Comparison of Quantum and Semiclassical Radiation
Theories with Application to the Beam Maser®

E. T. JAYNESY

Summary—This paper has two purposes: 1) to clarify the rela-
tionship between the quantum theory of radiation, where the elec-
tromagnetic field-expansion coeefficients satisfy commutation rela-
tions, and the semiclassical theory, where the electromagnetic field
is congidered as a definite function of time rather than as an oper-
ator; and 2) to apply some of the results in a study of amplitude and
frequency stabilify in a2 molecular beam maser.

In 1), it is shown that the semiclassical theory, when extended to
take into account both the effect of the fleld on the molecules and
the effect of the molecules on the field, reproduces almost quantita-
tively the same laws of energy exchange and ccherence properties as
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the quantized field theory, even in the limit of one or a few guanta in
the field mode. In particular, the semiclassical theory is shown to
lead t¢ a prediction of spontanecus emission, with the same decay
rate a3 given by quantum electrodynamics, described by the Einstein
A coeflicients.

In 2), the semiclassical theory is applied to the molecular beam
maser. Equilibrium amplitude and frequency of oscillation are ob-
tained for an arbitrary velocity distribution of focused molecules,
generalizing the results obtained previously by Gordon, Zeiger, and
Townes for a singel-velocity beam, and by Lamb and Helmer for
a Maxwellian beam. A somewhat surprising result is obtained; which
is that the measurable properties of the maser, such as starting
current, effective molecular @, ete., depend mostly on the slowest
5 {o 10 per cent of the motecules.

Next we calculate the effect of amplitude and frequency of os-
cillation, of small systematic perturbations. We obtain a prediction
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that stability can be improved by adjusting the system so that the
molecules emit all their energy % Q to the field, then reabsorb part
of it, before leaving the cavity. In general, the most stable operation
is obtained when the molecules are in the process of absorbing energy
from the radiation as they Jeave the cavity, most unstable when they
are still emitting energy at that time.

Finally, we consider the response of an oscillating maser to
randomly time-varying perturbations. Graphs are given showing pre-
dicted response to a small superimposed signal of a frequency near
the oscillation frequency. The existence of “noise enhancing” and
“noise quieting” modes of operation found here is a general property
of any oscillating system in which amplitude islimited by nonlinearity.

[. INTRODUCTION

HIS PAPER has two purposes: 1) to clarify the

relationship between the quantum theory of

radiation where the electromagnetic field ex-
pansion coetheients satisfy commutation relations, and
the semiclassical theory where the electromagnetic field
is considered as a definite function of time rather than
as an operator, and 2) to apply some of the results thus
obtained i a study of amplitude and frequency stabil-
ity of the ammonia beam maser.

In 1}, the relation between quantum electrodynamics
and the semiclassical theory is shown to be quite dif-
ferent from that usually assumed. The semiclassical
theory, when extended to take into account both the
eftect of the molecules on the field and the effect of the
field on the molecules, reproduces almost quantita-
tively the same laws of energy exchange and coherence
properties as the quantized feld theory, even in the
limit of one or a few quanta in the field cavity mode.
In particular, the semiclassical theory is shown to lead
to a prediction of spontaneous emission, with exactly
the same decay rate as given by quantum electro-
dynamics, as described by the Einstein A coefficients.

There remain, however, several fundamental dif-
ferences in the two theories. For example, quantum
electrodynamics allows the possibility that the com-
bined system (molecules plus field) mayv be in states
which have properties qualitatively different than any
that can be described in classical terms, even in the
limit of arbitrarily high photon occupation numbers,
Thus the common statement that quantum electro-
dynamics goes over into classical electrodynamics in
the case of high quantum numbers [or the field oscil-
lators, needs to be somewhat qualified.

Having shown the essential equivalence of quantum
electrodynamics and the semiclassical approach for the
problems of interest, we turn to detailed calculations
applying the semiclassical theory to the ammonia beam
maser. Equilibrium amplitude and frequency of oscilla-
tion are obtained for an arbitrary velocity distribution
of focused molecules, generalizing the results obtained
previously by Gordon, Zeiger and Townes [1] for a
single-velocity beam and by Lamb and Helmer [6] for
a Maxwellian beam. A rather surprising result i1s ob-
tained, namelv that the measurable properties of the
maser, such as starting current, effective molecular Q,
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etc., depend mostly on the slowest 3 to 10 per cent
of the molecules.

Next we calculate the effect on amplitude and {re-
quency of oscillation of small systematic perturbations.
We obtain a prediction that stability can be improved
by adjusting the system so that the molecules emit all
their energy /2 to the field, then reabsorb part of it,
before leaving the cavity. In general, the most stable
operation is obtained when the molecules are in the
process of absorbing energy from the radiation as they
leave the cavity, the most unstable, when they are still
emitting energy at that time.

Finally, we consider this response of an oscillating
maser to random time-varying perturbations. Graphs
are given showing predicted response to a small super-
imposed signal of a frequency near to the oscillation
frequency. The results show a quite complicated varia-
tion as a function of the frequency difference and beam
current, and resemble some results of Wiener, concern-
ing nonlinear random phenomena.

Broadly speaking, there are two different levels of
approximation used in gas maser theories published as
of this writing:

1) The most common and also the crudest of these
theories is the one wheremn one treats the emission proc-
ess of radiation from molecules as if the transition
probabilities were proportional to the time. Such
theories contain little that was not already contained in
Einstein’s 1917 paper which introduced the 4 and B
coefficients. According to quantum mechanics, the
idea of time proportional transition probabilities is an
approximation, valid only when the correlation time of
the radiation is short compared to the time required to
accumulate an appreciable transition probability; that
is, the radiation responsible {or the transition must be
random, with a spectrum wide compared to the line
width. In an ammonia beam device the correlation
time of the radiation may be of the order of 10% to 108
times the flight time of a molecule through the cavity,
and thus any attempt to describe maser operation in
terms of “Fermi golden rule” type of equations for the
transition probabilities, z.e.,

2r
Wi = — | Hipl2plw)
h‘l

may lead to conclusions qualitatively as well as quanti-
tatively wrong. Most of the existing noise figure calcu-
Jations are based on a treatment of this type [1], [2],
and hence one cannot assess their worth until the
calculation has been checked by a more rigorous theory.

2) The second method of treating the maser theo-
reticaily is that based on solving Schriédinger’s time-
dependent equation for a molecule as perturbed by a
classically described field and Ainding then the expecta-
tion value of the dipole moment of the molecule and
using the time derivative of this expectation value as
the current source of the classical electromagnetic field.
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This is essentially the calculation of Shimoda, Wang
and Townes [4], and Basov and Prokhorov [S], and
Lamb and Helmer [6], Feynman, Vernon and Hell-
warth [7]. While this is clearly superior to the first
method outline above, there are still several important
approximations involved. In principle, the molecular
beam should be treated as a single quantum-mechanical
system, by a formalism like that of Dicke's “super-
radiant gas” [8]. In the theories quoted above, the
molecules were ascribed independent wave functions.
Also, the electromagnetic field should be quantized and
the problem treated as one of quantum electrodynamics.
Although the theories above lead to definite predictions
for saturation and frequency pulling, it is not at all
clear that they can lead to reliable predictions of
fluctuation effects involved in noise figure and fre-
quency stability. It is generally thought that the semi-
classical theory should be adequate for any effects at
microwave frequencies due to the smallness of the
Einstein A coefficient compared to the B coefficient.
However, quantization of the electromagnetic field in-
troduces many changes in addition to the appearance of
A coefficients; for instance, quantization can lead to
states qualitatively different from any describable in
classical terms, even in the limit of arbitrarily high
photon occupation numbers per field normal mode.
Such states will be shown, in the calculations to follow,
to actually be the ones produced in the maser under
certain idealized conditions. Thus until thesc calcula-
tions based on these approximations are checked in
some other way, our degree of confidence in them can-
not be too great.

Our approach in this paper will be, stated briefly, to
first treat simple problems in which we can talk of
transition probabilities with all coherence properties
retained, within the formalism of quantum electro-
dynamics. Then we will investigate the relationship be-
tween the “modified” semiclassical (*neoclassical”
theory), as employed by Shimoda, Wang, and Townes
[4], and quantum electrodynamics. The relationship is
not at all that which is usually assumed, i.¢., that quan-
tum electrodynamics goes into semiclassical theory only
in the limit of high photon cccupation numbers per field-
normal mode. Rather the neoclassical theory, in which
expectation values of quantum mechanical operators
are interpreted as actueal values of sources in the classical
Maxwell equations, and hoth the effect of the radiation
field on the molecule and the effect of the molecule back
on the field are taken into account, does lead to a pre-
diction of spontaneous emission, and to only very smail
quantitative differences in the decay rate for the case of
a few microwave photons in the cavity.

In Section IV the neoclassical theory is applied to
the problem of the ammonia beam device in which the
indirect “coupling” between molecules via the field 1s
treated and a steady-state solution is obtained under
the assumption of an arbitrary velocity distribution,
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wall losses and/or external energy coupling. The solu-
tion is obtained for the frequency stability as a func-
tion of the mean values of the square and cube of the
flight time and the Q of the cavity. This solution is
found to agree with that of Gordon, Zeiger and Townes
[1] in the univelocity case and with the analysis of
Lamb and Helmer [6] in the case of a Maxwellian
distribution of wvelocities. Then this solution is made
the basis, or unperturbed solution, in a perturbation
treatment of flucutation effects to the first order in
the small departure from the steadv-state solution.
These problems in this case become linear, so that we
can analyze the effect of small periodic perturbations
proportional to exp (¢58t) and superpose the solutions to
give solutions for the transient response to an arbitrary
small perturbation. This can represent an extra signal
fed in intentionally, or it might be a randomly varying
function representing thermal noise in the cavity and/or
load. A “noise quieting” phenomena is seen to occur for
proper values of the flight time, and graphs are drawn
which exhibit the power spectrum of the thermal noise
as affected by the molecular beam.

[1. QuanTirM ELECTRODYNAMIC SOLUTIONS

We approach the theory of maser aperation in sev-
eral stages, starting with simple, special cases for which
all details of the mathematics can be worked out, then
adding various features which tend in the direction of
more realistic models. The mathematical form of the
theory is quite similar to what one encounters in the
statistical mechanics of irreversible processes, Of par-
ticular interest, however, is the extent to which the
semiclassical theory is derivable from quantum elec-
trodynamics, and we are most interested in comparing
the resuits of this section with those obtained in Section
I11. Also, the effect of different statistical assumptions
concerning the initial states of the molecules is in-
teresting in this same regard.

A. Field Quantization

We first develop the formalism of field quantization
in a form suitable for microwave applications. There is,
of course, no need for elegant covariant formulations
here; the simple approach to electrodynamics given
by Fermi [9] is quite adequate for our purposes. Here
the usual plane-wave expansion is not appropriate and
in its place we need to use the expansion of electro-
magnetic fields in terms of resonant modes of the par-
ticular cavity under consideration. We use the cavity
normal mode functions as defined by Slater [10]. The
cavity is represented by a volume I/, bounded by a
closed surface S. Let E.(x), k’=w,*/C? be the cigen-

functions and cigenvalues of the boundary-value
problem.
VXVXE—-FRE=0 in V
nX E=10 on S (1
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where n is a unit veetor normal to S, The E.(x) are so
normalized that

f (Ea* Ex)dV = duy. (2)

The vector functions H,(x), related to E; by
Vv X E =kH  ¥XH,=kE, (3)

are also orthonormal in V as [ollows:
J-{;?':IlI HOdV = bap. (4)

The electric and magnetic fields can be expanded in
the [allowing forms:

E(x ) = — vz 2 pa()Ea(x) (5)

Hix 1) = vir 2 w.g.{)H:(x). {6)

From these relations, we find for the total field energy

EE 4 HE

o
B

1
d¥ = ; Z {Fn& + WEE‘;I'L:EL {?}

and the Maxwell equations,

1 aH
VXE=—— (8)
PR
and
1 4E
Y H=——; (%)
¢l

then reduce to the [amiltonian equations of motion,

R

= 51": =,
: e
o= T

(8a)

(BL)

o
- C.l.".!'l'."".”

respectively.

On gquantization of the held the canonically con-
jugate coordinates and momenta satisfy the commuta-
tion rules,

[Qnr 1]"&1 = [ﬁru Ph] = { (lﬂ}
aud
(s 0] = i7iBia. (11)

The operators C.*, €. which create or annihilate a
photon in the eth cavity mode are then

_p.u + Iwﬂﬁ L PE AT

v 2 Ty

r-ﬁ‘-'m'?n

Ca

st = (12)
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with the commutation rule

[Ca Cb] = bas. (13)

Denote by ¢i{mi, nz - - +) the state vector of the
field for which there are n; gquanta in mode 1, ng in
mode 2, etc. The C, operators have the properties

Copl vty = s ) = Vel oo yma—1,--+) (14)
and
CPBL v, gy i)

=t F1g(- - M+ 1,00) (15)

from which we easily verily (13), and obtain the matrix
elements in the #, representation,

(e | Ca| ") = (| C*| 1a)
= /e + 18(n' na 4+ 1).
The Hamiltonian, with zero point energy removed,
then reduces to

JC = E MnCu*C:r e E Fiwa ey,

[

(16)

(17}

Finally, we work out for later purposes the matrix
elements of the electric field in the case of a cylindrical
cavity with only the lowest TM mode excited. In this
made, the only nonvanishing component of E, is F.
= (constant) ¥ Jilk.r), independent of 2 and #. The
normalizing constant is obtained from evaluating the
integral (2), with the result that on the axis of the
cylinder (along which the molecules travel in an am-
maonia maser) the function £,. reduces to

1

S IWT
Here Ji=J{%) =0.5191, and u=2.405 is the first root of
Jula) =0, V is the volume of the cavity. The operator
P, involved in the electric field expansion is, from (12},

(18)

1L

fa = ”/E{» . (19}
a = 1, 2 a a e

Combining (5), (16), {18), and (19), we obtain the
matrix elements
(=] Bl ) (Zfrﬁw e

=T [V Banrst + V1 Lbarrne]  (20)
i

in which we have dropped the subscript a, it being un-
derstood that (200 refers to the case where only the
lowest THI mode is taken into account. For the matrix
elements of electric field at points off the axis of the
cylinder, this expression should be multiplied by Jo(Kr).

B. Interaction with a Single Molecule

The simplest possible situation is one where we con-
sider a lossless cavity, which has only a single resonant
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mode near the natural line frequency of the molecule,
and a uniform feld (electric or magnetic, whichever
iz the one effective in field-molecule interaction) along
the path of the molecules. Suppose further that only
a single molecule, which has only two possible energy
levels, is in the cavity. With the molecule-field interac-
tion in the usual (J-A) form, it appears that even this
problem cannot be solved exactly. However, because of
the simplicity of the model, we will be able to treat it
more accurately than is usually done in more difficult
problems, where one resorts to an expansion in powers
of (&8/h¢). The stationary states of the system (mole-
cule plus field) can be found to an accuracy of perhaps
one part in 107 for radiation energy densities up to the
order of those encountered in masers, by a calculation
which involves nothing worse than solving quadratic
equations, By use of perturbation theory still better
accuracy would be feasible, but this is not done here.
Let the two possible energy levels of the molecule be
denoted by E., and the corresponding states by
Yulm=1, 2). Similarly, the number of quanta in the
field oscillator will be n, and the corresponding state of
the field by @(n=0, 1, 2, -+ -). The state vectors
Y. then form a basis for the system (molecule plus
field), In this representation, the total Hamiltonian is

(mn| H| m'n")
= (Bn + nha)buwbi + (nu| H| m'a’). (21)
The interaction Hamiltonian between molecule and field
is taken of the form
Hiw = —wE (22)

where @ is the electric dipole moment of the molecule,
whose component along E shall have the matrix ele-
ments

(23)

Combining this with (20), we obtain the matrix elements
for the interaction energy

(mn| pe | m'n") = p(l = Gum)unr.

(mn| Hiae| m'n’)
- -ﬁ’u(i == 'anln"}[\"‘l; I'srh-:‘+l + 'Vrﬁ_ﬁ&n-l-i.n’! |:24}
where
Sl
e
Jy Y

(25}

is the interaction constant. Using the value [11]
pe=1.47 %10~ esu for ammonia, and a cavity 10 cm
long, we ind {e/w) =2.08 107" or, a=35.0 cps.

The interaction Hamiltonian has matrix elements of
two different types: Hi = V4 W, where

Ve=(La+1|V]|2,m=2,u|V|L,e+1)
= favr + 1

Jaynes and Cummings: Quantum and Semiclassical Radiation Theories 93

and
Wes (ILn|W|2,0+1)=(2,n4+1|W]|1,n)

= havn+ 1 (26)

all other elements being zero. The term V' cannot be
treated as a perturbation, for its matrix elements con-
nect “unperturbed” states with an energy separation
(E:— E,— hw) which goes through zero as the cavity is
tuned exactly on the natural line frequency. On the
other hand, elements of W connect states with unper-
turbed energy separation (E:— E;+hw) =2ke. Since in
typical operation conditions (r=10%) we have W, 2hw
<1077, we may treat W as a small perturbation, or even
neglect it entirely. We thus write the [lamiltonian as

H=H.4+W

in which the term Ho=(Ilua+ e+ 1)1 must be
diagonalized exactly. This is readily done, since Il
has a “block form™ consisting of many {2X2) matrices
along the main dingonal. The eigenvalues and eigen-
functions of IT,, defined by I[Td.%=[E* 8% are the
ground state

Fo= Fy = tws @ = iy (27)
and for 220,
Bt = hot = HE 4 B4 (2 — el
+ 3(Fe = iy = he)? + dnha?|M2 (28)

We find it convenient now to define our zero molecular
energy midway between the levels JZ; and Fa such that
B+ E=10 £y -- Iy = hQ

g0 thuat (28) now reads

.
E = ot = (n — Do + ?‘ [(2 — w)? + dna?]'r2, (28a)

Now
&, F = Pad,_y cosfl, + b, sind,
B~ = — i,y 5in b, + ¥ 1. cos by {29)
where
tan 26, = jﬂ_‘% (30)

We now require the time-development matrix (in units
with h=1)

U, ¢) = Ut — ) = exp [—iH{ — )] (31)
for which the perturhation expansion 18
i
Uit) = gttt — if gtt—MHelfgic ey + - . - | (32)
n
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The major term UVy=exp (—il) has the matrix ele-
ments, for >0,

(2, — 1| U] 2,m—1)
l = g, = cos® et L ogin? g g
(2,n — 1| Ua| 1, n)
= b, = sin f, cos G ="t — g-iw't)
(2, 2] Uo| 2, n — 1) = ba
(1, m| Ua| 1, n)

= (o = cos? fe it 4 sin? fein"t  (33)

and, for #=0,
(1,0]| Up| 1, 0) = giuot (34)
where now wy= —11/2 all other elements vanish. The

transition probability for emission or absorption of one
photon during time { is therefore, neglecting terms in W,

. nc? sin? &
| s |’ = zin* 28, sin® (w,* — w,"}/2 = —

(35)

where

48t = (w — Q) + dnat, (36)

The above notation has been chosen in such a way that
the block form of L) consists of the symmetric, (2x2)
Unitary miatrices

i S
[ o T
bw Cn

along the main diagonal. The fArst row and column,
however, contain only the single term (34).

We now consider the effect on the field of passing a
single molecule through the cavity, with fHight time .
At the instant {(f=0) when the molecule enters the
cavity, let its state be described by the density matrix
p1(0), and the state of the field by the density matrix
g:(0). The initial density matrix fo the entire system is
thus the direct product g{0) = p (1) Xp{0), with matrix
elements

(mm | p(O) [ m'n") = (m | pa(0) | ) (| ps(0) | W), (37)
During the interaction, p undergoes a unitary trans-

formation

ol) = (38)

and the density matrix p;(t), which describes the state
of the [eld only, is the projection' of (38) onto the
space of the feld variables

U (L, 0)pl0) U2, 0)

| o) | n) = X2 (mn | plf) | mar’). (39)

m

1 This formalism is developed in detail by Jaynes [12].
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The net change in the state of the field thus consists of
a linear transformation,

(n] ot} | #) = 25 (nn'| G| kE)(R| ps(0) | &) (40)

k k¢
or

pilr) = Gpi(0) (41)
(nn' | G| kR

= 2 (m'n|U|mk)m'd | U] m" "0 )owa’ (42)

where we have written for brevity
(43)

The sums (42} are readily evaluated with the use of
(33), with the result that the only nonvanishing ele-
ments of & are

Tm’ = {m| i) | mt').

(an' | G'n, #°) = @uprtyproer + catyron (44a)

(nn’ | G|'n + 1, #) = Dusrtmisiana (44b)

(n, n' | Glun +1) = ﬂ,+16:-+1cru, {(44c)
(m,n'|G|nyn' —1) = cq-ﬁ::rm {44d)
(.9 | G| 96— 1, ') = Bucwreras, (4de)
(2| G|+ 1,0 + 1) = bupibor i, (44f)
(| Gl n= 1,0 — 1) = bbuon. (44g)

These relations hold for all quantum numbers 2 if we
understand that ¢, is not defined by {33} but by co=exp
{ —dawot).

To illustrate the use of this formalism, we discuss a
few simple problems using (44). Consider first the case
where the fheld is initially in its lowest state;
(0] g,(0)]0) =1, all other elements of p;(0) vanish. Then
according to (44), after a molecule with initial density
matrix o has passed through, the field density matrix
has elements

{ﬂl pelr) | 0 = | *11|!ﬂn + i
(0] o) | 1) = (1] pelr) | 0)* = cubi®ess
{1] PJ(T” 1) = | by |2as,

all other elements still vanishing. If the molecule were
initially in its lowest state then nothing happens, and
the field remains in its ground state. If the molecule
was initially in the upper state [eu=1, su=r:=0]
we have a simple transition probability of | b ? for the
molecule to emit one photon in passing through. If
there was initially no coherence relation between upper
and lower states of the molecule, then op=0, and p;,
remains diagonal; no coherence between states n=0
and #=1 can be set up by the molecule unless there
was some coherence initially between upper and lower
states of the molecule.

(43)
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The expectation value of electric field along the axis
of the eavity, as obtained from (20), is

{Ey = Trace (psFE)

ficx oy
_IE VaFA[(n] p| e+ 1)+ (4 1] o | 0]

Deck e i
By [0 S = g (] P
] w

(]

(46)

This remains zero as long as there is no coherence
among adjacent levels, even though the energy stored
in the field may be large. In the case (45), we obtain
for {E),

2ach
(B} = — == Re (cobr*o1s)
Lt

sin [t
i

= Eaﬂz RE! [i:ﬂ'mﬂ'i{n-i-m)”i]

(47)

where 8 is defined by (36) with #=1. Suppose now the
cavity is so tuned that its resonant frequency w is
equal to £}, then #=ea and we obtain simply

2ha —_—
{E) = — sin af Re [ize™].
I

(47a)

Since a=3 cps, the term sin {af) reaches its first maxi-
mum in a quarter cyvele, or about 1,20 of a second.
This is the interaction time required for a molecule to
emit a photon, with probability one, into a lossless
cavity initially in its ground state. This shows the
great enhancement of spontaneous emission probability
due to the presence of the resonant cavity, for the same
molecule in empty space would emit with a natural line
width ([ull width at half-maximum intensity),

Eﬁ,ﬂ“‘i

Aiw = —— = 10-7 sec™,
3kt

(48)

which leads to spontaneous emission times of the order
of months at the frequencies here considered.

If the molecule and Reld are in arbitrary initial states,
the general transformation of the field caused by pas-
sage of the molecule is, from (44),

(| pstt) ')

—cuilbesibrsi(nt 1] p(0) | w4 1) Fcucnlon | o(0) | 8]

+ o 1afbrsransa(nH1 | p0) | 1)+ cabu- (| p(0) | #'—=1)]
tarafanibuia(n | p0) | 14+ 1) +-buc-(n —1 | 5,(0) | 2)]

tos]@nirtnia(n | o0} | n0)

Fhabuin—1pd0) | w'=1)].  (49)
If the field density matrix is initially diagonal,
(| p(0) | 07) = puban. (30)
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The only nonvanishing components of p/{{) are

(] o) | + 1) = ol | busa[Pours + | ea %00

+ aua[| Bust [%0n + | Ba [P0amt]  (51)
and
(] ps(t) [+ 1) = (n+ 1] pelt) [ m)*
= r1a[Busrtniapuss + Cubrsipnl.  (52)

These relations will be used in the next section,

C. Successive Single- Molecule Interactions

If several molecules pass through the cavity in suc-
cession, the Nth entering as the (N —1)th leaves, all
with the same initial state, this generates a Markowv
chain,

pi(N1) = G¥p,(0) = Gp( N7 — 7). (33)

Of particular interest is the limit N— s,
If the density matrices of field and molecule are
initially diagonal,

g1z =gg =0 [H| F,ri:ﬂ'” HI] = pubuns, [54]

then p, remains diagonal for all time. In this case the
entering molecules can always be described by a tem-
perature, defined by

dae = oué s = (o 1)1
x= hQ/ kT (33}
and, using {51), (53) reduces to
pn(V7) = (& + (| aupa [* + | cu [te)pu( V7 — 1)
+ | basr|®onial ¥ — 7) + | b [fpca(Nr — 7)), (36)

From this the limiting form of g, may be found, Taking
note of the fact that fact that |a.|'+|b.|*=|b.)"
+-| .::,.|ﬂ= 1, we find that a necessary and sufficient con-
dition for a steady state p. (N7} =p. (N7t —71) =p,, 15 that
the quantities

By = | "5'11 i!‘{'p“_[ B f'fF'»}

be independent of #, Now Z,p.=1, and so p,—0 as
n— oo Consequently, B.—0, since |Er,,!9£1. Thus 5.
can be independent of # only if B.=0, and the only
steady-state solution is the Boltzmann distribution,

(57)

fn = & “pp—p,

for all # for which [ 8,] %0, From (35) it is seen that &,
could vanish only for isolated special values of #.

Note that (57) is not a Boltzmann distribution with
the zame temperaiure ¥ as that of the molecules, except
in the case where the cavity is tuned exacily to the
natural line frequency, The temperature of (37) is
Tr=wi /N This difference would never be seen in prac-
tice because as soon as one detunes the cavity appre-
ciably the transition probability |8,|* becomes ex-
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tremely small, and the temperature of the radiation
would be determined by its interaction with the walls
of the cavity, here neglected,

Nevertheless, in principle the difference is there, and
we have an example of an interaction between two
systems which maintains them at different tempera-
tures. The origin of the phenomena lies in the fact that
we have described the state of the molecule in terms of a
temperature, which is not wholly justified, since nothing
was said about their kinetic energy of translational
motion. It is this translational motion which supplies or
absorbs the excess energy so as to remove the above
apparent viclation of energy conservation. When a
molecule enters or leaves the cavity it passes through a
region of inhomogeneous field, and experiences a net
force which very slightly changes its velocity,

It the “negative temperature” case where the enter-
ing molecules are more likely to be in the upper state,
Faz >y, and x<0, the solution B.=constant is still
formally the only stationary one. But it now represents
an infinite amount of energy in the feld and could never
be reached by any fAnite number of molecules passing
through the cavity. It is, of course, only our neglect of
losses which leads to such a result, and in practice the
operating level quickly reaches a steady wvalue which
can be predicted by adding a phenomenological damp-
ing term to g in a well-known way.

As long as the density matrix o of the entering mole-
cules 15 diagonal, the density matrix of the field alone
also remains diagonal; the expectation value of the elec-
tric field remains zero in spite of the fact that the num-
ber of photons present mav be very large. That is,
{2 can be very large but (E) remains zero. This is
more or less 1o be expected sinee the entering molecules
do not “tell” the feld what phase to have. This situa-
tion raises certaitt questions, however, regarcding the
relation between quantum theory and classical theory.
It is usually supposed that the condition [or validity of
classical electromagnetic theory s simply that the
number of photons in each normal mode is large, and
that then one may identify the classical electromagnetic
ficld with the quantwm-mechanical expectation value,
It is seen, however, that this is a necessary but not
suthcient condition, for here we have a situation where
the semiclassical theory of radiation could not describe
such states.

The stutement, found i1 most books on quantum
theory, that in the limit of large quantum numbers,
quantum theory goes over into classical theory is some-
what misleading. Actually it is possible by coherent
superposition of quantum states to construct states
which are not describable in terms of classical theory at
all. Thus it is that we arrive at the conclusion that
classical theory is but a special case of quantum theory
m the case of large quantum numbers, e, large
quantum numbers are necessary but not sufficient to
insure the transition from quantum to classical theory.
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The case in which two molecules pass through the cav-
ity with flight time r and leave just as two others enter,
etc., has been worked out. The mathematics is tedious,
and the result is substantially the same as the succes-
sive single-molecule interaction case,

I1I. RELATION BETWEEN QQUuanTuM ELECTRODYNAMICS
AND SEMICLAssICAL Ramation THEoRrY

A. Semiclassical Electrodynamics

Now one considers that the electric held E(f) is
classically describable, and introduces a wave function,

wlt) = alths + b{th, {58)

for the molecule alone, which develops in time according
to the Schridinger equation

ihd = (Huo + Hine {59
where
(5| ot | 1) = Epbus (60)
and
(m| Hiue[m') = (m| — w-E@)|m)
= — pll — G ) E(H). (61)
Schradinger's equaiion (39) then reduces to
ihd = Eu — pE(f)b
ihh = — uE(a + Eb. (62)

These equations describe the effect of the feld on the
maolecule.

Semiclassical theory as usvally treated does not con-
sider the effect of the molecule on the field. To find the
effect of the molecule on the field, one calculates the
expectation value of the dipole moment of the molecule
from the solution of (62),

M(f) = {uiit} = plab® + ba*),

and assumes that the field satisfies the classical equa-
tions of motion which would result from interaction
with a dipole of moment M(#). This is obtained most
easily from the Hamiltonian equations of motion by
addition of the interaction energy

(63)

—M-E = + +dr X pu() Eu(x) - M(t) (64)
to Hin (7) of Section II, where x denotes the position
of the molecule. The classical equations of motion are
110w

ﬁ” - ﬁ e Unz";ra
i,
and
il e
fu = ﬂ_pg = po + +v'ix M- E.(x). (63)
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Eliminating ¢,

ﬁm + wa:]:"u - "U'.;H' WHEM' E.,{K:I, {ﬁf’.}

Assuming that we have only one normal mode ex-
cited, the electric field of this mode satisfies the dif-
ferential equation

+ 4t
T

4wl = (67)

where again we drop the subscript a. If the cavity has
a fnite (), due to wall losses and /or energy coupled out,
this is taken into account by adding a phenomenclogical
damping term to (67), giving us

4wt
IV

E+%E+w’ﬁ= (68)

By the “semiclassical” theory we mean the system of
equations (62), (63) and (68). They may be given a
somewhat neater forimal appearance by eliminating the
amplitudes a(f), #{/}. The result is the nonlinear system
of coupled equations,

M+ @M = — K'WE, (69a)
W= EM {69h)
and
B4 w/0F + o' = 5M, {69¢c)
where
K=2u/h §=dwe®/ I3V (70)
and
W= Ei|e|*+ Ea| b |* — HE: + Ei)
hQ
= =3l |al ()

is the expectation value of energy of the molecule, re-
ferred to a zero lving midway hetween the levels /£y, E..
In the form (69) we have an apparently classical non-
linear svstem, all reference to “quantum-mechanical”
guantities having disappeared.

The first two equations of (69) admit a first integral,

; Khns?
M®4 '+ KW = const, = —2- --) . (72a)

This is readily verified by eliminating £ between them.
Eq. (72a) is a disguised form of the principle of con-
servation of probahility, |al®*+|#&|*=1. Similarly, the

last two equations of (69) can be combined, in the case

(= =, to vield the constant of the motion
2t wlEY 4 25(W — ME) = constant, (72b)

which is easily identified as the conservation of energy
statement for the system,
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B, The Relafion Between Semiclassical and (Juantion
Electrodynamic Equations of Motion

For the equation of mation of any quiantum-mechan-
ical aperator we have itF = [F, H|. Differentiating this,
we have

Wb+ (A, [, Pl = i, F 79

which is exact for any operator F which has no explicit
time dependence. Let us apply this identity to the elec-
tric field operator F=F The total Hamiltonian
H={Huu+Hiaa+H;) has no explicit time depend-
ence, so the right-hand side of (73) will vanish. To
evaluate the double commutator, we note that IT;,
commutes with E but not with [£;, E], while I, com-
mutes with both. Therelore,

[a, [H, E]l = [#), [Hy, E]] + Ui, [#5 B (74)

These commutiators are easily worked out, and the
result is

[
i

L, [H,,E]] = bl
lffL.,., ['”.-'1 ‘r]] = — BSua

(73)
(76)
Thus a special case of (73} is the operator identity

{77
which is to be compared to {12¢). [T we interpret (12c)
as the expectation value of (200, they are seen (o be
wlentical in the limit Q= =, provided that the expecta-
tion value of w. be defined, not in terms of wlf) and

bty by means of {6), but as the expectation value taken
over the complete density matrix (ma/p/m'n’), ie,

{ant = Tr (puay) = E [:'J'H:pr}.;'ir](m'| pr.|.| #),

e’

Ii + wif = Sua,

(78)

With this change in interpretation (6%c) is seen to be an
exact consequence of guantum electrodynamics.

We now write out the identity (73) for the operator
F=py. This time T commutes with g, but not
with [Ha, mop ], while If, commutes with both, There-
fore,

[.’f. [-'Ur an“ e ["FI"E:I [Hﬁ‘h -#"-'l'”. + [Ijlﬂil [ffﬂfl F"lir”‘ [.Tu.]

Proceeding as before, a short calculation vields the
following results:

(Hom [Hoy pop]] = 320%0 (80)
aindd
[Hines [Hoy on]] = BEKHE (81)
where we have defined an operator
H = o — 3(E) 4+ ) (82)
with matrix elements
{mn | B | i) = —”;—! (= 1) B (83)
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which 1s just the energy of the molecule, referred to a
zero lying midway between its levels £,, E;. Combining
these relations, we ind that another special case of (73)
is the operator identity

J‘J‘-bn + ﬂg#ﬂ,p _— - Kﬂh‘r"ﬁ' {34}

which is to be compared to (69a). However, now when
we take the expectation value of (84) we do not get
{69a) in general, for in the semiclassical equation the
“driving term” appears as {(JI'}{E), while quantum
electrodynamics vields (JI"E} The difference between
these terms arises [rom the possibility of having cor-
related states, a situation inherent in guantum electro-
dynamics but not in semiclassical theory. When the
states of feld and molecule are uncorrelated, the density
matrix reduces to a direct product p=p. gy, or

(85)
when (83) holds, then (F'E)=(I'}{E}. But in general,
(I Eye= (I )(E).

The possibility of obtaining “correlated states™ can
arise whenever two or more guantum-mechanical syvs-
tems interact. Quantum electrodynamics allows the
possibility of states of the combined system (molecule
plus field) which wre in a definite pure state, but never-
theless one cannat ascribe any dehnite quantum state
to the maolecule alone, or the field alone. This possibility
[orms the basis of one of Einstein's objections to quan-
tum mechanics. The Einstein-Podolsky-Rosen [13]
paradox consists of the fact that when such correlated
states exist, one hias the possibility of predicting with
certainty either ane of two noncommuting quantities of
a system by making measurements which do not in-
volve any physical interaction with it.

An interesting line of thought is based on the fact
that the semiclassical theory and guantum electro-
dynamics predict different equations ol motion for a
molecule in the field, the difference arising just from
those correlated states which cause the above con-
ceptual difficulties. Thus if one could find any experi-
mental situation in which the difference between
T Ey and (I ){E} leads to any observable diffierence in
maser operations, this would constitute an indirect, but
convincing, check on those aspects of quantum theory
which lead to the Einstein-Podolsky-Rosen paradox.
However, as will be shown, the prospects of detecting
such a difference are extremely dubious, for we will see
that the semiclissical theary actually reproduces many
of the features which one commonly supposes can be
found only with Geld quantization,

(ma | | m'n’) = (m| pw| m) (0| pr| n%)

. Solution of Nenlinear Semiclassical Equations

The simplest approximate solution of the coupled
semiclassical equations is the one wherein we ignore
the time variation of W, thereby converting the problem
inta a linear one, similar to the case of two coupled
pendulums, The normal modes are found by ASSUIMINg
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that E and M have a common time factor exp (ivf); if
W =constant, then {69a) and (6%) reduce to

(wt — pE) (02 — ') + K3SW =0 {86)
Or
w401
= 4 = et — 09 — 4KSW.  (87)

2

We see here a new feature, not present in coupled
pendulums. 1IE W0 and the cavity is tuned so closely
to the natural line frequency that
|o* — 9| < VIS, (88)

the square root in (87) becomes imaginary; one of the
normal modes grows exponentially, the other decays.
Now an oscillation of growing amplitude represents
energy being transferred from molecule to field, and
therefore we see that the semiclassical theory does
lead to a prediction of spontaneous emission. Since 1
ig just the energy of the molecule, we see that the condi-
tion of unstable growing oscillation is just that the
molecule's wave function contains more of the upper
state than the lower, |b|*> |a]®

Suppose that the cavity is tuned exactly to the nat-
ural line frequency, w=15. Then {87} reduces to

¥ =t £ S ESW (89)
or to an extremely good approximation,
iv/ K*SW
r=wt —- (90)

2w

If we start with the molecule nearly in the upper
state then W=452/2 and the amplitude of the field
varies like

' KiISH
Exp( (o)

—— {)-E"“‘" = pxp afeist
wd

where @ is the interaction constant defined in (25). This
is to be compared to the result (47a) describing spon-
taneous emission according toquantum electrodynamics.
It iz seen that although the two approaches lead to
equations of different [unctional form, they predict
exactly the same characteristic time 1/a for spon-
taneous emission. This shows that the relation between
quantum electrodynamics and the semiclassical theory
of radiation is quite different from what is usually sup-
posed. Physically, it means that whenever the molecule
has a dipole moment different from zero, the fields
set up by this dipaole react back on the molecule and
change its state in such a way that energy is delivered
to the field, as long as W >{. These linear relations do
not hold indefinitely, of course. From the conservation
law (72a) it 1s clear that when the amplitude of the M
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oscillation increases, the magnitude of ¥ must de-
crease, and this will eventually put a stop to the emis-
slon process.

The change in time of the variable W, for any rea-
sanable value of field strength, as we are concerned
with here, is slow compared to the time variation of X
or M, and for typical ammonia maser operating condi-
tions, £ and M go through the order of 107 cycles for
each cyvcle of W. For a gualitative picture ol the slow
changes in the case w =11, we may consider the orbits in
the (E, wE) plane and in the (M, wM) plane, as in
Fig. 1. Noting that the interaction energy is typically
about 10~* times smaller than the energy of the mole-
cule W, the conservation of energy law (72b) reduces,
in almost all cases, to

(E)? + w'E2 4 2SW = constant, (92)

which shows that as W increases, the orbit in the (£,
wk) plane must shrink, and vice versa. Also, the con-
servation law (72a) shows that if || increases, the
M orbit must shrink, and wice wversa. Therefore the
direction of all secular changes is determined by the
sign of W and W, In the equation W =EM we can for
all practical purposes replace EM by its average over
one cycle, EM, since we are interested in the trend of
W over time scales of many cycles, rather than small
rapid fluctuations whose effect averages to zero over a
cycle. Secular changes in W depend, thus, only on the
sign of EM.

Whenever the E motion is advanced in phase over
the M motion, we have EM>0. In this case, W will
slowly increase and the E orbit will shrink. The Af
orbit will then grow if W<0, shrink if W>0. If the M
motion is advanced in phase over the E motion, all these
changes are reversed. The situation is summarized by
the orbit diagrams of Fig. 2. Or again, let us assume
that W is given as some periodic function of time, so that
we can summarize these same conclusions graphically as
in Fig. 3.

Whenever the E orbit is expanding, energy is being
delivered from the molecule to the field, and the neces-
sary and sufficient condition for this is that the M mo-
tion be advanced in phase over the £ motion. Thus in
order to understand the long time course of events,
one must study the secular changes in relative phases of
the E and M motion.

To this end introduce the slowly varying complex
amplitudes X and ¥, defined by

E 4 iwE = X(t)eist (93)

and

M+ iwM = V(e (94)
The quantities depicted in Fig. 2 are just the complex
numbers (93) and (94). Noting the properties,

(B} + otE2 = | X (93)
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Fig. 1—Closed orbits in the phase space of the E and A oscillators.
The dots indicate that the E motion is %0° ahead of the Af motion
iin the phase.
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and
B4 wtlE = Xewt (96)

and similarly for M, we can write the equations of
motion (69} in the {orm, for the case w=1{1,

2iwX = S(V — VHe-tiur), (97a)
il = — KW(X — X*etiol), {97h)
diwW = X Fetini + XT* — X*F — XHP*etint,  (OFy)
The conservation laws become
% iz <4 K:¥? = constant = (H;H)! (08a)
and
| X |2+ L5W = conslant, {U8h)

Now the [unctions X and ¥ are slowly varving [une-
tions of time, and again it is their average change over
many cveles, rather than the very small rapid Auctua-
tions at frequency 2w, which are of interest. Thus the
oscillating terms in (97} can be dropped, since their
average over a cyele is negligible compared to their
de compaonents.
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The system of equations determining secular changes
of bath amplitude and phase is, therefore,

2iwX = SF, (99a)
2ic¥ = — K*WX, {99b)
diolW = X¥* — X*V. {99¢)

It iz easily verified that the conservation laws (08) are
exact consequences of (99). Differentiating (99¢) once
more and making use of the conservation laws, we can
eliminate X and ¥, obtaining the equation

" RONE
o'W — ISKW* + KCW + SK!(":‘Z_) =0 (100)

where Cis the constant of the motion (98b). A first in-
tegral of (100} can be obtained immediately by multi-
plication with W and integrating

F i

. hay?
23(W)? - SKUWI + ——— + 5K (?) W

= constant, (101)

This equation has the form of the Hamilton-Jacobi
equation for motion of a particle in a particular po-
tential well. For any motion in which either of the points
W= £ (M2} iz accessible, we have the constant on the
right-hand side of (101) equal to

K*C (ﬁ'ﬂ )"
3 w2/
This is easily seen from (98:a), for if W=+ (52/2), then
V=0 and W=0_ For any such motion the cubic poly-
nomial in (101) factors, To see this most easily, intro-
duce the change of variable (M1/2)2=W. Then (101}
talees the form,

it — (22 — 2 — az® 4 a)

=2 = [(s— D+ s —a)] =0, (102)

where
Heo” 1
b= —— = — a=—"~- (103)
SR % 2ot S
The solution is
_ aty) I'fz
vZal = f . (104)
Tl V-0 F -9

The # motion iz therefore periedic bhetween turning
points represented by singularities of the integrand. If
a>1, these turning points are at 2= %1, while if 2 <1
they are at 2= —1 and z=a. Now we consider evalua-
tion of the constant 2 = C/haS. From (5), (9a) and {17)
we have

'

Ff R = { 2sedhes)

atr

1

where #n is the number of photons stared in the cavity,
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Now, examination of (72b} with the small interaction
term neglected gives us

L

J2V

(2nhew) + Sha = C = Shw(2n + 1)

if we assume there are # molecules in the field when the
molecule is in its upper state, W= -+4(ku/2). Thus
a=(2n+1). There iz in this theory of course no re-
striction on # to be an integer. The smallest value which
e can attain is represented by zero energy in the field
and the molecule in its ground state, a = —1, or n=—1,
When #» is negative this of course means that the total
energy is insufficient for the molecule to get into its
upper state, and this is the physical reason why the
turning point of the s motion then occurs at z=a.
The integral (104) is one of the standard forms de-
fining elliptic functions. Using the standard notation
en (u, ), the solution for the case >0 is

ey 1
fh=—1 25nt 1t ), —— 105
8(t) + 25 (v'n-l- al + () v’ﬂ—|—l) (103)

where

20 ’”_](Vﬂﬂ}zﬁ' \z;:—H)

15 the initial phase of the motion. In the limit of large #,
the elliptic functions approach trigonometric functions,
as is seen most easily [rom (104}, If 31, then (104)
reduces to

{106)

L ds 1
Vv2al = —— — = ——=sin~'z({) + constant,

Vvi—2 +a

or

#(1) = sin (2+/ " at + ). (107)

The case ¢ =1, =0 is a special one, for the integrand
of {104} then develops a first-order pole at z2=1. The
solution (105} 13 still valid but is no longer periodic; in
fact sn (u, 1) is equal to tanh & which approaches +1
asymptotically as n—+ «. This represents a case
where the energy in the field exactly disappears just
as the molecule gets into its upper state, and the final
stages of the solution then represent the “shrinking
normal mode” of (90), where K iz 90° ahead of A, {This
phase relation iz in fact maintained throughout the part
of the motion (103) in which g increases. Throughout
the decreasing part, £ iz 90® behind 14.)

The point W=»M}/2, 2=1 is a metastable point of the
orbit in this case, for if we start out with exactly the
initial comditions =1, E= M =0 then nothing hap-
pens. All time derivatives remain zero and the molecule
does not emit. Howewver if there is the slightest change
in this initial condition, the growing normal mode of
{91) will he started up (unless the phase relations be-
tween M and E happen to be just the walue for the
pure shrinking mode), and eventually the energy of the
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Fig. 4—FEnergy as a function of time for several #'s.

molecule spills out entirely into the field when we reach
the fower turning point z= —1. The molecule then re-
absorbs the energy %iw from the ficld, passing back to the
metastable point z=1 but requiring an infinite time to
do so. Fig. 4 shows z(f) as a function of time {or several
values of the parameter #, the number of photons in
the cavity, and these are compared with the corre-
sponding quantum electrodyanmics curves. It is seen
that for a few photons, the correspondence is almost
exact. Even in the case ol one or two quanta, the semi-
classical theorv gives sclutions reproducing almost
quantitatively everything that is found in the quantum
clectrodynamics analysis. Even the “quantum jumps”
are still with us, but here they show up as perfectly
continuous processes, where an instability develops in
the sotution of the nonlinear equations and an amount
of energy %Aw is more or less rapidly transferred from
molecule to field.

The semiclassical analysis gives a very interesting de-
scription of the process of spontaneous emission. Con-
sider a large number of molecules, as nearly as possible
in the upper state. In practice, of course, we cannot
prepare them exactly in the upper state, but there
will be a certain probability distribution of initial
values of amplitude for the growing normal mode. A
molecule with an initial value M .(0) will at time ¢ have
an M amplitude of M, {(0)ext= M ..(8).

If we agree to say that when this reaches the value
K, the molecule 1s actively emitting energy, then, no
matter what the probability distribution of initial
values, provided only that this distribution 1s a con-
tinuous function in the neighborhood of the metastable

point W=72/2, we find that the number of molecules
emtting at tinie ¢ is proportional to exp ( — 2ad). We can
sece this by a simple argument which rans as [ollows:
We shall say that the molecule has reached stage K
of the emission process when the amplitude of the oscil-
lation reaches @ value in the range, A< A7 (0)e' < (K
+8K). We now ask, “llow many atoms will be in
stage K at time 77 Clearly, all those for which A7,(0)
lies in the range, Ke =<3/, (0} <{K 48K = i the
initial probability distribution in the phase space of the
molecule is constant, this would be proportional to the
arca ol the 2ardr =27 {Kem oy (6 Ke o9
~¢7tet Thus the “law of radioactive decay” or “time
proportional transition probabilities” appears in this
analysis as a consequence of the existence of metastable
states. The time constant of the decay faw is independ-
ent of the method of preparation of the molecules, and
only depends on the interaction constant of the mole-
cujes with the clectromagnetic field., The situation is
exactly like that of a large number of pencils nearly
perfectly balanced on their points. The time required
for any one pencil to {all over depends on how close it
was to vertical at t=0. If the probability distribution
of initial states is continuous in the neighborhood of
this metastable point, then we have a decay law with a
time constant which depends onlyv on the laws of
mechanics, not on the method of preparation of initial
states.

Mathematically, this semiclassical theory as ex-
pounded in this section Is exactly the same as that
already used by Shimoda, Wang and Townes [4]. The
new feature is the realization that this formalism ac-

annular ring,
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counts [or effects which all standard textbooks de-
seribe as requiring field quantization for their explana-
tion. Because of this success, and the fact that the
ﬁDrFEEE?UI;ldHI'I{.‘-E with quantum electrodynamics con-
tinues to strengthen as this formalism is applied to a
larger group of problems, it is felt that this formalism
deserves independent status as a physical theory in its
own right, and we sugegest it be called the nepclassical
theory of electrodynamics.

Conceptually, the neoclassical theory amounts Lo re-
interpreting the quantities usually denoted as expecta-
tion wvalues of energy and dipole moment as acfual
values, the latter serving as the source of classical
electromagnetic fields. These fields are then inserted in
the Hamiltonian of the molecule and the reaction of the
molecule to the field calculated according to the
Schrodinger equation. Thus a general problem would
be governed by the set of coupled equations,
ihf=H(A W and [J4,+4r(j.} =0, where (.} is the
current density operator, the expectation value here
being interpreted as a classical current density.

Having now convinced ourselves of the efficacy of
this method, we now turn to the application of these
equations to the problem of the ammonia beam maser.

IV, AprLICATION OF NEOCLAsSsICAL Rabiationw THEORY
TO THE AMMONIA MASER
A. Tdeal Steady-State Solution

Our starting point for obtaining the ideal steady-
state solution for the ammonia maser will be (69}, i.c.,

M+ @M, = — K*W.E() (108a)
BB+ % b= 5, (108b)
W, = EM, {108¢c)

where now the subscript ¢ refers to the #th molecule.
If now all of the molecules are subjected to the same
field E(f) as in the Stanford [6] ammonia maser, we
can simply define the total moment and energy

M@ =2 M0, (109a)
W = 2 Wab. (109b)

We see that (108a)-(108c) are still satished by these
quantitites, in particular,
- w .
E—|—w3}f2—|——I§E=SM=.S‘EM.-, (110)
;
The conservation law (72a) is still valid in the sense that
the left-hand side is still constant; but, of course, the
value of the constant now depends on the initial condi-
tions, Since the problem of N molecules in the cavity
ig hardly any more difficult in this formalism than that
of one molecule, we can see the advantage of this
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formalism owver the quantum electrodynamics ap-
proach, where two molecules in the cavity at a time
would involve solving cubic equations, that of three
molecules, quartic equations, and so forth.

As our first application, we consider the case where
molecules enter the cavity all in the upper state,
W.=#1/2, with the same velocity and with a uniform
rate of 4 molecules per unit of time. We wish to find
how, under these circumstances, the steady-state fre-
quency and amplitude of oscillation depend on the
experimentally controllable parameters 4, w, (.

Denote by £; the time at which the ¢th molecule enters
the cavity. It is readily verified by substitution that
the solution of (108a) with the initial conditions
M(8) =M (t;) =0 is

K1 ot
M) = = _-R_J:. W) EQX) sin Q0 — )dt'. (111)

Using this, (108¢c) can be written as an integral equa-
tion. A time integration vields

Wilt) — Wilt) = f :d.t”E{.i”}M{.t”}
b

=—K | d"EW | @'WAOEE) cos QU —1). (112)

13 )

Interchanging the order of integration in (112), we
find that W.(#) satisfies an integral equation of Valterra
form,

Wit) — Wity = G, YW (N, (113)
i
with the kernel,

t
Gl t') = — Kﬂf dt’" E(t") cos Q(t" — () E("). (114)

We now assume the electric field is given by

E(l) = 2azin (115)

where a and » are parameters to be determined by the
condition that (110}, (111} and (113} be self-consistent,
It is clear from (108c) that the exact solution of W(f)
containg terms oscillating at frequencies of the order
of (Q4#). While these terms may contribute appreci-
ably to W, their effect on W averages to zero in times
of the order of one cvele of the RF. Since we are in-
terested in the long time drift in Wy, rather than these
small rapid fluctuations, we neglect terms in (114) of
frequency (-4, Their contribution to W is of the
relative order of magnitude

[ﬁ—rj <
(242

V)
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in all cases of practical interest. With this approxima-
tion (114} reduces to
sin (2 — )t — 1)
(2 — v

Gl ") = — K%¥g? (116)

and the slowly varving part of W.[!) satisfies the in-
tegral equation

W0 :
" Wt) — KEa*J‘ Wth

‘i

sin (82 — #){(t — 1)
(2 — v

dr. (117)

The exact solution of (117} with the initial condition
Wit) =18/2 is

ry
i
W) = 5:? [(2 — w4 22K cosA(t — 2] (118)

where

A2 (01 - ) (Ka) (119)

As a check, and an illustration of some of our pre-
vious remarks, we note that (118) and (119) agree with
the results found from guantum electrodynamics, and
(35) and (36), and also with the result ol others who
have treated the problem by direct integration of
Schriédinger's equation.

The total dipole moment of all the moledules in the
cavity is

M= A f M (t)di;
_.-“.IKE [}
s dr'E((") sin Q(t — ')

j f=r

f " W )

where we have used (111) and inverted the order of
integration. With the solution (118) for W(f), this be-

comes
a*K?*
sin A
L]

(120)

AahQE* r*
Mif=——r
{Ia® 0

I:I[S! — ¥+

sinelg + ¢ — 7) sin Qr — glrdyg {121)

where g=(r—t+£). As a function of g, the last factor
of the integrand contains oscillating terms of fre-
guencies (2+¥), and again the relative contribution of
the high-frequency term will be of the order of 10-7 or
smaller under all conditions of interest. Neglecting this
small term, (121) reduces to

AahQK?

M) =— o |:{1 — CO5 AT) COS5

(R —w : :
= = @r — sinAr) sin n!:|, (122)
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Dyetails from this point on will be considered later, as a
special case of a more general salution,

B, Velocity Distribution

In the preceding section, all the molecules were as-
sumed to have the same Aight time 7, To find the effect
of a velocity distribution, we have only to note that
the analvsis leading to (122) is still valid, and it gives
the contribution to total moment of those molecules
with flight time in the range dr, provided that we re-
place .1 by uf(rldr, where n is the total number of
molecules entering the cavity per unit time, and
firldr is the [raction of entering molecules with Hight
times in the range dr, normalized so that

L = 1.

The total dipole moment of all molecules in the cavity
is then obtained by one more integration of (122}, as
follows:

(123}

M) = ny {[1 — ¢(A)] cos w

i — : ]
o [AF — S(A)] sin w:f (124)
A
where we have defined
ahit i
B (125)
ax?
for convenience, and where
T = f T_,"[.'r:leiﬂ' I:IZﬁ}
]
is the mean flight time, and
o) Ef cos hrfir)dr (127)
i
and
s(\) Ef sin Arfir)dr (128}
(1]

are the Fourier transforms of the flight time distribu-
tion.

To obtain the conditions [or o sell-consistent solu-
tion, we substitute (124) into (110) and eqguate the co-
efficients of cos #f, sin #, We obtain the relations

5
ol RS [1 — c(r)] (129)
4] 2a
and
Sny @ —
o e o T g ] (130)
2a A




104

The starting current g is determined by (129) for small
A From {127) we have

lim _1___..5{1.)_ = f ’ ifff(r:ld'r = 1;

' Ao AR 2 (£33

go that it is the mean-square flight time which deter-
mines the starting current, as follows:

daew BTV
Hy = —— = — : (132)
ONYr2S  Qrtda?
Similarly, we have from (128),
AF — SN 1 —
im =—r7¥ (133
h=ell A il
so that if we define new Tunctions,
; 6[A7 — s(\)]
I"{}l} = = '—hﬁ—' - [134]’
and
21— eln
G = ﬁ’ {135)
b oy

we have F(0)=G(0)=1. Previous writers [1] have ex-
pressed their results in terms ol an “effective 0" of the
malecular beam. The appropriate definition here would
b
frt
(o = === = 1%,
Grt

(136)

Our conditions (129) and (130) then assume the forms

#o/n = GA) (137)
ancl
. 0 G
— = — ) — 138
(v ) 22 (w ) o F) (138)

il we neglect terms of order (2/0.)% These relations
are to be uwsed graphically as f{ollows: For a given
velocity distribution, the functions FA) and (L) can
be caleulated and plotted. Then from (137} one de-
termines h as a function of the beam current. The fre-
quency pulling factor (G/FF) of (138) is then determined.
Finally, the amplitude of oscillation a 15 determined for
given beain current » and cavity tuning w, by use of
{138) ancd (119, For constant beam current, f.e., con-
stant &, the graph of amplitude vs frequency of oscilla-
tion is a alf ellipse, the amplitede reaching 2 maximum
for perfect tuning of the cavity to the molecule line, in
which case Ke=~. Oscillations can persist over a fre-
quency band (=0 <e <(24N).

In the case of a single molecular welocity, fir)
=8{r —ry), the=e relations reduce to those of Shimoda,
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Wang, and Townes [4], and in the case of a Maxwellian
velocity distribution, where the fraction of molecules
per unit time with velocities in the range dv is pro-
portional to v* exp (—0%/ 0 dr, or

fir) ~ exp (= L}/ wirt)/r8 (139)

(L =length of cavity, #' =2KT/m), they reduce to the
theory of Lamb and Helmer [6]. In the Maxwellian
case our dimensionless parameters F, G, (. become
identical with those defined by Lamb and Helmer,

The assumption of a Maxwellian distribution is cer-
tainly a reasonable first approximation, but it is prob-
ably not very accurate because the quality of focusing is
velocity dependent, the focuser having the property
of focusing the small velocity molecules much more
effectively than the high-speed ones; and, except for
extremely strong [ocusing voltage, the distribution of
flight times may be biased considerably more in favor
of large = than is indicated by (139). This could have
an important effect on stability, as may be seen in
the following.

In the case of a Maxwellian distribution, hall of the
mean-square flight time 7%, which determines the start-
ing current, is contributed by the slowest 12 per cent
of the molecules. Half of the third moment 7, which
determines the effective molecular @, and hence the
long time frequency stability, is due to the slowest 1.9
per cent, Any further biasing in lavor of higher 7 would
have a considerable effect on 7%, and a very large effect
on 7. For this reason, effects of Auctuations in beam
current may not be of the relitive order of magnitude
1/+'N, where WV is the total number of molecules in the
cavity. Fluctuations in the experimentally significant
quantities may be determined almost entirely by the
slowest 5 per cent of the molecules, with corresponding
greater relative variation,

The effect on the [requency-pulling function G/ Fof a
“truncated” Maxwellian distribution has been worked
out for the case where the velocity distribution is taken
to be Maxwellian up to some #,.,. and zero thereafter,
where p,.,. was taken arbitrarily to be 3vy. The results
were compared to that of a Maxwellian distribution.
A region of stability still appears, as in the analysis of
Lamb and Helmer, but it occurs for smaller values of
A (about a factor of two) which corresponds to smaller
values of beam flux.

V, Fructvationy EFFECTS

The steadv-state relations found in Section IV form
the starting point (or investigations of Auctuation ef-
fects, by perturbution methods in which we expand in
powers of the small departure from the previous solu-
tions, [ we calculate only to the lowest nonvanishing
order, these problems become linear. But in this case
we can analvze the effect of small periodic perturba-
tions, proportional to exp ({8 and superpose the soly-
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tions to find the transient response to an arbitrary
small perturbation. Thus, consider the effect of an
additional signal F(f) impressed on the cavity. This
might be an extra signal intentionally fed in, or it might
be a randomly varying function representing thermal
noise generated in the cavity and/or load. The equa-
tion of motion for the electric field then becomes

E+ﬁE+%E=SMM+Fm (140)

and this F(f) causes a change of E, in the electric field.
Suppose now that F(#) contains the time factor exp
{(#8t); then if B is not too close to the oscillation fre-
quency », the change in electric moment of the ith

Jaynes and Cummings: Quantum and Semiclassical Radiation Theories

1035

ponents which lie close to the natural line frequency.

If the period of the beat [requency [(f—w) is com-
parable to the flight time, however, then one should take
into account the term Wy,; generally, perturbations of
any tvpe can lead to the greatest effects when their fre-
quency is related in this way to the Hight time. Since
the theory remains linear, flucutations due to any cause
are readily calculated. We now proceed to the calcula-
tion of electric field Huctuation in which we retain the
term W,

Keeping terms to only the first order in the per-
turbation, we have to solve the system of linear equa-
tions with time varving coefficients,

Bt %-L + wiEy = SMy () + F(1)

molecule will satisfy =85 2 M () + F1), (147)
My + @My, = — KW E, (141) iy, + My, = — KW Ey— K*Wo Fy, (148)
and
where we have set W, = Bbe, + Eol, (149)
E=E;+ E; = 2a sin o 4+ E (142) From (149 we have
f 3
W) = f Eqli") [--K i (W (" EE™) 4 Wo (") Ei(")) cos Q@ — {”}u’;“]rﬂ’
it &y
f "
+ f Ex(f) [—m f Wo,(¢") Ent") cos Q" — e”}d:“} r (150)
[ T
and where we have used
;= ! 143 K2 £
By =M A (149) My ll) = — —f ain 208 — 1)
W= Wy, + W, (144) o I
WL EAEY 4+ Wo () I . (151)

where the subeeript 07 denotes the unperturbed or
steady-state solutions of Section IV. Here we have
dropped a term EW,, on the grounds that it will not
have an appreciable component of frequency 3. Under
these conditions, the change in total moment of all
molecules in the cavity will be simply

—K'WE,
0t — g

where T is the average energy of all molecules in the
cavity. Combining these relations, we find the electric
field Auctuation to be given by

F(gy(ae — g%
[(m* — 8+ Fi;){ﬂf' -6+ H*Spﬂ

M:-—'EM':.-= (145)

(146)

.E-1=

If T =0, this reduces, as it must, to the response of the
cavity alone. The effect of the molecules is, in this
approximation, to suppress the magnitude of the elec-
tric field fluctuations By, for those frequency com-

We specialize to Lhe case of the tuned cavily, w=1,
since this will not signihcantly affect the results and
renders the mathematies very much less tedious. Now,
assuming a solution of the form

Eu{l) = @iet 4 agero-201 (152)

we are able to get sell-consistent solutions for (147)-

(149}, Using (152) and the unperturbed solutions of the

preceding chapter for the case of a single molecular

flight time, we have for (150),
KR

Wi ) = — (@ — aa) (e — e 4) sin A( — £,). (153)
40

We have dropped terms of frequency 248, as they do

not contribute appreciably to Wy Here @'=2-8. Now

we put this result into (151) and alter integrating over

all the molecules, 1.¢.,

Mili) = 4 f Mot (154)
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and, inverting the order of integration, we have Note that ;= —0; if Q—8< +10M. The expressions

K o : {157) and (158) can be simplified somewhat by remem-

M) = — —nn._ f dt' Ey(t") sin @t — ) f W, (¢ de, bering that we can replace A by the starting current 4,
[ St ]

i—r divided by G{\) for the univelocity case, i.e.,
'R o
e — f dt' Eq(¢") sin 00 — ¢ 400 At
e J,., A= Af/GN) = ——— (163)
i Orf(AQEES) 2(1 — coshr)
. Wo (t)dt.. 155
fH o 159 from (132) and (135). Thus,
i AH22/0)[Q cos Q'r/2 sin Ar/2 — A cos Ar/2 sin Q'7/2] (168
2000 — A% sin Ar/2
and
B=Co+ X2/ Q[(cos Ar — cos @) + /A sin Ar — A sin 'r)] . (165)
20/(2'* — A?)(1 — cos Ar)
The result of the integrations is We see here the result of having time-varying coef-
_ _ ficients in our linear equations (147)=(149). If we feed
SMi(l) = @ Be't 4 q,Ce?=20 — g, Bet 1820 in a signal of frequency 8, the field given back contains
B S the frequencies 8 and (22—8), i.e., the frequency 8 and
aele (156) the reflection of 8 about 2.
where we have defined If we plot the amplitudes |a,|® and |ﬂ-z| t of the fre-
quencies § and (21— B8) as a function of the parameter &,
AE=Sk such that i’ =k, for various values of the flight time r,
T e observe a “quieting” effect [ ain values of th
{2 — 2 we ohserve a "queting” eftect lor certain values ot the

flight time. For small values of the fight time, the
effect of the molecular beam is to amplify any input
signal, e.p., thermal noise. The region of greatest

A
-I:tus Qr/2(1 — cosarh — ES{H Q'r/2sin Ar} {157)
stability, that at which “noise quieting” would be the

and greatest, appears at hr =3x/2, See Fig. 5, pp. 107-108,
AKSH This analysis was carried out under the assumption
B of a uniform velocity distribution and a tuned cavity.
HE* =A%) [t iz clear enough that these restrictions do not greatly
o impair the generality of the results ohtained. The
-]:1:05 At i Y sin Ar — cos Q' — igin ﬂ*rj|. (158)  analysis for an untuned cavity would merely have the

effect of shifting the axis in the plots of Fig. 5 by the
amount £ —», so that one would have plots symmetrical
about » instead of & Also, very plausible speculation
F(2: + B) leads one to conclude that the only effect of a velocity

e (159)  distribution, which mathematically would appear as
(2~ B)(%: + B) + C7] integrals over v in B and C in the denominators of
P (159) and (160), would be to smooth out the “wiggles”
which appear near the “bare” cavity response wvalue

Inserting this expression into {147) we find

iy

FC o
o = = (160) FO/E=1. _
[($ — BY}9:+ B) + 7] One can recast the electric field,
where we define s dow :
E(f) = 20 51tn 2 + f de g -+ f ;i 9-8 g
= 0 — g +i08/0 (161) v N

andd + ce (166)
i in the form

=0 —(F— 20+ 11— (F —~ J 2

L L r,}':'ﬁ 20 uen E(t) = A() sin [Qr + ¢(1)] (167)
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where the power spectra of .1(f) and ¢{#) are known
from the knowledge of @1 and @2 One might then argue
that we can obtain {¢?) and thus have an answer for the
frequency stability; but we must remember that we
have used a first-order perturbation method, which is
valid only for small momentary departures from the
steady-state solution—the frequency instability due to
thermal noise in the walls probably causes the phase
to wander in a manner closely akin to Brownian motion
phenomena; and we cannot expect to predict cumula-
tive phenomena by use of perturbations. However,
since there is “restoring force” on the amplitude, it can
never wander very far from the steady-state value, and
we would expect that this analysis could lead to a good
prediction of the amplitude stability due to a random
perturbation such as thermal nocise generated in the
cavity or walls.

The criterion for the accuracy of any {requency
standard, or “clock,” is not so much how far the oscilla-
tion frequency drifts from its nominal value in a given
time, but rather how well we are able to predict how it
will wander. Here one would be concerned with the
wander of the phase of the output under the per-
turbation of 1) the thermal radiation from the cavity
walls and 2) the unavoidable random fluctuations in
beam composition. The analysis given above indicates
that under conditions likely to be realized in the fore-
seeable future, the former effect will be by {ar the most
important.

Byv analogy with the classical Einstein treatment of
Brownian motion, one expects that the phase ¢ will be
uncertain in the following sense: While (¢(¢))=0,
(@2(t}) = Kt. The constant K would then be a reasonable
measure of the oscillation stability.

The analvsis given above is not, however, adapted to
answering questions of this type. In assuming that the
actual output could be represented in the form

E{) = 2a sin »t + Ei{2)

with E}! «a, we have in effect restricted the theory to
cases (or time intervals) such that the phase wandering
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¢ s at most ol order /£;/a. A more general theory of ran-
dom processes is therefore needed before questions
about very long time behavior can be answered.

Wiener [15] has given an interesting discussion of
the response of nonlinear systems to a random per-
turbation. His curves are very similar to those of Fig.
S, which arise, for instance, in the analysis of the alpha
rhythm of brain waves, It appears that the phenomena
predicted by Fig. 5 is a general property of any non-
linear system which is attempting to stabilize itsell.
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