be p: We now have (B;|B,C}) = 1, so that

(B2 B1{Cp) = (B2|B1Cy) (B1|Cy) = p

and by repeated applications of (2-25), we find that the only sequences of N throws
which do not have probability zero, correspond to

(By ... ByB,|C,) = p
(b ... bybi|C)) =1 —p

so that in place of (6-3) we have
(Nn|Cp) =pé(n,NY+(1—p)é(n,0), (6-6)

which 1s exactly what our common sense told us without any calculation.

This shows that before we can infer any definite frequency from a probability
assignment, the evidence on which that probability assignment is based must be
very good evidence indeed. It corresponds to that possessed by the man from the
Bureau of Standards in the dice game of Section 3. In order for (6-3) to hold,
the evidence on which A4, 1s based must carry overwhelmingly more weight than
does the evidence of N throws. For this reason, the probabilities obtained from
maximum-entropy inference have no reasonable frequency interpretation, and we
can see why statistical mechanics was so confusing as long as we tried to interpret
it this way.!® Now introduce the proposition,

Dy = “In an infinitely long sequence of trials,

the relative frequency of A approaches f.” (6-7)

In the limit as N — oo, the binomial distribution becomes infinitely sharp, and so
we obtain the Dirac delta- function?®

(DslAp) = &(f —p). (6-8)

Equation (6-8) is loaded with logical booby-traps, which we must hasten to point
out. Note first that it by no means says that the relative frequency f = p must
occur. It says only that, on the basis of the information which led to the assignment
A, this is the only relative frequency which it is reasonable to expect; the available
evidence gives no support at all to any other value. The probability (6-8) is still
only a subjective quantity.

Equation (6-8) represents a limiting case which can never be justified in prac-
tice, because in order for (6-3) to continue to hold as N — oo, the evidence on
which A, is based must carry overwhelmingly more weight than do the results of
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an infinite number of trials. Not even the Bureau of Standards can provide us with
evidence this good.

But there is still a paradox here. Suppose that the evidence A, was perfectly
reliable. It would still represent only partial information about the random exper-
iment. According to (6-8), the probability that the limiting frequency lies in the
interval (p —€) < f < (p+e)is

p+e
| oaya = (69

—€

le., f was certain, on data A4,, to lie in this interval. How could we have been
certain of anything on the basis of only partial information? How could we have
been certain that a limiting frequency even exists?

Well, Eq (6-8) is actually a logical contradiction, but a useful one. We have
asked the theory a foolish question, and it has given us a foolish answer. Equation
(6-8) refers only to an infinite number of trials. If N is finite, there is no n in
0 <n <N for which (N,|A4,) = 0. We are not certain of the result of any posstble
experiment. It is only when the experiment is smpossible that we can be certain
of the result! Any attempt to define a probability as the limit of a frequency is
evidently subject to the same logical difficulty, but in a much more acute form,
because there is no way at all of avoiding it.

In spite of this, (6-8) is useful if we understand how to use it. If NV is large and
the supporting evidence 4, fairly good, it may be a perfectly valid approximation
to (6-3) for some purposes, and it will then lead to simpler formulas than would
(6-3).

Equation (6-8) can also be used in a different way. If we had evidence about
limiting frequencies, that evidence would be equivalent to a perfectly reliable as-
signment A, . Thus, if E is any proposition, and A, is perfectly reliable so that
(6-8) holds, we would have

(E|Dg) = (El4).  f=p
In particular,

alpgy= (V) - (6-10)

which is the form used in the frequency theory.

The inverse problem, of inferring a probability from an observed frequency, is
much more difficult. The quantity which we have here to evaluate is (Brn+1 N, X)),
where we denote, as in Sec. 2, the prior evidence by X. Tt does not seem possible
to carry out this calculation once and for all in the most general case, because the
prior evidence might provide intricate relations between the probabilities at different
trials, in an infinite number of different ways. The order in which “A true” and
a = “A false” occurred would in general be relevant to the probability of By,
but the above notation implies that we are not going to consider that evidence.
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The only case which the frequency school of thought can treat is the one where
we ignore completely all the prior evidence; the frequency school regards a-priori
probabilities as nonsense. This simplifies our problem, because it is only that case
that we need to exhibit here in order to establish the relation between the frequency
theory and Laplace’s theory. In other words, the prior evidence X is now to tell us
nothing whatsoever. We have, from (2-25) and (2-26),

(BN+11Nn)=/O (BN+1Df\Nn)df:f0 (By+1|DsNu) (Dyp|Ny)df. (6-11)

Also, by (2-25), (N.\D})
No|Dy

(NalX)

The a-priori probabilities (Dys|X) and (N,|X) must now say nothing about the
values of f or n. The consistent way of saying this is, from the principle of maximum

(Df|Nn) = (D5l X) (6-12)

entropy,

1
X)=1; WX) = —— <n <N,
(DAX) =1 (NalX)=57q  0SnsEN

Furthermore, the evidence Dy carries overwhelmingly more weight than does Ny, ,
so that
(Bn41|DgNw) = (By +11Df) = f.

Substituting these results and (6-10) into (6-11), we have

B =+ (7) | pra-p =T (e

which is Laplace’s law of succession. If N is sufficiently large, the probability which
we assign to A at the next trial is substantially equal to its observed frequency in
the previous trials.

From these results we conclude that the general relation between the two the-
ories is the following. Whenever all of the available evidence consists of observed
frequencies, the conclusions obtained from the frequency theory approach those
given by Laplace’s theory asymptotically as the number of observations mcreases.
If we have additional evidence not expressible in terms of frequencies, the conclu-
sions of the theories may differ widely, and it is Laplace’s theory which will agree
with common sense.

As a simple example of this, suppose that two observers listen to a geiger
counter, known by both to have an efficiency of 10 per cent. 0; has no knowledge
about the source of the particles being counted. 0y knows that the source is a
radioactive sample of long lifetime, in a fixed position. He does not know anything
about its strength except, of course, that it is not infinite. During the first minute,
10 counts are registered. 0 infers, by maximum-likelihood, that about 100 particles
actually passed through the counter, and 0, agrees. During the second minute, 16
counts are registered. 0; infers that about 160 particles were present, and he does
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not change his estimate for the first minute. 0, | using Bayes’ theorem, concludes
that the most probable value is only 137, and he revises his estimate for the first
minute to 123. Each has done consistent plausible reasoning, but prior evidence
which has no frequency interpretation can completely change the conclusions which
we draw from random data, and their degree of reliability.

7. “SUBJECTIVE” COMMUNICATION THEORY

Laplace’s theory is of such wide scope that in principle it includes every example
of plausible reasoning, and thus e fortiers, communication theory. In particular,
much of communication theory can be regarded as an application of maximum-
entropy inference. This viewpoint may or may not lead to new mathematical results
unlikely to be found without it. However, the conditions for validity of some known
results can be extended. Also, it clarifies a constantly recurring question: what
parts of communication theory describe measurable properties of messages, and
what parts describe only the state of knowledge of some observer?

The current tendency is to state and prove theorems using the frequency ter-
minology. Mathematical properties nceded for the proof must then be regarded as
objective properties of the messages or noise, and this makes it appear that the the-
orem 1s valid only if these properties can be demonstrated as “true.” For example,
Shannon’s proofs of theorems often “assume the source to be ergodic so that the
strong law of large numbers can be applied.” But how are we to decide whether a
source is “really” ergodic? What measurements could we perform on it? Ergodicity
has a precise frequency interpretation only for behavior over infinite periods of time.
From an operational viewpoint it is therefore meaningless. How, then, can we ever
trust the result of the theorem?

If we look at the problem in Laplace’s way this difficulty disappears. When
we say, “The source is ergodic,” we are not describing the source, but rather our
state of knowledge about the source. We mean only that nothing in the available
evidence leads us to expect that it has a sub-class of states in which it can get
stuck. As far as we know, there is always a possible route by which it can get from
any state to any other.

Whether or not this is actually true is irrelevant for the use we make of the
theorem. Our job, again, is only to do the best we can with the information we
have, and it would be quite unjustified to assume an invariant sub—class of states
unless we have evidence to support this. It could, for example, lead to design of
a comimunication system which turns out to be incapable of handling the actual
messages. Ergodicity of this subjective kind is a consequence only of our being
conservative and avoiding unwarranted assumptions; the resulting probabilities are
the ones which maximize the entropy subject to whatever we do know. Exactly the
same argument applies to ergodicity in statistical mechanics.

Many of the fundamental theorems of communication theory can be reinter-
preted in this way, and we then see that they are valid and useful in far more general
conditions than one would suppose from the frequency definition of probability.

Consider an observer 0, who knows in advance the n-gram frequencies which a
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source is going to generate, but has no other knowledge about it, what communica-
tion system represents rational design on the basis of this much knowledge, what is
the best way of encoding into binary digits for the noiseless case, and what channel
capacity does 0,, require? In principle, the answer is always the same; we need to
find the probabilities p(M) which 0, assigns to each of the conceivable messages,
and use the method of Fano and Shannon.?!

We wish to emphasize that it makes no sense whatever to say that there exists
a “correct” distribution p(M) for this problem; p (M) is an entirely subjective
quantity, This becomes especially clear if we suppose that only a single message 1s
ever going to be sent over the communication system, but we wish to transmit it as
quickly as possible. Thus there is no conceivable procedure by which p(M) could
be measured. This would in no way affect the problem of engineering design which
we are considering,.

In choosing a distribution p (M), it would by possible to assume a particular
message structure beyond n symbols. But from the standpoint of 0,, this could not
be justified, for as far as he knows, an encoding system based on any such structure
is as likely to hurt as to help. From 0,’s standpoint, rational conservative design
consists in carefully avoiding any such assumption. This means, in short, that 0,
should choose the distribution p (M) by maximum-entropy inference based on the
known n-gram frequencies.?? For 0; and 0, the solution is well known in a different
context; the physicist calls them the linear Ising chain with no interactions, and
with nearest-neighbor interactions respectively.??

Laplace’s point of view is helpful also in the problem of detecting a radar signal
in noise. Anyone who studies this problem comes to the conclusion that there is no
way of evading the notion of a—priori probabilities of different signals. They are an
essential part of the problem, because any prior knowledge we have about the signal
is extremely relevant to the proper engineering design. The question of how one
finds their “true” numerical values then becomes quite embarrassing. They can be
given a frequency interpretation only by devices so arbitrary and forced that they
could have no relevance to the problem.

We can now see the answer to this. In the first place, no one needs to apologize
for, or do any cautious egg-walking around, the use of Bayes’ theorem and a-priors
probabilities. This is in fact the only consistent way of handling the problem. We
have at present no known procedure for translating our prior knowledge about
signals into numerical values of probabilities. At least not on paper. But we still
have our brains, and until new principles are discovered, we will have to use them.
We must take into account everything we know about the signal, and then guess
the a—priori probabilities.

8. CONCLUSION

We have tried to show above how a re-interpretation of the probability concept
can clarify and extend the power of statistical methods for current applications in
science and engineering. Laplace’s view of probability theory as the symbolic logic
of plausible reasoning enables us to follow the process which our brains must be
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using, in every case where numerical values of probabilities can be found. It enables
us to do this in far greater detail than is possible on the frequency theory, and
to take into account additional evidence which cannot even be stated in terms of
frequencies.

The analysis of Sec. 2 above is, of course, far from rigorous in the modern
sense of the term. However, I believe that all the necessary epsilons and deltas can
be supplied by anyone sophisticated enough to feel the need for them. There is
always a danger that too much generality will obscure the important points of an
argument. Finally, it is interesting to note the increasing importance of the theory
of functional equations in this field, shown also by Bellman and Kalaba.?*
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This can be stated in a more precise epsilon—delta language, but the reader
will anticipate that the conclusions are largely independent of what we mean
by “reasonably probable,” for the same reason as in Shannon’s theorem 4.
(Df|Ap) is a probability density, (Df|A4,)df being a probability. Since, how-
ever, the differentials cancel out of equations and the distinction is already
determined by whether the variable is continuous or discrete, there is no neced
to invent a new notation. On the other hand, it is essential in this theory that
we do distinguish in notation between a probability and a frequency.



