E. T. JAYNES

CONFIDENCE INTERVALS VS
BAYESIAN INTERVALS

ABsTRACT. For many years, statistics textbooks have followed this ‘canonical’
procedure: (1) the reader is warned not to use the discredited methods of Bayes and
Laplace, (2) an orthodox method is extolied as superior and applied to a few simple
problems, (3) the corresponding Bayesian solutions are not worked out or described
in any way. The net result is that no evidence whatsoever is offered to substantiate the
claim of superiority of the orthodox method.

To correct this situation we exhibit the Bayesian and orthodox solutions to six
common statistical problems involving confidence intervals (including significance tests
based on the same reasoning). In every case, we find that the situation is exactly the
opposite; i.e., the Bayesian method is easier to apply and yields the same or better
results. Indeed, the orthodox results are satisfactory only when they agree closely
(or exactly) with the Bayesian results. No contrary example has yet been produced.

By a refinement of the orthodox statistician’s own criterion of performance, the
best confidence interval for any location or scale parameter is proved to be the
Bayesian posterior probability interval. In the cases of point estimation and hypothesis
testing, similar proofs have long been known. We conclude that orthodox claims of
superiority are totally unjustified; today, the original statistical metheds of Bayes and
Laplace stand in a position of proven superiority in actual performance, that places
them beyond the reach of mere ideclogical or philosophical attacks. It is the continued
teaching and use of orthodox methods that is in need of justification and defense.

I. INTRODUCTION!

The theme of our meeting has been stated in rather innocuous terms:
how should probability theory be (1) formulated, (2) applied to statistical
inference; and (3) to statistical physics? Lurking behind these bland
generalities, many of us will see more specific controversial issues: (1)
frequency vs. nonfrequency definitions of probability, (2) ‘orthodox’ vs.
Bayesian methods of inference, and (3) ergodic theorems vs. the principle
of maximum entropy as the basis for statistical mechanics.

When invited to participate here, I reflected that I have already held
forth on issue (3) at many places, for many years, and at great length.
At the moment, the maximum entropy cause seems to be in good hands
and advancing well, with no need for any more benedictions from me;
in any event, I have little more to say beyond what is already in print.?
So it seemed time to widen the front, and enter the arena on issue (2).
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Why a physicist should have the temerity to do this, when no statistician
has been guilty of invading physics to tell us how we ought to do our
jobs, will become clear only gradually; but the main points are: (A) we
were here first, and (B) because of our past experiences, physicists may
be in a position to help statistics in its present troubles, well described
by Kempthorne (1971). More specifically:

(A) Historically, the development of probability theory in the 18’th
and early 19’th centuries from a gambler’s amusement to a powerful
research tool in science and many other areas, was the work of people -
Daniel Bernoulli, Laplace, Poisson, Legendre, Gauss, and several others —
whom we would describe today as mathematical physicists. In the 19’th
century, a knowledge of their work was considered an essential part of the
training of any scientist, and it was taught largely as a part of physics.

A radical change took place early in this century when a new group of
workers, not physicists, entered the field. They proceeded to reject virtually
everything done by Laplace and sought to develop statistics anew, based
on entirely different principles. Simultaneously with this development,
the physicists — with Sir Harold Jeffreys as almost the sole exception —
quietly retired from the field, and statistics disappeared from the physics
curriculum,

This departure of physicists from the field they had created was not,
of course, due to the new competition; rather, it was just at this time that
relativity theory burst upon us, X-rays and radioactivity were discovered,
and quantum theory started to develop. The result was that for fifty years
physicists had more than enough to do unravelling a host of new experi-
mental facts, digesting these new revolutions of thought, and putting our
house back into some kind of order. But the result of our departure was
that this extremely aggressive new school in statistics soon dominated
the field so completely that its methods are now known as ‘orthodox
statistics’. For these historical reasons, I ask you to think with me, that
for a physicist to turn his attention now to statistics, is more of a home-
coming than an invasion.

(B) Today, a physicist revisiting statistics to see how it has fared in our
absence, sees quickly that something has gone wrong. For over fifteen
years now, statistics has been in a state of growing ideological crisis —
literally a crisis of conflicting ideas - that shows no signs of resolving
itself, but yearly grows more acute; but it is one that physicists can re-
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cognize as basically the same thing that physics has been through several
times (Jaynes, 1967). Having seen how these crises work themselves out,
I think physicists may be in a position to prescribe a physic that will speed
up the process in statistics.

The point we have to recognize is that issues of the kind facing us are
never resolved by mere philosophical or ideological debate. At that level
of discussion, people will persist in disagreeing, and nobody will be able
to prove his case. In physics, we have our own 1deological disputes, just
as deeply felt by the protagonists as any in statistics; and at the moment I
happen to be involved in one that strikes at the foundations of quantum
theory (Jaynes, 1973). But in physics we have been perhaps more fortunate
in that we have a universally recognized Supreme Court, to which all
disputes are taken eventually, and from whose verdict there is no appeal.
I refer, of course, to direct experimental observation of the facts.

This is an exciting time in physics, because recent advances in technology
(lasers, fast computers, etc.) have brought us to the point where issues
which have been debated fruitlessly on the philosophical level for 45
years, are at last reduced to issues of fact, and experiments are now un-
derway testing controversial aspects of quantum theory that have never
before been accessible to direct check. We have the feeling that, very soon
now, we are going to know the real truth, the long debate can end at last,
one way or the other; and we will be able to turn a great deal of energy
to more constructive things. Is there any hope that the same can be done
for statistics?

1 think there 1s, and history points the way. It is to Galileo that we owe
the first demonstration that ideological conflicts are resolved, not by
debate, but by observation of fact. But we also recall that he ran into
some difficulties in selling this idea to his contemporaries. Perhaps the
most striking thing about his troubles was not his eventual physical
persecution, which was hardly uncommon in those days; but rather the
quality of logic that was used by his adversaries. For example, having
turned his new telescope to the skies, Galileo announced discovery of the
moons of Jupiter. A contemporary scholar ridiculed the idea, asserted that
his theology had proved there could be no moons about Jupiter; and
steadfastly refused to look through Galileo’s telescope. But to everyone
who did take a look, the evidence of his own eyes somehow carried more
convincing power than did any amount of theology.
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Galileo’s telescope was able to reveal the truth, in a way that transcended
all theology, because it could magnify what was too small to be perceived
by our unaided senses, up into the range where it could be seen directly by
all. And that, I suggest, is exactly what we need in statistics if this con-
flict is ever to be resolved. Statistics cannot take its dispute to the Supreme
Court of the physicist; but there is another. It was recognized by Laplace
in that famous remark, ‘‘Probability theory is nothing but common
sense reduced to calculation”.

Let me make what, I fear, will seem to some a radical, shocking sug-
gestion: the merits of any statistical method are not determined by the
ideology which led to it. For, many different, violently opposed ideologies
may all lead to the same final ‘working equations’ for dealing with real
problems. Apparently, this phenomenon is something new in statistics;
but it is so commonplace in physics that we have long since learned how
to live with it. Today, when a physicist says, ‘“Theory A is better than
theory B”, he does not have in mind any ideological considerations; he
means simply, ““There is at least one specific application where theory A
leads to a better result than theory B”.

I suggest that we apply the same criterion in statistics: the merits of any
statistical method are determined by the results it gives when applied to
specific problems. The Court of Last Resort in statistics is simply our
commonsense judgment of those results. But our common sense, like
our unatded vision, has a limited resolving power. Given two different
statistical methods (e.g., an orthodox and a Bayesian one), in many cases
they lead to final numerical results which are so nearly alike that our
common sense is unable to make a clear decision between them. What
we need, then, is a kind of Galileo telescope for statistics; let us try to
invent an extreme case where a small difference is magnified to a large
one, or if possible to a qualitative difference in the conclusions. Our com-
mon sense will then tell us which method is preferable, in a way that
transcends all 1deological quibbling over ‘subjectivity’, ‘objectivity’, the
‘true meaning of probability’, etc.

I have been carrying out just this program, as a hobby, for many
years, and have quite a mass of results covering most areas of statistical
practice. They all lead to the same conclusion, and I have yet to find one
exception to it. So let me give you just a few samples from my collec-
tion.
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() INTERVAL ESTIMATION

Time not permitting even a hurried glimpse at the entire field of statistical
inference, it is better to pick out a small piece of it for close examination.
Now we have already a considerable Underground Literature on the
relation of orthodox and Bayesian methods in the areas of point estima-
tion and hypothesis testing, the topics most readily subsumed under the
general heading of Decision Theory. [I say underground, because the
orthodox literature makes almost no mention of it. Not only in text-
books, but even in such a comprehensive treatise as that of Kendall
and Stuart (1961), the reader can find no hint of the existence of the books
of Good (1950), Savage (1954), Jeffreys (1957), or Schlaifer (1959), all
of which are landmarks in the modern development of Bayesian statistics].

It appears that much less has been written about this comparison in the
case of interval estimation; so I would like to examine here the orthodox
principle of confidence intervals (including significance tests based on the
same kind of reasoning), as well as the orthodox criteria of performance
and method of reporting results; and to compare these with the correspond-
ing Bayesian reasoning and results, with magnification.

The basic ideas of interval estimation must be ancient, since they occur
inevitably to anyone involved in making measurements, as soon as he
ponders how he can most honestly communicate what he has learned to
others, short of giving the entire mass of raw data. For, if you merely give
your final best number, some troublesome fellow will demand to know how
accurate the number is. And you will not appease him merely by answering
his question; for if you reply, ‘It is within a tenth of a percent™, he will
only ask, ‘“How sure are you of that? Will you make a 10:1 bet on it?”

It is not enough, then, to give a number or even an interval of possible
error; at the very minimum, one must give both an interval and some
indication of the reliability with which one can assert that the true value
lies within it. But even this is not really enough; ideally (although this
goes beyond current practice) one ought to give many different intervals —
or even a continuum of all possible intervals — with some kind of statement
about the reliability of each, before he has fully described his state of
knowledge. This was noted by D. R. Cox (1958), in producing a nested
sequence of confidence intervals; evidently, a Bayesian posterior probabil-
ity accomplishes the same thing in a simpler way.
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Perhaps the earliest formal quantitative treatment of interval estima-
tion was Laplace’s analysis of the accuracy with which the mass of
Saturn was known at the end of the 18’th century. His method was to
apply Bayes’ theorem with uniform prior density; relevant data consist
of the mutual perturbations of Jupiter and Saturn, and the motion of
their moons, but the data are imperfect because of the finite accuracy
with which angles and time intervals can be measured. From the posterior
distribution P (M) dM conditional on the available data, one can deter-
mine the shortest interval which contains a specified amount of posterior
probability, or equally well the amount of posterior probability con-
tained in a specified interval. Laplace chose the latter course, and an-
nounced his result as follows: *“... it is a bet of 11000 against 1 that the
error of this result is not 1/100 of its value™. In the light of present knowl-
edge, Laplace would have won his bet; another 150 years” accumulation
of data has increased the estimate by 0.63 percent.

Today, orthodox teaching holds that Laplace’s method was, in Fisher’s
words, ““founded upon an error”. While there are some differences of
opinion within the orthodox school, most would hold that the proper
method for this problem is the confidence interval. It would seem to me
that, in order to substantiate this claim, the orthodox writers would have
to (1) produce the confidence interval for Laplace’s problem, (2) show
that it leads us to numerically different conclusions, and (3) demonstrate
that the confidence interval conclusions are more statisfactory than
Laplace’s. But, in some twenty years of searching the orthodox literature,
I have vet to find one case where such a program is carried out, on any
statistical problem.

Invariably, the superiority of the orthodox method is asserted, not by
presenting evidence of superior performance, but by a kind of ideological
invective about ‘objectivity’ which perhaps reached its purple climax in an
astonishing article of Bross (1963), whose logic recalls that of Galileo’s
colleague. In his denunciation of everything Bayesian, Bross specifically
brings up the matter of confidence intervals and orthodox significance
tests (which are based on essentially the same reasoning, and often amount
to one-sided confidence intervals). So we will do likewise; in the following,
we will examine these same methods and try to supply what Bross omit-
ted; the demonstrable facts concerning them.

We first consider three significance tests appearing in the recent litera-
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ture of reliability theory. The first two, which turn out to be so clear that
no magnification is needed, will also bring out an important point con-
cerning orthodox methods of reporting results.

II. SIGNIFICANCE TESTS

Significance tests, in their usual form, are
not compatible with a Bayesian attitude.

C. A. B. Smith (1962)

Af any rate, what 1 feel quite sure at the
moment to be needed is simple illustration
of the new [i.e., Bayesian] notions on real,
everyday statistical problems.

E. S. Pearson (1962)
(a) EXAMPLE 1, DIFFERENCE OF MEANS

One of the most common of the ‘everyday statistical problems’ concerns
the difference of the means of two normal distributions. A good example,
with a detailed account of how current orthodox practice deals with such
problems, appears in a recent book on reliability engineering (Roberts,
1964).

Two manufacturers, 4 and B, are suppliers for a certain component, and
we want to choose the one which affords the longer mean life. Manufac-
turer A supplies 9 units for test, which turn out to have a (mean +
standard deviation) lifetime of (424 7.48) hours. B supplies 4 units, which
yield (50 +6.48) hours.

I think our common sense tells us immediately, without any calculation,
that this constitutes fairly substantial (but not overwhelming) evidence in
favor of B. While we should certainly prefer a larger sample, B’s units did
give a longer mean life, the difference being appreciably greater than the
sample standard deviation; and so if a decision between them must be
made on this basis, we should have no hesitation in choosing B. However,
the author warns against drawing any such conclusion, and says that, if
you are tempted to reason this way, then “‘perhaps statistics is not for
you!” In any event, when we have so little evidence, it is imperative that
we analyze the data in a way that does not throw any of it away.

The author then offers us the following analysis of the problem. He
first asks whether the two variances are the same. Applying the F-test,
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the hypothesis that they are equal is not rejected at the 95 percent signifi-
cance level, so without further ado he assumes that they are equal, and
pools the data for an estimate of the variance. Applying the ¢-test, he
then finds that, at the 90 percent level, the sample affords no significant
evidence in favor of either manufacturer over the other.

Now, any statistical procedure which fails to extract evidence that is
already clear to our unaided common sense, is certainly not for me! So, |
carried out a Bayesian analysis. Let the unknown mean lifetimes of A4’s
and B’s components be a, b respectively. If the question at issue is whether
b>a, the way to answer it is to calculate the probability that b>a, con-
ditional on all the available data. This is

(1) Prob (b > a) = f da f db P,(a) P, (b)

where P,(a) is the posterior distribution of @, based on the sample of
n=9 items supplied by 4, etc. When the variance is unknown, we find
that these are of the form of the ‘Student’ #-distribution:

(2) P,(a) ~ [s5+ (a— i )*] "2

where 7, 53 =t_j — {5 are the mean and variance of sample 4. Carrying out
the integration (1), I find that the given data yield a probability of 0.920,
or odds of 11.5 to 1, that B’s components do have a greater mean life — a
conclusion which, I submit, conforms nicely to the indications of common
sense. >

But this is far from the end of the story; for one feels intuitively that if
the variances are assumed equal, this ought to result in a more selective
test than one in which this is not assumed; yet we find the Bayesian test
without assumption of equal variance yielding an apparently sharper
result than the orthodox one with that assumption, This suggests that we
repeat the Bayesian calculation, using the author’s assumption of equal
variances. We have again an integral like (1), but a and b are no Jonger
independent, their joint posterior distribution being proportional to

(3) P(a,b)~{n[s;+(a—i)*]+m[s5+ (b— ip)]} 12 0+m

Integrating this over the same range as in (1) - which can be done simply
by consulting the f-tables after carrying out one integration analytically —
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I find that the Bayesian analysis now yields a probability of 0.948, or
odds of 18:1, in favor of B.

How, then, could the author have failed to find significance at the 90
percent level? Checking the tables used we discover that, without having
stated so, he has applied the equal tails t-test at the 90 percent level. But
this is surely absurd; it was clear from the start that there i1s no question
of the data supporting A4; the only purpose which can be served by a
statistical analysis is to tell us sow strongly it supports B.

The way to answer this is to test the null hypothesis b=a against the
one-sided alternative #>a already indicated by inspection of the data;
using the 90 percent equal-tails test throws away half the ‘resolution’ and
gives what amounts to a one-sided test at the 95 percent level, where it
just barely fails to achieve significance.

In summary, the data yield clear significance at the 90 percent level;
but the above orthodox procedure (which is presumably now being taught
to many students) is a compounding of two errors. Assuming the variances
equal makes the difference (7;—7,) appear, unjustifiedly, even more
significant; but then use of the equal tails criterion throws away more than
was thus gained, and we still fail to find significance at the 90 percent level.

Of course, the fact that orthodox methods are capable of being misused
in this way does not invalidate them; and Bayesian methods can also be
misused, as we know only too well. However, there must be something in
orthodox teaching which predisposes one toward this particular kind of
misuse, since it is very common in the literature and in everyday practice.
It would be interesting to know why most orthodox writers will not use —
or even mention — the Behrens-Fisher distribution, which is clearly the
correct solution to the problem, has been available for over forty years
(Fisher, 1956; p. 95), and follows immediately from Bayes’ theorem with
the Jeffreys prior (Jeffreys, 1939; p. 115).

(b) EXAMPLE 2. SCALE PARAMETERS

A recent Statistics Manual (Crow ef al., 1960) proposes the following
problem: 31 rockets of type 1 yield a dispersion in angle of 2237 mils?,
and 61 of type 2 give instead 1347 mils®. Does this constitute significant
evidence for a difference in standard deviation of the two types?

I think our common sense now tells us even more forcefully that, in
view of the large samples and the large observed difference in dispersion,
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this constitutes absolutely unmistakable evidence for the superiority of
type 2 rockets. Yet the authors, applying the equal-tails F-test at the 95
percent level, find it not significant, and conclude: ‘“We need not, as far
as this experiment indicates, differentiate between the two rockets with
respect to their dispersion”.

Suppose you were a military commander faced with the problem of
deciding which type of rocket to adopt. You provide your statistician
with the above data, obtained at great trouble and expense, and receive
the quoted report. What would be your reaction? I think that you would
fire the statistician on the spot; and henceforth make decisions on the
basis of your own common sense, which is evidently a more powerful
tool than the equal-tails F-test.

However, if your statistician happened to be a Bayesian, he would
report* instead: ‘““These data yield a probability of 0.9574, or odds of
22.47:1, in favor of type 2 rockets. I think you would decide to keep
this fellow on your staff, because his report not only agrees with com-
mon sense; it is stated in a far more useful form. For, you have little in-
terest in being told merely whether the data constitute ‘significant evidence
for a difference’. It is already obvious without any calculation that they
do constitute highly significant evidence in favor of type 2; the only
purpose that can be served by a statistical analysis is, again, to tell us
quantitatively how significant that evidence is. Traditional orthodox
practice fails utterly to do this, although the point has been noted recently
by some.

What we have found in these two examples is true more generally.
The orthodox statistician conveys little useful information when he
merely reports that the null hypothesis is or is not rejected at some
arbitrary preassigned significance level. If he reports that it is rejected at
the 90 percent level, we cannot tell from this whether it would have been
rejected at the 92 percent, or 95 percent level. If he reports that it is not
rejected at the 95 percent level, we cannot tell whether it would have been
rejected at the 50 percent, or 90 percent level. If he uses an equal-tails
test, he in effect throws away half the ‘resolving power’ of the test, and
we are faced with still more uncertainty as to the real import of the data.

Evidently, the orthodox statistician would tell us far more about what
the sample really indicates if he would report instead the critical signifi-
cance level at which the null hypothesis is just rejected in favor of the one-
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sided alternative indicated by the data; for we then know what the verdict
would be at all levels, and no resolution has been lost to a superfluous
tail. Now two possible cases can arise: (I) the number thus reported is
identical with the Bayesian posterior probability that the alternative is
true; (II) these numbers are different.

If case (I) arises (and it does more often than is generally realized), the
Bayesian and orthodox tests are going to lead us to exactly the same
numerical results and the same conclusions, with only a verbal disagree-
ment as to whether we should use the word ‘probability’ or ‘significance’
to describe them. In particular, the orthodox #-test and F-test against
one-sided alternatives would, if their results were reported in the manner
just advocated, be precisely equivalent to the Bayesian tests based on the
Jeffreys prior dudo/o. Thus, if we assume the variances equal in the above
problem of two means, the observed difference is just significant by the
one-sided ¢-test at the 94.8 percent level; and in the rocket problem a one-
sided F-test just achieves significance at the 95.74 percent level.

It is only when case (II) is found that one could possibly justify any
‘objective’ claim for superiority of either approach. Now it is just these
cases where we have the opportunity to carry out our ‘magnification’ pre-
cess; and if we can find a problem for which this difference is magnified
sufficiently, the issue cannot really be in doubt. We find this situation,
and a number of other interesting points of comparison, in one of the
most common examples of acceptance tests.

(c) EXAMPLE 3. AN ACCEPTANCE TEST

The probability that a certain machine will operate without failure for
a time £ is, by hypothesis, exp(— A¢), 0 <7< oo. We test z units for a time
t, and observe r failures; what assurance do we then have that the mean
life 0=2"" exceeds a preassigned value 6,2

Sobel and Tischendorf (1959) (hereafter denoted ST) give an orthodox
solution with tables that are reproduced in Roberts (1964). The test is to
have a critical number C (i.e., we accept only if < C). On the hypothesis
that we have the maximum tolerable failure rate, 1,=0, ", the probability
that we shall sec r or tewer failures is the binomial sum

r

@ W= > (e -y

k=0
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and so, setting W (n, C)<1—P gives us the sample size # required in
order that this test will assure 0> 60, at the 100 P percent significance level.
From the ST tables we find, for example, that if we wish to test only for a
time £=0.01 0, with C=3, then at the 90 percent significance level we
shall require a test sample of n=668 units; while if we are willing to test
for a time r=0, with C=1, we need test only 5 units.

The amount of testing called for is appalling if 1<€08,; and out of the
question if the units are complete systems. For example, if we want to
have 95 percent confidence (synonymous with significance) that a space
vehicle has 8, > 10 years, but the test must be made in six months, then
with C=1, the ST tables say that we must build and test 97 vehicles!
Suppose that, nevertheless, it had been decreed on the highest policy
level that this degree of confidence muust be attained, and you were in
charge of the testing program. If a more careful analysis of the statistical
problem, requiring a few man-years of statisticians’ time, could reduce
the test sample by only one or two units, it would be well justified economi-
cally. Scrutinizing the test more closely, we note four points:

(1) We know from the experiment not only the total number r of
failures, but also the particular times {¢, ... #,} at which failure occurred.
This informaion is clearly relevant to the question being asked; but
the ST test makes no use of it.

(2) The test has a ‘quasi-sequential’ feature; if we adopt an acceptance
number C=3, then as soon as the fourth failure occurs, we know that the
units are going to be rejected. If no failures occur, the required degree of
confidence will be built up long before the time # specified in the ST tables.
In fact, ¢ 1s the maximum possible testing time, which is actually required
only in the marginal case where we observe exactly C failures. A test
which is ‘quasi-sequential’ in the sense that it terminates when a clear
rejection or the required confidence is attained, will have an expected
length less than ¢ ; conversely, such a test with the expected length set at ¢
will require fewer units tested.

(3) We have relevant prior information; after all, the engineers who
designed the space vehicle knew in advance what degree of reliability was
needed. They have chosen the quality of materials and components, and
the construction methods, with this in mind. Each sub-unit has had its
own tests. The vehicles would never have reached the final testing stage
unless the engineers knew that they were operating satisfactorily. In
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other words, we are not testing a completely unknown entity. The ST
test (like most orthodox procedures) ignores all prior information, except
perhaps when deciding which hypotheses to consider, or which significance
level to adopt.

(4) In practice, we are usually concerned with a different question than
the one the ST test answers. An astronaut starting a five-year flight to
Mars would not be particularly comforted to be told, ““We are 95 percent
confident that the average life of an imaginary population of space
vehicles like yours, is at least ten years”. He would much rather hear,
“There is 95 percent probability that this vehicle will operate without
breakdown for ten years”. Such a statement might appear meaningless to
an orthodox statistician who holds that (probability)=(frequency).
But such a statement would be very meaningful indeed to the astronaut.

This is hardly a trivial point; for if it were known that A~1=10 yr, the
probability that a particular vehicle will actually run for 10 yrs would be
only 1/e=0.368; and the period for which we are 95 percent sure of
success would be only — 10 11(0.95) years, or 6.2 months. Reports which
concern only the ‘mean life’ can be rather misleading.

Let us first compare the ST test with a Bayesian test which makes use
of exactly the same information; i.e., we are allowed to use only the
total number of failures, not the actual failure times. On the hypothesis
that the failure rate 1s A, the probability that exactly r units fail in time
tis

6)  peinnn= ()TN — ey

I want to defer discussion of nonuniform priors; for the time being suppose
we assign a uniform prior density to A. This amounts to saying that,
before the test, we consider it extremely unlikely that our space vehicles
have a mean life as long as a microsecond; nevertheless it will be of in-
terest to see the result of using this prior. The posterior distribution of 4
is then

n!

—{(n—r) At ANy
=i (1 — e ™Y d(41).

6)  pldi|nrt)=

The Bayesian acceptance criterion, which ensures 60>2, ' with 100 P
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percent probability, 1s then

e}

(7) fp(dl[n,r,r)él—P.

Ao

But the left-hand side of (7) is identical with W (n, r) given by (4); this is
just the well-known identity of the incomplete Beta function and the
incomplete binomial sum, given already in the original memoir of
Bayes (1763).

In this first comparison we therefore find that the ST test is mathemati-
cally identical with a Bayesian test in which (1) we are denied use of the
actual failure times; (2) because of this it is not possible to take ad-
vantage of the quasi-sequential feature; (3) we assign a ridiculously
pessimistic prior to 4; (4) we still are not answering the question of real
interest for most applications.

Of these shortcomings, (2) is readily corrected, and (1) undoubtedly
could be corrected, without departing from orthodox principles. On
the hypothesis that the failure rate is A, the probability that r specified
units fail in the time intervals {d#, ... dr,} respectively, and the remaining
(n—r) units do not fail in time ¢, is

(8) p(dty .. dt, | n, A, 1) =[N e ™ dt, ...dt,] [e"® " *]

where i=r~' ) ¢, is the mean life of the units which failed. There is no
single ‘statistic’ which conveys all the relevant information; but » and 7
are jointly sufficient, and so an optimal orthodox test must somehow
make use of both. When we seek their joint sampling distribution
p(r,di|n, 1, 1) we find, to our dismay, that for given r the interval
0<f<t is broken up into r equal intervals, with a different analytical
expression for each. Evidently a decrease in r, or an increase in 7, should
incline us in the direction of acceptance; but at what rate should we trade
off one against the other? To specify a definite critical region in both
variables would seem to imply some postulate as to their relative im-
portance. The problem does not appear simple, either mathematically or
conceptually; and I would not presume to guess how an orthodox
statistician would solve it.

The relative simplicity of the Bayesian analysis is particularly striking
in this problem; for all four of the above shortcomings are corrected
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effortlessly. For the time being, we again assign the pessimistic uniform
prior to 4; from (8), the posterior distribution of 4 is then

(ATY

r!

(9) p(di|mt 8, ... 1) = e "1 d(AT)
where
(10) T=ri+(n—r)t

1s the total unit-hours of failure-free operation observed. The posterior
probability that 1> 6, 1s now

1 ’ AT k
(11) B(n, r) _ x'e Fdx = e'-.loT ( 0 )
rl k!
AoT k=0

and so, B(n, r)<1—P is the new Bayesian acceptance criterion at the
100 P percent level; the test can terminate with acceptance as soon as
this inequality is satisfied.

Numerical analysis shows little difference between this test and the ST
test in the usual range of practical interest where we test for a time short
compared to 8, and observe only a very few failures, For, if 5¢<1, and
r <n, then the Poisson approximation to (4) will be valid ; but thisis just the
expression (11) except for the replacement of 7' by n¢, which is itself a good
approximation. In this region the Bayesian test (11) with maximum pos-
sible duration ¢ generally calls for a test sample one or two units smaller
than the ST test. Our common sense readily assents to this; for if we see
only a few failures, then information about the actual failure time adds
little to our state of knowledge.

Now let us magnify. The big differences between (4) and (11) will occur
when we find many failures; if all » units fail, the ST test tells us to
reject at all confidence levels, even though the observed mean life may
have been thousands of times our preassigned 8. The Bayesian test (11)
does not break down in this way; thus if we test 9 units and all fail, it tells
us to accept at the 90 percent level if the observed mean life 7>1.58 0,,.
If we test 10 units and 9 fail, the ST test says we can assert with 90 percent
confidence that 80.22 ¢ ; the Bayesian test (11} says there is 90 percent
probability that 8>0.63 7+ 0.07 z. Our common sense has no difficulty in
deciding which result we should prefer; thus taking the actual failure
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times into account leads to a clear, although usually not spectacular,
improvement in the test. The person who rejects the use of Bayes’ theorem
in the manner of Equation (9) will be able to obtain a comparable improve-
ment only with far greater difficulty.

But the Bayesian test (11) can be further improved in two respects.
To correct shortcoming (4), and give a test which refers to the reliability
of the individual unit instead of the mean life of an imaginary ‘population’
of them, we note that if A were known, then by our original hypothesis
the probability that the lifetime 6 of a given unit is at least 8,, is

(12)  p(0=>0,2)=e""".

The probability that 8> 8,, conditional on the evidence of the test, is
therefore

(13) P(9>90|”; . ) =

P T r+1
= |e *p(dlnt, ..t)= .

Je p( [n 1 r) T+90

0

Thus, the Bayesian test which ensures, with 100 P percent probability,
that the life of an individual unit is at least ,, has an acceptance criterion
that the expression (13) is > P; a result which is simple, sensible, and as
far as I can see, utterly beyond the reach of orthodox statistics.

The Bayesian tests (11) and (13) are, however, still based on a ridiculous
prior for 1; another improvement, even further beyond the reach of
orthodox statistics, 1s found as a result of using a reasonable prior. In
‘real life’ we usually have excellent grounds based on previous experience
and theoretical analyses, for predicting the general order of magnitude
of the lifetime in advance of the test. It would be inconsistent from the
standpoint of inductive logic, and wasteful economically, for us to fail
to take this prior knowledge into account.

Suppose that initially, we have grounds for expecting a mean life of
the order of ¢;; or a failure rate of about A,~¢; '. However, the prior
information does not justify our being too dogmatic about it; to assign
a prior centered sharply about 4; would be to assert so much prior
knowledge that we scarcely need any test. Thus, we should assign a
prior that, while incorporating the number ¢;, 1s still as ‘spread out’ as
possible, in some sense.
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Using the criterion of maximum entropy, we choose that prior density
p;(1) which, while yielding an expectation equal to A;, maximizes the
‘measure of ignorance’ H=—{p;,(1) logp;(A)di. The solution is:
p.{A)=t,exp(—2¢;). Repeating the above derivation with this prior, we
find that the posterior distribution (9) and its consequences (11)-(13)
still hold, but that Equation (11) is now to be replaced by

(14) T=ri+(n—r)t+t,.

Subjecting the resulting solution to various extreme conditions now shows
an excellent correspondence with the indications of common sense. For
example, if the total unit-hours of the test is small compared to ¢;, then our
state of knowledge about A can hardly be changed by the test, unless an
unexpectedly large number of failures occurs. But if the total unit-hours
of the test is large compared to #;, then for all practical purposes our
final conclusions depend only on what we observed in the test, and are
almost independent of what we thought previously. In intermediate
cases, our prior knowledge has a weight comparable to that of the test;
and if ¢, 0,4, the amount of testing required is appreciably reduced. For,
if we were already quite sure the units are satisfactory, then we require
less additional evidence before accepting them. On the other hand, if
1;<8,, the test approaches the one based on a uniform prior; if we are
initially very doubtful about the units, then we demand that the test
itself provide compelling evidence in favor of them.

These common-sense conclusions have, of course, been recognized
qualitatively by orthodox statisticians; but only the Bayesian approach
leads automatically to a means of expressing all of them explicitly and
quantitatively in our equations. As noted by Lehmann (1959), the
orthodox statistician can and does take his prior information into ac-
count, in some degree, by moving his significance level up and down in
a way suggested by the prior information. But, having no formal principle
like maximum entropy that tells him how much to move it, the resulting
procedure is far more ‘subjective’ (in the sense of varying with the taste
of the individual) than anything in the Bayesian approach which recognizes
the role of maximum entropy and transformation groups in determining
priors.

No doubt, the completely indoctrinated orthodoxian will continue to
reject priors based even on the completely impersonal (and parameter-



192 E. T. JAYNES

independent) principles of maximum entropy and transformation groups,
on the grounds that they are still ‘subjective’ because they are not fre-
quencies [although I believe I have shown (Jaynes, 1968, 1971) that if a
random experimentis involved, the probabilities calculated from maximum
entropy and transformation groups have just as definitc a connection
with frequencies as probabilities calculated from any other principle of
probability theory]. In particular, he would claim that the prior just in-
troduced into the ST test represents a dangerous loss of ‘objectivity’ of
that test.

To this I would reply that the judgment of a competent engineer,
based on data of past experience in the field, represents information fully
as ‘objective’ and reliable as anything we can possibly learn from a
random experiment. Indeed, most engineers would make a stronger
statement; since a random experiment is, by definition, one in which
the outcome — and therefore the conclusion we draw from it — is subject
to uncontrollable variations, it follows that the only fully ‘objective’
means of judging the reliability of a system is through analysis of stresses,
rate of wear, ¢tc., which avoids random experiments altogether.

In practice, the real function of a reliability test is to check against the
possibility of completely unexpected modes of failure; once a given
failure mode is recognized and its mechanism understood, no sane
engineer would dream of judging its chances of occurring merely from a
random experiment.

(d) SUMMARY

In the article of Bross (1963)—and in other places throughout the orthodox
literature — one finds the claim that orthodox significance tests are ‘objec-
tive” and ‘scientific’, while the Bayesian approach to these problems is
erroneous and/or incapable of being applied in practice. The above
comparisons have covered some important types of tests arising in every-
day practice, and in no case have we found any evidence for the alleged
superiority, or greater applicability, of orthodox tests. In every case, we
have found clear evidence of the opposite.

The mathematical situation, as found in these comparisons and in
many others, is just this: some orthodox tests are equivalent to the Baye-
sian ones based on non-informative priors, and some others, when
sufficiently improved both in procedure and in manner of reporting the
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results, can be made Bayes-equivalent. We have found this situation when
the orthodox test was (A) based on a sufficient statistic, and (B) free of
nuisance parameters. In this case, we always have asymptotic equivalence
for tests of a simple hypothesis against a one-sided alternative. But we
often find exact equivalence for all sample sizes, for simple mathematical
reasons; and this 1s true of almost all tests which the orthodox statistician
himself considers fully satisfactory.

The orthodox ¢-test of the hypothesis u=pu, against the alternative
1> i, 1s exactly equivalent to the Bayesian test for reasons of symmetry;
and there are several cases of exact equivalence even when the distribu-
tion is not symmetrical in parameter and estimator. Thus, for the Poisson
distribution the orthodox test for A =4, against 1> 4, is exactly equivalent
to the Bayesian test because of the identity

[+ 9]

1 o Z e Ak
— | x"e Tdx =
n! k!

A k=0

and the orthodox F-test for o,=0¢, against ¢,>0, is exactly Bayes-
equivalent because of the identity
P m
(n+ k)!
nlk!

(n+m+1)!

nlm!

x"(1 —x)"dx =

0 k=0

Pn+1(1 _ P)k.

In these cases, two opposed ideologies lead to just the same final working
equations.

If there is no single sufficient statistic (as in the ST test) the orthodox
approach can become extremely complicated. If there are nuisance
parameters {as in the problem of two means), the orthodox approach is
faced with serious difficulties of principle; it has not yet produced any
unambiguous and fully satisfactory way of dealing with such problems.

In the Bayesian approach, neither of these circumstances caused any
difficulty; we proceeded in a few lines to a definite and useful solution.
Furthermore, Bayesian significance tests are readily extended to permit
us to draw inferences about the specific case at hand, rather than about
some purely imaginary ‘population’ of cases. In most real applications,
it is just the specific case at hand that is of concern to us; and it is hard
to see how frequency statements about a mythical population or an
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imaginary experiment can be considered any more ‘objective’ than the
Bayesian statements. Finally, no statistical method which fails to provide
any way of taking prior information into account can be considered a
full treatment of the problem; it will be evident from our previous work
(Jaynes, 1968) and the above example, that Bayesian significance tests are
extended just as readily to incorporate any testable prior information.

I, TWO-SIDED CONFIDENCE INTERVALS

The merit of the estimator is judged by the
distribution of estimates to which it gives
rise, i.e., by the properties of its sampling
distribution.

We must content ourselves with formulating
a rule which will give good results ‘in the
long run’ or ‘on the average’ ....

Kendall and Stuart (1961)

The above examples involved some one-sided confidence intervals, and
they revealed some cogent evidence concerning the role of sufficiency and
nuisance parameters; but they were not well adapted to studying the
principle of reasoning behind them. When we turn to the general principle
of two-sided confidence intervals some interesting new features appear.

(a) EXAMPLE 4. BINOMIAL DISTRIBUTION

Consider Bernoulli trials B, (i.e., two possible outcomes at each trial,
independence of different trials). We observe r successes in # trials, and
asked to estimate the limiting frequency of success f, and give a statement
about the accuracy of the estimate. In the Bayesian approach, this is a
very elementary problem; in the case of a uniform prior density for f
[ the basis of which we have indicated elsewhere (Jaynes, 1968) in terms of
transformation groups; it corresponds to prior knowledge that it is
possible for the experiment to yield either success or failure], the posterior
distribution is proportional to f"(1—/)""" as found in Bayes’ original
memoir, with mean value f=(r+1)/(n+2) as given by Laplace (1774),
and variance 2=/ (1—71)/(N+3).

The ( f+0) thus found provide a good statement of the ‘best’ estimate
of £, and if fis not too close to 0 or 1, an interval within which the true
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value is reasonably likely to be. The full posterior distribution of f yields
more detailed statements; if r>1 and (r—r)> 1, it goes into a normal
distribution (£, ¢). The 100 P percent interval (i.e., the interval which
contains 100 P percent of the posterior probability) is then simply
(f+go), where g is the (1+P)/2 percentile of the normal distribution;
for the 90, 95, and 999, levels, g=1.645, 1.960, 2.576 respectively.

When we treat this same problem by confidence intervals, we find
that it is no longer an undergraduate-level homework problem, but a
research project. The final results are so complicated that they can hardly
be expressed analytically at all, and we require a new series of tables and
charts.

In all of probability theory there is no calculation which has been sub-
jected to more sneering abuse from orthodox writers than the Bayesian
one just described, which contains Laplace’s rule of succession. But
suppose we take a glimpse at the final numerical results, comparing, say,
the 909 confidence belts with the Bayesian 909 posterior probability
belts.

This must be done with caution, because published confidence intervals
all appear to have been calculated from approximate formulas which
yield wider intervals than is needed for the stated confidence level. We
use a recently published (Crow et al., 1960) recalculated table which, for
the case n=10, gives intervals about 0.06 units smaller than the older
Pearson-Clopper values.

If we have observed 10 successes in 20 trials, the upper 909 confidence
limit is given as 0.675; the above Bayesian formula gives 0.671. For 13
successes In 26 trials, the tabulated upper confidence limit 1s 0.658; the
Bayesian result 1s 0.652,

Continued spot-checking of this kind leads one to conclude that, quite
generally, the Bayesian belts lie just inside the confidence belts; the dif-
ference is visible graphically only for wide belts for which, in any event,
no accurate statement about f was possible. The inaccuracy of published
tables and charts is often greater than the difference between the Bayesian
interval and the correct confidence interval. Evidently, then, claims for
the superiority of the confidence interval must be based on something
other than actual performance. The differences are so small that I could
not magnify them into the region where common sense is able to judge
the issue.
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Once aware of these things the orthodox statistician might well decide
to throw away his tables and charts, and obtain his confidence intervals
from the Bayesian solution. Of course, if one demands very accurate
intervals for very small samples, it would be necessary to go to the in-
complete Beta-function tables; but it is hard to imagine any real problem
where one would care about the exact width of a very wide belt. When
r>» 1 and (n—r)> 1, then to all the accuracy one can ordinarily use, the
required interval is simply the above ( f4 go). Since, as noted, published
confidence intervals are ‘conservative’ — a common euphemism - he can
even improve his results by this procedure.

Let us now seek another problem, where differences can be magnified
to the point where the equations speak very clearly to our common sense.

(b) EXAMPLE 5. TRUNCATED EXPONENTIAL DISTRIBUTION

The following problem has occurred in several industrial quality control
situations. A device will operate without failure for a time € because of a
protective chemical inhibitor injected into it; but at time 6 the supply of
this chemical 1s exhausted, and failures then commence, following the
exponential failure law. It is not feasible to observe the depletion of this
inhibitor directly; one can observe only the resulting failures. From data
on actual failure times, estimate the time 6 of guaranteed safe operation
by a confidence interval. Here we have a continuous sample space, and we
are to estimate a location parameter 0, from the sample values {x; ... xy},
distributed according to the law

(15)  p(dx|0)= {exp(@ N 2 dx: * g}

Let us compare the confidence intervals obtained from two different
estimators with the Bayesian intervals. The population mean is E (x)=

=0+1, and so
N

1
(16) 0% (x;...x5) = — Z (x; — 1)
N
i=1
is an unbiased estimator of §. By a well-known theorem, it has variance

o?=N"1, as we are accustomed to find. We must first find the sampling
distribution of 6*; by the method of characteristic functions we find that
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it is proportional to y¥ ! exp(—Ny) for y>0, where y=(6*—0+1).
Evidently, it will not be feasible to find the shortest confidence interval
in closed analytical form, so in order to prevent this example from
growing into another research project, we specialize to the case N=3,
suppose that the observed sample values were {x, x,, x5} = {12, 14, 16};
and ask only for the shortest 90%, confidence interval.

A further integration then yields the cumulative distribution function
F(y)=[1—(1+3y+9»*2) exp(—3y)], y>0. Any numbers y,, y, satis-
fying F(y,)—F(y,)=0.9 determine a 90%, confidence interval. To find
the shortest one, we impose in addition the constraint F'(y,)=F’(y,).
By computer, this yields the interval

(17) 8% — 0.8529 < # < 0* 4 0.8264
or, with the above sample values, the shortest 90%, confidence interval is
(18) 12.1471 < 6 < 13.8264.

The Bayesian solution is obtained from inspection of (15); with a con-
stant prior density [which, as we have argued elsewhere (Jaynes, 1968) is
the proper way to express complete ignorance of location parameter ], the
posterior density of § will be

_INexpN(@—x,), 0<x;
19) (0] ={ " OO0 D

where we have ordered the sample values so that x; denotes the least one
observed. The shortest posterior probability belt that contains 100 P
percent of the posterior probability is thus (x,—¢)<8<x,;, where
g=—N"1log(1—P). For the above sample values we conclude (by
slide-rule) that, with 90% probability, the true value of @ is contained in
the interval

(20)  11.23 <0 <120.

Now what is the verdict of our common sense? The Bayesian interval
corresponds quite nicely to our common sense; the confidence interval
(18) is over twice as wide, and it lies entirely in the region 0> x, where it is
obviously impossible for 0 to be!.

I first presented this result to a recent convention of reliability and
quality control statisticians working in the computer and aerospace
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industries; and at this point the meeting was thrown into an uproar, about
a dozen people trying to shout me down at once. They told me, ““This is
complete nonsense. A method as firmly established and thoroughly
worked over as confidence intervals couldn’t possibly do such a thing.
You are maligning a very great man; Neyman would never have advocated
a method that breaks down on such a simple problem. If you can’t do
your arithmetic right, you have no business running around giving talks
like this™.

After partial calm was restored, I went a second time, very slowly and
carefully, through the numerical work leading to (18), with all of them
leering at me, eager to see who would be the first to catch my mistake [it
is easy to show the correctness of (18), at least to two figures, merely by
applying parallel rulers to a graph of F()]. In the end they had to con-
cede that my result was correct after all.

To make a long story short, my talk was extended to four hours (all
afternoon), and their reaction finally changed to: “My God — why didn’t
somebody tell me about these things before? My professors and textbooks
never said anything about this. Now I have to go back home and recheck
everything [’ve done for years”.

This incident makes an interesting commentary on the kind of in-
doctrination that teachers of orthodox statistics have been giving their
students for two generations now.

(c) WHAT WENT WRONG?

Let us try to understand what is happening here. It is perfectly true that,
if the distribution (15) is indeed identical with the limiting frequencies of
various sample values, and if we could repeat all this an indefinitely large
number of times, then use of the confidence interval (17) would lead us,
in the long run, to a correct statement 909, of the time. But it would lead
us to a wrong answer 1009, of the time in the subclass of cases where
0* > x, +0.85; and we know from the sample whether we are in that subclass.

That there must be a very basic fallacy in the reasoning underlying
the principle of confidence intervals, is obvious from this example. The
difficulty just exhibited is generally present in a weaker form, where it
escapes detection. The trouble can be traced to two different causes.

Firstly, it has never been a part of ‘official’ doctrine that confidence
intervals must be based on sufficient statistics; indeed, it is usually held
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to be a particular advantage of the confidence interval method that it leads
to exact frequency-interpretable intervals without the need for this.
Kendall and Stuart (1961), however, noting some of the difficulties that
may arise, adopt a more cautious attitude and conclude (loc. cit., p. 153):
‘... confidence interval theory is possibly not so free from the need for
sufficiency as might appear™.

We suggest that the general situation, illustrated by the above example,
is the following: whenever the confidence interval is not based on a
sufficient statistic, it is possible to find a ‘bad’ subclass of samples, re-
cognizable from the sample, in which use of the confidence interval would
lead us to an incorrect statement more frequently than is indicated by
the confidence level; and also a recognizable ‘good’ subclass in which the
confidence interval 1s wider than it needs to be for the stated confidence
level. The point is not that confidence intervals fail to do what is claimed
for them; the point is that, if the confidence interval 1s not based on a
sufficient statistic, it is possible to do better in the individual case by
taking into account evidence from the sample that the confidence interval
method throws away.

The Bayesian literature contains a multitude of arguments showing that
it 18 precisely the original method of Bayes and Laplace which does take
into account all the relevant information in the sample; and which will
therefore always yield a superior result to any orthodox method not
based on sufficient statistics. That the Bayesian method does have this
property (i.e., the ‘likelihood principle’) is, in my opinion, now as firmly
established as any proposition in statistics. Unfortunately, many orthodox
textbook writers and teachers continue to ignore these arguments; for
over a decade hardly a month has gone by without the appearance of
some new textbook which carries on the indoctrination by failing to
present both sides of the story.,

If the confidence interval is based on a sufficient statistic, then as we
saw in Example 4, it turns out to be so nearly equal to the Bayesian
interval that it is difficult to produce any appreciable difference in the
numerical results; in an astonishing number of cases, they are identical.
That is the case in the example just given, where x, 1s a sufficient statistic,
and it yields a confidence interval identical with the Bayesian one (20).

Similarly, the shortest confidence interval for the mean of a normal
distribution, whether the variance is known or unknown; and for the
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variance of a normal distribution, whether the mean is known or un-
known; and for the width of a rectangular distribution, all turn out to be
identical with the shortest Bayesian intervals at the same level (based on a
uniform prior density for location parameters and the Jeffreys prior
do/a for scale parameters). Curiously, these are just the cases cited most
often by textbook writers, after warning us not to use those erroneous
Bayesian methods, as an illustration of their more ‘objective’ orthodox
methods.

The second difficulty in the reasoning underlying confidence intervals
concerns their criteria of performance. In both point and interval estima-
tion, orthodox teaching holds that the reliability of an estimator is mea-
sured by its performance ‘in the long run’, i.e., by its sampling distribu-
tion. Now there are some cases (e.g., fixing insurance rates) in which long-
run performance is the sole, all-important consideration; and in such
cases one can have no real quarrel with the orthodox reasoning (although
the same conclusions are found just as readily by Bayesian methods).
However, in the great majority of real applications, long-run performance
is of no concern to us, because it will never be realized.

Our job is not to follow blindly a rule which would prove correct 90%,
of the time in the long run; there are an infinite number of radically
different rules, all with this property. Our job is to draw the conclusions
that are most likely to be right in the specific case at hand; indeed, the
problems in which it is most important that we get this theory right are
just the ones (such as arise in geophysics, econometrics, or antimissile
defense) where we know from the start that the experiment can rever be
repeated.

To put it differently, the sampling distribution of an estimator is not a
measure of its reliability in the individual case, because considerations
about samples that have not been observed, are simply not relevant to the
problem of how we should reason from the one that sas been observed.
A doctor trying to diagnose the cause of Mr. Smith’s stomachache would
not be helped by statistics about the number of patients who complain
instead of a sore arm or stiff neck.

This does not mean that there are no connections at all between indi-
vidual case and long-run performance; for if we have found the procedure
which is ‘best’ in each individual case, it 1s hard to see how it could fail
to be ‘best’ also in the long run.
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The point is that the converse does not hold ; having found a rule whose
long-run performance is proved to be as good as can be obtained, it does
not follow that this rule is necessarily the best in any particular individual
case. One can trade off increased reliability for one class of samples
against decreased reliability for another, in a way that has no effect on
long-run performance; but has a very large effect on performance in the
individual case.

Now, if I closed the discussion of confidence intervals at this point, I
know what would happen; because I have seen it happen several times.
Many persons, victims of the aforementioned indoctrination, would deny
and ridicule what was stated in the last five paragraphs, claim that I am
making wild, irresponsible statements; and make some reference like
that of Bross (1963} to the ‘first-rate mathematicians’ who have already
looked into these matters.

So, let us turn to another example, in which the above assertions are
demonstrated explicitly, and so simple that all calculations can be carried
through analytically.

(d) EXAMPLE 6. THE CAUCHY DISTRIBUTION

We sample two members {x,, x,} from the Cauchy population

@) pEx]0)= % 1+ (ix— 0y’

and from them we are to estimate the location parameter . The transla-
tional and permutation symmetry of this problem suggests that we use the
estimator

(22) 0% (31, x5) = 5 (x; + X5)

which has a sampling distribution p(d@* | 0) identical with the original
distribution (21); an interesting feature of the Cauchy law.

It is just this feature which betrays a slight difficulty with orthodox
criteria of performance. For x,, x,, and 0% have identical sampling
distributions; and so according to orthodox teaching it cannot make any
difference which we choose as our estimator, for either point or interval
estimation. They will all give confidence intervals of the same length, and
in the long run they will all yield correct statements equally often.
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But now, suppose you are confronted with a specific problem; the
first measurement gave x; =3, the second x,=35. You are not concerned
in the slightest with the ‘long run’, because you know that, if your esti-
mate of 0 in this specific case is in error by more than one unit, the missile
will be upon you, and you will not live to repeat the measurement. Are
you now going to choose x,=3 as your estimate when the evidence of
that x, =275 stares you in the face? I hardly think so! Our common sense
thus forces us to recognize that, contrary to orthodox teaching, the
reliability of an estimator is not determined merely by its sampling
distribution.

The Bayesian analysis tells, us, in agreement with common sense, that
for this sample, by the criterion of any loss function which is a mono-
tonic increasing function of | 0¥—0| (and, of course, for which the
expected loss converges), the estimator (22) is uniquely determined as the
optimal one. By the quadratic loss criterion, L(0*, 0)= (6* —0)?, it is the
unique optimal estimator whatever the sample values.

The confidence interval for this problem is easily found. The cumulative
distribution of the estimator (22} is

1
(23)  p(6* <@ |0 =1+ tan ' (0 - 0)
m

and so the shortest 100 P percent confidence interval is
(24) (0% — q) < 6 < (0* + q)

where
(25) g = tan (nP/2).

At the 90% level, P=0.9, we find g=tan(81°)=6.31. Let us call this the
909, CI.

Now, does the CI make use of all the information in the sample that is
relevant to the question being asked ? Well, we have made use of (x; + x,);
but we also know (x; —x,). Let us see whether this extra information from
the individual sample can help us. Denote the sample half-range by

(26) y=3(x —x;).

The sampling distribution p(dy | 6) is again a Cauchy distribution with
the same width as (21) but with zero median.
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Next, we transform the distribution of samples, p(dx,, dx, [ 0)=
=p(dx, | 6) p(dx, | 6) to the new variables (6%, y). The jacobian of the
transformation is just 2, and so the joint disiribution is

. _ E do* dy
S R e S S I e O

While (x,, x,) are independent, (6%, y) are not. The conditional cumulative
distribution of 6%, when y is known, is therefore not (23), but

X 1
(28)  p(6" < ¥ Q,y)=%+2—[tan’l((?’—0+y)+tan‘1><
¥

1 [1+(0’~9+y)2]

0 — 08— — 1
X( y)]+4ny0g1+(9r_9_y)2

and so, in the subclass of samples with given (x, —Xx,), the probability
that the confidence interval (24) will yield a correct statement is not
P=(2/n)tan"1q, but
1 _ _
w (7, q):j_r[tan "(g+y) +tan (g —y)] +

#) 1 [1 +(q + y)z].

+-—log
1+ (q—»)?

2y
Numerical values computed from this equation are given in Table I,

TABLE 1

Performance of the 909, confidence
interval for various sample
half-ranges y

y w{(y, 6.31) F(y)
0 0.998 1.000

2 0.991 0.296

4 0.952 0.156

6 0.702 0.105

8 0.227 0.079

10 0.111 0.064
12 0.069 0.053
14 0.047 0.046

~14 4 2

(1 + »?) 7y
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in which we give the actual frequency w(y, 6.31) of correct statements
obtained by use of the 909/ confidence interval, for various half-ranges y.
In the third column we give the fraction of all samples, F(y)=(2/n)
tan"'(1/y) which have half-range greater than y.

It appears that information about (x, —x,) was indeed relevant to the
question being asked. In the long run, the 90% CI will deliver a right
answer 90% of the time; however, its merits appear very different in the
individual case. In the subclass of samples with reasonably small range,
the 909 CI is too conservative; we can choose a considerably smal'er
interval and still make a correct statement 909, of the time. If we are so
unfortunate as to get a sample with very wide range, then it is just too
bad; but the above confidence interval would have given us a totally
false idea of the reliability of our result. In the 6% of samples of widest
range, the supposedly ‘909, confidence interval actually yields a correct
statement less than 10% of the time — a situation that ought to alarm us if
confidence intervals are being used to help make important decisions.

The orthodox statistician can avoid this dangerous shortcoming of the
confidence interval (24), without departing from his principles, by using
instead a confidence interval based on the conditional distribution (28).
For every sample he would choose a different interval located from (29)
so as to be the shortest one which in that subclass will yield a correct
statement 909% of the time. For small-range samples this will give a
narrower interval, and for wide-range samples a correct statement more
often, than will the confidence interval (24). Let us call this the 90% “uni-
formly reliable’ (UR) estimation rule.

Now let us see some numerical analysis of (29), showing how much
improvement has been found. The 90%, UR rule will also yield a cor-
rect statement 90%, of the time; but for 87% of all samples (those with
range less than 9.7) the UR interval is shorter than the confidence interval
(24). For samples of very small range, it is 4.5 times shorter, and for half
of all samples, the UR interval is less than a third of the confidence inter-
val (24). In the 13% of samples of widest range, the confidence interval
(24) yields correct statements less than 909, of the time, and so in order
actually to achieve the claimed reliability, the UR interval must be wider,
if we demand that it be simply connected. But we can find a UR region
of two disconnected parts, whose total length remains less than a third
of the CI (24) as y - .
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The situation, therefore, is the following. For the few ‘bad’ samples of
very wide range, no accurate estimate of 0 is possible, and the confidence
interval (24), being of fixed width, cannot deliver the presumed 909 re-
liability. In order to make up for this and hold the average success for all
samples at 90%, it is then forced to cheat us for the great majority of
‘good’ samples by giving us an interval far wider than is needed. The
UR rule never misleads us as to its reliability, neither underestimating
it nor overestimating it for any sample; and for most samples it gives us a
much shorter interval.

Finally, we note the Bayesian solution to this problem. The posterior
distribution of @ is, from (21) in the case of a uniform prior density,

2 (1+ %) do
n[1+ (0= x)*][1 + (0 — x,)*]

and, to find the shortest 909, posterior probability interval, we compute
the cumulative distribution:

(30) p(do | X1, Xp) =

1
(31) (<@ |x1,x2)=%+2[tan“l(ﬂ'—xl)—l—tan_l X
s

1+ (0 — xz)z]

1+ (0 —x,)

and so, — but there is no need to go further. At this point, simply by
comparing (31) with (28), the horrible truth appears: the uniformly
reliable rule is precisely the Bayesian one! And yet, if I had simply in-
troduced the Bayesian solution ab initio, the orthodox statistician would
have rejected it instantly on grounds that have nothing to do with its per-
formance.

1
x (6" — x5)] + iy log[

(¢) GENERAL PROOF

The phenomenon just illustrated is not peculiar to the Cauchy distribu-
tion or to small samples; it holds for any distribution with a location
parameter. For, let the sampling distribution be

(32) pdxy .. dx, | 0) =1 (x; ... x5 0) dxy ... dx,.
The statement that 6 is a location parameter means that

(33) flxi+ax,+a,...x,+a;0+a)=F(x,...x,0),
—w<a< o,
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Now transform the sample variables {x,...x,} to a new set {y,...y,}:

(34) Y1 =x=n" in
(35)  yi=x;—x, i=2,3,..n.

From (33), (34), (35), the sampling distribution of the {y,...y,} has the
form

36)  p(dy,...dy, | =gy —0:y,...7)dy; ... dy,.

If y, is not a sufficient statistic, a confidence interval based on the sam-
pling distribution p(dy, | 8) will be subject to the same objection as was
(24); i.e., knowledge of {y,...y,} will enable us to define ‘good’ and
‘bad’ subclasses of samples, in which the reliability of the confidence
interval is better or worse than indicated by the stated confidence level.
To obtain the Uniformly Reliable interval, we must use instead the
distribution conditional on all the ‘ancillary statistics” {y,...y,}. This is

37 pAy |ys v 8)=Kg(y — 0;p2...¥) dyy

where K is a normalizing constant. But the Bayesian posterior distribu-
tion of € based on uniform prior is:

p(dg l xl "‘xn):p(dglyl“'yn)z
(38) =Kg(y,—0;y5...7,) d0O

which has exactly the same density function as (37). Therefore, by a
refined orthodox criterion of performance, the ‘best’, (i.e., Uniformly
Reliable) confidence interval for any location parameter is identical with
the Bayesian posterior probability interval (based on a uniform prior)
at the same level.

With a scale parameter o, data {g,...q,}, set f=Ilogo, x;=logg;, and
the above argument still holds; the UR confidence interval for any scale
parameter is identical with the Bayesian interval based on the Jeffreys
prior dojo.

IV. POLEMICS

Seeing the above comparisons, one naturally asks: on what grounds was
it ever supposed that confidence intervals represent an advance over the
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original treatment of Laplace? On this point the record is clear and
abundant; orthodox arguments against Laplace’s use of Bayes’ theorem,
and in favor of confidence intervals, have never considered such mundane
things as demonstrable facts concerning performance. They consist of
ideological slogans, such as ‘‘Probability statements can be made only
about random variables. It is meaningless to speak of the probability
that 8 lies in a certain interval, because 0 is not a random variable, but
only an unknown constant”.

On such grounds we are to be denied the derivation via Equations (1),
(6), (9), (19), (30), (38) which in each case leads us in a few lines to a
result that is either the same as the best orthodox result or demonstrably
superior to it. On such grounds it is held to be very important that we use
the words, ‘‘the probability that the interval covers the true value of 07
and we must never, never say, ‘‘the probability that the true value of 8 lies
in the interval”. Whenever I hear someone belabor this distinction, I feel
like the little boy in the fable of the Emperor’s New Clothes.

Suppose someone proposes to you a new method for carrying out the
operations of elementary arithmetic. He offers scathing denunciations
of previous methods, in which he never examines the results they give,
but attacks their underlying philosophy. But you discover that applica-
tion of the new method leads to the conclusion that 2+2=35. T think all
protestations to the effect that, ““Well, the case of 2+2 1s a peculiar
pathological one, and I didn’t intend the method to be used there”,
will fall on deaf ears. A method of reasoning which leads to an absurd
result in one problem is thereby proved to contain a fallacy. At least, that
is a rule of evidence universally accepted by scientists and mathematicians.

Orthodox statisticians appear to use different rules of evidence. It is
clear from the foregoing that one can produce any number of exampies,
at first sight quite innocent-looking, in which use of confidence intervals
or orthodox significance tests leads to absurd or dangerously misleading
results. And, note that the above examples are not pathological freaks;
every one of them is an important case that arises repeatedly in current
practice. To the best of my knowledge, nobody has ever produced an
example where the Bayesian method fails to yield a reasonable result;
indeed, in the above examples, and in those noted by Kendall and
Stuart (1961), the only cases where confidence intervals appear satis-
factory at all are just the ones where they agree closely (or often exactly)
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with the Bayesian intervals. From our general proof, we understand why.
And, year after year, the printing presses continue to pour out textbooks
whose authors extoll the virtues of confidence intervals and warn the
student against the thoroughly discredited method of Bayes and Laplace.

A physicist viewing this situation finds it quite beyond human under-
standing. I don’t think the history of science can offer any other example
in which a method which has always succeeded was rejected on doctrinaire
grounds in favor of one which often fails.

Proponents of the orthodox view often describe themselves, as did
Bross (1963), as ‘objective’, and ‘fact-oriented’, thereby implying that
Bayesians are not. But the foundation-stone of the orthodox school of
thought is this dogmatic insistence that the word ‘probability’ must be
interpreted as ‘frequency in some random experiment’; and that any
other meaning is metaphysical nonsense. Now, assertions about the
‘true meaning of probability’, whether made by the orthodox or the
Bayesian, are not statements of demonstrable fact. They are statements of
ideological belief about a matter that cannot be settled by logical demon-
stration, or by taking votes. The only fully objective, fact-oriented
criterion we have for deciding issues of this type, is just the one scientists
use to test any theory: sweeping aside all philosophical clutter, which
approach leads us to the more reasonable and useful results? I propose
that we make some use of this criterion in future discussions.

Mathematically, or conceptually, there is absolutely nothing to prevent
us from using probability theory in the broader Laplace interpretation,
as the ‘calculus of inductive reasoning’. Evidence of the type given above
indicates that to do so greatly increases both the power and the simplicity
of statistical methods; in almost every case, the Bayesian result required
far less calculation. The main reason for this is that both the ad hoc step
of ‘choosing a statistic’ and the ensuing mathematical problem of finding
its sampling distribution, are eliminated. In particular, the F-test and
the t-test, which require considerable mathematical demonstration in the
orthodox theory, can each be derived from Bayesian principles in a few
lines of the most elementary mathematics; the evidence of the sample is
already fully displayed in the likelihood function, which can be written
down immediately. :

Now, I understand that there are some who are not only frightened to
death by a prior probability, they do not even believe this last statement,
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the so-called ‘likelihood principle’, although a proof has been given
(Birnbaum, 1962). However, 1 don’t think we need a separate formal
proof if we look at it this way. Nobody questions the validity of applying
Bayes’ theorem in the case where the parameter 8 is itself a ‘random
variable’. But in this case the entire evidence provided by the sample is
contained in the likelihood function; independently of the prior distribu-
tion, different intervals df are indicated by the sample to an extent
precisely proportional to L(6) df. It is already conceded by all that the
likelihood function has this property when 8 is a random variable with
an arbitrary frequency distribution; is it then going to lose this property
in the special case where 0 is a constant? Indeed, isn’t it a matter of the
most elementary common sense to recognize that, in the specific problem
at hand, 0 is always just an unknown constant? Whether it would or
would not be different in some other case that we are not reasoning
about, is just not relevant to our problem; to adopt different methods on
such grounds is to commit the most obvious inconsistency.

I am unable to see why ‘objectivity’ requires us to interpret every
probability as a frequency in some random experiment; particularly when
we note that in virtually every problem of real life, the direct probabilities
are not determined by any real random experiment; they are calculated
from a theoretical model whose choice involves ‘subjective’ judgment.
The most ‘objective’ probabilities appearing in most problems are,
therefore, frequencies only in an ad hoc, imaginary universe invented just
for the purpose of allowing a frequency interpretation. The Bayesian
could also, with equal ease and equal justification, conjure up an imagi-
nary universe in which all his probabilities are frequencies; but it is idle
to pretend that a mere act of the imagination can confer any greater
objectivity on our methods.

According to Bayes’ theorem, the posterior probability is found by
multiplying the prior probability by a numerical factor, which is deter-
mined by the data and the model. The posterior probabilities therefore
partake of whatever ‘qualities’ the priors have:

(A) If the prior probabilities are real frequencies, then the posterior
probabilities are also real frequencies.

(B) If the prior probabilities are frequencies in an imaginary universe,
then the posterior probabilitics are frequencies in that same universe.

(C) If the prior probabilities represent what it is reasonable to believe



210 E. T. JAYNES

before the experiment, by any criterion of ‘reasonable’, then the posterior
probabilities will represent what it is equally reasonable to believe after
the experiment, by the same criterion.

In no case are there any grounds for questioning the use of Bayes’
theorem, which after all is just the condition for consistency of the product
rule of probability theory; i.e., p(4B | C)is symmetric in the propositions
A and B, and so it can be expanded two different ways: p(4B | C)=
=p(A | BC)p(B|C)=p(B| AC)p(4|C). If p(B]|C)#0, the last
equality is just Bayes’ theorem:

P(B| AC)

P(A|BC)=p(A|C)W.

To recognize these things in no way forces us to accept the ‘personalis-
tic’ view of probability {Savage, 1954, 1962). ‘Objectivity’ clearly does
demand at least this much: the results of a statistical analysis ought to be
independent of the personality of the user. In particular, our prior prob-
abilities should describe the prior information; and not anybody’s vague
personal feelings.

At present, this is an ideal that is fully achieved only in particularly
simple cases where all the prior information is testable in the sense
defined previously {Jaynes, 1968). In the case of the aforementioned
‘competent engineer’ the determination of the exact prior is, of course,
not yet completely formalized. But, as stressed before, the measure of
our success in achieving ‘objectivity’is just the extent to which we are able to
eliminate all personalistic clements, and approach a completely ‘im-
personalistic’ theory of inference or decision; on this point I must agree
whole-heartedly with orthodox statisticians.

The real issue facing us is not an absolute value judgment but a relative
one; it is not whether Bayesian methods are 100% perfect, or whether
their underlying philosophy is opprobrious; but simply whether, at the
present time, they are better or worse than orthodox metheds in the
results they give in practice. Comparisons of the type given here and in
the aforementioned Underground Literature —and the failure of orthodoxy
to produce any counter-examples — show that the original statistical
methods of Laplace stand today in a position of proven superiority, that
places them beyond the reach of attacks on the philosophical level, and
a fortiori beyond any need for defense on that level.
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Presumably, the future will bring us still better statistical methods; I
predict that these will be found through further refinement and generali-
zation of our present Bayesian principles. After all, the unsolved problems
of Bayesian statistics are ones (such as treatment of nontestable prior
information) that, for the most part, go so far beyond the domain of
orthodox methods that they cannot even be formulated in orthodox
terms.

It would seem to me, therefore, that instead of attacking Bayesian
methods because we still have unsolved problems, a rational person
would want to be constructive and recognize the unsolved problems as
the areas where it is important that further research be done. My work
on maximum entropy and transformation groups is an attempt to contri-
bute to, and not to tear down, the beautiful and powerful intellectual
achievement that the world owes to Bayes and Laplace.

Dept. of Physics, Washington University,
St. Louis, Missouri 63130
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1 Supported by the Air Force Office of Scientific Research, Contract No. F44620-
60-0121.

2 For those who had hoped, or at least expected, to hear instead a summary of the
present status of maximum entropy, see the Note at the beginning of the References.
3 This analvsis is mathematically equivalent to use of the Behrens-Fisher distribution;
however, the numerical work was done directly from Equation (1) rather than relying
on tables which have been so little used and which would require a risky kind of
interpolation. The first integration can be done analytically, and the second is casily
done numerically to all the accuracy needed. Tail areas for a <0 need not be truncated,
since they contribute to (1) only in the sixth decimal place.

4 IBM 7092 calculation by Mr. Robert Schainker. Using the Jeffreys prior, do/o, the
posterior distributions have the form p(do | s)=x"e % dx/r!, where x=ns?/20%,
2r=n—3, and s12=2,237, etc. The required probability is then an integral like (1),
which can be expressed as a finite sum for numerical work. Alternatively, it can be
expressed in terms of the incomplete Beta function, so that in principle the F-tables
could be used ; however, these tables use too widely separated values of the significance
level for accurate interpolation.



DISCUSSION

INTERFACES BETWEEN STATISTICS AND CONTENT

(Remarks on the paper ‘Confidence Intervals vs Bayesian Intervals’ by
E. T. Jaynes by Margaret W. Maxfield)

Professor Jaynes recommends common sense as a ‘Court of Last Resort’
for statistics. He calls for applying competing statistical methods and
choosing the one whose result conforms best with our common sense.

However, one of the main reasons we apply statistical methods at all
is to inform our sense in an area where we find it hazy. We want to know
‘how big is big’.

Under Part 1I, Significance Tests, Example 1, Professor Jaynes
explains an example from Roberts (1964; references are to the biblio-
graphy of Jaynes’ paper):

Two manufacturers, 4 and B, are suppliers for a certain component, and we want to
choose the one which affords the longer mean life. Manufacturer A supplies 9 units for

test, which turn out to have a (mean + standard deviation) lifetime of (421£7.48)
hours. B supplies 4 units, which yield (50-+6.48) hours.

Roberts concludes from an F test that the two variances are not signifi-
cantly different, whercupon he pools the estimates of variance, an error
in Jaynes’ judgment. In any case, Roberts pools the estimates incorrectly,
using a formula

2 2
5 484 + fpSp
Spooled =

HA + I’lB - 2 ’
instead of the correct formula

2 :(HA—I)Sj-{-(nB—-l)Sﬁ
pooled n, + ng — 7

3

(See Crow, page 68, for instance), thus sufficiently overestimating the
pooled variance to yield a conclusion of no significant difference in means
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at the 90% level, with an equal-tails ¢-test. With the correct estimate, the
difference in sample means proves significant.

(2) POOLING VARIANCES AS AN INTERFACE

Neither Roberts nor Jaynes mentions the use of the problem context in
the decision whether to pool variance estimates. The reason for pooling
estimates is that we consider that there is a common variance to be esti-
mated. Ideally, we base this model, not on inspection of the data, but on
the content of the application. For instance, there may be a ‘state of the
art’ limitation in production of components, and experience may suggest
that both suppliers are near that limit. Or, the tolerances on components
that fulfill other specifications may be quite tight, so that unless the variance
is “in control’, the components will fail grosser tests.

In Roberts’ problem we might suppose that the buyer expects the
variance to be the same, but does not trust his common sense as to
whether the ratio of the observed estimates is improbably large. This use
of statistics and their distributions to guide common sense is a good
example of an interface between statistics and content.

A nonstatistical data analysis is quite appropriate, also. If the buyer
must make his decision on the basis of the submitted samples alone, he
may obsetve that the components from manufacturer B have both the
better (longer) mean component life and the smaller estimate of variance,
which would fit a rationale of better quality control by manufacturer
B — better and less variable product.

(b) ALTERNATIVE HYPOTHESES AS AN INTERFACE

Jaynes’ second objection to Roberts’ solution is to his use of an equal-tails
test, of which Jaynes says: ‘‘But this is surely absurd; it was clear from
the start that there is no question of the data supporting A; the only
purpose which can be served by a statistical analysis is to tell us sow
strongly it supports B”. Of course, there is nothing immoral about aban-
doning all statistical procedures and awarding the contract to the winner,
whether he won by a nose or a mile. Undoubtedly, most decisions are
made in this commonsense way, a comparison of means with no examina-
tion of dispersions. Dispersions, and their effect on reliability of estima-
tion, are demonstrably beyond sense that is common, as any introductory
statistics class will reveal.
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If a buyer does realize, however, that fluctuation affects the reliability
of his estimate of the difference in means, he will want to consult ¢ tables,
and in entering those tables, use an equal-tails model.

Full decision-theoretic analyses are rare, partly because of buyers’
inability or reluctance to quantify their loss estimates. Either the losses
are very one-sided (the buyer awards the contract to his brother-in-law),
or they are as hard to estimate as the difference in means. In the absence
of any utility or loss functions, the Bayesian analysis is perfectly suitable.
However, if there are any lower-order criteria than difference in ‘mean
component life available for the choice between manufacturers — trans-
portation costs, tie-in sales, etc., — the buyer needs to know not only who
won, but by how much.

Jaynes next attacks a problem from Crow et al. (1960) about com-
parison of variances. The problem in this ‘Manual’ is introduced expli-
citly as a mere exercise in calculating an F statistic and entering the F
table. There is no surrounding information offered. The F statistic is
calculated as 1.66, for a ratio of standard deviations of 1.3 to 1. The
finding that the F statistic in this case is not significant at the 5%, level
violates Jaynes’ common sense.

(c) SIGNIFICANCE AS AN INTERFACE

Upon learning that an F statistic is not especially improbable, we are
surprised at what different variance estimates can arise from the same
variance, perhaps. We may recheck our calculations. Then we revise our
common sense.

Since in both the problems quoted, the experimenter originally does
not know which competitor to choose, and, in fact, that is the point of
the problem, a one-tailed model is mappropriate.

The policy Jaynes recommends, of reporting the significance level at
which the result would be just significant, may seem to take the binary
curse from significance testing for us. However, it must be emphasized
that results in a critical region are improbable in the aggregate, not as
individuals, every single one of which has zero probability, wherever it lies.

(d) PRIMITIVE NOTIONS

People use common nontechnical connotative understanding to draw
commonsense conclusions about points, lines, sets, and so on — the
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primitive undefined terms in mathematics. Until ‘random’ and ‘probable’,
or their successors as basic terms in statistics, are understood and used in

nontechnical language, we must slowly develop common sense about
statistics from experience.



COMMON SENSE AS AN INTERFACE

(Reply of E. T. Jaynes to comments of Margaret Maxfield)

It has been recognized by all, beginning with Laplace, that the purpose
of a statistical analysis is to aid our common sense by giving a quantitative
measure to what we feel intuitively. If 1t i1s thought that there is an
inconsistency between this and my program, please note the distinction
between (1) using a statistical method to help our common sense; and
(2) judging the relative merits of two statistical methods by magnifying
their differences up to the range where common sense needs no help.

Whether we use the coefficient » or (n—1) in the pooled variance
estimate depends on whether we define the symbol s* as the sample
variance or the unbiased estimate of the population variance. Since
Roberts uses n as the weighting coefficient and (p. 86) explicitly calls s
the sample standard deviation, I assumed that he was using the former
convention. If we reinterpret s* as does Ms Maxfield, then all the numeri-
cal results — both Roberts” and mine — will be changed slightly, but in the
same direction and by nearly the same amount. This will not affect the
comparison of our methods.

The remarks about one-sided and equal-tails tests, and about reporting
critical significance levels, ignore some elementary facts that I tried to
point out. That in an equal-tails test “the F statistic in this case is not
significant at the 5% [my 95%] level,” is just a mathematical fact, and
in no way viclates my common sense. On the contrary, it confirms my
common sense by demonstrating the folly of using an equal-tails test.
Ponder the proper fate of a Public Health official who obtains evidence
for a difference in side effects of two polio vaccines that is significant at
the 95.7% level by a one-sided test, and concludes: “We need not dif-
ferentiate between the vaccines.”

The purpose of these tests is to give an indication whether our data
are consistent with some nominal value 6, for a parameter, or whether
there is statistically significant evidence for a departure from 6,. In
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deciding which test will best serve this purpose, then, we need to ask,
“How much imformation bearing on this question do you convey when
you report the result of the test?”” This establishes an ordering much like
the notion of admissibility.

Thus, for the ¢-test, denote the cumulative distribution by
Prob[f<t (P)]=P, and consider what we learn from the results of one-
sided and equal-tails tests. If Mr A tells us that the null hypothesis
[H,:6="0,] was not rejected by the equal-tails test at the 909 level, then
we know ¢ was somewhere in |¢] <7 (0.95).We can’t tell from this whether
H, would be rejected at the 809, level. If he tells us that H, was rejected
at the 907, level, then we know ¢ was in one of the tails, |#]>7(0.95); but
we don’t know whether H, would have been rejected at the 929, level, or
which alternative [H;:0>60,] or [H,:0<08,] is favored by the data.

If Mr A would report instead the critical level P for the equal-tails test,
we would know far more. This determines that = +¢(P’), where
2P '=1+P, and we know what the verdict would be at any level, for the
equal-tails test. The critical level P; for the one-sided test (H, vs. H,)is
either P or (1 —P’), but we can’t tell which.

Evidently, we would know still more if Mr A would report the critical
level P, for the one-sided test, instead of the equal-tails test. From P,
we know what the verdict would be, at any level, for the equal-tails test
and for both of the one-sided tests. But it is straightforward mathematics
to show that P, is identical with the Bayesian posterior probability that
H, is true,

All these considerations apply equally well to the F-test, and many
others. A one-sided test tells us everything an equal-tails test does; and
more. Where, then, is the justification for ever using an equal-tails test,
or for claiming that “a one-tailed model is inappropriate?”

More importantly, it is not a matter of personal opinion, but a mathe-
matically demonstrable fact, that the Bayesian method of significance
testing, originated by Laplace, leads us at once to the maximum informa-
tion given by the optimal orthodox test. Obviously, then, orthodox
rejection of Bayesian tests cannot be justified on grounds of their actual
performance.

Finally, I call the readers’ attention to the devastating criticisms of
orthodox hypothesis testing theory by Pratt (1961) and L. J. Savage
(1962) which, to the best of my knowledge, remain unanswered to this day.
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COMMENTS ON PAPER BY DR E. T. JAYNES

Oscar Kempthorne

(1) The paper by Jaynes is clearly a very seriously developed discussion
of some of the problems and obscurities of statistical inference. My own
views are given briefly in my presentation at this confernce. I shall not
give these here but shall attempt a critique, not necessarily critical, of
Jaynes’ paper.

(2) T am very concerned that the picture of ‘orthodox’ statistics
presented by Jaynes will lead philosophers of science and physicists to the
view that statistics as it is often practised is stupid. 1t is a hard, bare fact
that workers in noisy sciences use statistical methods, as presented, for
example, by Snedecor and Cochran, very widely. Part of the thesis of my
own presentation is that there has been very little attention to unavoidable
noise in philosophy and physics. 1 refuse to discuss the matter with
anyone who does not admit the problem of noise (or error, or wandering,
or variability, whatever term appeals).

(3) At the beginning we are presented with a polarity, the orthodox sol-
ution versus the Bayesian solution. This needs clarification.

(a) What is the orthodox solution? There are in fact at least two streams
of thought and statistical practice arising from a common origin. Fisher
in his first paper used a Bayesian argument, but then by 1922 (‘The
Mathematical Foundations of Theoretical Statistics’) had rejected
Bayesian ideas. Instead, he produced (i) a large number of significance
tests and (ii) a theory of statistical estimation. A natural step was then
to construct some sort of statistical interval of uncertainty by inverting a
significance test. This led later to Fisher’s fiducial inference, which is a
mystery to all but a very few, and has, I think, been rejected by almost
all statisticians (including, perhaps, myself). In 1928, Neyman and
Pearson tried to give more exact and more mathematical structure to the
idea of tests of singificance. By 1933 they had replaced, in my opinion,
significance tests by accept-reject rules and had cast the whole matter
into a simple decision theoretic-structure. This led to some of the proce-
dures which Jaynes justly castigates. The decision-theoretic approach
with emphasis on frequency of errors of the two types was seen by Fisher
to be in conflict with a need for quantifying in a reasonable way what
may be termed the evidential content of data. There has been much
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ferment on the basic issue. The literature is now huge. The upshot has
been a rejection by very many of the idea that Neyman-Pearson accept-
reject rule theory necessarily leads to a valid quantification of evidence
from data. I reviewed (Biometrics 25, 647-654, 1969, discussion of paper
by Cornfield) in an elementary way some of the problems and gave an
example very much like Jaynes’ Example 5. A serious attempt was made
in the book Probability, Statistics and Data Analysis, by O. Kempthorne
and J. L. Folks, lowa State University Press, 1971 to present the problems.
I think it is described there in what ways the Neyman-Pearson processes
break down, for example, how the idea of unbiased tests of significance
breaks down for the simplest case of independent Bernouilli trials. The
story is a very long one. If, however, one wishes to enter deep discussion
of the controversies a huge amount of literature, due to Fisher, Barnard,
Cox, Birnbaum and others (perhaps including myself), must be read with
a critical mind. At the same time one must read with a critical mind the
writing of L. J. Savage, Lindley, I. R. Savage, Box and others. And also
one must read with a critical mind the theory of games (especial Section
4.8.2 of the von Neumann-Morgenstern classic) and the theory of de-
cision which is closely related to the theory of utility (whence the theory
of preferences). 1 have found Games and Decisions by Luce and Raiffa
very informative and I would like readers to pay especial attention to
pages 33 to 37. The overwhelmingly strong message for me from the
London conference was that a large portion of the ideas of outstanding
workers can reasonably be subjected to severe criticism. No one’s work
is sacrosanct. We heard criticisms of the basic work in modern physics, and
we know of the extreme doubts of Einstein about quantum physics and
also of the extreme doubts of the validity of Einstein’s criticisms. So I
put forward a guiding principle: It is complete naiveté to assume that a
presentation by worker X (very good though he may be) of a theory of
physics or a theory of statistics, or a theory of decision, or whatever can be
taken as definitive and totally forcing.

Any writer presents, of course, as convincing a case as possible, and
almost every writer has contributed to understanding.

The basic point about ‘orthodox’ statistics is that there is an orthodoxy
in the books on mathematical statistics, but this orthodoxy is present
only mildly, and almost tangentially, in the orthodoxy (if there is one) of
practising statisticians, as represented by a number of texts on statistical
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methods. To attack Neyman-Pearson orthodoxy is one thing (which may
be accomplished with some success, I think) but to assume that this
orthodoxy has had any deep influence on working statistical practice is,
I think, largely fallactous.

It is a bad thing, I believe, to suggest, for example, that working
statisticians will estimate a probability by a formula that can give an
answer of (2), as a leading text suggests.

Or to suggest that working statisticians will estimate a probability to be
a negative number, as a Nobel laureate in physics, P. A. M. Dirac,
suggested in his Baker lecture to the Royal Society of London in 1942,

Dr. Jaynes and the neo-Bayesians have a very difficult problem arising
from the fact that there are few (perhaps no) books which describe
orthodox statistical practice from a theoretical viewpoint (though I sug-
gest, perhaps naturally, that the book by Kempthorne and Folks attempts
this).

I repeat that the whole field is very, very difficult, and give my view that
the difficulties are not mitigated by the existence of many books on
mathematical statistics that give a picture, which is ludicrous, as our
neo-Bayesian friends are asserting, and correctly so, I think. I now turn
to a detailed reaction to the Jaynes paper.

(b) Jaynes talks about the Bayesian solution. I state emphatically
with no fear of being proved wrong, that there is not a definite Bayes
solution. There is a Bayes ‘solution’ associated with each choice for a
prior distribution. This ambiguity would be resolved if there were a
completely compelling way to produce a particular prior distribution
for each problem by purely logical analysis. The attempts to do this have
failed, T believe. Professor Lindley himself has so admitted, I believe.

If this is accepted, then it is incorrect to talk about the Bayesian result.
If the attitude to the whole problem is changed, so that the prior
distribution is a summarization of the beliefs of the individual investigator
(a viewpoint which L. J. Savage proposed, I believe), then the result must
be labelled as the result of the individual’s prior. So if Jaynes is using his
personal prior, the result of the Bayes algorithm should be called ‘Jaynes’
probability’ or ‘Jaynes’ interval’. I do not find such statements offensive
or misleading. In a real sense, all probabilities of future contingencies are
personal. I have no objection at all to stating ‘Kempthorne’s probability
that it will rain tomorrow is 0.3’. Whether anyone else should accept this
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as a reasonable probability for him is another problem. I do accept
probabilities of authorities, e.g. in the genetic counselling area. If Profes-
sor Lindley would state ‘My probability of hypothesis H is 0.7°, I cannot
possibly quarrel with him. He is making an assertion about himself and
I regard him as the best available authority on himself and his beliefs.

(4) When Jaynes talks about the ‘orthodox’ solution I am of the opin-
1on that he 1s talking about the Neyman-Pearson decision-theory based
solution. That this became orthodoxy was a frequently and strongly
voiced objection by R. A. Fisher. References are very well known and
are manifold. Hence to use a phrase such as the Fisher-Neyman-
Pearson approach is an obvious calumny of Fisher’s views and situation.
In his name 1 protest most strongly. For the benefit of readers who were
not present at the conference, it may be stated that precisely this phrase
was used.

(5) That the obscurities of modern physics will be resolved shortly may
well be hoped, but a message I obtained from the London conference
was that the foundations of modern physics are in a shambles. We have
the appeal to the two-hole experiment, which we are then told is a ‘Ge-
danken’ or ‘thought’ experiment which has never been done. [Though
again, there is a suggestion that this basic experiment was done about a
year ago by someone, this ‘year ago’ being some fifty years after the
theory was promulgated as the final answer. (See the quotations in my
own essay.)] So I regret that I do not share Jaynes’ optimism, though
1 do share a wonderment at the advances in technology that have grown
out of modern physics, and I support strongly research in physics.

(6) Jaynes appeals to ‘common sense’. I suggest most strongly that
our problem is to decide what ‘common sense’ is. We have seen ‘common
sense’ to be totally fallacious a huge number of times in the history of
human thought. And to attempt to push the point home, I suggest that
Jaynes would have very great, and perhaps insuperable, difficulties in
reconciling quantum physics with common sense. It is true that we all
have a vague idea of something which we call ‘common sense’, but our
problem is to make this vague feeling sufficiently precise to use in scientific
discourse. One cannot help recalling that appeals to common sense, to
motherhood, to land and order and so on have led to some of the worst
atrocities that humanity has perpetrated.

So I assert my opinion that Jaynes is being strongly misleading in
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talking about what common sense tells us. I am sure that Jaynes is
highly proficient in branches of physics and that he would reject my
‘common sense’ and justifiably so, perhaps.

A ‘publicly agreed verdict’” may well be terribly wrong, and history
is replete with examples.

(7) Jaynes and I are agreed that a statistical method should be judged
‘by the results which it gives in practice’. It was precisely on this basis that
the Bayesian idea was rejected by Boole, Venn, Fisher, Neyman and so on.
I hope that this list of names gives Jaynes pause. The simple fact is that
a Bayesian interval has no predictive verifiability. The neo-Bayesian
cannot successfully back his probability assertions by accepting money
challenges. On the other hand, the Neyman-Pearson interval assertion
is straightforward: he asserts: I will bet $ 19 to $ 1 that my interval
contains the true unknown parameter value. It is a matter of mathematics
that this claim can be sustained. Neyman can issue this assertion and
will apart from random fluctuations remain solvent. The neo-Bayesian
will, on the other hand, ‘lose his shirt’. He will be coherent in his whole
battery of probability assertions, but he will be coherently wrong, in a
situation In which an individual 4 chooses a probability structure and
valid data, individual B, a neo-Bayesian, makes his probability assertions,
and individual C (say Neyman) challenges B’s assertions, with individual
A then verifying correctness of assertion.

(8) The reader may check whether the book by Kempthorne and Folks
mentions the works of Good, Savage and Jeffreys.

(9) Jaynessays ‘“The basicideas of interval estimation must be ancient”’.
We will agree with him, but the problem is surely to give some logically
satisfying structure for this basic idea. He gives a view, the need for an
interval of uncertainty or a final best number, with which I agree but a
view with which L. J. Savage who is surely one of the originators of neo-
Bayesianism, disagrees in his foundations. Savage’s book should be read,
and the assertion of this view will be found.

(10) While Neyman-Pearson orthodoxy states that the ‘‘proper
method for this problem is the confidence interval”, Fisher objected
strongly and consistently that the proper method was rot the confidence
interval. A view is expressed in the Kempthorne-Folks book which is
along the same lines. It seems to be agreed by a sizeable group of practising
statisticians that one cannot recessarily have confidence in confidence
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intervals. It was for this reason that Folks and I introduced the term
‘consonance interval’ and this suggestion has met with approval by some
workers.

(11) The words subjectivity and objectivity should be banned from the
literature. But the situation is not simple. We cannot take Jaynes’ com-
mon sense to be a substitute for a requirement of interpersonal validation
of subjectivety formed assertions which is what ‘objectivity’ usually
means. The comments of Bross cannot, 1 believe, be dismissed by a few
words and a wave of the hand. I do not thereby imply that I agree fotally
with him.

(12) A question that recurs again and again is ‘*“What is a significance
test?”” There has been in the opinion of some statisticians, a vast confusion
on the matter. A distinction between a significance test and an accept-
reject rule has been made by myself, by Kempthorne and Folks in their
book, by Kalbfleisch in his book, and by Kalbfleisch and Sprott in a
paper presented at this conference. The confusion has been generated
by a mixing of phrases which should be kept separate. One meets an
infelicity of phrase of an accept-reject rule at 59 significance level. This
mixes up significance tests and accept-reject rules to the confusion of most
readers. A significance test is a quantification of ‘strength of evidence
against’ expressed on the probability (ie. the [0, 1]) scale. The confusion
is not confined to Jaynes’ paper but permeates the mathematical statistics
area.

(13) On Example 1, Jaynes’ common sense tells him what he says. I
suggest, however, that the standard error of the difference of means is

/7.48% +6.48% = /98 = 10. Hence the difference of means is 8 with a
standard error of 10. There is evidence that B is better than A4, but not
‘fairly substantial’ in my opinion. No one would quarrel, I believe, with
a decision to choose B, but the situation evidentially is by no means as
clear as Jaynes with his ‘common sense’ approach suggests.

(14) The statement ‘‘any statistical procedure which fails to extract
evidence that is already clear to our unaided common sense, is certainly
not for me”’, is excellent polemics, but, I suggest, no more than that. If
Jaynes’ circulated document is his ‘common sense’, then I believe we
must reject a sizeable portion of this polemic.

(15) In Example 1 and elsewhere, Jaynes uses improper priors.
Hacking in 1962, or thereabouts, raised the question of how a quantity
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which is not a probability could be convoluted with a probability to yield
a probability. Many of us have been utterly queasy about improper
priors. In discussion of Fraser’s presentation, Lindley mentioned recent
work by Dawid, Stone and Zidek which appears to show that Fraser’s
structural inference has consistency problems. I am very sorry that the
fact that the same paper appears to show irremovable defects in the neo-
Bayesian process using improper priors was not mentioned. If the force
of the Dawid-Stone-Zidek paper is accepted, as Lindley does, it seems,
because he used it as an argument against Fraser’s structural inference,
then it would seem that the 1967 book of Lindley and the bulk of the
Jaynes paper should be rejected, as well as other recent Bayesian books.
At the conference, I attempted to obtain Lindley’s view of the effect of
the Dawid-Stone-Zidek paper on his own earlier work, and hence on
Jaynes’ work reported at this conference, but was unsuccessful. 1 hope
that Lindley will contribute a definitive statement to the proceedings of
this conference.

(16) We see the sentence ‘How then, could the author have failed to
find significance at the 90% level?”. This raises the question of what a
significance test i1s. Some obliquely directed views of Jaynes seem to be
aimed in the direction put forward in the Kempthorne-Folks book.
But most of the mathematical-statistics literature is unclear on the matter.
I recall Wolfowitz saying twenty years ago that Fisher had never defined
a test of significance. He was correct, I believe. I would also add that I am
not entirely clear in my own mind on what a significance test is, though
what is given in the Kempthorne-Folks book and in my Snedecor essay
represents an initial stab.

(17) In Example 2 we are told there is “‘absolutely unmistakable evi-
dence for the superiority of type 2 rockets”. I believe the critical reader
should jib at this. T certainly do. I would give a statement of “‘quanti-
tatively how significant that evidence is”’. I would report ““the critical
significance level at which etc”. I am on record with Folks as advocating
precisely this mode of statement. But, then, perhaps I and Folks are not
‘orthodox’ statisticians, or perhaps we are not statisticians at all!

(18) Throughout the examples we are given in Jaynes’ words the Bay-
esian solution. But Dawid-Stone-Zidek tell us that the Bayesian solution
(as given by Jaynes) has defects, and we can only surmise, in the absence
of clear statement, that Lindley agrees on the presence of defects.
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(19) We see that certain results are based on a ‘ridiculous prior for 4.
This raises the question of what is a poor prior. Clearly Jaynes admits
that possibility. On the other hand, Lindley states that the quesion of
accuracy of a prior does not arise. And, finally, we heard a lecture by
Patrick Suppes which cast extreme (for me) doubts on the whole Savage
prescription, which Lindley has stated at several times to be his intel-
lectual basis. To place the matter in focus, a prior that Jaynes uses may
be ‘ridiculous’ to me and vice versa, and that is precisely why the Bayesian
process was rejected by Boole, Venn, etc., etc.

(20) It is surely the case that a Bayesian interval makes predictions
about an imaginary population of repetitions. The neo-Bayesians do not
like such a phrase, but their opponents state something which is as close
to this as the looseness of language permits.

(21) On Example 5, the points that Jaynes makes are extremely close
to those that Fisher made in 1934 (39 years ago) in rejecting the Neyman-
Pearson prescription. The notion of recognizable subsets was put forward
very carly, if not first, by Fisher. I infer that the literature has not been
read.

(22) T have already indicated implicitly that there are difficulties with
the Savage axiomatic system. I call Patrick Suppes to witness.

(23) I am of the opinion that the consideration of axiomatic structures
is a very important part of logical thinking. But I believe it is exceedingly
dangerous to accept any set of axioms, no matter how ‘true’ and ‘correct’
they appear to be. I have seen writings recently that indicate that certain
workers are very doubtful of ‘the sure-thing principle’. I suggest that we
listen a bit to these workers.

(24) The neo-Bayesians quote F. P. Ramsey as the originator. They
fail, however, to record that Ramsey recommended to refer to Fisher on
applicational matters. The last sentence of Ramsey goes like ‘‘For all this
see Fisher”.

(25) We await with eagerness the Fisher lecture of L. J. Savage, which
was not as assertive as his followers might well expect. (I was chairman
of the session.)

(26) Jaynes says that the neo-Bayesian prescription ‘works’. Just what
does he mean and what is the evidence, apart from Ais common sense.

(27) That multiple comparison procedures are thought to be defective
by many practitioners (and non-Bayesians) is well-known.
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(28) L. J. Savage was crystal clear in his presentation that he was
giving a theory of decision for one person, who, of course, has to be L. J.
Savage. I do not, thereby, denigrate Savage. He was a fine individual with
a very fine mind.

(29) Ultimately, the basic antithesis is between evidence and decision.
To some everything is decision. To others and indeed everyone, decision
i1s important. Every human and animal makes decisions. But there is
another aspect, the accumulation and weighing of evidence. Just what this
is, is not clear. But the lesson of all human thought is not to dismiss a
vague but pervasive idea because one cannot formulate it tightly.

Statistical Laboratory, fowa State University
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JAYNES® REPLY TO KEMPTHORNE’S COMMENTS

I am most grateful to Professor Kempthorne for this lengthy commentary.
Such a magnificent confirmation of my main thesis could hardly have been
hoped for; he has surely silenced those critics who thought that my account
of the orthodox position was exaggerated.

Before venturing into areas where we presently differ I want to say that,
during our five days acquaintance at this Conference, I have developed a
warm personal affection for Oscar Kempthorne, and came to seek him out
for many between-sessions and after-dinner discussions, all pleasant and
valuable to me for reasons ranging from his interesting comments to the
aroma of his cigars. Although it may not be apparent to the casual reader,
there is a very wide area of agreement between us; on most of the issues
discussed at this Conference, we would stand together.

For example, we both see at a glance the sterility of efforts to refine
the mathematics without refining the concepts; or to axiomatize old ideas
without any creative development of new ones. We are, I think, equally
appalled at the prospect of changing the principles of logic to accom-
modate an illogical theory of physics.

We both tend to place more emphasis on the practical working rules
and less on highflown mathematical and philosophical aspects of statistics
than some of our younger colleagues, because we have seen enough
ambitious but short-lived efforts with the generic title: ‘A New Foundation
for Statistics’ to become a bit weary of them. And we have seen enough
putative ‘foundations’ develop a fluid character unlike real foundations
and adapt themselves to the unyielding practical realities, to become a bit
wary of them.

It is clear to me that, on a much deeper level than the superficial dif-
ferences being aired here, Oscar Kempthorne and I are kindred souls,
with the same basic outlook and value judgments. On studying his com-
ments, I am convinced that our differences arise almost entirely from
misapprehensions concerning the nature of Bayesian methods as they
exist today, which could have been cleared up if only we had more time
to thresh matters out. Surely, there is no difference in our real aims to
improve the power and scope of statistical methods at the practical,
working level.

But granting all this, the differences between us do involve issues of
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crucial importance to statistics, and it would be a disservice to minimize
them. This 120-year-old hangup over prior probabilities, started by
Boole, must come to an end, because it is the direct cause of the troubles
that today prevent orthodox statistics from giving any useful solutions to
many important, real statistical problems.

Thus, linear regression with both variables subject to error is one of
the most common statistical problems faced by experimenters; yet
orthodox theory is helpless to deal with it because with » data points we
have (n+2) nuisance parameters. In irreversible statistical mechanics,
and in some mathematically similar problems of communication theory
and business decisions, the only probabilities involved are prior probabil-
ities. The possibility of any useful solutions at all depends on principles
such as maximum entropy, for translating prior information into prior
distributions.

This debate has gone on for over 100 years, with the same old argu-
ments and counter-arguments repeated back and forth for generations,
without ever getting anywhere. Philosophical disputation may be great
fun; but through recorded history its score for actually solving problems
is, I believe, precisely zero. Anybody who genuinely wants to see these
issues resolved must recognize the need for a better method.

Now the present condition of statistics is just the condition physics
was in until the late 16th century, when Galileo showed us a better method
— the direct cause of the advances that physics has made since. Instead of
arguing about how objects ‘ought’ to move according to some philosoph-
ical or theological preconceptions, or by quoting ancient authorities
such as Aristotle, why don’t we just use the evidence of our own eyes?
We are surrounded daily by moving objects; so any proposed theory
about how they move can be tested by direct observation of the facts.

But, as this Conference showed very dramatically, 400 years of ‘enlight-
enment’ have not changed basic human nature. Today, statisticians
regard themselves as the guardians of ‘scientific objectivity’ in drawing
conclusions from data. Yet when 1 suggested that their own methods be
judged, not by the philosophical preconceptions underlying them, but by
examination of the facts of their actual performance, this appeared to
many — as | knew it would — just as radical and shocking at as it did to
Galileo’s contemporaries. After my talk, a half-dozen people remon-
strated with me, trying to inform me about the terrible defects of Bayesian



CONFIDENCE INTERVALS VS BAYESIAN INTERVALS 231

methods by repeating the same tired old Boole-Venn clichés that we all
learned as children. Not one of these individuals took the slightest note
of the contrary facts (the mathematically demonstrable relations between
actual performance of Bayesian and orthodox methods) that I had just
pointed out. So we had an exact 20’th century repetition of Galileo’s
experience with the colleague who refused to look through his telescope.

To answer fully every point raised by Kempthorne would require a
document much longer than my original presentation. Therefore, this
reply must be confined to a brief summary of the situation, followed by
specific comments only on those points of fact which are of general
interest, and which would propagate confusion if they were allowed to
g0 unanswered.

SUMMARY

My presentation was concerned with examining the relative merits of
orthodox and Bayesian statistical methods by considering specific real
problems, giving for each an orthodox solution which has been advocated
in the recent literature, and adding what cannot be found in that literature,
namely the Bayesian solution which makes use of the same information
(i.e., is based on a noninformative prior). In Example 3, we also examined
the further improvement obtainable when definite prior information is
put in by maximum entropy. From these comparisons, several substantive
conclusions emerge, which can be summed up as follows: Orthodox
methods, when improved to the maximum possible extent (by using one-
sided tests, reporting critical significance levels, using sufficient statistics
or conditioning on all ancillary information, etc.) become mathematically
equivalent to the Bayesian methods based on noninformative priors,
provided that no nuisance parameters are present, and a sufficient sta-
tistic or complete set of ancillary statistics exists. Otherwise, mathematical
equivalence cannot be achieved, and magnification then shows the
Bayesian result to be superior.

This conclusion is supported in part by general theorems, in part by
examination of specific cases. By now, we have a multitude of specific
worked-out examples supporting it; and anyone who has understood
my analysis can see that we are prepared to mass-produce any number of
additional examples. Orthodox statistics has yet to produce one counter-
example. The reason for this is clear to one who has studied the theorems
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of R. T. Cox (1946, 1961). He shows that any method of plausible reason-
ing in which we represent degrees of plausibility by real numbers, is
necessarily either equivalent to Laplace’s, or inconsistent.

Even though an orthodox statistician may, in the words between his
equations, vociferously denounce the use of Bayes’ theorem, it is never-
theless a matter of straightforward mathematics to see if his actual con-
clusions can be derived from Bayes’ theorem. Either they can or they can-
not. If they can, then it is obvious that his rejection of the Bayesian
method is not based on its actual performance. If the conclusions are
different, then we have the opportunity to judge that difference by Galileo’s
method. If we can magnify the difference sufficiently, it will become
quite obvious which method is giving sensible results, and which is not.

Let me stress this point. Doubtless, some readers will jump to the
conclusion that I deliberately chose examples to support my prejudices;
and that one can just as easily produce examples on the other side. In
fact, I hope that every reader of the orthodox persuasion will come to
exactly that conclusion, and set about immediately to produce six
examples where an orthodox method yields a result that simple common
sense can see Is preferable to the Bayesian result. For it is not in the pas-
sive reading of my words, but in the active attempt to produce these
counter-examples, that one’s eyes will be opened.

Professor Kempthorne’s appraisal of my efforts falls somewhat short of
the warm approbation that I had naturally hoped for. As he notes
(Item 3), any writer presents ‘as convincing a case as possible’. Presumably,
therefore, if he was in a position to refute any of my claims — whether by
exhibiting an error in mathematics, a counter-example, or a documentable
contrary fact — he would have done so. Yet with a single exception,
discussed below (Item 13), he does not even mention any of the sub-
stantive issues raised. Instead he favors us with pleasantries about my
choice of words and phrases.

Kempthorne complains, with some justice, that I did not criticize
orthodox methods as they exist today, but rather as they existed before
publication of his recent book (Kempthorne and Folks, 1971; hereafter
referred to as KF). But then what shall one say about reaching back to
Boole (1854) and Venn (1866) for criticisms of Bayesian methods as
they existed over 100 years ago; thereby ignoring not only my recent work
on these problems (1968, 1971), but also that of Jeffreys (1939)? I can
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well imagine the howls of outrage and cries of ‘unfair’ that would issue
forth if I went back only 37 years to quote Karl Pearson (1936) as my
authority in criticizing maximum likelihood. Now let us take up some of
Kempthorne’s more specific comments.

(2) My topic was the relative merits of orthodox and Bayesian methods,
and not how they correlate with intelligence. Not having studied the
latter topic, I have nothing more to add to the conclusions already
reported by professional statisticians, viz:

I believe, for example, that it would be very difficult to persuade an intelligent physicist
that current statistical practice was sensible, but that there would be much less difficulty
with an approach via likelihood and Bayes’ theorem.

G. E. P. Box (1962)

A student of statistical methods tends to be one of two types; either he accepts the
technique in its entirety and applies it to every conceivable situation, or he is more
intelligent and questions the applicability at all.

0. Kempthorne (1952)

With regard to the other remark, I think an historical study would show
that the reasons for the interest of both Laplace and Jeffreys in probability
theory arose from the problem of extracting ‘signals’ (i.e., new systematic
effects) from the ‘noise’ of imperfect observations, in astronomy and
geophysics respectively. The procedures would today be called ‘signifi-
cance tests’, and I wish every one who has not already done so, would read
Jeffreys’ (1939) beautiful and comprehensive chapters on significance
tests, then compare them from the standpoint of solid content and use-
fulness in real problems, with any work ever written on the subject from
the orthodox point of view.

Likewise, my own interest in statistics arose from problems of extract-
ing signals from noise in several applications ranging from optimum
design of radar receivers and magnetic resonance probes, to land mine
detectors. I am on record (Jaynes, 1963) as claiming that there is no
area of physics, from elementary particle theory to cyclotron design, in
which the phenomenon of noise does not present itself.

In view of all this, one can imagine my consternation at the suggestion
that ‘“there has been little attention to unavoidable noise” in physics.
Physicists were actively studying noise and, thanks to Laplace, knew the
proper way to deal with it, long before there was any such thing as a
Statistician.
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(3) (a) Of course, by ‘the orthodox solution’ I mean the particular
one which I am describing; and likewise for ‘the Bayesian solution’. Of
course, there are many different orthodox solutions to a given problem -
but I think that is the last thing a defender of orthodoxy would wish to
bring to our attention.

Dirac did not in any way suggest that ‘‘working statisticians would
estimate a probability to be a negative number”, as a reading of his
lecture will show. On the other hand, it is a matter of documentable fact
that some orthodox statisticians suggest estimating a parameter known to
be posiitve by an estimator which can become negative for some samples
[KF, p. 203, Equation (7.42)].

(b) It is really discouraging to find — 25 years after the birth of infor-
mation theory (Shannon, 1948), 17 years after its bearing on the prior
probability problem was shown (Jaynes, 1957), ten years after the gen-
eralization to continuous distributions (Jaynes, 1963), six years after
the resulting functional analysis generalization of Gibb’s work to ir-
reversible statistical mechanics was given (Jaynes, 1967), five years after
it was shown that the theory becomes parameter-independent if one
uses the entropy relative to the invariant measure on the parameter space
(Jaynes, 1968), and two years after the frequency interpretation of that
invariant measure was demonstrated (Jaynes, 1971) — that an eminent
worker in statistics is still writing that attempts to produce prior distribu-
tions by logical analysis have ‘“failed’.

It is true that the principles of maximum entropy and transformation
groups have not yet led to the solutions of every conceivable statistical
problem; and I know that there are some who reject the entire program
just for that reason. Presumably these same critics do not condemn the
use of insulin on the grounds that it will not cure all diseases. The point is
that we have solved some problems, in a way which I believe will be
recognized by history as the final answer; and in fact we have succeeded
in a wide enough class of problems to cover perhaps 90°] of current
applications. Criticisms of Bayesian methods on the grounds that we
still have unsolved problems, come with particularly ill grace from those
who have in the past, by their discouraging negative attitude, done every-
thing in their power to prevent these problems from being solved.

I would think that anyone might recognize that a meaningful com-
parison of Bayesian and orthodox solutions must use the Bayesian solu-
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tion which makes use of the same information as does the orthodox
solution. A Bayesian solution which makes use of extra prior information
that the orthodox method cannot use at all, will of course be superior
for that reason alone; it is more instructive — and in a sense fairer — to
make comparisons using a Bayesian solution based on a noninformative
prior. Now, a noninformative prior is one which is uniform, not neces-
sarily with respect to Lebesgue measure for any particular choice of the
parameter, but with respect to the invariant measure defined by the trans-
formation group on the parameter space. As explained in my work
referred to, this is just the mathematical statement of the basic desideratum
of consistency: in two problems where we have the same prior information,
we should assign the same prior probabilities.

My previous work (1968) shows how to construct priors for location
and scale parameters, the rate constant of a Poisson process, and the
parameter of a binomial distribution, by logical analysis. Evidently,
the point needs to be made repeatedly and with more examples; so let
me show briefly how to find the prior in the parameter space («, f) of the
standard regression problem y=o+ fx, by logical analysis, for the case
that x, y are variables of the same kind (for example, the departure from
average barometric pressure at New York and Boston), so that it is as
natural to consider regression of (x on y) as (¥ on x). Given any proposed
element of prior probability f(«, ) dx dff, interchange x and y. The
estimated line becomes x=o'+ 'y, with a prior probability element
g(a’, B") do’ df’. From the Jacobian of the transformation o’ = — ™ 'a,
B'=p"1, we find g(«’B')=p>f (o, f). This transformation equation
holds whatever the function f.

Now if we are ‘completely ignorant’ of («, ), the interchange of (x, y)
shouldn’t matter; we are also ‘completely ignorant’ of (&', ’). But
consistency demands that in two problems where we have the same state
of knowledge, we must assign the same probabilities. Therefore f and g
must be the same function; i.e., the prior density representing ‘complete
ignorance’ must satisfy the functional equation B> f(a, f)=7(—p""a,
p~1), which has the solution f («, 8)=(1+ %) */?. Thus, setting f=tan¥,
the invariant measure of the parameter space 1s

dy = da d sinf.

Why is this not uniformly distributed in 8 rather than in sinf? Answer: it
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is uniform in sinf only for fixed «; but under rotations of the (x, y) plane
o also varies [indeed, under any Euclidean transformation (x, y)-»
—{x’, y’"), where x=x"cos¢—y singg+x,, y=y cos¢+x'sin¢g+y,,
the estimated line y=a+ fx goes into y'=ao'+f'x’', where o' = (00—
— Yo+ Bxo)/(cos¢p+ B sing), f'=(f cos¢p—sing)/(cos¢d+ f sin¢g)=tand’;
and we readily verify the invariance: do’ d sinf’=da d sin@, while do d0
is not invariant].

This invariance of the measure dy means that, however we draw the x
and y axes, the prior du=d« d sinf expresses exactly the same state of
prior knowledge about the position of the regression line. It thus leaves the
entire decision to the subsequent evidence of the sample — which, of course,
is exactly what Fisher insisted that a method of inference ought to do.
But as we see, if this is the property we want to have, the goal is not
achieved by closing our eyes to the very existence of a prior. It can be
achieved only by logical analysis showing us which prior has the desired
property. If we do have relevant prior information, it can now be in-
corporated into the problem by finding the probability measure dp that
maximizes the entropy relative to du: H= — [ dp log(dp/dy), subject to
whatever constraint the prior information imposes on dp; if the con-
straints take the form of mean values, this reduces to the canonical
ensemble formalism of statistical mechanics of J. Willard Gibbs.

Now the simple facts, made understandable by Cox’s theorems, il-
lustrated in my presentation and in many other examples throughout the
Bayesian literature, explain what we have observed throughout the
history of orthodox statistics; every advance in orthodox practice has
brought the actual procedures back closer and closer to the original
methods of Laplace. The rise of decision theory was, in fact, the main
spark that touched off the present ‘Bayesian Revolution’. Other examples
are Fisher’s introduction of conditioning, discussed below, and his intro-
duction of notion of sufficiency.

The discovery of sufficiency was, of course, a great advance in orthodox
statistics; because in an important class of problems it removed the
ambiguity in deciding which statistic should be used; if a sufficient
statistic for 6 exists, it is rather hard to justify using any other for in-
ference about 0, for reasons illustrated in my Example 5 and explained
under “What Went Wrong? But in Bayesian statistics there never was
any ambiguity of this type to resolve. Fisher’s definition of sufficiency can
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be stated more succinctly (and in my view, more meaningfully) as: If the
posterior distribution of § depends on the sample (x, ... x,) only through
the value of a certain function 6*(x, ... x,), then 0% is a sufficient statistic
for 0. Evidently, if a sufficient statistic exists, application of Bayes’ theorem
will lead us to it automatically without our having to take any special
note of the idea. But Bayes’ theorem will lead us to the optimum inference
whether or not any sufficient statistic exists; i.e., sufficiency is a con-
venience affecting the amount of calculation but not the quality of the
inference.

I am afraid that to castigate Bayesian methods, but not orthodox ones,
on grounds of lack of uniqueness, is to get it exactly backwards. 1t is
orthodox statistics that offers us many different solutions to a single
problem, (i.e., given prior information, sampling distribution, and
sample), depending on whose school of thought, whose textbook within
that school, and even which chapter of that textbook, you read. An
estimator ought to be unbiased, efficient, consistent, etc.; but in general
orthodoxy gtves us no criterion as to the relative importance of these,
nor any method by which a ‘best’ estimator can be constructed. The use
of an unbiased estimator or a shortest confidence interval will lead us
to different conclusions with different choices of parameters. KF (p. 316)
cannot make up their minds about whether to accept the principle of
conditioning, and advocate significance tests in which the conclusions
depend on the arbitrary ordering you or I might assign to data sets which
were not observed! Indeed, there is scarcely any problem of inference for
which KF offer any definite preferred solution; in most cases there is an
inconclusive discussion that terminates abruptly with the remark that
‘it 1s all very difficult’, leaving the reader in utter confusion as to which
method should be used. But with all this ambiguity, orthodox methods
provide no means for taking prior information into account.

In sharp contrast to this, for a given sampling distribution and sample,
different Bayesian results correspond, as rational inferences should, to
and only to, differences in the prior information. When priors are deter-
mined by the principles of maximum entropy and transformation groups,
Bayesian methods achieve complete invariance under parameter changes
(Jaynes, 1968).

(4) We are now told that even to utter the words ‘Fisher-Neyman-
Pearson theory’ is a calumny on Fisher’s views (but apparently not on
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Neyman’s or Pearsen’s); and again for the ‘benefit’ (precious little) of
readers not present at the Conference, may I state that I first heard this
phrase from the lips of Professor Oscar Kempthorne, shortly before my
talk was given. I repeated it only to say that I would follow common
practice by using the word ‘orthodox’ as an approximate synonym.

However, since the issue has been raised, I would like to state that the
term ‘Fisher-Neyman-Pearson approach’ appears to me as an entirely
accurate and appropriate term for a certain area of statistical thought.
To use it is in no way to ignore, much less deny, the fact that there were
differences between Fisher on the one hand, and Neyman-Pearson on the
other. However, this should not blind us to the fact that there 1s a very
much larger area of agreement; i.e., a corpus of ideas which are not in
Bayesian statistics, but are common to the Fisher and Neyman-Pearson
points of view and which therefore characterize their union. I refer to the
ideas that (1) the word ‘probability’ must be used only in the sense of
‘frequency in a random experiment’, (2) inference requires that we find
sampling distributions of some ‘statistics’ in addition to the direct sample
distribution p(dx | 0), (3) the conclusions we draw from an experiment
can depend on the probabilitics of data sets which were not observed, or
the psychological state of mind of the experimenter (optional stopping),
(4) we can improve the precision of our results by throwing away relevant
information instead of taking it into account (the procedure euphemisti-
cally called ‘randomization’), (5) the attempt to dispense with prior
probabilities.

Recalling the difference between the Fisher and Neyman-Pearson camps
over confidence intervals vs fiducial probabilities, let’s just see how
great this calumny is. Given a basic sample distribution p{dx | @), choose
two ‘statistics” € (x;...x,), 0,(x;...x,) such that prob(f, <0<0,)=P;
this defines a 100 P percent confidence interval. Letting 8, — 8., the
lower bound of the parameter space, we have prob(# <8,)=P, which is
Fisher’s definition (Collected works, 27.253) of the fiducial distribution
of 8, based on the statistic §,. As we see, the deep, profound difference
in basic approach is fully as great as that between Tweedledee and
Tweedledum.

The difference is not in the approach, but in the perception with which
it was used. Fisher, with his vastly greater intuitive understanding, saw
at once something which still does not seem generally recognized by
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others; that all this is valid only when we are using sufficient statistics.
Even in the Fisher obituary notice, Kendall (1963, p. 4) questions the
need for sufficiency. My Example 5 was intended to make Fisher’s
point by demonstrating just what can happen when we use a confidence
interval not based on a sufficient statistic. Obviously, anyone who rejects
fiducial probability, but endorses the use of confidence intervals, is not
doing so on grounds of their actual performance.

Surprisingly, after protesting my calumny of Fisher’s views, we find
KF (p. 380) taking a dim view of fiducial probability, saying: “If a
fiducial distribution is merely a restatement of a test of significance,
we see no need for it”. They might better have said: “‘Since a fiducial
distribution of # is a simultancous statement of al// tests of significance
concerning 8, we see no need for the separate significance tests”. While
we may not have an ‘equal distribution of ignorance’, we have a more
than equal distribution of calumny.

(5) Itis quite true the foundations of modern physics are in a shambles,
and in this area we also have controversy arising from unsolved problems.
Being deeply involved in those also, I can report that current controversial
issues in physics are orders of magnitude more complicated mathemati-
cally, and more subtle conceptually, than the trivia that we are quibbling
about here. Indeed, the simple facts about probability theory that I am
trying to point out were seen at once by the great mathematical physi-
cists — Laplace, Maxwell, Gibbs, Poincaré, Jefireys. For many years
I have found it a refreshing rest to take off a few hours from the problems
of physics, and work out another Bayesian-orthodox comparison.

(6) Professor Kempthorne objects very strongly to my use of the term
‘common sense’. May we assume, then, that he denounces with equal
force Fisher’s use of the term (Collected works, 26.47) in appealing, three
times in one page, to common sense rather than mathematical properties,
to justify his ‘information’ measure?

I do indeed have a very great and insuperable difficulty in reconciling
quantum physics with common sense, and am on recent record as having
said exactly that (Jaynes, 1973). In fact, I would note that orthodox
statistics and the ‘Copenhagen’ interpretation of quantum theory are just
two different manifestations of a single intellectual disease, closely related
to logical positivism, which has debilitated every area of theoretical
science in this century. The symptoms of this disease are the loss of
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conceptual discrimination; i.e., the inability to distinguish between
probability and frequency, between reality and our knowledge of reality,
between meaning and method of testing, etc.

It is true that a ‘publicly agreed verdict’ may well be terribly wrong.
This 1s just what happens when the public has been misled by false in-
doctrination of exactly the kind that I am trying to correct here. But to
throw out the notions of ‘common sense’ and a ‘publicly agreed verdict’
is to forfeit the only visible means by which this controversy could be
resolved. Although the temptation is strong. I will refrain from quoting
Section 17.5 of KF, entitled ‘Publicly Agreed Probabilities’.

(7) We apparently agree that a statistical method should be judged by
the results it gives in practice. Well and good. However, I categorically
deny that “‘the Bayesian idea was rejected by Boole, Venn, Fisher and
Neyman” on these grounds. It is just the weakness of their work that
they rejected Bayesian methods on purely philosophical or ideological
grounds, without examining their actual performance.

Since the case of Boole and Venn has been brought up, let us examine
the work of these gentlemen and see for ourselves the validity of their
actual criticisms, and the accuracy with which their work is reported
today in the orthodox literature. I believe that Boole, like most other
critics of Laplace, failed to comprehend fully his definition of probability.
Since Laplace has been quoted out of context so many times in this and
other matters, let us take the trouble to quote his definition in full. The
first volume of his Théorie Analytique is concerned with mathematical
preliminaries, and the actual development of probability theory begins in
Volume 2. The first sentence of Volume 2 is: ““The probability of an
event is the ratio of the number of cases favorable to it, to the number of
all cases possible when nothing leads us to expect that any one of these
cases should occur more than any other, which renders them, for us,
equally possible”.

This definition has stated only the finite discrete case, but we know how
to generalize it. The point is that Laplace defined probability in a way
which clearly represents a state of knowledge; and not a frequency. Of
course, as Laplace demonstrates over and over again, connections be-
tween probability and frequency appear later, as mathematical con-
sequences of the theory. I claim that these derivable connections (the
limit theorems of Jacob Bernoulli and de Moivre-Laplace, Laplace’s rule
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of succession, the de Finetti exchangeability theorem, etc.) include all the
ones actually used in applications.

If one has no prior knowledge other than enumeration of the possibili-
ties (i.e., specification of the sample space), then to assign equal proba-
bilities is clearly the only honest way one can describe that state of,
knowledge. This can be formalized more completely than Laplace did, by
the aforementioned desideratum of consistency: if we were to assign any
distribution other than the uniform one it would be possible, by a mere
permutation of labels, to exhibit a second problem in which our state of
knowledge is exactly the same, but in which we are assigning different
probabilities. But in this case Laplace surely considered the argument
and result so obvious that he would insult the reader’s intelligence by
mentioning them. The only serious error Laplace made was overestimat-
ing the intelligence of his readers.

Boole (1854), not perceiving this, rejected Laplace’s work on the ground
that the prior was ‘arbitrary’, i.e., not determined by the data. He did
not reject it in the ground of the actual performance of Laplace’s results in
the case of uniform prior because he, like Laplace’s other critics, never
bothered to examine the actual performance under these conditions,
much less to compare it with alternative methods. Had he done so, he
might have discovered the real facts about performance, presented 85
years later by Jeffreys. Curiously, Boole, after criticizing Laplace’s prior
distribution based on the principle of indifference, then invokes that
principle to defend his own methods against the criticisms of Wilbraham
(see several articles in Phil. Mag, Vols. vii and viii. 1854).

This brings up another matter that needs to be mentioned. Boole’s
unjust criticism of Laplace has been quoted approvingly, over and over
again, in the orthodox literature, Fisher (1956) being a very generous
contributor. But in that same literature, a conspiracy of silence hides
the fact that Boole’s own work on probability theory (Boole, 1854,
Chapters 16-21) contains ludicrous errors, far worse than any committed
by Laplace. Some were noted by Wilbraham (1854), McColl (1897) and
Keynes (1921). See his Example 6, page 286, where by a confusion of
propositions [taking the probability of the proposition: ‘If X'is true, Y'is
true’ as the conditional probability p(¥ | X)] he arrives at the conclusion
that two propositions with the same truth value can have different
probabilities. He not only fails to see the absurdity of this, but even calls
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it to the reader’s attention as something which ‘deserves to be specially
noticed’. Or his solution to another problem, page 324, Equation (10),
which reduces fo an absurdity in the special cases ¢;=c¢,=1 and ¢, =
=p,=1. While Laplace considered real problems and got scientifically
useful answers, Boole invented artificial school-room type problems,
and often gave absurd answers. Finally, it is mathematically trivial to
show that all of ‘Boolean algebra’ was contained already in the rules of
probability theory given by Laplace — in the limit as all probabilities go
to zero or unity, any equation of Laplace’s ‘Calculus of Inductive
Reasoning’ reduces to one of Boolean algebra.

Now let’s turn to the case of Venn (1866), who expresses his disdain for
mathematical demonstration very clearly throughout his book and its
preface. Venn’s Chapter 6 is an attack on Laplace’s rule of succession,
so viciously unfair that even Fisher (1956) was impelled to come to
Laplace’s defense on this issue. Fisher questions whether Venn was even
aware of the fact that Laplace’s rule had a mathematical basis, and like
other mathematical theorems has ‘stipulations specific for its validity’.
He proceeds to give examples in which, unlike those of the ‘great thinker’
Venn, the stipulattons are satisfied, and Laplace’s rule is the correct one
to use.

How 1s 1t possible for one human mind to reject Laplace’s rule of suc-
cession; and then advocate a frequency definition of probability? Any-
body who assigns a probability to an event equal to its observed frequency
in many trials, is doing just what Laplace’s rule tells him to do. In my
Example 4, we examined Laplace’s calculation underlying this rule, and
learned that anybody who rejects Laplace’s methods in favor of confidence
intervals for the binomial, is certainly not doing so on grounds of actual
performance.

I would like to plead here for a greater concern for historical accuracy,
in writing on these matters. For over a century, there has been a conspiracy
in the statistical literature to rewrite history and denigrate Laplace, first in
the Boole-Venn manner, then by denying him credit when his principles
were rediscovered (examples below). An ad hominem attack on Laplace
(as ‘a consummate politician’) has even befouled the air of this Conference.
I have long since learned never to accept the word of a biased source
(Boole, Venn, Von Mises, Fisher, E. T. Bell, Cramér, Feller, etc.) on any
question of what Laplace did or did not do. When working in my study,
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Laplace’s Théorie Analytique is always at my elbow; and when any ques-
tion about him comes up, I go straight to the original source. It i1s for this
reason that my judgment of Laplace differs so radically from that pre-
sented in the literature from Boole on.

Not only those who are ignorant of history, but also those who will
not profit by its lessons, are doomed to repeat it. Starting with Condorcet
and his omelette, those who scorned Laplace’s outlook and methods —
whether in science or politics — and tried to do things differently, have
shared a common experience.

(A) In George Gamow’s book, The Biography of the Earth (1941),
Laplace’s theory of the origin of the solar system is torn to shreds. But
in 1944, Weiszicker pointed out a few things that Laplace’s critics had
overlooked; and the 1948 edition of Gamow’s book had a new 15 page
section entitled, ‘Laplace was right after all I

(B) Abraham Wald, in his mimeographed course notes of 1941,
rejected Laplace’s methods of parameter estimation and hypothesis
testing and asserted that such problems cannot be solved by the principles
of probability theory. During the 1940’s Wald sought a new foundation
for statistics based on the idea of rational decisions, which had the aim
of avoiding the mistakes of Laplace; but in Wald’s final 1950 book,
Statistical Decision Functions, the fundamental place of ‘Bayes strategies’
is finally recognized. As it turned out, Wald’s life work was to prove,
very much against his will, that the original methods developed by
Laplace in the 18’th century, which he and many other statisticians had
scorned for years, were in fact the unique solution to the problem of
rational decisions. Laplace was right after all.

(C) [ had the same experience. In 1951, I somehow came to the con-
clusion that Bayes’ theorem did not adequately represent the full variety
of inductive reasoning, and sought to develop a two-valued theory of
probability, very much like the one presented here by Shafer, except that
my numbers corresponded to the sum and difference of his. I even ex-
pounded this in a Round Table Discussion at one of the Berkeley Statisti-
cal Symposiums. However, I then made the tactical error of trying to
apply this theory to some real problems. At about the third attempt, the
scales fell from my eyes and I saw that a two-valued theory contains
nothing that is not already given by Laplace’s original one-valued theory,
by going to a deecper sample space. In other words, the defects that
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I thought I saw in Laplace’s theory were my own defects, in not having
the ingenuity to invent an adequate model. Laplace was right after
all.

Now, I don’t know how many other people are doomed to follow this
path - already far more man-years of potentially useful talent have been
wasted on futile attempts to evade Laplace’s principles, than were ever
invested 1n circle-squaring and perpetual motion machines. But just as
Lindemann’s proof put an end to circle-squaring for all who could see
its implications, so Cox’s theorems (1946) ought to have put an end,
twenty-five years ago, to these unceasing efforts to evade what cannot
be evaded. The situation is described in more detail in my review of
Cox (1961). This is why I can say the following to latter-day Don
Quixotes:

Many of us have already explored the road you are following, and we
know what you will find at the end of it. It doesn’t matter how many new
words you drag into this discussion to avoid having to utter the word
‘probability’ in a sense different from frequency: likelihood, confidence,
significance, propensity, support, credibility, acceptability, indiffidence,
consonance, tenability, — and so on, until the resources of the good Dr
Roget are exhausted. All of these are attempts to represent degrees of
plausibility by real numbers, and they are covered automatically by
Cox’s theorems. It doesn’t matter which approach you happen to like
philosophically ~ by the time you have made your methods fully con-
sistent, you will be forced, kicking and screaming, back to the ones given
by Laplace. Until you have achieved mathematical equivalence with
Laplace’s methods, it will be possible, by looking at specific problems
with Galileo’s magnification, to exhibit the defects in your methods.

Here are two typical examples of the kind of factual distortion that we
find in the literature. KF (p. 314) quote approvingly a statement of
Fisher (1956, p. 4) that: “*So early as Darwin’s experiments on growth
rate the need was felt for some sort of a test of whether an apparent effect
might reasonably be due to chance”. More specifically, Fisher (p. 81) then
states that the ‘Student’ #-test was “‘the first exact test of significance.”
Neither book makes any mention of the historical fact that Laplace devel-
oped many significance tests to determine whether discrepancies between
prediction and observation ‘might reasonably be due to chance’ and used
them to decide which astronomical problems were worth working on: a
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bit of wisdom that might well be noted by scientists today. Laplace also
illustrates the use of these tests, including two-way classifications, in many
other problems of geodesy, meteorology, population statistics, etc. As I
hope to show in detail elsewhere, Laplace’s significance tests were in no
way inferior — and were in some cases demonstrably supertor - to tests
advocated in the orthodox literature today.

Likewise, both KF and Fisher denounce the use of Bayes’ theorem and
uphold the ‘student’ ¢-test as a great advance in statistical practice; but of
course neither mentions the fact that precisely the same result follows in
two lines from Bayes’ theorem; given the data D={x,... x,}, the likeli-
hood function is Ly, 6)=0""exp(—nQ/26?), where Q=s*+(X—p)>.
Integrating out ¢ with respect to Jeffreys’ prior, the posterior density of u
is ~Q~ "2 which but for notation is just the z-distribution. Students
reading these works obtain a completely false picture of both the historical
and mathematical facts about significance tests.

As a second example, KF (p. 305) consider tests of a simple hypothesis
M, against a simple alternative M,, on data D. The likelihood ratio in
favor of M, is L(Dy=p(D | M,)/p(D | M,). KF note that, if M, is true,
the expected value E, (L) is unity, and conclude that the ‘Bayesian process’
has bad operating characteristics. But of course, this is not the proper
criterion, because it is C=logL, and not L, that has equal positive and
negative change for equal strength of evidence for and against M;. The
inequalities E, (C)<0, E;(C)>0 [with equality if and only if p(D | M,)=
=p(D | M,) for all D] then establish what they would regard as ‘good’
operating characteristics. Twenty pages later, KF are back to the same
problem; only now they remember to take the logarithm, represent it as
an orthodox test, and have no cause to complain of the operating charac-
teristics of the statistic C. And so the indoctrination goes on; I could cite at
least twenty more examples of these tactics from recent texibooks.

Now let’s come to Kempthorne’s statement that “‘a Bayesian interval
has no predictive verifiability”. I suggest that the main message has
totally escaped him. If the optimum confidence interval is mathematically
identical with the Bayesian interval based on a noninformative prior
distribution, it is a bit difficult to understand how the Bayesian result could
fail to have whatever ‘predictive verifiability’ — or any other property — is
possessed by the confidence interval.

Unfortunately, there is a serious wandering of the mind in connection



246 E. T. JAYNES

with the test according to which the Bayesian will ‘lose his shirt’. First
we are told that the confidence interval advocate will assert at 19 to 1 that
the interval contains the unknown parameter value. Now, is the Bayesian
required to accept this in every case? For which confidence level is this
asserted? Does the width of that interval enter into the judging of the
game? It 1s not a matter of mathematics that an undefined claim can be
sustained.

Then the game appears to change suddenly; we now learn that it is the
Bayesian who is making the probability statements. It is averred that the
Bayesian will lose his shirt and be consistently wrong — excuse me, cohe-
rently wrong — in a case where some individual C challenges the assertions.
But now is this individual C to challenge all assertions wherever they may
be? At what odds? I suggest that if Professor Kempthorne will try to back
up his position by producing a specific, well defined situation instead of
making assertions about undefined generalities, the mathematical situa-
tion will force him to see that his claim simply is not true.

Indeed, the contest proposed by Kempthorne has already been carried
out in the Monte Carlo experiments of A. Zellner (1965) and H. Thornber
(1965). The results were, in the words of H. V. Roberts (1965); ““Using
sampling-theory criteria, the Bayesian estimators appeared better in all
examples, the margin being substantial for Zellner’s experiment and
modest for Thornber’s”. Roberts proceeds to explain why this must be so;
by the time all necessary provisions for a ‘fair’ contest have been in-
corporated into the experiment, all the ingredients of the Bayesian theory
(prior distribution, loss function, etc.) will necessarily be present. As
Roberts concludes; ““The simulation can only demonstrate the mathe-
matical theorem”’.

My sixth example, on the Cauchy distribution, demonstrated (and I
thought rather cogently) that the ‘long-run performance’ of a statistical
procedure is rnot the proper criterion of its usefulness. But Professor
Kempthorne simply ignores this, and continues to argue long-run per-
formance as the criterion (“The Bayesian will lose his shirt’, etc). So com-
template this example, given by David Forney (1972):

THE WEATHERMAN’S JOB

In a certain city, the joint frequencies of the actual weather and the weath-
erman’s predictions are given by:
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Actunal
Rain Shine
Rain 1 1
Predicted
Shine | © x

An enterprising fellow trained in orthodox statistics (but not in meteoro-
logy) notices that, while the weatherman is right only 50%, of the time, a
prediction of ‘shine’ everyday would be right 759 of the time, and
applies for the weatherman’s job. Should he get it? Which would you
rather have in your city?

The weatherman is delivering useful information at a rate I=(entropy
of distribution of predictions) + (entropy of actual weather distribution)
—(entropy of joint distribution)=(0.562+0.562— 1.040)/In2=0.123
bits/day. As explained previously (Jaynes, 1968) this means that in the
course of a year the weatherman’s information has reduced the number
of reasonably probable weather sequences by a factor of W=exp(0.123 x
x 365 %1n2)=2.92 x 10'*. With the weatherman on the job, you will
never be caught out in an unpredicted rain; with the orthodox statistician
this would happen to you one day out of four.

As this example one more forces one to recognize, the value of an infer-
ence lies in its usefulness in the individual case, and not in its long-run
frequency of success; they are not necessarily even positively correlated.
The question of how often a given situation would arise is utterly irrele-
vant to the question how we should reason when it does arise. I don’t know
how many times this simple fact will have to be pointed out before statisti-
cians of ‘frequentist’ persuasions will take note of it; but I think it is
important that we keep trying.

(8) The book by Kempthorne and Folks (1971) does indeed mention
the works of Good, Savage and Jeffreys, unlike so many orthodox text-
books. That is, these works are included in a list of references. This leaves
to be desired only that their contents had also been noted.

(9) Here and elsewhere, Professor Kempthorne seems to regard L. J.
Savage (1954) as the official spokesman for Bayesian theory; and implies
that if I state anything differently from Savage, then I must not have read
his book. By that reasoning, I believe we have an even stronger case for
inferring that someone else has not read it. It is true that Savage, probably
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more than any other person, was the one who stimulated new thought
on these issues (although to me personally, the arguments of Jeffreys
(1939) and R. T. Cox (1946, 1961) have always seemed far more cogent).
But a great deal has happened in Bayesian statistics since 1954, and I think
that at present the only thing which Bayesian statistics and Savage’s
personalistic theory have in common is that they both use Bayes’ theorem,
without apology or embarrassment. Today, very few if any Bayesians
would give full support to Savage’s notion of ‘personalistic probability’,
and I am on record (Jaynes, 1968) as taking my stand with orthodox
statisticians on this matter; i.e., the notion of personalistic probability
belongs to the field of psychology, and not to statistics.

(10) I cannot see the point of this comment. In my paper 1 stated very
explicitly that, while there are some differences of opinion, most would
hold that the proper method for the problem is the confidence interval. I
believe that 1s a clear and accurate statement of fact. Of course, one cannot
necessarily have confidence in confidence intervals; that is just the point
I thought I was making in demonstrating that there are cases in which one
can have zero confidence in a confidence interval.

(11) The impelling urge to find fault rather than to understand rules
the situation here. In comment No. 6, Professor Kempthorne objects to
the i1dea of ‘publicly agreed verdict’, but now he apparently wishes to
speak with approval of a ‘‘requirement of interpersonal validation of sub-
jectively formed decisions™. But an interpersonal validation (which would
amount to a publicly agreed verdict) can only take place through the
common sense judgments of different people who are all exposed to the
same system of facts. I am under the impression that the comments of
Bross were refuted by specific factual counter-examples, in addition to a
general proof, demonstrating the opposite of what Bross claimed.

(12) Whether any particular problem should be called technically a
significance test, a test of goodness of fit, an acceptance test, an hypoth-
esis test, or a decision problem, is a matter of pedantry on which ortho-
dox statisticians are themselves in disagreement; so why can’t we just call
it ‘a test’ and get on with the substantive issues? I believe my presentation
made it clear in each case: (1) what was the problem? (2) How was it
handled? And that should be enough.

(13) This comment brings to mind an older controversy, with more
than one similarity to our present one. Protestant countries long refused
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to accept the Gregorian calendar, in spite of its clearly superior perfor-
mance. England held out for 170 years after it had been adopted by
Catholic countries, leading Voltaire to quip that the British ‘‘would rather
disagree with the sun than agree with the Pope”. It appears that some would
rather disagree with common sense than agree with Bayes.

Before getting too indignant about that high (92%) significance level
indicated by the Bayesian test and denying that the evidence is that clear,
let’s first do that quick, short-cut calculation right. The standard error of

the difference of means should be estimated not by \/ 7.482% +6.48%=9.90;
but by (Fisher, 1958, p. 116; Hoel, 1971, p. 134):

7.48%  6.482
+ =4.09.
9 4

If this standard error were known, rather than estimated, it would corre-
spond to a significance level, not of 929, but of 97.5%.

(15) ‘Improper’ Priors. Let me try to explain the situation. ‘Complete
initial ignorance’ of a scale parameter ¢ corresponds formally to use of
the Jeffreys prior da/o=d logs. But as noted before (Jaynes, 1968), to
apply this within infinite limits (— co <logo <oc) would not represent
any realistic state of prior information. For example, if x i1s a measured
length of some material object on the earth, we surely know that the
standard error o, of the measurement cannot be less than the size of one
atom, ~ 10~ 8 cm; or greater than the size of the earth, ~ 10° cm. So we
know in advance that (—8<log,o0,< +9). Outside this range, the prior
density must be zero.

Similarly, if x is the measured breaking stress of some structural material,
we know in advance that o, surely cannot be less than the pressure of
sound waves, ~1 dyne cm™2, due to people talking in the room; nor
greater than 10'* dynes cm ™%, which is 1000 times the tensile strength of
any known material. So the prior density must be all contained in (0<
<lno,<33). If x is a time interval measured in seconds, we can be pretty
sure in advance that (—12<log,,0,<18).

Generally, thinking about any problem in this way will lead one to
specify prior limits 6 ,;n, Omax Within which the unknown value surely lies;
within this interval the invariance arguments leading to the form do/o still
apply if there is no other prior information (Jaynes, 1968). Therefore, the
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prior is normalizable, and we have a well-behaved mathematical problem.

Now if our final conclusions depend appreciably on the exact prior
limits chosen, then obviously we should analyze our prior information
more carefully than I did above, to get more reliable numerical values for
Omins Tmax- BUL 1t just wouldn’t be very intelligent to go to all that work,
only to discover that o,,,, 0,.., cancel out of the expressions representing
our final conclusions (which might be the first few moments, or the quar-
tiles, of a posterior distribution). So it will be good strategy to work
through the solution first for general limits, whereupon the mathematics
will tell us under just what conditions the prior limits matter; and when
they don’t. ,

Having thus forimulated the problem, the conclusion is fairly obvious:
if the likelihood function is sufficiently concentrated (i.e., if the experiment
is a sufficiently informative one), then the prior limits cannot matter
appreciably as long as they are outside the region of appreciable likeli-
hood. To put it in a way somewhat crude, but not really wrong: if the
amount of likelihood [integral of L(o)] lying outside the limits (o, <o <
<0,) is less than 107 ° of the total likelihood, then as long as our prior
limits are still wider (6, <0, <0, <0Onu), the exact values of 6, Omay
can’t make more than about one part in 10° difference in our conclusions.
If, then, we don’t worry about them, and just take the limiting form of the
solution as o,,;,—0, 0., —oc for mathematical convenience, we are
committing no worse a sin than does the person who laboriously deter-
mines the proper values of o, Gmax, WOTks out the exact solution based
on them - and then rounds off his final result to six significant figu-
res. We are only getting that result with an order of magnitude less labor.

If, on the other hand, we should encounter a non-normalizable poste-
rior distribution in this limit, the theory is telling us that the experiment
is so uninformative that our exact state of prior information is still im-
portant, and must be taken into account explicitly. This phenomenon, far
from being a defect of Bayesian methods, is a valuable safety device that
warns us when an experiment is too uninformative to justify, by itself,
any definite inferences. If someone ignores the warning, and gets into
trouble with ‘improper priors’, what we are witnessing is not a failure, but
only a misapplication, of Bayesian methods.

Finally, let us keep in mind that we are really concerned here with
relative value judgments; and so if anyone attacks Bayesian methods
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because of the possible situation just described, fairness demands that he
also takes note of what happens to orthodox methods in the same prob-
lems. Now one of the substantive factual issues illustrated in my presen-
tation, is this: orthodox methods, when improved to the maximum possi-
ble degree, reduce ultimately to procedures that are mathematically iden-
tical with applying Bayes’ theorem with just the noninformative improper
prior about which Professor Kempthorne expresses such alarm! We saw
this phenomenon in Examples 2, 3, 5 and 6. As we have just seen, this
causes difficulty only when the experiment is so uninformative that our
final conclusions must, necessarily, still depend strongly on our prior
knowledge. The Bayesian can correct this at once by using a realistic prior,
leading to the inferences that are justified by the total information at hand;
but the orthodoxian cannot, because his ideology forbids him to recognize
the existence of any prior which is not also a known frequency.

In fact, we had just this situation in the first part of my Example 3,
where we took no note of the actual failure times. If all units tested fail,
the test provides no evidence against the hypothesis of arbitrarily large 4.
The Bayesian test (6) based on a uniform prior then yields a non-normaliz-
able posterior distribution p(di | n, r, t)~(1—e™*)" di, which tells us
that A is almost certainly greater than (¢~ logn), but gives no upper limit.
In this way, the safety device warns us that our prior information con-
cerning the possibility of very large A, remains relevant; by taking it
explicitly into account, rational inferences about A are still possible, as I
showed by the maximum entropy prior.

But we saw that the orthodox ST test was, in the absence of such pathol-
ogy, mathematically identical with this Bayesian test; so what happens
to it? Well, this is just the case already noted where the ST test breaks
down entirely, telling us to reject at all significance levels. In problems
where the Bayesian cannot use the approximation of an improper prior,
orthodox methods give no warning, but simply yield absurd results; and
only the alertness and common sense of the user can save him from the
consequences. As we see, it is the orthodoxian, and not the Bayesian, who
is going to be in trouble in cases where ‘improper priors’ cannot be used.

Note the treatment of an almost identical problem in XKF (p. 203,
Equation 7.42). Here they suggest use of an estimator which estimates the
mean life to be infinite if we observe one failure, to be negative if we
observe no failures, and which has infinite variance unless we observe 3 or
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more failures! Again, I think common sense renders a rather clear verdict
in this comparison. If Professor Kempthorne thinks that the Bayesian
solution to this problem 1s open to criticism, I wonder how he would
defend the solution proposed in his book.

(17) KF do indeed advocate reporting critical significance levels, and
for this enlightenment over most previous treatments we can be grateful.
We could be even more grateful if the enlightenment had persisted to the
end of the book, where KF reproduce the same old tables, so arranged
that critical levels cannot be located.

(21) In comment No. 9 Professor Kempthorne infers, from a difference
in my position and that of Savage, that I have not read Savage’s book.
Now he infers, from a similarity between my work and Fisher’s, that I have
not read Fisher. These orthodox inferences — with the conclusion inde-
pendent of the evidence — leave me in despair. My work was checked by
another statistician for just such matters. In the first version I called y an
‘ancillary statistic’ in Example 6; but he objected to this on the ground
that I was not using it in quite the same sense as Fisher did, so I deleted
the term. Now I find myself being criticized by one orthodox statistician
for having followed the advice of another.

Here is the point: Fisher (Collected Works, 27.257) held — without
explaining why — that the distribution of an ancillary statistic must be
independent of the value of the parameter, as expressed in his allegory
of the Problem of the Nile. Presumably, this was one of the many things
he saw intuitively; but whatever his private reason for this independence
may have been, it is easy to see what it in fact accomplishes. To avoid
a possible paradox (Barnard, 1962), we understand the conditioned
probability symbol p(d6* | v, §) to be shorthand for the limit as dy >0, of
the well-defined

p(d6* dy | 6)
p(dy|0)

If p(dy | 0) is independent of 0, then the 6-dependence of the conditioned
probability p(dé* | y, 6) is the same as that of the joint probability
p(df* dy | 6). In other words, it is fundamentally the joint probability, and
not the conditioned probability, that really matters — but of course, that is
just what the likelihood principle has told us all along,

With this little bit of insight, it becomes clear that mathematically,

p(do* l dy, 0) =
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Fisher’s conditioning on ancillary statistics is just a roundabout way of
restoring agreement with Bayes’ theorem, without having to admit that
one is using it. But conditioning is not a general method; and simple
mathematics shows that if we just apply Bayes’ theorem directly, there 1s
no longer any reason for y to be independent of 8. We then have a method
that works in all problems — and is guaranteed to give the same result as
Fisher’s, with less calculation, in cases where his conditioning is possible.
I hope this excursion will clear me of the charge of not having read Fisher.

(26) Since the question is asked, I will answer by showing just how the
‘neo-Bayesian prescription” works, in precisely the problem where KF
deny it.

KF, p. 439, consider a standard problem of linear regression with both
variables subject to error. The model is Y;=a+ fX; with measured values
X;=X,+e; y;=Y;+f, the errors e,, f; being independent and N(0, ¢,),
N(0, o,) respectively; o, o, unknown. We take data D={(x;, »:);
(X2, Y2); s (X, ¥,)} and from this we are to make inferences about « and g.

At this point, KF assert that ‘in antithesis to the likelihood principle’,
the likelihood function is (1) totally uninformative, (2) ill-behaved, be-
coming indeterminate when x;= X, and (3) that further assumptions are
needed (about equality of several X;, or about o, 0, etc.) to make
progress on the problem. They then suggest a method in which we parti-
tion the data points into two sets, and take the line joining their centroids
as our estimate of the ‘true’ line.

We have here one more example —perhaps the finest yet produced —of
just the Canonical Procedure that T complained about in my paper; still
another time, an orthodox textbook rejects the Bayesian solution, without
bothering to look at it, for patently false reasons; and gives instead an
orthodox method which is far weaker in its ability to extract information
from the sample.

An undergraduate in a laboratory science course does better than the
proposed solution of KF, without any statistical theory at all, simply by
plotting his experimental points and drawing the straight line that, as
judged by eye, fits them best. He can determine the accuracy of his esti-
mates of «, f by noting how much this line can be shifted or tilted
before the fit appears appreciably worse. Furthermore, if the standard
errors o,, and/or ¢, were unknown, he would do this in the same way
whether the errors were in x only, in y only, or in both; if the ratio A=¢,/0,
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were known, and/or if the errors (e;, f;) had a known correlation coefficient
0, it would make no difference in the correct data reduction procedure
whatever the values of 4, p.

The reason why these things cannot matter is that, whether the errors
are represented by a one-dimensional or two-dimensional region of un-
certainty about each data point, and whatever the shape and orientation
of the concentration ellipse, the component of error parallel to the es-
timated line contributes nothing to the error of estimation of either « or f.
As common sense tells us — and the Bayesian analysis confirms — in any
of these circumstances the problem of inference about «, f takes the same
form, with only a single unknown error component to consider. In other
words, there are not ten basically different estimation problems, as is
implied by the elaborate KF classification scheme (yRE | xCN), etc. If the
standard errors are unknown, there is only one linear model problem.

To prove these assertions, let us just sketch the Bayesian analysis, which
KF declare to be impossible. The likelihood function, which they do not
even write down, 1s

L(a, p, 0,0, X;)=

~ayen] - ) [E X (i ﬁxi)i’-}]_

g, o,

i=1

Obviously, it 1s in no way ‘ill-behaved’ or ‘indeterminate’. Now let’s see
just how ‘uninformative’ is, and whether further assumptions are needed
to make progress. If we want to make inferences about «, 8, then {0, Ty
X; ... X,} are ‘nuisance parameters’ that prevent orthodox statistics from
making any headway on this problem. It is then interesting to see how
much they deter a Bayesian.

Integrating {X,... X,} out of L with respect to uniform prior, we ob-
tain a function which depends on («, §) only through the quadratic form

1 H
0@ = ) (i)

Making the change of variables: {0, 6,} > {0, A}, where a*=a, + %02,
A=0 o, the posterior distribution of («, f) is found to be independent
of the prior distribution of A, confirming a previous remark.
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Integrating out ¢ with respect to Jeffreys’ prior, we obtain a ‘quasi-
likelthood’ function

f(O!, ﬁ) ~ [Q(OC’ ﬁ)]_n/Z s

which, when multiplied by the prior density and normalized, gives the
joint posterior distribution of «, 8. This function summarizes all the in-
formation about o, 8 that is contained in the data; and so the optimal
procedure for any inference or decision problem involving a, f — whether
in the form of interval estimation, tests of any hypotheses concerning
a, B, etc. — can then be found from it.

To confirm another previous remark, consider the simpler regression
problem where errors are only in Y. Then 6,=0, X;=x; 1s known, and
n—+ 1 nuisance parameters drop out of the problem. The likelihood func-
tion reduces to

L(OC, ﬁ: Jy) = U;n exp{—z;Q(oc, ﬁ)}

Integrating out o, with Jeffreys prior, we get the quasi-likelihood f (a f)~
~[Q(x, B)]~"?, precisely the same as before. The nuisance parameters
had no effect at all on the quality of inference about «, f.

Representing the sample means, variances, covariance, and correlation
coefficient by %, 7, s2 =(x>—%2), 5. = (Y2 =72), 55y = (Xy = XP), F=54,/5.8,
respectively, f(, f) has its maximum at (2*, f*), where o* = j— * X, and
p*=(s,/s,) r. With uniform priors, further integrations yield the marginal
posterior distributions of a, f: g(a)~[(x—a*)*+4*]™", K(B)~L(B—
— %>+ B2]™™, where m=(n—1)/2, and B=f* r~}(1—r?)"/2 = 4/(x*)"/*.
Evidently, o*, f* are the ‘best’ estimates of o, § by the criterion of any
loss function which is a monotonic increasing function of the errors
la—c*], |B—B*|, For n>2, the marginal distributions are normalizable,
leading to definite interval estimate statements. For n=3 and n=4, the
(median + interquartile) estimates of o are (o*+A4) and =(a* + 4/\/3)
respectively; similarly for f. When n>4, the second moments also con-
converge, leading to the (mean)+(standard deviation) estimates a*+
4 A\/ n—4,etc.

Thus, for example, if we need to measure  to an accuracy of + 1%, the
sample size and correlation coefficient must satisfy (n—4) r2/(1—r?)>10%.
With a correlation coefficient »=0.9, this requires n=2350 measurements,
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while with better data, r=0.99, n=208 measurements suffice, and with
r=0.999, only n=25 data points are needed. A simple analysis shows
that to attain the same accuracy by the method described by KF would
require at least (16/3)=35.3 times as many data points, if they are distri-
buted with roughly uniform density along the line. As will be shown else-
where, the above results can be improved a bit more by use of the in-
variant prior dx dsinf, and a similar invariant prior for X, Y.

CONCLUSIGN

I suppose it is possible, without actual logical contradiction, to maintain
that Bayesian methods are utterly wrong, but that through a series of
fortuitous accidents they always happen to give the right answer in every
particular problem. However, I cannot believe that anybody will want to
take that position. Now the person who, after studving the evidence given
here and in the rest of the Bayesian literature, still wishes to claim that
orthodox methods are superior, must realize that, if he is to avoid being
forced into exactly that position, mere linguistics and ideological slogans
will no Jonger suffice. The burden of proof is squarely on him to show us
specific problems, with mathematical details, in which orthodox methods
give a satisfactory result and Bayesian methods do not. My own studies
have convinced me that such a problem does not exist.

Whether I am right or wrong in this belief, we now have a large mass of
factual evidence showing that (a) orthodox methods contain dangerous
fallacies, and must in any event be revised; and (b) Bayesian methods are
easier to apply and give better results. As a teacher, I therefore feel that to
continue the time honored practice - still in effect in many schools — of
reaching pure orthodox statistics to students, with only a passing sneer
at Bayes and Laplace, is to perpetuate a tragic error which has already
wasted thousands of man-years of our finest mathematical talent in pur-
suit of false goals. If this talent had been directed toward understanding
Laplace’s contributions and learning how to use them properly, statistical
practice would be far more advanced today than it is.
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