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PREFACE

This monograph is an extensive revision of a
doctoral thesls presented to the Department of Physics of
Princeton Unlversity in 1950. Numerous errors in the
original verslion have been corrected, detalled calculations
have been Shortehed, and an attempt has been made to bring
the discusgion up to date. New experimental work has made
desirable a change ¢f emphasis in the discussion of
theories, and a few ways of 1lmproving theoretical treat-
ments are described, although they have not yet been well
exovlored.

In 1ts present form, the work 1s intended to serve
29 a general introductlon to the sublect of ferroelectricity
and gulde to the literature, with review of various theories
of BaTiO5 that have been published’, rather than as an ex-
pogition of any particular thecory. However, the electronic
theory developed by the writer 1s treated in more detaill
than the others because no other easily available account
of 1t has been published. On the theoretical side, the
arrangement of subject matter 1s not as systematic as would
ke possible gince the vaerious methods are developsd as,
and to the extent that, they are needed for interpretation
of experimental facts. Thus, discussions of thermodynamic
properties and internal fields are distributed over sever-
al nonconsecutive sections. This may mske the work slight-
ly more difficult to use for reference, but for the person
who wishes an introduction to the subject there are peda-
gogical advantages. 8ince rapld advances are still bheing
made, this work must also ke considered as an interim re-
port, with few firm conclusions reached.
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Vi PREFACE

Numercus detalls have heen omitted for Trevity,
but extensive references to the literature arc given. Al-
thouph the tibli~gravhy is long end 1s telieved Lo Le
reasorably comnlete to Dzcember 1¢%1, nn attempt nas heen
made to include everything that has been written on the

TR - \ e N 2
aut ject The extent of

curient interest may te udced Ly
ihe fact that cver {ifty new references have heen added in
the last elghtecn months.

Thanks are due to Professor E. P. Wigner, who has
clven valuable advice on all sectlions 2f the original thesis
and the present revisicn. Responsibllity for statements
and conclusions, however, rests entirely with the author.

E. T. Jaxngs
Stanford University

February 1652



NOTE TO FERROELECTRICITY
By E. T. Jaynes

Experimental work since this book was first published has led to
some important changes in our knowledge of the behavior of Barium
Titanate. This Is largely due to the successful production of larger
and better erystals than were previously avallable. Althcugh these
new crystales contain impurities which are deliberately introduced to
aid the growth process, 1t is highly probable that the changes in
observed behavior are not due to impurities but to the fact that much

more perfect crystals result, with & simpler domain structure,

Merz* reports that the observed spontaneous polarizaticn is now
considerably higher than was found before, &8 high as 26 microcoulombs
cm_2 as against 15.5 as shown in Fig. 1.4. The coercive force 1s
mich lower than the value guoted on p. 23; values as low as 500 volis

cm 1 are reported with the new crystals. Both these changes would be
expected as a result of the better domein alignment.

Another impertant change concerms the order of the transition at
the Curie point. As explained in the text, one obtains informatlion
about this from the polarization as & function of temperature, exist-
ence of thermal hysteresis at the transition, the 8specific heat
anomaly, and the type of dielectric nonlinearity observed just above
the Curie point., Experiments and thermodynamic arguments gquoted in
the text indicate a second-order transition, but other experimental
results have sometimes conflicted with these, Merz finds that the
new crystals exhibit a sharp rise in polarizatlon at the Curie point,
and an upward curvature for the D - E curve just above the Curie
point (loc, e¢it, Fig. 1). The existence of this upward curvature now
makes 1t possible to have a consiastent thermodynamic treatment of the
type d4iscussed in Chap. 3 even though the transition 1e first-order.
Thege new results bring the thermodynamic theory into line wilth ex-

periment in a much more satisfactory way than previocusly.

E. T. Jaynes
Sept. 1953

* Phys. Rev. 91, 513 (1953)
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FERROELECTRICITY



i . HISTORICAL INTRODUCTION AND REViEW
OF EXPERTMENTAL FACTS

1.0 Rochelle salt
The phenomencon of ferroelectricity ig of compara-

tively recent discovery. In 1917, while investigating the
viezoelectric properties of Rochelle salti, A. M. Nicolson,
J. A. Anderson (A2), and W, G Cady (CL) noted certaln an-
omalies in dielectric behavior, significant among which
were the existence of hysteresis between applied electric
field arnd polarization, and a sudden change in the plezo-
electiric activity at 2560, now recognlized as the first ob-
scrvation of a ferroelectric Curie point.

A few years later the physical properties of
Rochelle salt were described 1In detail in a series of
papers by J. Valasek (V3) 1n which the analogy between
the dilelectric properties of Rochelle salt and ferro-
magnetism was stressed. PBeginning about 1929, Shulvasg-
Sorokina and I. Kurchatov (K2) iIn Rugssig made numerous
contbributions to the subject, and more recently it has
veen studied both experimentally and theoretically by
Scherrer, Busch, and collaborators in Zurich, Fowler
(F2) in England, and H. Mueller (M8) and W. P. Mason (M13)
in the United States.

The experlmental facts about Rochelle salt are,
briefly, as follows. For electric filelds iIn the crys-
tallographic yz-plane, the dielectric propertles are nor-
mal at all temperatures. For fields in the x-direction,

"s0dium potassium tartrate tetrahydrate, (COONa) (CHOH),
(COOK) + 4H,0. This salt forms orthorhombic crvetals of
class D, which distort to monoclinlc in the ferroelectric

range . %



b HISTORICAL INTRODUCTION AND REVIEW

however, the gusceptiblility follows a Curlie-Weiss law a-
bove 2300, glven by

Tt :67
(1.01] X o= 5=

c
o O _ . )
-18°C ard 23°C there 1s a spontanecus electric polariza-

with the Curie constant C = 1780K and T _ = 9500. Between
tlon of the order of 0.2 microcoulomb/cme, or 600 eau,
in the x-direction, and in 3gtrong alternating fields the
relation between displacement and applied fileld 1s des-
cribed by hysteresis lcoopes simlilar to the B-H curves of
ferromagnetic materials, with a coercive force of the crder
of 100 volts/cm. Below -189C, the spontaneous polariza-
tion disappears, and from here down to about —15000, the

gusceptibility follows another Curie-Welss law

C
(1.02) X = —%=
T, - T

with T, = -18°%, € = 93.8%K.

Except for the existence of two Curie points,
this behavior is so strongly reminlscent of ferromagnetism
that it was natural To try to account for 1t by a theory
built in the image of the classical Langevin-Weiss theory
of ferromagnetism. This was attempted by Kobeko and
Kurchatov (K1) and by Fowler (F2), using a molecular model
in which the H20 molecules form rotating dipoles, with
moments of the order of 10_]8 egu. These theories were
deficient in several respects. One was that the effect of
piezoelectric interaction, which greatly modifies the be-
havior of the crystal, was ignored. Secondly, the struc-
ture of Rochelle salt had not yet been determined (an
X-ray structure analysis was flrst accomplished by Beevers
and Hughes (B1) in 1941), and for this and other reasons
the interaction of the dipoles could not be calculated.

In this early work the intermal field F effective 1n
orienting the dipoles was dssumed equal to

(1.03) F=KE+7g P,
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A3

where E is the applied field, P 1is the total polariza-
tion, and A 1s a constant, called the Lorentz factor.
lorentz (Lt) showed that, neglecting guadrupocle and nigher
momernts, an array of point dipoles in a slmple cubic
lattlice, or a random array, with equal dipole moments,
leads to the value & = ha/3, but this value could be
zreatly different for other structures.

It is easily shown from statistical mechanics
that the polarizebility of a freely rotating dipole of
moment » , in equlilibrium with its surrourndings at temper-

ature T, 1is

2
e
(]-Oh’) ak:'"ﬁ{'_T—-:
so that the polarization in a medium with N dipoles per
unit volumwe 1is -
NL
’.4
P = NxB = —_;)_l?_I'__(E +pB P},

From this we find the susceptibility at high temperatures
is given by a Curie-Welss law
T
oL C
X P N 1

TET T AN TATCT,

(1.05)

where T, = thg/ﬁk. When T < T., we have gNe > 1, and
this relation breaks down. Spontaneous polarization whose
magnitude ig not determined by the above linear relations
can then exist. We see that this argument, which 1s a
creatly simplified form of the early theories, gives the
germ of & theory of ferroelectric behavior, hut unfortunate-
1y one must reject it after a 1little further study because
in fact the internal field has not been taken Into account
correctly. Since this problem, which lies at the root of
many present difficulties in the theory of dielectric prop-
erties, has been the subject of some controversy and much
misunderstanding, we digress at this point to conslder the
general problem of Internal flelds.
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1.1 Internal fields
The value £ = La7/3 assoclated with the name

of Torentz corresponds to & random or simple cubic array
of point dipoles, plus the physical assumption that each
dipole has the same constant moment; indeed, under these
conditions Egq. (1.03) mives the rigorously correct value
for the total field at the position of one dipole that is
produced by all the other dipoles. The Lorentz value is
therefore unguestionably the proper ons to use in treat-
ing a classical model in which polarization is produced
by distorticn of the lons, each of which remains in a
fixed position with no disturbing effects of thermal agl-
tation. Under these conditions, it likewise gives a for-
mally correct value for the internal fleld when the mole-
cules have a permanent dipole moment. However, this case
is without physical interest because in the absence of
thermal agitation each permanent dipole will be perfectly
aligned with any field, however weak, and we would have
the saturation polarization at any field strength; the
treatment of dielectric vroperties arising from permanent
dipoles is in principle impossible without consideration
of the statistical problem of thermal agitation.

The fact that the validity of the Lorentz value
of the internal fleld must be reexamined when thermal agi-
tation effects are taken into account is easlly seen in
the case of permanent dipoles. There are two effects that
must be congidered. In the first place, as was mentioned
above, the Lorentz field L pP/3 1is the fleld at a dipole
due to all the other dipoles when all the others are point-
ing in the same direction. Now let us vary the orientation
of dipole A. If it is inclined at an angle & to the net
polarization direction P, its contribution to F will
be proporticnal to cos & , & spherical harmonic of order
1, while each component of its contribution to the fleld
acting on dipole B will vary with its orientation
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according to a spherieal harmonic of order 2. Thus, In
general, there is no longer the same relatlion between the
mean contribution of a dipole to the polarizaticn and the
mean value of the field which it produces at other dipoles,
and the ILorentz field will be the correct one only when
certain symmetry conditions are imposed on the distribution
of dipoles in space and on the distributlion of orientations
of each dipole. Thig effect exists for dipoles &t any dis-
tance apart.

The second effect arises from the existence of
strong correlations between the orientation of dipoles
that are close together. Suppose that initally all dipcles
are aligned in the same direction, and then dipole A 18
rotated to a new position (Fig. 1.1). The field which it

!
\

1
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FIG. 1.1

produces at a nelghboring dipole is very strong, so lts
neighbors will also tend to rotate cut of thelr initial
positions. As a result of this local distortion of the
pattern, the fleld seen by dipole A i1s in turn altered;
the torque tending to restore it to itg orlginal position
is different from what it would be 1f the nelghboring
dipoles were held fixed. That thls effect must always
decrease the torque is easlly seen as follows. Suppose
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that first we rvotate divole A, holding all othere fixed.
This requires an amount of work W1, Getermined correct-
ly by the lorentz fleld. Then, while holcding dipole A
fixed, we release the others and allow them fto setile into
new equilibrium orientations. Durling the process they can
be made to do work We’ anc they take up new orientations.
Now if we allow dipole A to return slowly to its original
orientation, the nelghboring ones adjusting themselves con-
tinuously to the change, we nmust get back an amount of work
W5 = W] - W2 4 W, so that when the other dipoles are
allowed to adjust themselves freely to changes in orienta-
tion of dipcle A, the torque on it must elways decrease,
and the effective fleld orienting a dipole 1s less than

the Lorentz value. This reasoning also applies to the

case where the dipoles are disturbed by thermal agltation,
the mean pogitions of neighboring dipoles dpending on the
momentary orientation of dipcle A. We alsco see that the
maximum decrease of torque occurs only for slow rotations,
gince the neleghboring dipoles require & finite time to re-
ad just themselves, and that a proper treatment of this
point must include relaxation effects.

This correlation effect has been taken into
account in first approximation by Onsager (01), using the
device of replacing the surrounding dipoles by a homogeneocus
dielectric material. The dipole under consideration is
supposed to be located In g spherical cavity excavated in
this dlelectric material, the dipole being replaced by a
uniformly and permanently polarized sphere which can rotate
freely. The field existing in the neighborhood cf this
sphere ig then formed from the superposition of a station-
ary part due to an externally applied field and a part that
rotates with the dipole. Each of these partial fields is
found from the solution of a simple boundary-value problem.
When the dipole ig aligned with the external field and its
polarization is equal to that at a large distance in the

dielectric medium, the superposition gives agsin a uniform
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field at all points. f the dipcle is rotated 900, the
field is distorted to a pattern which corresponds to the
distortion pattern of the elementary dipoles in Fig. 1.1.

The torque acting on the rotating sphere 1n the
Onsager model may be calculated from the Maxwell stress
tensor due to the flelds surrounding the sphere. This
tedious but straightforward calculation gives the same re-
sult as would be obtained in the case of a dipole of moment
M= 4mTa’P/3 in a field

F = 3EE
2e + 1.

where E 13 the externally applied field and € 1s the
dielectric constant of the medium. ¥ 1is the same as the
field that would exist in the spherical cavity if the
material inside it were removed, and 1s called the Onsager
field. By writing it in the form

Lo p

F=E+3.77

where P 1s the polarization in the external medium, we
see that the intermal field is still given formally by an
expression of the form F = E +#8P, with the difference
that the Lorentz factor no longer has the constant value
bir/3, but is a function of the dielectric congtant:

A = h/(2€ +1). The Onsager fleld 1s always less than
the Lorentz fleld, in agreement with our previous con-
clusions., In the Onsager model, this weakening is just
that due to the fact that the field tends to avold &
cavity in a dielectric medium. It has the consequence of
preventing the occurrence of spontaneous polarizatlon;
the Onsager model leads to the following expression for
the dielectric constant of an assembly of dipoles:

s 1/2

b N - 1 +{1 + BTTN%+ 16mEN° = ) ,

where < = xe/ﬁkT 1s the polarizabllity of each dipole.
Thus, € cannot become infinite at any finite temperature.

m
1l
-+
£

13)
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On the other hand, the use of the lorentz field (which,
as we have geen, 1lgs 1llegltimate in the case of rotating
permarent dipolesz), would lead to the Clausius-Mosottl
aguation

€ - LT
A 1'3 1 o

which implies ferroelectricity when (417 /3)N=¢ > 1, a
relation that 1s satlsfied well above the boliling polint
of many polar liquids (D2). It 1s this failure, or rather
misuse, of the Lorentz formula (called the "L /3
catastrophe” ) which led to the Onsager mocdel, which is in
fair, but by no means complete, agreement with experiment.
The Onsager model has the positive virtue of
giving a simple definlite value for the internal field which
can be used in further calculations. Its chief disadvantagc
from the present polnt of view 1s that the model is such
an extreme ldesglization of the actual physical gituation
that it is very difficult to determine the condlitions for
its validity, or to make further refinsments without a-
bandoning the model entirely and returning to the picture
of dipoles as in Fig. 1.1. One small refinement that could
be made on the model 1s to Introduce a relaxation time 1n
the external dielectric. 3uch a generallzed model would
include both the ILorentz field and the Onsager field as
apecial cases in the limit of very long and very short
relaxation times respectively. We see that the true effec-
tive field in the case of rotating dipoles lies somewhere
between these two extremes, and, since one of them predicts
ferroelectricity while the other does not, it remaing an
open question whether a model based on freely rotating
dipoles can lead to spontaneous polarizatlon at low tenmpera-
tures. Van Vlieck (V1) has adduced strong arguments that
the answer is in the negative, and Luttinger and Tisza (12)
have proved this for a number of slmple cubic lattices.
Luttinger and Tisza find that the lowest energy state for
such a lattice 13 one in which alternate strings of dipoles
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are orlented in opposite directions. This arrangement
gives no macroscoplc polarization, and the pheomenon of
such & pattern "freezing In" is called antiferroelectricity
(KL}. It may be expected to occur in more substances than
dogcs ferroelectricity, but 1t is hard to detect experi-
mentally. Tungsten trioxide (Kk) and lead zirconate
(37, RE) are believed to be antiferroslectric.

Ferromagnetlsm is, of course, based on a differ-
ent type of interaction between divoles, which is independ-
ent of the angle between the direction of the dipoles and
The 1ine through thelr centers.

Other intermal fleld discusslons have been given
by Frohlich (Fs), Oster (02), and Kirkwood (K7).

1.2 The interaction theory of Mueller

The above considerations, plus the fact that we
have no independent evidence that movable dipoles actually
exist in Rochelle salt, lead one to conclude that the
movable dipele theory 1s far from being & convincing modsl
to explain its properties, and these early attempts have
been almost forgotten. A less amblitious, bul more success-
ful, undertaking is the correlation of 1fs properties in
terms of a phenomenological thermodynamic treatment.
Following a sugeestion of Cady (C1) stressing the import-
ance of plerzoelectric effect in determining the behavior
of Rochelie galt, H. Mueller (M8&) has developed in rather
complete form his "interaction thecory." Granted the val-
idity of thermodynamics, the ultimate successgs of any such
phenomenological theory 1s of course guaranteed from the
start, regardless of the facts to be accounted for. How-
ever, a phenomenclogical theory 1s of great value In dis-
closing what thermodynamlic properties are needed in order
to account for the facts, and therefore what features are
to be looked for in some future successful model. For
example, Mueller shows that there 1s a profound difference
between the behavior of a crystal which is free to distort
under the action of applied electrical and mechanlcal
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stresseg and one in which the lattice 1s held rigldly fix-
ed. Theoretical models of the type dlscuszed describe the
latter case, of the "clamped"” crystal, while experiments
are generally performed on "free" crystals. Mueller shows
that the piezoelectric interaction, whicn in Rochelle salt
censists of a strong coupling between the polarizatlion P,
ard the shear € is great enough to account for ferro-
electric behavior in the frec crystal even when the clamped
crystal has no such vroperties; the effect of clamping the
crystal ig found both theoretically and experimentally to
causge the two Curie points to come teogether, and with per-
fectly rigid clamping they would coalesce arnd disappear.
This makes & very great and unexpected difference in the
features to be looked for in a future model. The sltuation
is analogous to that existing between the theoretically
simple specific heat of a solid € and tos experimentally
simple one CD, but the difference in the case of Rochelle
salt cannot be considered as a small correction.

The basic idea of the interaction theory can be
explained by the followling argument, which is a generaliza-
tion of Mueller's.2 Define a thermodynamlic potential which
is a gquadratic form in the strains (x] . x5) and the

polarization components (P1 e P5) of the crystal:

F(K,P) - lé Eci\] x-l 1’3 i Z Plf‘i{‘x‘: N 12H 2_: W E.P-

Then the stresses (X1 X6) and the electric {ield

components '(E],EQ,E5) are given by

2 F P
_Xi = XL = Zcijxj + 2 Pd_bL
1 J J
¢ F 3
Ei = “a—“}t = ]2 fijxj + Zu. w.lej

See also W. L. Bond (Bg); L. Tisza (T2).
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This may be written in matrix form:

"X, /b11 coe Gyl Ty Ta /%
%6 |1 Ce Ces| The P56 | %6
E Fygoe s Tygl Wy o W Py
\E5 \f51 o T W LW \P3
or more compactly, as
-X \ C ?: X
y {(1.21)
_ E//: ' w P
\
where fii = fji' By finding the reciprocal of this

matrix, we can solve for (x,P):

x\ /s A\ /fx

P) B -d k! \E (1.22)

in which the submatrices are related by
cS -Ta =1, €A + Tk =0, fs ~wd = 0, -fd + wk' = 1.

We gee that the susceptibility matrix for a free crystal
(X = 0) 1s k' while for the clamped crystal (x = 0)
it is k =w . These quantities are related by

1

k' =w (1 4+ fd) = k + eS8,

where we have defined a new set of plezoelectric constants

eij by

e =ds | =kf; d=eS.
The quantities e;. were originally designated by Volgt
as "the" plezoelectric constants, but it 1s now belleved
(M12, C2) that the fik are more fundamental becauss the
variables x,P are most simply related to the internal
state of the crystal, and experiment shows the fik to
be more nearly lndependent of temperature than the dik

or the Sy
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The free susceptibility 1s always greater than
the clamped susceptibility in the sense that the difference
k' -k = eS8 1s a positive semidefinite matrix. To prove
this, we note first that S 1s positive definite since,
ir :Z Xi > 0, the elastic ensrgy stored in the crystal
correspording to the strains X, 1s just the guadratic form
1

—}; 85 KXy >0

2
If now we write X; = 2 'é’inj, where the Yj are
arbitrarg, we have -
-
:: SlJ i J T2 i?&s Sijeikykejsys T2 E% (eSe)KSYkYS,

which 13 the condition for (eS38) to be positive semldefi-
nite (we must use the inequality sign < since the X%
may now all be zero for ceriain chclces of €5 ; and Y.).
If the plezoelectric interaction does not alter
the principal directions of the susceptibility matrix, we
have the result that each principal susceptibility of the
free crystal is equal to or greater than the corresponding
principal susceptibllity of the clamped crystal.
From Egs. (1.21), (1.22) we see that ferroelec-
tric behavior is pogsible if the matrix

Ea s
c T
T W
: /
becomes singular. In the case of Rochelle salt, the only

important quantities are C, (the y-z shear modulus),

Hy)
flu (the pleroelectrice couéiing constant between.polari—
zation in the x-direction and shear in the y-z plane),

and W, (the reciprocal of the clamped susceptibility
in the x-direction). The condition for ferroelectricity

then becomes
P
(1.23) ConWy fwgo.

The fact that this condition may be satisfied
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"accldentally" without any anomalous values for Cm,f’m,wH

explalns the name "interaction theory." Mueller shows that

Cp, and f,, exhlbit no anomalies, and have values not

greatly different from those of other crystals, and that

W, Z0Ees thru a minimum near o°C. At that temperature

it 1s very small, but probably does not vanish. The two

Curle points then appear as the temperatures at which HEg.

(1.23} i1s satisfied, there being no ancmalies in any of

the furndamental constants at those temperatures. Retween

the Curie points there 1s spontaneous polarization

accompanied by spontanecus deformation of the lattice.

The magnitude of thesge effects 1ls determined only when

the thermodynamic potential F(x,P) 1is augmented by terms

proportional to Ph, ard Mueller shows that theze lead

to a fairly accurate account of the observed properties.
The success of the Interaction theory still

leaves the qguestion of the mechanism responsible for the

behavior of Rochelle galt untouched. The rotating dipole

theories first proposed can hardly be accepted today.

Mason (M13) has given a theory in which movable hydrogen

bonds undergo an order-disorder transition at the uppsr

Curie point, and Ubbelhode and Woodward (UU1) have dis-

cussed such bonds further. There are two objectionsg to

this thecry. In the first place, the model would predict

a large entropy change and therefore a large specifiic heat

anomaly at this temperature. The observed anomaly 13 ex-

tremely small, and for thermodynamic reasons to be explain-

ed in Chapter 3, this means that the model cannot be made

to gilve simultanecusly the correct magnitude of polariza-

tion In the ferroelectric range and the correct Curie con-

stant for the dlelectric constant outside the ferroelsctric

rance. Secondly, Matthias (M19) has stregsed the import-

ance of experiments in which the effect of substitution

of one atom for another similar one is sought. It is

found that replacement of hydrogen by deuterlum results

in only very minor changes in the ferroelectric behavior,
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vut aside from this, hardly anvthing can be done to Rochelle
salt without causing the complete disappearance of ferro-
eclectric properties. Replacement of only a few per cent

of the potassium by rubidium, for example, removes all
dielectric anomalies. Such experiments indicate strongly
that hydrogen bonds are not the crucial factor in causing
ferroelectricity in Rochelle sait. New evidence about the
mechanism may be obtained from the recent discovery (Mi7,
M18) of other ferrcelectric tartrates.

One of the chlef difficulties in any theoretical
explanation of the properties of Rochelle salt 1s the ex-
istence of two Curie points, and a theory which could ex-
plain this in a natural way without postulating two in-
dependent mechanisms would have a much stronger appeal
than do any of the ones thus far proposed. Recently
Wigner (Wi) has described a model in which mixing of two
different electronic states of a crystal unit cell pro-
duces an electric moment. Thils theory was originally pro-
vogsed in connection with the behavior of barium titanate,
to be discussed later, but it was noted that 1t automatically
leads to the existence of two Curle points, with spontaneous
volarization between them. In this theory, the unperturb-
ed energy separation of the two possible states passes
through zero in the middle of the ferroelectric range, and
for temperatures sufficlently near thils crossing point,
the crystal as a whole has a lower energy if the wave
function in each unit cell egoes into a linear combination |
of the two symmetric states, with a resulting dipole
moment . Although no attempt has yet been made to fit the
constants of this theory to the experimental results on
Rochelle salt, this would appear to be a promising possi-
pility.

1.3 The KHEPOh type ferroelectrics

Another ferroelectric substance, whose structure
ia not similar to that of Rochelle salt, was discovered in
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1635 by Busch and Scherrer (B3Z) in the salt potassium
dihydrogen phosphate, KH,PO, . Iater it was found that the
primary phosphates an? arsenates of alkalis and ammonlum,
all forming tetragonal crystals of class Vd’ also possess
ferroelectric properties, but with Curie points at liquid
alr tempcrature=z. The spontaneous polarization in these
crystals is an order of magnitude greater than in Rochelle
salt, and they appear to have no lower Curie point, the
ferrocelectric state extending to absolute zero. They re-
semble Rochelie salt, however, in that the anomalies are
confined to one direction of polarization, and in the ex-
istence of strong pilezcelectric coupling between polari-
zation in this direction and a shearing strain in the plane
at right angles to the volarization.

The crystal structure of KHEPOk is much simpler
than that of Rochelle salt (W3 ) and 1t 1is therefore to be
expected that a molecular theory of 1ts behavior might be
easier to develop. Based on the fact that the crystal
contains phosphate groups connected by hydrogen bonds,
Slater (32) has described a model 1n which the hydro-ens
can take up & number of configurations corresponding to
different polarizations of the unit cell. From the total
number of arrancgements consistent with each value of total
polarization, assuming that the energy of a bond depends
on the configuration of nelighboring bonds rather than on
the long range electrostatic interaction, and neglecting
those configurations that have high energies, an approxi-
mate free energy function 1s found. This lsads to a pre-
diction of a first-order transition at the Curie point
instead of the observed second-order one. However, as
Slater points out, the observed transition is much sharper
than is predicted by the Weiss theory, and is in fact not
far from a first-order one.

The fact that replacing hydrogen with deuterium
makes only very minor changes in the behavior of Rochelle
2alt, but raises the Curie temperature of KHQPOM conslder-
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ably (Mi19), makes 1t hard tc believe that hydrogen bonds
are the important things in Rochelle saglt, while confirm
ing that they are in KHEPOM.

FI1G. 1.2

1.4 The BaTiO5 type ferroelectrics

A new clags of ferrcelectrics discovered in the

last few years exhibits a behavior in many respects more
spectacular and interesting than that of Rochelle salt or

the alkall phosphates and arsenates. Anomalies in the
dielectric properties of barium titanate ceramic material
were first observed by Wainer and Selomon (Wi1) in 1942,

and it was soon established by von Hippel and coworkers

at the MIT Laboratory for Insulation Research (H1) and
independently by Wul and coworkers In Russia (We G1),

that BaTiO§ 1s ferroelectric. BaTiO, forms in the perovskite

3
lattice (Fig. 1.2), with Ba lons at the corners of the
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cubic unit cell, O ions at face centers, and Ti ions
at body centers. It also exists in a hexagonal polymorph
(B7) which 1s of no interest in the present study.

In the early work jJjust referred to, the Curie
polint was located at 120oC, and it was found that The
symmetry undergoes a transition from cubic to tetragonal
as the temperature is lowered through this point. Megcaw
(M5 ) made accurate measurements of the tetragonal c/a
ratio in the temperature range 5°¢-120°C which sugeest
that the transition at 120°C is of the A -type, with no
heat of transition. Roberts (R1) found that a strong
plezoelectric effect is 1nduced in the ceramic by a polar-
izing field. Two other phase transitiong were located at
5°C and -80°C. They show up clearly as peaks in the di-
electric constant versus temperature measurements of von
Hippel, Breckenridge, Chesley, and Tisza (H1}.

In 1947, Blattner, Matthiaz, Merz, and Scherrer
{(B2) developed a method of growing BaTiO5 crystals from
melts, and thils opened up the pogsibility of studying the
properties of aingle crystels. By means of optical, mech-
anical, and electrical measurements the nature of the
changes at the three transition temperatures has been es-
tablished (F1, M7, M9). Above 120°C, the crystal is cubic,
with no spontaneous polarization. From 120°C to 500, it
iz tetragonal, with a spontaneous polarization directed
along a (001) direction of the original cubs. From 5OC
to ~BOOC, it is orthorhombic with spontanecus polarization
in the (011) direction of the original cube, and below
-80°C it is rhombohedral with spontansous polarization
along the (111) direction. In each case the crystal is
mechanically deformed by an amount proportional to the
square of the polarization, being expanded 1In the direc-
tion of the spontaneous polarization and contracted at
right angles to it. Optically, the crystals show a
birefringence accurately proportional to the mechanical
deformation (M7). As the temperature 1s lowered, the
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symmotry classcs are in succession O, O, ., C. ., C}v‘

o o gl Y
von Hippel (M3)
Kéﬁzim, Merz, and Sutter (Bf) obszerved that in the lerro-

&

ind Blatiner,

&

ot

.
oo
o

’y

2

(
¢leetrie state the crystals arc broxken up inte domains
whicn can bhe seen even in unpolarized light, since the
birefringence 1s strong and the optic axes of adjacent

doralns are verpendicular to cach other The domalin walls
movz smoothly in response to an apvlied electric field.

Forsbergh (F1) has described the varlous okbserved domain
angements and motions in detail, and Kiftel (Ks) has
ziven a simple theory of thelr molion. Ferroelectric do-
malns differ from those obscrved in ferromsgretic materials
in that they tend to be larger, with large dimensions
comparable to the smallest dimensicu of the crystal. This
is an apparent conseqguence of the fact Lnat in the electric

case the crystal can reutralize exicrnal lelds by accumu-

o
.

lation of surfacce charges as well az by splitting up into
small ovpositely directed domaing.

Merz (M7) has glven a uscelful sumnary of the
rumerical results of electrical and optical experiments
on gingle-domalin crystals. Filgs. (1.75) ard (1.4%), taken
from thiz work, sive the dieleciric constant and the spon-
taneous polarization, as determined from hysteresis loops,
ag functions of temperature. The direciliorn of spontaneous
volarization in the tetragonal phasc is by cenvention call-
cd the [001] or ¢-directlion, and the dielectric constant
curves marked ¢ and a refer Lo flelds respectively
parallel and perpendicular to this direction. In the case
of spontaneous polarization, the cuantity vlotted is the
compornient of polarization in the ({001} direction, which
is the guantity measured directly by the charge accumulated
on electrodes applied to (001} faces. Iz the regions
T ¢ - 80°C and -8o°C(T(s"C, the magnitude of the total
polarization would be found by multiplying this component
by /3‘ and /2 respectively, and thus 1s much more
nearly constant than the cquantity shown. The magnitude of
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the spontaneous polarization is about 15.5 microcoulombs/cmg,
or 46,500 esu, very much larger than is observed in Rochelle
sait or KH,PO, . Ba‘PiO5 may be described as a very "hard"
ferroelectric material, with a coercive force of the order
of 25,000 volts/em (M, H3), compared to 100 volts/cem for
Rochelle salt (C?).

The mechanical deformation accompanying spontane-

ous poiarization in BaTiO, is unusually larse, the extension

along the c-axis in the tgtragonal rhase amounting to near-
ly 1 per cent of the original length (M5). In the phases
in which 1ts symmetry allows a piezoelectfic effect, or

in any phase 1f a biasing field is applied (R1, C3), it
exhibits a piezoelectric activity comparable to that of
Rochelle salt, which has long been the most strongly pi-
ezoelectric substance known. This fact, plus desirable
mechanical and thermal properties not possessed by Rochelle

salt, makes BaTi0, an important material for a large number

of technical applgcations {T1).

Recent review articles by Matthlias (Mi19),
Baunmgartner, Jona, and Kaenzig (Bt1), Lumbroso (L3), and
von Hippel (HL) may be consulted for more detalls.

While the phase changes at -80°C and 5°C are
thermodynamically first-order transitions, the tetragonal-
cublc transition at 120°C appears toc be a X -point, or
second -order transition involving no latent heat, but a
jump in speclfic heat. The gpecific heat anomaly, which
1s an important plece of evidence regarding the molecular
mechanism of the transition, has been measured by Wul
{We, Ref'. 7), by Blattner and Merz (Bé6), and by Harwood,
Popper, and Rushman (H2). The kind of curve to be ex-
pected is 1llustrated in Filg. 1.5. The smoothly rising
curve represents what would be observed 1f the polarization
were held equal Lo zero. Actually, 1t 1s the electric
field that is held equal to zero in ¢xperiments, so that

a3 we pasgs into the ferroelectric rangs, the onset of
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spontaneous polarization alters the internal energy of the
crystal. According to & naive form of internal field theory,
this increment in energy arises as follows, If a unit

volume of the crystal contains N polarizable objescts of
polarizability « , the polarization will be P = N«F,'
where F 1s the internal field. If the externally applied

(ac),,

T— 1c

FIG. 1.5
field E 1is zero, then we also have P = £ P, or
Nt = 1. Now & dipole of moment M in & field F has
a potential energy V = - M'F, g0 that the potential

energy of a single polarizable object will be -7,

In getting the total potential energy of interaction of
the dipoles per unit volume, we must, however, multiply
not by N but by N/2, for otherwise the interaction en-
ergy of each palr of dipoles will be counted twice. This
glves for the change 1In energy per unit volume due to
spontaneocus polarization,

! 2
E= - gN«<F° = - Lgp
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Tf the Lorentz factor 4 1s a constant, this gives rige

to a specific heat anomaly

_ £ oF”
A C = CE - CP = 5 g . (1.4%1)
We see from the experimental polarization curve (Fig. 1.4)

that thils extra term is zero at low temperatures, where the
polarization is constant, then a few degrees below TC it
begins to rise smoothly to a maximum value at T, where
the polarization is decreasing with temperature most rapid-
ly. It then drops abruptly to zero as we enter the

"parelectric” range where P = 0. Experimental curves are
not usually as sharp as this, but show an unsymmetrical
peak at the transition temperature.

Two features of the specific heat anomaly are
of special interest. The first is the integrated area of
the triangular region, which determines the difference in
entropy 4 S assoclated with the vanishing of polariza-

tion, through the relation
T

- _dT 1
as- | acd

— ACAT
o

I

The value of A4 C found in.BaTiO5 is very small and

difficult to measure, and the three experiments listed
sive results varying by a factor of five:

1

Investigators Szlc dP, cal mol AS per unit cell

BM 7 0.06 k
HPR G 0.011k
wu 1L 0.02k

(k = Boltzmann'g constant)

The graph of HPR 1s the only one revealing a sharp dis-
continuity In specific heat, but it is alsc the most diffi-
cult one from which'to estimate A S. In spite of the lack
of quantitatlve agreement, the above values show clearly
that the change in entropy 1s extremely small; Interpreting
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the entropy as proporticnal to the logarithm of the volume
of phase space avallable to a system, we see that this val—
ue for a unit cell is at most a few per cent higher in the
parelectric range, and any explanation of the action of
BaTiO5 as an order-dlaorder transition 1s quite conclusive-
1y ruled out (in contrast, KHEPOLL exhibits a rather large
entropy change at the Curie Point, consistent with an
order-disorder transition as treated by 3later). A tran-
gition with such a low speclfic heat anomaly 1s called a
dispacive transition by Tisza (T2).

The value of the parameter & in thé_abové

oversimplified discussion lsg found from integrating
Eg. (1.41);

(1.42) TAP = S A car

where Pm is the maximum value of spontaneous polarization
reached at low temperatures. From the experimental value
P~ k.65 x 10" esu (M7) we flnd, teking | A C dT = 1k

cal/mol,
L= 0.0k,

which 1s a value far lower than could be justified by any

electrostatlc considerations. It is curious that the val-
ue of 4 predicted by the rotating dipole theory, as de-

termined by the susceptibility above the Curle point

(Eg. 1.05)
T

(1.%3) X = ’5] T ﬂCT

c

turns out to be abcut 0.0k for BaTiOi, in falr agree--
ment with the above value. In spite of this semiquanti-
tative agreement, the theoretical basls of both Egs.
(1.42) and (1.43) 1s extremely doubtful 1n the case of
ferroelectrics (although both are good approximations in
the case of ferromagnetism), and one would at first be
inclined to dismiss it as an odd colncidence wers it not
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for the fact that the same agreement exists to an even
better degrece for Rochelle salt and for KH, PO, . Blatiner
and Merz (Bé) have glven the following values of & as
calculated from each formula using experimental valueg of
AC, P, and X

Substance rom Ba. (1,42) from Ko. {1.5%)
Rochelle salt 2.1 2.2
KHQPOh 0.37 0.43
BaTiO5 0.0k 0,049

Their values for BaTiO3 were based on their measurement

of A C, and are in better agreement that we calculated
above. The A C values of Blattner and Merz appear to be
higher by a factor of 5 to 10 than the values found by
other investigators, and the values predicted indirectly
from other experiments. However, we see that there 1is
surprdisingly good agreement of these guantities in all
cases go that, although we cannot accept the theoretical
basls of the two formulas for £ or thelr interpretation
in terms of internal field constants, we note that it is
an experimental fact that for the three types of ferro- .
electrics the following relation is valid:

1Po = CAS (1.%4)
where C 1s the Curle constant and A 8 1is the entropy
difference associated with the onset of spontaneous
polarization. A theoretical reason for this relation will
te presented in Chapter 3.

The second important f{eature of the specific
heat anomaly is the value (A C)m of the sudden drop in
speclfic heat at the transition point. From the publish-

ed data, one can estimate the followlng values:
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-1

Investigators (AC), cal deg” | am
B 0.02
HFR 0.0025
Wu 0.003

The importance of (A C)m lies in the flact that it is
connected with the change A 4 in volume expansion co-
efficient and the derivative dT/dp of the Curie tempera-
ture with respect to pressure through the Ehrenfest re-
lation (E3)

44

in which ~ = density. The effect of hydrostatic pressure
on the Curie polint of BaTiO5 hag been investigated up to
pressures of 5000 atm by Merz (M10), who finds a linear

decrease dT/dp = - 5.8 x 10 ° deg atm |, or
- 5.74 x 107 deg cm” dyne '. The value A& = - 1.8 x 107
deg_1 mey be obtalned from the X-ray measurements of Megaw

(M5}. Thus, one can calculate {ZSC)m indirectly, and
the result is 0.0049 cal gm | ' (M10), which is in
falr agreemgnt with the above dlrect measurements.

deg

From the pressurs effect measured by Merz, one
can find the dependence of Curle temperature on the lattice
constant "a," the result being

dTC ]

3 e
g5 = 3-3 X 107 deg A .

This result 1s of interest because the lattice constant
may alsoc be varied without a change of pregsure by re-
rlacing a fraction of the Ba ions with smaller Sr ions.
Rushman and Strivens (R3) find that both the Curie tempera-
ture and the lattice constant decrease linearly with the
fraction of Sr lons present, at a relative rate
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aT o]
c . 3 .
3a = 2.8 x 107 deg A s

in very close agreement with the [ormer value; therefore
the Curie temperature depsnds to a large extent only on
the lattice size, and not on the combiration of pressure
and alkalline earth ionic radii that pr-Iucss that latitics

gize.
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Althouegh the behavior of BaTioﬁ, as described
atove, 1z complicated, its basic structure is so ginple
{in contrast to that of Rochelle salt or KH?POMJ that
there 1s hope of eventually understanding the mechanism
oy which these curious effects are brought about. Most

of tne theoretical attempts to date congider displacement
of the Ti lons relative to the rest of the crystal as the

cause of the polarization. This point of view originated
with Memaw (Mé), who pointed out that, if we assume the
Goldschmidt ionic radii, the Ba lons are glightly too
large to fit into a c¢lose-packed perovsklite structure.
Therefore they cause the lattice to expand with the result
that the TL ions are loosely tound in the ocizhedra of
Oxyeen ions, with a resultineg large polarizability.

2.1 The Mascon-Matthlas theory

Mason and Matthias (M2) have devloped in con-
giderable detail a theory based on this idea, with a modi-

fication apparently coriginating in a sugegestion of Eucken
and Blchner (ELh), who ascribed the high diclectric constants
of TIL, TiRr, Frli., and TiO? (rutile) to homopolar

binding btetween positive and negative icns, which causes
large changes in the electronic distriZutions as their
separation changes. One therefore has the pic
horonelar bonds that shift as an lon 1s displaced, and

as a result an lon might have & number of stable positions
at which it is associated with different surrcunding lons.
An enlarped acccocunt of this theory with some modifications

T 4

iezoelectricity

s

is also given in Mason's recent Dook on

(MYE).



2.1 MASON-MATTHTAS THEORY 31

We consider the Ti ion to have six stable po-
aiticns, displaced from the center of the unlt cell to-
ward each of the gix surrounding oxygens. When an effec-
tive field ¥ 1in the (001) direction acts on this arrange-

ment, it has a partition functicn

2 = 2 (cosh ﬂkg + ?)

where & is the wmaximum dipole moment per cell. Mason
and Matthias (MM) call the polarization due to this dis-
placement of the Ti lon Pd’ and assume that the effec-

tive field F 1s given by
' E +,€Pd
F=E8+FfP=E+/(Py +YF) = 7—py (2.11)
where 7 ig the total polarizabllity due to all mechanlsms
other than Ti displacement, divided by the volume of a unit
cell. The total experimentally observed polarization is

then
{2.12)

The mean polarization due to the T1 dipoles 1is given by

P - ;
_ e . ~ad _ sinh{(AF/kT) 5 1
Py = WT 35 108 Z, OF 570 = Zoghiaf/kT) + ¢ (2.13)
where N = 1/v 1s the number of unit cells per cm’ .

From Egs. (2.13) and {(2.11) we see that spontaneous polari-
zation can exist only below the temperature T, glven by

Ny 2 | - By

KT, © A

Mason and Matthias evaluate some of the constants by compari-
son with the experimental dielectrlc constant above the
Curie temperature. This is easily obtalned from Eq. (2.13)
by observing that for weak applied fields with T > T,,
we wWill have 4 F/KT < 1, so that Egq. (2.13) becomes

T T

2
N B _C _E C
Pe = TSem —gT (B AR =g T
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Using Eg. {(2.12}, the total polarization ls given by
T
_.E : __Cc
X =5 T A1 —87) AY + 7

C

and the dielectric constant is

: T
s c
(2.14) E =€ 4+ —————é————- e
O /5(1 fé’}’) T TC
where
Wary
o =1 T 55

(In the MM paper, this is given incorrectly as
€=¢€, v [BT/g) T,/IT - T,1 )

Mason and Matthias have attempted to fit this
dielectric constant to the experimental curve, and have
taken as an emplricgl expression:

(2.15) € = 350 + 39000

in which the value ¢ o = 350 i3 stated as the dielectric
constant near absolute zero. Measurements by Blunt and
Love (B4} on ceramic specimens down to about 2% show a
dielectric constant rising smoothly from 95 at 2K to

140 at  30K. The value T, = 363°K  is the observed
transition temperature, which is not necessarily the value
which fits an empirical curve of dielectric constant a-
bove TC. The value 40,000 is apparently obtained from a
single polnt on an experimental curve (Fig. 3 in the MM
paper), at a temperature of about 15000, which 1s as high
as that curve goes. However, the experimental curve does
not follow the above empirical eguation, and greatly differ-
ent valdes of the parameter "40,000" could bse obtained by
a different cholice of matching polnt.

These conditions, plus the above-mentioned
omigsion of a facter (1 -£F %) 1in the expression for
dielectric constant, make it necessary to consider anew
the problem of evaluating the constant;?‘,? of the theory.
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These constants are alsc censiderably revised by Mascn in
(M16). Measurements by 3. Roberts (Re) of the dielectric
constant at elevated temperatures supply us with just the
information needed to develop an accurate emplrical formula.
From them we find two equations:

114,000 .
GEW, (2.16))

which gives an egsentially perfect fit to the data above
17500, and a second one

€ = Fgs (2.17)

which fits the data better near the Curie point.

We note two facts about this equations. In the
first place, there is no constant term. As Roberts has
pointed out, if one plots the reciprocal of the dielectric
constant against T, the result is a very straight line
above 175OC. The constant term, if it exists, 1s so
small in comparison with the temperature-dependent term
that it carmmot be detected within present experimental
error. According to Roberts, the accuracy of the measure-
ment 1g such that values of Iéo - 1| greater than 10
are definitely ruled out, while the temperature-dependent
part of the dielectric constant 1s of the order of thousands.

The second point to notice 1s that the constant
’I'C which fits the experimental data 1s not the same as
the observed transitlon temperature but 1ls several degrees
lower; this is clear from a glance at any of the several
graphs of dlelectric constant that have been published.
The same effect 1g found In the other ferrcelectrics and
in ferromagnetic substances. In all such cases the graph
of reciprocal susceptibillity versus temperature deviates
from a stralight line near the Curie polint. Becker and
Doring (B5) have given gualitative arguments which ghow
that this is undoubtedly due to "Schwarmblldung," or
strong correlations between the polarizatlons of neighbor-
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ing dipoles. Buceh correlations are not taken into account
in the usual form of Internal field theory, and some
correction analogous Lo that glven by Onsager in the case
of rotaling permanent dinoles, as described in Section 1.1,

L=
1z reeded. However, ir tnls case tne Inlernal lioild theory
s not In such catastrophle di witn experlment,

21 correction im-

and the effect of corrclations
nortant only near the tranzition point ratner than a
major change In the theory.

A fundamental objecticn to the MV Theory is

o
5

b e
I —.

found when we try fto cevaluate the constarnic o tne thecry
Ly comparison with experimenial data. From the dislectric

corstant above the Curie point, using Eqg. (f.14) and the
cmnirieal Eg. (2.16), we have T, = 1067°C = 3747K, and

b

a

g1 -2y = “Tﬁ%ﬁﬁﬁ= 0.0

Now consider the maximum porarizatlion at low temperatures.
From Egs. {(2.12) and (2.1%) rhls is

Since the left side econtairs onl

aguantities, we have an indeverndent
A -FY). Using the measured values

T
><
’D
k4
45,
=
o
’—'{
—
—
gn
@
'—-\-J
o
o
]
'_b

r

-8, -3 aFs -3
N=(hx10 7) 7 = 1.% x 10 cr ’,TC:A(QOK)
we find
P’
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so that
Fir /7 = éf;%§ - 1.12

This differs from the previous value by a factor of 27.
Thus there is no way of [itting this thecry consistently
to the experimental data; the values of the constants vary
by an order of magnitude depending on which experiments we
use. This discrepancy cannot be attributed to experiment-
al error or to the crude statistical nature of the theory;
the experiments involved are relatively easy ones which
meny investigators have performed wlth close agreement,
and the corresponding theory involves no subtleties of be-
havior near the critical polint. Furthermore, the particu-
lar assumptions about other types of polarization than Ti1
ion displacement contained in Eg. (2.11) are not the source
of the discrepancy; i1f we assume that all the polarization
1s given by Py, the effect 1s merely to put 7 = 0 in
a1l the above equations, and we find just the same dis-
crepancy in two independent experimental values of £

Another fundamental difficulty concerns the
change in entropy as we go through the Curle point.
According to the MM theory there are gix positions that
the Ti ion can assume at random when T ) Tc’ while a
few degrees below T, 1t will be constrained esgsentially
to a single site. Thus, we sxpect an entropy change of
about k log 6 = 1.79 k per unit cell (Ft). In Section
1.4 we found that the experimental value of 4 5 1s a-
bout 0.02 k, a discrepancy of a factor of 90. As re-
marked bhefore, this very low value of 4 S seems to rule
out conclusgively any order-disorder explanstion of the
phenomencn. We note that the above estimate of 1.79 k
is too high and would be reduced by consideration of the
correlations mentioned earlier; however, the correction
could hardly amount to two orders of magnitude.

According to thermodynamic arguments given in
Chapter 3, these two discrepanclies are closely related.
Granted only very general asgumptions as to the form of
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vhe fres energy [uncticn, onc can dervie the re.atlon

1 .2 YA a . . 1 s . .
E—P = CAS, where F 1s the maximum polarization at low
temperatures and C 1s the Curie constant. Thus, 1if a

<

[oB

wode? dees not gilve the correct entropy change, then 1t

alsce carnot be rmade to glve both the correct polarization

and the Curle constant. BSince the entropy change upon

polarization can often be found directly from the model

by simple physical reasoning, as in the present case, this

i3 a useful point to keep in mind when considering theorles.
The “‘nternal field assumptions macde in this treal-

rent can be greatly improved. In Mason's second form of

tne Lheory (M16) two different Lorentz factors are intro-

anced. The electronic part of the polarization Pe is

sesumed coupled by the classical value L /3, while for

the ionic part P, we have an unknown factor g ;

F o= hTTPe/ﬁ i ﬁ’Pd. However, as Cohen (C5) has polnted

cut recently, in a correct treatment we must evaluate the

interral field at the position of the displaced lon, not

its central position. Since the lattice of Ti iong 1s

oniformly displaced, the Internal fileld due to Pd must

be zero. Since the difficulty about entropy would in any

event remain, it does not seem worthwhile to reconsider

thls model by a better intermal-field treatment.

2.2 The Devonghire theory

A second malior attempt to explialn the properties
of BaTi0, in lerms of ionic displacement has been made by
Devonshife (D3), and Slater (31) has introduced certaln
modifications. Devonshire first develops a purely
vhenomeriological treatment patterned after Mueller's inter-
action theory of Rochelle salt. This theory is consider-
ably mors complicated in the case of BaTiO5 due to the
purber of phase changes, and because all components of
polarization and all strain components are now coupled
together. In the case of Rochelle salt, a major part of
the discussion car be carried out in terms of the polari-

zation Px ard the shear SN only.
o
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The free energy function developed by Devonshlire
leads to the correct qualitative behavior as regards the
successive changes of polarization direction and lattice
deformations, but there is no cuantlitative agreement be-
tween theory and experiment on the magnitude of the polari-
zation and dielectric constant as functions of temperature.
The phenomenological theory therefore cannot yet be con-
sidered as complete as 1s Mueller's treatment of Rochelle
salt.

Devonshire starts with an expression for the
Helmholtz free energy of the free crystal per unlt volume,
expressed as a function of polarization and stresg, with
the stresses get equal to zero. This function must be in-
variant under the symmetry group Oy of the undistorted
crystal, and the most general function of polarizatlion
having this symmetry ls an arbitrary symmetric function of

Pi, P;, P? . 1f we expand the free energy in powers ol the
polarization, it will therefore have the form

1 2 2 oy 1 ! 1 Iy i
A = §W’ (PX + Py + PZ) L E (PX + PO Pz)

11 v
i

&(P§+P;+Pf)+

(2.21)

[P 02 2.2
+ 2-512(Pypz + PZPX + PXPy) +

o —

The value of w! as a function of temperature wmay be ob-
tained by comparison with the experimental susceptibility
above the Curie polnt. From the value of the elccliric field

1
_ - 3
I A %pr+
we seec that for the weak flelds used In measuring sus-
ceptiblility, where the dielectric behavior is linear,
the terms in A of order Ph and higher are negligible
compared to the second-order term, and w' 1s in fact
just the reciprocal susceptibility,
T - T
. -1 c
wh =X = —f (2.22)

where C 1s The Curie constant. The basic assunption of
the Devonshire theory 1is that the linear relation Eg.
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{2.22) may be sextrapolated below the Curle temperaiure
T,
the ferroelectric reglon arisses from the temperature vari-
ation of w', 80 that the guantlities %;;’ ?r , g'

12
may be asseigned constant valuss {the primes, according to

and that the only important temperature effect in

a notation of Cady (C2), indicates that the constants are
for a free crystal). Devonshire shows that the three phase
transitions are accounted for, with the observed shifts in

f |
volarization direction, if % .. and {  are positive
B 1 =
while ¥ 1 1s negative, and the numerical values which
he estimates from vearious experimental data arc
1
| ~12 3 -
% = - k.4 x 10 cr” erg 1
11
y ! ~-12 -
(2.2%) 2 = 5.3 X 10 cm” erg 1
12
’ -21 & -2
? = 3.7 x 10 Cm erg .

» Devonghire'!s work, the transiticn at 120°C
was conatdersd to be of first order, the polarization
rising discontinuously to a finite value as the temperature
ig lowered. The measurenments of Merz (M7) show no guch
discontirnulty and nc hystersesis at !20003 indicating a
second-order transition; however other measurements have
sometimes shown a discontinulty in various droperties at
this temperature, and it is accordingly rot certaln ex-
perimentally whether the transition 1s of first or second
order. Experiments at this temperature are very sensitive
to small residual stresses and other departures from ildeal
corditliors so that one should be cautlous In drawing con-
clusions from them. For example, if it should be found
that all actual crystals give finite discontimuities but
that more perfect crystals tend to have smaller discontin-
uities, then one would have strong reasons for concluding
that the transition ig ideally of second order. Theorles
in the state of development considered herc are, of course,
concerned with ideal systems: i.e., the limit of actual
ones as all imperfections ¢o to zero, arnd when there 1s a

difference, we would wart the model to reproduce the ideal,
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o
w0

rather than the actual, behavior. '

One can show ag follcws that the sign cf 511
determines the order of the transition. If we cconsider
only polarizsation in the z-dlrection, the free ecnergy
function may he abhbreviated to

1 1
A=twp? a8 ph oy L § 6 (2.4

and the condition of zsro electiric field is

E:_ﬁz . (2.25%5)
This can be satisfied by putting P = 0, or by having
the rate of decrease with P of one of the terms of EqQ.
(2.24k) just balance the rate of increase of the other

| !
terms. If € and ( are positive, it 1s clear that

i
for positive w' the only solution of Eg. (2.25) 1s

P =0. As the temperature ig lowered. w' decreasez, and
when w' { 0 the first term of Eg. (2.2k) 13 negative,
and Eg. (2.25) can be saltlsfied for finite values of P,

glven by

I /§T9
SRV S
_ 11 11 hw?ﬂ L :
2 7 % ch

11

o _Tm T

- 1
P z A

(2.26)

The approximation, being valid near the Curie polnt, shows

that 1n this case the polarization sets in below the Curie
1 .
point as (TC - T2 , the usual law for a second-order

transition.
i
If % { 0, however, the middle term of Eq.
11

(2.24) 1is negative for finite polarization, and we see
that, for small positive values of w', the free energy
will first increase, then decrease, and finally Increase
again as P 1s increased from zero. The minlmum at a
fintte value of P will be lower than the minimum at
P=0 1if w'!' 1ig sufficiently small so that as the
temperature, and therefore w', decreases, the absolute
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minimom of A jumps discontlinucously from the point
P =0 toa point with a finite value of P, corresponding
to a first-order Transition.

In this work we assume that the transition 1s of
second order. One argument for this 1s that no hysteresis

o . P .
served at the 1207 1n experimental curves ¢f dielectric

n

ih

is oDs

conastant or polarization as functions of temperaiure
{(Figs. 1.3, 1.4), From the above discussion of the cause
of a first-order transition, we see that for such a change
there 1s an activation energy which must be supniied 1n
order.to move the system from a relatlve minimum of A to
ar: apzolute minimum so that, as the temperature is changed,
we would not expect the actual transition tc take place
until the height of the potential hill has been zreatly
decreased from the value existing at the instant 1ts

state ceasss to be an absolute minimum. These hysteresis
effects are shown in Figs. 1.3 and 1.4 for the two lower
transitions, which are definitely of first order. A
second reason why it is almost necesgsary to agsume a
secornd-order transition in a treatment of this type 19
gxplained in Section 3.3.

Although Devonshire used a negative value for
f

% it gtill seems possible to account for the observed
"

transitions and shifts of polarization with £ > 0,
11

L
> £ , 1t is still true that the
11

!

-
because, if <€
12

eaurth-order terms in A, for a given total polarization,
have their minima along the directions of the crystal
axes, while the sixth-order term has 1ts minima along cube
diagonals. Thus, as the temperature decreases and the
polarization lncreases, 1ts direction will shift from
axial to dlagonal.
After developing the free energy function for

zero stress, Devonshire considers its expression in terms
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of polarization and strain. If the strains (x] ca x6) =

o :
(811, PPy 855, 625, 851, 810) are of order P, this

can be expanded 1in the form

A = 5011(x] + Xy o+ X5) + 019(X2x5 *OXRRy E x1x2)
+ %Chh(xi + xg + xz) + %W"(P? + Pg + Pg)
+ %‘ %11(P? + Pg + Pg) + %‘ %12(P§P§ + P§P$ + Png)
* gH(X1P? * XePg N KﬁPg) (2.27)
+ 25 [X1(PS + Pg) + XE(PB + PU) o+ X3(P? + Pg)]

+ 8y (XMP2P5 + X5P5P] + X6P1P2) +

in which all terms through the order Ph, that are allow-
ed by the crystal symmetry, are given. By setting the
stresses

equal to zero, one can find the following relationg be-
tween the coefficients of the free energy in Egs. (2.21)
and (2.27), in which double primes indicate that the co-
efficients are for an unstrained crystal.

T' =W 2 2
£ % .o gﬂ(cﬂ(:; 01%); 1;25(131&5;(23 _)Egmcu
11 11 11 10748y 12
(2.28)
! i o e
§ - % +2 811010 7 2B8118y50y + &l Cqy + 2C,,5)
12 12 (cH - 012)(011 + 2012)

These relations express the eflfect of electrostrictlve ac-
tion In causing the free crystal to behave differently from
the clamped crystal. If experimental values of the elastlc
constants 011,012,chu were available, one could evaluate
these correcticns numerically, finding 2112810784 from
the observed deformations of the crystal as a function of
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polarization. Mason (M1) has determined the constants for
BaTiO5 ceramic materiail, but they probably would not be a
reliable irmdication of tne values for a singie crystal.

At this polnt Devonshire turns to a model theory
in which BaTiO5 is regarded as an lonic crystal and the
force constants between ions are calculated following
Born's treatment (F3). Assumlng the Polsson ratio to be

1/3, the elastic constants Clq:C00C are calculated

L
from the Born-Mayer potential energy function, arnd the
correctiong Ea. (2.28) are thus evaluated numerically.

Since the lonic character cf BaTi0, appears very doubtful,

however, 1t is not clear that thisimethOd of evaluation

ig more reliable than using Mgson's experlmental values
for ceramics would be. Good measurements of the elastic
constantsg of BaTiO3 single-domain crystals would represent
an ilmportant step forward from our prezent experimental

knowledge of its properties.

The values of the ‘% conztants given by
Devonshire are, in cm erg @ :

n |

— - ]

% = 65.6 x 10 1e % = = bk x 10 'F
11 1%
T !

- 'y —_" 7

£ =-oexio e € = s5.3x10'°
12 -

The difference between the primed (free) and double primed
{clamped ) quantities 1s so great here that the free and
clamped crystals would show a completely different behavior;
both coefficients have their slgns reversed by the electro-
gtrictive action, and the magnitude of EEH i§ reduced

11 !

by more than a factor of ten, while that of £ 1s in-
12

creased by more than a factor of twenty. According to

these values the free crystal would show a first-order
transition at 120°C with polarization in an axial direction,
while the clamped crystal would show a second-order tran-
sition about ten degrees lower with polarization along &
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ctbe diasonal. Although we have no experimental disproof
of such behavior for the clamped crystal, 1t seems highly
doubtful that the wmechanicel deformation could lead to
such & radical change in properties. We conclude that
the numerical values given by Devonshire are probably sub-
ject to revision and that with the correct values of the
% coefficients and the elastic constants, the free and
clamped properties will differ by more moderate, although
still highly significant, amounts.

The mechanism considered by Devonshire for pro-
ducing ferroelectric behavior is the cooperation of a
rather large polarizabllity due to lonlc displacement and
the mechanical deformation effects discusseq above. The
effective field acting on each ion was assumed given by
the Lorentz factor § = L T/3, and the polarization of
ions by distortion was not taken into account. These
features have been criticized and modified by Slater,

whoge work we consider next.

2.3 The Slater theory

Slater (31) has modified the Devonshire theory
by taking into account polarization of ions by distortion,
and by using values of the internal fields at the ion sites
determined from electrostatic calculations based on the
actual arrangement of iong rather than on the assumption
of a lorentz factor of Lw/3 for all positions. His
model is that of Megaw (M6) who suggested that the small
Ti ions could move rather freely in the oxXygen octahedra.
The displacement of Ba or 0 ions is not considered, but
the electronic polarizability of all ions is taken into
account. From the observed index of refraction, optlcal
polarizabilities of the ions are assigned, and 3Slater
shows, as did Jonker and van Santen (J2), that this
electronic polarizability is so large that the contribution
of ionic displacement need not be large in order to result
in ferroelectricity. ‘

In Slater!s theory, as 1n Devonshire's, the
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various terms in the expansion of the frec energy 1n powers
of the polarization are related to corresponding terms 1in
the expansion of the potential energy of the Ti ion in
nowers of its displacements from the center of the unit
cell. However, 3later considers only Tl dispiacement,
while Devonshire takes into account displacements of all
fons. In view of Devonshire's estimate that the oxygen
ions are much more loosely bound to their asymmetrical
pogitions than are the Tl lons a more peneral treatment
seems necessary. This point will be discussed further in
Section 2.4,

Another difficulty with Slater's treatment is
that ferroelectricity seems to be explained too casily;
there 1s such a great enhancement of the effect of Ti1
digplacement due to the electronic polarizablilities of
the ions that one must then assume an abnormally low value
of polarizability due to Ti displacement in order to ex-
nlain why the Curie polint is as low as 1t 1s, while the
model was originally based on the idea that the Ti lons
would be somewhat more freely movable than lons usually are.

3later finds that ferroelectricity occurs wnen

lyqr & T

(2.31) 'Fg;***‘: 0.062

where & Py ig the polarizability due to Ti displacement,

i.e., the ratioc of dipole moment to local field at the Ti
ion, and v 1is the volume of a unit cell. All other lonic
polarizabllities are assumed equal to zero. If ionic

polarizabilities assoclated with the Ba and 0 lons had been

introduced, the value needed for < 71 would be even small-
er, or more likely negative. On the other hand, Devonshire,
following Born's treatment, estimated a restoring force on
the Ti ion of F = - g.h x 107 7 dynes, where =z 1g its
displacement in cm. This leads to an lonlc polarizabllity
of the Ti ion more than four times that given by Eg. (2.31),

and comparable values are found for the Ba and O ions.
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A

Tt is evident that we have here a mild form of the "hkaf3
catastrovhe”; the difficulty 1z nol In explaining why
BaTiO5 is ferroelectric but in explaining why it 1ls not
much more strongly ferrocelectric than it is.

Thig same difficulty was encountered earlier in
attempts to account for the dielectric constants of non-
ferroelectric crystals in terms of slectronic and iloric
polarizability. A short review of the work of Fajans
and Joos, Heckmann, Hojendahl, and others is given in
Chapter I of Mott and Gurney (Mik) with the conclusion
that the dielectric constants of the glkall halides are
best accounted for if we assume a Lorentz factor of zeroc
rather than the "theoretical" value of u1/3. Mottt and
Gurney ascribe this apparent weaxening of the electro-
static interaction of lonsg to overlapping of electronic
wave functions of adjacent ions, which causes the fleld
at the position of cne ion due to polarization of adjacent
ions to be greatly reduced. If this explanation 1s correct,
the same effect might lead to considerable changes in the
treatmente of Devonshire and Slater.

There are three further reasons for expecting a
decrease in the apparent internal field in models of the
above type. First, we should really apply some correction
for the correlations of the instantansous polarizations
of nelghboringz ions, which would be analogous to that made
by Onsager for the case of rotating permanent dipoles, but
probably much less drastic. That this could affect the
apparent electronic polarizabilities at low frequencies
as well as the ilonic polarizabilities may be seen as follows.
Measurements of dielectric constant at optical frequencies
are essentially undisturbed by thermal vibrations, the
maximum frequency of which is of the order of a hundred
times lower than the optical frequencies. Under thess cor-
ditions, all similarly situated ions will have the same
change in dipole moment per cycle, although the mean
dipole moment over a cycle will still fluctuate due to
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thermal agitation, and their interaction at optical fre-
quencies will be correctly given by the classical Lorentz
theory. For the low freguency case, however, the mean
interaction energy of the ions is obtained bty averaging
over the thermal fluctuations end thus will be affected by
correlations between the fluctuatlons of neighboring
dipoles. Similar reasoning to that given in Seciion 1.1
shows thal again this has the effect of reducing the effec-
tive Internal flelds. This effect would be particularly
Important for ionic displacements.

A second effect reducing the apparent internal
f'ield for ionic displacement is the following. The force
effective in displacing an ion is not only that arising
from the Internal electric field at 1ts position bui there
ig also a mechanical force due to displacement of neighbor-
ing ions. When the appllied electric field tends to dis-
place a positive ilon upwards, 1t will also displace the
ad jacent negative lons downwards, and &s a result mechani-
cal forces will be called into play which will reduce the
displacement of all lons. Because of thils Interaction it
is not, strictly speaking, possible to assign values of
ionic polarizability to individual lons, as has so often
been attempted; the dipole moment of an ion due to its
displacement is not merely proportional to the internal
electric fleld which it sees, but is a linear combination
of this term and another arigsing from the motion of
neighboring ions.

In connection with this effect a recent theory
of Roberts (R4) concerning the dielectric constants of
alkali halides 1g of Iinterest. Although his model is an
extremely idealized one, making use of sharp, rigid, and
weliphtless lonic boundaries, this mechanical force appears
in the calculations {loc.cit., Eqg. 8}, and whatever one
may think of the actual model, 1t is clear that a correct
treatment would involve equations of a very simlilar form.

A third reason why the true internal fileld 1s
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overestimated in treatments of this type hag been pointed
cut in an important recent note by Cohen (C5). He shows
that consideratle errcors are ilncurred if we merely calcu-
late the interngl field at the undisplaced position of an
ionn. The field actually effective in polarizing an ion
is the value at 1its displaced position, and the difference
between the two fields can be comparable to the fields
theinselves. An example where this 1s clearly the case 1is
the field alt an ion due to displacements of similar lons
in other unit cells. In the usual treatments we would
calculate g value comparable to the other terms due to
other types of ions:. However, it 1s clear that ions of

a given type form & sublattice that merely undergoes a
uniform displacement, so that the resulting field at the
dispiaced ion due to this lattice is exactly zero. Thus,
the expression for the field at a Ti ion should not con-
tain any term arising from displacement of other Ti ions,
as 1t doeg in the treatments being discussed.

Recent measurements by Mayburg (M15) of the
pressure dependence of dielectric constant for a number
of ionic crystals show a decrease that according to
Mayburg can be explained only 1f the effective Lorentz
factor decreases with increasing pressure. This tends
to confirm the above speculations since both the elec-
tronic overlappling and the interionic mechanical forces
would be expected to become more lmportant -as the
preszure lncreases.

The above remarks are not intended to imply
that the Ti displacement model 1s Iincapable of explaining
the action of BaTiO5; the questlion 1s left unanswered
because even a semiquantitalive study of the conzequences
of the model cannot ke carried out until certain funda-
mental problems in the theory of dielectric properties
of 1lonic crystals are solved, It appears that the
resolution of the above "mild catastrophe" must be one
of the first steps in this direction. A really satis-
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2.4 OXYGEN DISPLACEMENT THEORY Lo

a cube edge, then a face diagonal, then & body diagonal,
as is observed experimentally. In this model the effect
of electromechanical coupling in increasing the rate at
which polarization gets in below the Curie polnt may be
geen directly without any thermodynamic analysis; as ths
OZ ions move out of the plane of the Ba ions, the whole
structure can contract in this plane while expanding in
the z-directicn. This deformation of the crystal reduces
the lattice energy,so that the force tending to dilisplace
the OZ lon is not merely the electrostatic force due to
its interaction with other OZ ions, but there 18 also g
direct mechanical force tending to increase its displace-
ment. The amount cof the transverse contraction in the
tetragonal phase may be calculated very easlly with the
oxyeen displacement model; a simple geometrical argument
based on hard spheres in contact gives for the transverse

contraction

where "a" 1is the lattice constant and 2z the displace-
ment of the 0, ion. The resulting polarization 1s

)

so that

12

- = =3.8x 10 '°P
& ke =

D

Experimentally (M7), -4a/a 1is found to be accurately
proportional to the square of the total polarlzation, with
a coefficient of 1.2 x 10712; therefore, 1f PO rep-

Z

regsents 56 percent of the total polarization, the trans-
verse contraction 1s gilven correctly.

This simple prediction of the correct order of
magnitude of the mechanical deformation of the crystal ig
to be contrasted with the phenomenoclogical treatment,
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where one estimates the coefficient by comparison with
the obsgerved deformations, no attempt beling made to de-
duce it from the model. We note that a displacement of

0 1s physically equivalent to the opposite displacement
of Ba and Ti, and the oxyegen displacement theory is a
speclal case of the Devonshire theory with the added
feature that electromechanical constants are deduced from
the model.

In spite of the apparent promise of this theory
and a certain intuitive appeal arising because predictions
of the model may be seen qualitatively by very simply
rhysical reasoning without mathematlical analysis, 1t lay
dormant for some time because it geemed very doubtful
whether BaTiO5 can be regarded ag an ionic crystal, an
assumption which underlies all of the ionic displacement
theories, especially when one uses values of electronic
polarizability obtained from refractive indices of other
compounds invelvineg a glven ion, as Slater does. An ion
has a unlgue polarizability only when its electronic struc-
ture 1s apecified, and this polarizabllity depends criti-
cally on the states of those outer electrons which are
greatly perturbed unless the crystal is strongly ionic.

However, recent X-ray measurements of Kaenzig
(Ké6) and of Evans and Hutner (E¢) have shown that the
oxygen nuclel do move (relative to the Ba ions, of course)
much more than do the Ti nuclei so that it becomes worth-
while to explore the theory more fully. Schweinler (38)
has described a model patterned after Slater's treatment
in which the lonic polarizability of oxygen is asgsumed
several times larger than that of Ti. Results of this
work will be awaited with interest.

2.5 The electronic theory

The electric moment of ferroelectric and pyro-
electric crystals 1= usually attributed to the displacement
of ions from central positions in a lattice cell. In
many cages the asymmetrical positions of lons can be
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verified directly by X ray analysis; for example, there
is no doubt that ionic position is the key to the elec-
trical behavior of tourmaline. In the case of barium

titanate, 1t 1z usvally supposed, as we have just seen,

) 1
that c¢isplacement of the Ti'F

of O ions 18 responsible for the electric moment.

ion in the cctahedron

This theory recelved & serious setback ¢y X-ray
experiments of Danielson and Rundle (D7) and Kay, Wellard,
and Vousden (K2} which falled to find conclusive evidence
of any displacement accompanying the onset of spontansous
polarization. The theory described below was first pro-
posed at a time when it seemed doubtful whether any lonic
motion occcurred. As we have just seen, more recent work
has shown that there is some lonic motion, but that
oxygens are the active lons. Although this does not 1n
itself invalidate the electronic theory, lack of ionic
displacement can no longer be cited as evidence for guch
a theory. However, there 1s a considerable amount of
other evidence. According to Matthias (Mbk) all substances
are ferroelectric in which an atom or ion with a closed
shell 1s surrounded by an octahedron of O ions, in the
manner of the structure of BaTioﬁ, if the dimension of
the octahedron approximates a definite size. Similar
conclusions are found by Smolenskii and Kozhevhikova

NaTa0,, KTa0,, RbTal,., LiNb0O,,
5 5 3 3

(39). The substances LiTaOi,
NaNboi, KNbOi, L&FeO5, PbZroﬁ, Mooﬁ, and WO5 have been
shown to be ferrocelectric, with Curie points ranging from
a few degrees sbsolute to nearly 1,OOOOK. Thus 1t appears
to be the oxygen octahedron structure rather than the
presence of any specific positive lon that 1s the nec-
essary element for producing ferroelsctricity, and the
electronic structure of thls arrangement becomes an
important guestion,

There 1s indeperndent evidence from other pron-
erties of ferrcelectrics of the titanate type that has

already led to suggestions that electronic effects be
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rise to any dipole moment. Howsver, if two statss of
opposite parity lie close together in encrgy, lLoleractlions
between octahedra may have the consequence Lhat the crystal
22 a whole has a lower energy 1f the Internal state of
each octehedron goes over into a linear c¢oriingtion cf Lno

ymmetrical states. This linear combination of states

ST PR A

9]

would have a nonvanishing dipole moment so that a spo

B

tancous polarization and internal electric ficld would
appear .

The electronlc theory was first propesed by k.
P. Wigner (W&), who developed in some detail & model,
already. briefly mentiored in Section 1.2, in whlich the
effect of temperature was manifested chiefly in a change
in the unperturbed energy separation of the states of ine
unit cell rather than in the statistical factors as in
the model to be described below. BSince the original model
leads to a prediction of two Curie points with spontaneous
polarization between them, it might be consldered seriocus-
1y as a model for Rochelle salt. In that application it
would appear to have an advantage over the hydrogen bond
model of Mason {M13) because it leads to a low specilic
heat anomaly. It 1s, in fact, the only modcl thug far
proposed which gives two Curle points in a completely
natural way. All other theories have had to rely on two
different mechanisms to give the two transitions.

Formulation of the problem. We give {irst an
cutline of a method of attack of the type associated with
the namos of Clausius, Mosotti, Lorentz, and Langevin
which assumes that interaction between octahedra will take
place chiefly through the internal electric fields which
they generate. In this approach, the problem 1s broken

down in the following way:

1. An applied electric field E produces in a
crystal of temperature T a (macroscoplc) polarization
F(E,T). The present problem is fo find this function, Iin
narticular P(O,T).
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2. The effective field overative in the interiep
of an oxygen octahedron is then ¥ = E + /4P, where £
i1s the Lorentz factor. The correct value of this factor,

and cven the vallidity of an exprezzion cof this form for

I interest here, gre sulte difliculs gusstions

T

"_Y
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which will recuire a good ﬂeal
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3. The oxygen octanedron, under Lne influence

of the internal field F, becomes polarizaed, the amount
due to mixing of electronic states belng PG{F,T).

4. The total macroscoplically obgerved polari-
zation actually consists of the sum off P . & term P,
due Lo polarization of the lon cores {(inc

-

rolarizabllity of the Ba lons, and possibly ¢f tne TL

and 0 1lons, depending on how cetall
(%) ig); and a term P due to disnlacement of the ions

I S S, + : s
ed Ccur CLreailent ol

_—— bl

&R

from thelr normal lattice points. In calculating Pi
and P, we may not assume that the local field ls the

same as that uged o calculate Pe’ but must consider
the field seen at each ion zitc as a separale vroblenm.

(2)

Q
oy
—
4]
=
[ 9]
]
i
o
c
o
3
«Q

Thus, we have in all six subp
and ore cof type (3) for each of the three xinds c¢f polari-
zatlon.

5. The solutions of theze subproblems are then
"tied torether” by the conditlion that they be simultanso
1y conglstent.

This program, even if carried oul in the full

detall suggested above, would not be a rigorous trecatment
of the problem since 1t assumes that the quartum state of
one urit cell 18 statistically independent of the states

of adjacent cells. The average dipole moment is the same
in all cells, and this average polarization Pe is then
nsed to calculate the local field acting on the cells.

Actually, & given urit ccll is more strongly affecled by
the siates of adjacent cells than this would imply, and
we @xvect a rather strong corrciation betweern the dipole

moments of celis close torether. This correiation may e
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taken intoc account partially by the Bethe-Pelerls method,
previously used in treatments of order-disorder transitions
and ferrcmagnetism, but the added accuracy does not seem
sufficient to justify the work involved.

In order to demonstrate the general type of be-
havior that would resulf from the electronic polarization
mechanism, consider first a simplified treatment in which
we put for the effective field in the oxygen octahedron,

F=E~+ /? LPe + Pi + Pd) {(2.5.1)

and further assume that (Pi + Pd) = Y F, where 4 and
Y are ungpecified constants. Elimination of (P.l + Pd)
gives us then

F::_E_ﬂg (252)
1—/7 . « .

Making the simplest possible assumptions about
the internal states, we postulate that, 1n the absence of
the field F, the ground state of the octahedron 1s in-
variant under its symmetry group Oh and is therefore of
even parity. The polarizability of the octahedron must
result from the existence of excited states which are
coupled to the ground state by the dipole moment operator.
An excited state will belong to one of the ften irreducible
representations of O, described by the character table
on pace 56 .

Thne multiplication tarvle for product representaticns
te found to be

o s r, s

My | [y [ Ly

Pon (e ey (1) o+ 05)

P (O s T (0« = T T (ol 0y + 1)
Mo M Oy Ty (o [ e 10w Ty w0y 1y + 1)
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0 8C, 6C, 6C, 3C,°| 5, 8¢ 64 63, 3
17 1 1 1 1 (I 1 1 1
}"1" 1 1 1 1 -1 -7 -1 -] -1
I"g T -1 1 1 1 -1 -] 1

; 1 -1 -1 1 -1 - 1 1 -1
r'; -1 0 0 2 2 - 0 0 2
r‘; -1 0 0 2 -2 1 0 o -2
FI o 1 1 -1 3 0 -1 1 ~1
I, o -1 1 - ~3 0 1 -1 1
F; o 1 -1 i 5 0 (I B

- 0 1 -1 =17 -3 0 -] 1 1
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in which parity signs are added in the obvious way; for
- - - +
sets of functions which form a basis for five of the

example, Fg* X fL_ +

representations are:

fy+ C (%2 y2 + 22)

7 (xv2)

F5+ : (222 - %2 - ¥2),(x2 - 37
07+ (x0,(1),(2)

r o (xy),(y2), (ax)

in whiech x,y,z are rectangular coordinates. The dipole
moment operator 1s seen from this to belong to the repre-
sentation fﬂh_, and in order that it may have nonvanish-
ing matrix elements between the ground state fﬁ+ and
and excited one, the excited state must belong to a rep-
resentation [ for which the product representation

F1+XFJ+_XF

contains the identical representation F’1+. From the
above multiplication table we see that the only representa-
tion which meets this requirement 1is

’_’zrlh_s

so that the excited state must be triply degenerate. These
necessary symmetry conditions are met In the simplest
possible way 1f we write for the excited states

¢ o= xe (B F,-ye )yt =24}
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where ¢>(;) is symmetric under Oh‘ We denote the un-
perturbed energy separatlon between the ground state Y
and these states by 2 € and choose the zero of energy
to be midway between these levels. The unperturbed
Hamiltonlan then becomss

If now the field F 1in the x-directlion 1s turned
on, we get a perturbed Hamlltonlan

|
™
=
O
o

O oo o«
m

where V = —eF.ja f x ¥,av = u¥F, v Deing the volume
v

of a unit cell and M the meximum dipole moment due to
mixing of states (0,1}. States (2,3) do not play any
active part in the polarization, but thelr presence alters
the statistics, so they cannot be ignored. H 1s diagonal-
1ized by the transformation matrix

cos & -gin &

gin g cos @

S = with tan 2 = — .
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Then
/
wel o
sps”! = ibe
0 & &
2.2 2 1/2
where b = sec 26= (1 + pF°/e7) The energy level
diagram becomes
/f,f—’f”F sbe
+E éi___._.__.___\r__ +€
_6 e S
S
""-\-..___-H
S
“‘ : -be
FIG. 2.1

and the perturbed unit cell now has a partition function

€
Z = e + e + 26 kT _ 2[cosh b X + eF}:], X = T

The free energy of the cell is A = -kT log Z, and at
freguencies low enough so that we have thermal equillbrium
at all times, its mean dipole moment is

p- -24 _ kI db 8z _ b2 - 1 siph bx
¥ z 8b b cosh bx + e X

(o

which gives rise tc the polarization term

2_
M b 1 sinh bx - - (2.5.3)

P. = 5

cosh bx + e



60 REVIEW OF THEORIES OF BaTiO5

To meke thls consistent with Eq. (2.5.2), we write Eq.
{(2.5.2) in the form

(254) p ~FU V) -E_ £ [e% -1 (1 -4 —fj,—

& 4 £ r

and equate the two expressions, giving us the fundamental
relation

(2.5.5) ViE - Kb - —Sinh bx _ WE
1 — = )‘
& . cosh bx + e * / |

in which

_ev_ (1 -8n
k= 7

To investigate spontanecus polarizaticn we set
E =0, and this reduces to

ginh bx
cosh bx + e

(2.5.6) Kb = =

This equation must be solved graphically to give b (and
therefore P_) as a function of K and Xx. 8ince

=
r 2ol
PEY: v P,
b= /14- 5 = j'l+*“W,
£ 7K

only values of b greater than unity correspond to physi-
cal solutions, and the Curie point is determined by b = 1,
or

sinh Xg c oK

(2.5.7) K = e = 5% , or Tk = tanh Xp o

or

fl

At low temperatures (x »> 1), (7) reduces to Kb
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- Jh - X% . (2.5.8)

(P_)
® max

At any temperature, the total experimentally observed
polarization is

Pe+)/E_F_E

P=P8+VF= T =4y T 7 (2.5.9)

We must now investigate to what extent this simple
model 1s capable of accounting for the experimental results
with reasonable values of 4 , € , £, and 7 . Aithough
the number of parameters is large, they are not all inde-
pendent, and we will find that nearly all experimental
properties can be expressed in terms of Xy = =4 /kTC alone.
Furthermore, we must be prepared to find that the finer
details of behavior at the Curie point are not given
adequately by any model ag crude statistically and other-
wise as the present one. The sort of situation to he ex-
pected 1s analogous to that occurring in the treatment of
the two-dimensional Ising net, in which the rigorous
trestment of the statistical problem, only recently a-
chieved by Onsager, revealed new features in the vicinity
of the c¢ritical point that were gualitatively different
from any that could be obtained by varicus approximate
methods. This experience also suggests that we should
not try to use experiments on the behavior very near the
Curlie point for evaluation of our constants.

Experimental values of the dielectric constant
above the Curie point and of the maximum spontaneous
pclarization at low temperatures may be used to fix the
values of some of the constants.

The equation of consistency, Eg. (2.5.5%), 1ls
valid at any temperature. Below the Curie point, b 1is
appreciably different from unity, and the solutions must
be found graphically. Above the Curie point, however,
there is no spontaneous polarization, and for applied
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field strengths less than several thousand volts/cm the
polarization is very much less than the values encountered
at low temperatures. b 1is then so extremely close to
unity that we can put b = 1 everywhere in Eq. (2.5.5)
except in the term /bé -t = #F/E. The equation then
reduces to

inh x KE
F(K" Sl _) :-_—
cc»shxq-eX 1 g7

in which, as before, x = € /kT. Substituting into Eq.
(3.192), we have for the susceptibility

_P_F/E -1 _ 1 X 1
(2.5.10) X “ET O/ VA28 2X _ .\ 7
K _(eex . 3)

We see from Eg. (2.5.7) that the denominator of the first
term vanishes at the Curie point, giving Eg. (2.5.10) the
general form of a Curie-Weiss law. To cast it into the
usuval form we expand in powers of (T - Tc). A tedious

but straightforward calculation gives for the susceptibility

fE(XC} rIIC: 1
(2.5.11)X=m [1‘f1(XCJ+T_TC+...] —7_
where X, = €/kT,, and

2X%
£.(x) = x e -3
o (522)
2X 2x
(e” - 1)(e " + 3)
f{x) =
2 8x e?x

The remaining terms, being proportional to (T - Tc)/TC,
are small near the Curie point, and in fact Eg. (2.5.11)
is a good approximation to Eg. (2.5.10) over a fairly wide
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range of temperature so that Eg. (2.5.11) may be used
for comparison with experiment. In carrying out this
comparison the correct procedure 18 undoubtedly that which
1s used in ferromagnetism, namely, to assume that the
small curvature of the experimental 1/ X - T curve near
the Curie point is due to correlation effects neglected in
the simple model so that the value of the Curie constant
appropriate to the model is that determined by the straight
portion of the 1/;K - T curve, which sets in 30° or so
above T,. The model, being ad justed to give this Curle
constant, will then predict the extrapolated straight
line near TC rather than the experlimental curve. This
is the best that one can hope to do as long as there is
no refinement of the model which would enable it to follow
out the course of the actual curve by taking into account
the correlations of polarization between adjacent unit
cells.

In our discussicon of the Mazon-Matthias theory,
we found that the experimental susceptibllity of ceramic
BaTi0, above the Curie point is well reprssented by the

5
empirical equation

25.9T,
X - T - T,

with TC = 3?9OK. Roberts (R7}2 has compared the experi-
mental work of six different investigators, consldering
the correction for porosity of the ceramic, and has con-
cluded that the best present value of the coefficient for
single crystals is 31.4. The constant term, if it ex-
ists, cannot be much greater than unity. Thus, we have

f.(x.)
jg(%_?%7?7'= 3.4, (2.5.12)

2 I am indebted to Dr. Roberts for an opportunity to read

this manuscript.
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Maximum polarization at low temperature. From
the previous Egs. (2.5.8), (2.5.9) the maximum polarization

ig gilven by
{(2.5313) P. = _T_j7??' v 1 - K

In order to eliminate the unknown s, we construct a
dimensionless expression which ig a measure of the amount
of polarization energy per unit cell compared to kT,:

o o
va _ v ﬂe _ K? . xc(1 - K7)
KT, KTo 2 (1 g2 ALK
(2.5.14) 2%
a xc(e Yoa 1)
-2 -Fy ) 2x 2X
o # (e ¢ +3)e ©-1)
2 glx,)
VSRRV

Here we have used the relation

The function g(x)} 1is defined by

J-t-.‘a':(e’(_)X + 1)

Hows)(e™ - 1)

g(x) =

(e

An experimental value of Egq. (2.5.13) may be

obtained from the measurements of Merz (M7)}. He finds
Pmax = 15.6 X 10_6 coulombs/cm2 = 4,68 x 10h esu.

Therefore we have

2 _q 2
(2.5.15) Fm _ (4 x 1078 x u.68° x 10°
kT, .38 x 10710 x 393

= 2.59 ,
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Here we have used the experimental transition temperature

3939k for T, instead of the value that fits the

experimental susceptibility above TC. In this case the
difference 1s relatively unimportant.
We now have another relatiocn for the determina-

tion of constants;

g (%)
S = 3529-= 1.30 (2.5.16)

Comparing this with the result from the dielectric constant
above the Curie point, we have the relation

h(xc) = EEEEZ; = 3 xil:;o = 12,1 (2.5.17)
From a graph of h(x) we find the value
X, = 2.0
Using this value we find that |
1.30_ _ g.3. (2.5.18)

1 . 3
70 77T T alx,) -

As in the Mason-Matthias theory, the susceptibility above
T, and the maximum polarization depend in the same way
on the quantity & (1 - £Y) so that we have not yet
enough information to fix 4 and YV separately. We
note that the value of X found is very inseniitive to
the experimental data since h(x) varies as e X/éhxe
for x > 1. This means that any future lwmprovements in
experimental accuracy will have a negligible effect on
the value of € , although refinements in the model could
of course effect ¢ somewhat more. Without a rather

drastic change in the model, however, we conclude that
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any electronic theory that predicts experimental behavior
even gualitatively like that of BaTi_O5 must have the
initial levels separated not far from MKTC.

The distingulshing feature of the theory devel-
oped here 1s that one odd level (which symmetry arguments
show 13 necessgsarily triply degenerate) iles within a few
kT of the ground state. Conceptually, thlis theory thers-
fore resembles somewhat the van Vleck-Frank theory of
paramagrietiam.

The electronic model can account quantitatively
for the observed dielectric constant at high temperatures,
the magnitude of the polarization at lew temperatures, and
the entropy change accompanying the transition to the
polarized state. Difficulties of the type mentioned in
comnection with the Mason-Matthlas theory do not occur.

It 18 not possible at present to tell whether the rate at
which polarization sets in below the Curie polnt is gilven
quantitatively by the model becauge this 1s greatly affect-
ed by the tetragonal distortion of the crystal, but esti-
mates based on elastic constants of the ceramic materisl
indicate that there is no difficulty here. Measursments

of the elastic constants Gy q2C 5sCyy of single-domain
crystals would enable an exact check to e made.

A few numerical detalls may serve Lo glve a
general plcture of the behavior of the electronic model.
The initial level separation, as alrsady menticned, 1s
fixed not far from hch = 0.1% gv., where TC = 120°C =
3939k is the Curle temperature. This value 1s quite
insensitive to the experimental data on Curie constant
and strength of spontansous polarization. In the polar-
ized state, the mixing of the ground state ¢ , ond the
excited state ¢ . 1is not complete; the ground state

1
goes over into a linear combination

tPa = ¢O cos € + ?3 gin O,
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with & about 200, whereas complete saturation, approach-
ed in the 1imit of infinitely strong internal fields,
would correspond to € = 45°. From this, one finds that

the mean dipole moment of the unit cell in the spontanecus-
1y polarized state rises to only about 40 percent of the
saturation value. It 1s for this reason that the dielectric
constant at low temperatures for fields in the direction

of spontancous polarization is still abnormally large, of
the order of hundreds, and the experimental hysteresis

loops (M7) show the polarization rising considerably above
the spontaneous value when a strong supporting electric
field is applied. Although the magnitude of the spontaneous
polarization (about 16 microcoulombs/cmg) is quite im-
pregsively large from & macroscoplc point of view, this
corresponds to a dipole moment of only about 3 x 10718

esu per unit cell, of which probably not more than half

is due to the mixing of electronic states, the remalnder
arising from polarization of Ba ions and nuclear displace-
ments. From an atomic point of view, therefore, the elec-
tronic regrrangement is not drastic, corresponding to motion
of one electron through less than a tenth the length of a
unit cell. It is for this reason that the entropy change
accompanying spontaneous polarization is so small, amount-
ing to only about 0.02 k per unit cell both theoretically
and experimentally.

The magnitude of the interaction between unit
cells remains an unexplained feature even after lengthy
electrostatic calculations of internal fields as described
in Chapters & and 5, which indicate that the Interaction
should be even greater than the classical Lorentz value,
while in order to fit the data with reasonable values of
7, we need a L. F. of not more than 0.5 (J3). In thils
respect the electronic theory 1s in a position comparable
to that of the Langevin-Weiss theory of ferromagnetism
before Helsenberg's treatment of exchange forces. It was
then realized that, assuming interactions of a certain
strength, the behavior of ferromagnetic materlals could
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re welt accounted for, but there seemed to be 1ittle
iustification fer such a gstrong interaction. 1In the

ol

nresent casoe, the difficulty ls 1n explalining why the

.

it 1iz. The same Jdif

Faly
i

¢

interaction is as weak a culty is

found 1n other trealments of dielectric propertics of
crystals and in other ailempts to exvlain the properties

of Baf‘O Mott and Gurney and others have concluded that
the achd' Interactions in cerystals are much weaxer than

cne would sunpose from clectrestatic arcuments. A numier

of effects which tend to weaken the interactions have been
discussed, bub none 1s conclusively demonstrated as adequate

to the need.

The fact that, strictly speaking, the nolariza-
bility matrix ¢ as defined in Section 5 camnot be diagon-
al. as azsumed in the calculations there, should be kept

Inmind. In fact, the great stabllity of the T"LO5 com-
plex shows that there are directed valence forces, and

onc cammot simply add polarizabilities as e. g., in

NaCl. The latier completely dissoclates in solution, while

the TiC, stays together. These considerations may also

=

) e
help Lo ciear up the similar difficulty encountersed in
ry.

the Slater-Devenshire theo

There are zeveral facts whicn may be cited as
indirect evidence for the electronic theory. The result
noted in Section .4 that the Curle temperature depends
Drlmar_;y cn lattice size rather than on the combination
of vressure and ionic radil that produce that slize,
Matthias' results about the occurrence of BaTJ.O5 ferro-
electricity, and the depolarization of crystals by infrared
radiation, ail point in this direction. A further guali-
tative point in favor of the electronic theory is that the
behavior of BaTi0, is so radlcally different {rom that of
Tourmailne and otﬁer pyroglectric substances, for which
there 1s 1little doubt that movement of iong 1s the cause
of nolarizaetion. 1f one defines pyroelectriciiy as a
cordition in which a change of temperaturc causes a change

in the charge distribution within a unit cell, then
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ferroelectricity is merely an unusual example of pyro-
electricity. However, the fact that BaTiO3 resembles

other pyroelectric bodles so 1little shows that thsre must
be an important difference in the basic mechanisms. It
seems hardly likely, for example, that the very rreat
difficulty of flipping the polarity of tourmaline, as
compared with BaTiO3, is only accldental.

Fortunately, there are a number of experiments
that can easily be performed and that would provide con-
clusive evidence as to which type of theory is correct.
The most decisive ones would be & neutron diffraction’
study to determine unambiguously the atomic positions of
Ti and O below the cublic-tetragonal transition, and a
determination of the infrared absorption spectrum, which
should reveal a line at about 10 microns, corresponding
to the initial level separation of 4kT,. Measurements
of the elastic constants of single crystals will also
enable one to determine whether there is guantitative
agreement on the sharpness of the cubic-tetragonal
transition.
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5.1 General relations

The history of attempts to explaln the action
of Rochelle salt in terms of an atomic model shows the
great value of transcribling the experimental data Into
a phenomenoclogical model before considering detailed
mechanisms, and conversely of transcribing any particular
mechanism into a thermodynamic model. Reasons for this
are that one obtains a plcture of those features that
are independent of any particular mechanism, that the
regulirements of a mechanism being investigated are clear-
1y stated (the interactiion theory of Mueller shows that
this is not a trivial point), and that the deductlion of
various results that can be directly compared with ex-
periment is thereby made more systematic in principle.
However, such things as susceptibllity, specific heat,
and magnitude of spontanecus polarizaticn can also be
deduced directly from a model, and the amount of manipu-
lation involved 13 often less than that encountered in
the thermodynamic approach, depending on mathematical
detalls. We have therefore not deprived ourselves of a
more efficlent method of exploring the consequences of
different models by postponing the thermodynamic die-
cussion until now.

Various models may be discussed in terms of that
energy function G(T,xi,Pi) f'or which the independent
variables are temperature, polarization, and strain. It
.3 then defined by the equations

‘G _ ’6 26
R T A B 2

2

70
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G 1is determined to within an additive constant by these
relations; therefore, 1f by any means we can construct a
function satisfying them, it must be the correct free
energy function. In the form of the interaction theory
briefly described in Section 1.2, the relations between
Pi’Xi’Ei’Xi are linear, and so G must be, in that
approximation, a guadratic function of Pi,xi. Nonlinear
effects arising at strong peolarizations may be described
by adding to G further terms proportional to Ph,Pé,...,
and these terms determine the magnitude of spontaneous
polarization. ‘

The free-energy function G(T,xi,Pi) is the
most convenlent one for the description of procesgses 1in-
volving constant strain (clamped crystals). In the case
of a free crystal, for which the streeses Xi are zero,

it is more convenient to define a new function

6
A(T,X;,Py) = G - 12;1 x Xy (3.12)
with the properties
72A A A _
PR b A 7P, ~ Fi (5.13)

Further transformations can be carried out to glve other
thermodynamic potentials in which the independent varlables
include the electric fields rather than the polarization,
the entropy rather than the temperature, internal fields
rather than macroscopic oneg, the part of the polarization
due to a particular atom rather than the total polarization,
etc. Most models will give one of the latter types of
function directly so that transformations of type (3.12)
must then be found before we have a free energy function
involving only experimentally measurable quantities.

An example of a way this transformation can be
worked out will be glven for the case of the electronic
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theory discussed in Section 2.%. From the partition
function found there, we can define a free energy function

G' = - NXT log 2(cosh bx + & %)
which satisfies the relations

261 _ . 26
(3.14) aF = " Fer aT S

in which F angd Pe are internal field and part of the
polarization due to mixing of electronic wave functions
respectively. The "theoretical" quantities Pe,F are
related, according to our internal field assumptions of
Section 2.5, to the experimental quantities P,E through
the linear unimodular transformation

(3.15) [P\ 1 Y ‘ 'Pe P, (1 -7Y) -\ [P
E/ -F (1 -gY)] \F F VA4 1 /\E

From these relations we find the function G(P,T) as
follows. We have

76!
‘2—F2P8=P“}’F

therefore
_ 2 _lyp?y 2
(3.16) £ (61 - z7F%) = P
and (G' - L¥F?) is a thermodynamic potential with con-

2
jugate variables P,F. Now let us carry out a Legendre

tranaformation in which we solve Eq. (3.16) for F(P)
and use this value to express
1

(G - 571?2 + PF)
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as & function of P,T. We will then have

—;%(G' - SYF? + PF) —F = E + £ P,

so that finally

25 (6! - £YFP L PP - FAPF) = B,

and the desired thermodynamic potential is

G(P,T) = G' - LVF? + FF - LA P°
= G!' + %(PE + PeF) . (3.17)

The added terms represent a lLegendre transformation and a
correction for the electrostatic interaction of the unit
cells, which is counted twice when we multiply the free
energy of a single unit cell by N.

For the present model, Eq. (3.16) has the form

N #°  sinh bx ~
Y o+ P = F=PF
; cogh bx + e

which cannot be solved explicitly for F Dbecause of the
relation

We may, however, expand in powers of F and P for the
case that the internal field 1s weak. This will give the
behavior of the model above the Curie point and for a

very short distance below T,. A tedious calculation glves
the result
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G(P,T) = -NkT log 2(2¢c - s) + (g ' —/g)Je-pQ _ “"D"HPh .
hg
where
c = Cosh X, s = sinh x,
2
_ N ~ S
g =Y+ 3 -3
Il o
N A 1 - 8¢ + ¢C S
h = X - = {0
z€”’ (2c - 8)° 2c - ®

Above the Curie point, the relation between P and E
linear for weak fields, and the susceptibility is then

just the reciprocal of the coefficient of P2/2 in G:

_B__ o _ 1 X _ 1
18) X =g= 755~ FO - K- T00 7

where

f{x) =

N,A/?

Then the Curie temperature is determined by

- _ €
f(xc) = K, Xo = ch
and the Curie constant is
kTS
(3.19) C=1um (T -T,) = —F—
T%TC N s ﬁ“ fWXC)

Eqs. (3.18) and (3.19) are the same relations as were
derived previously directly from the model.

is
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3.2 Speclfic Heat Anomaly

Using Devonshire's asgumption that the 1linear
dependence of the reciprocal susceptibility w' above
the Curie point may be extrapolated below this temperature,
one can account for the relation (1.44), which was noted
before as an unexplained experimental fact. If we write
the free energy for zero stress in the form

A(P,T) = AJ(T) + L w'(T)P® « £(P%)  (3.21)

where AO(T) represents the free energy associated with
thermal vibrations and f(P2) is an unspecified function
containing terms of order Pll and higher, we have for
the entropy, using Eq. (2.22),

0
o (38),- e B
P

2T

where C 1is the Curie constant. The entropy difference
between the polarized and unpolarized states of the crystal
18 given by

- 3) (3.22)

which is just Eq. (1.44). Blattner and Merz (B6) have
cited this relation as evidence for the correctness of

the internal field theories mentioned in Section 1.4, but
we see now that it also follows from much more general
assumptions independent o6f any specific mechanism. Grant-
ed these ggsumptions, discussed below, this means that any
medel which falils to predict the correct entropy change
must also fail to give simultanecusly the correct polari-
zation at low temperatures and susceptibility at high
temperatures. Conversely, if a model gives the latter

two quantities correctly, then it is sure to give also the
correct specific heat anomaly so that such agreement camnot
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be claimed as an independent confirmation of the theory,
as was done erroneously before (J3).

We may also deduce thermodynamically a generali-
zation of the formula (1.k41) for the specific heat ancmaly
(cE - cP). The specific heat i1s given by the temperature
derivative of the entropy:

CP:T(%%)P’ CE=T(‘§%’)E

From the above value of S, we find Cp = TdSO/dT, and
the specific heat anomaly is
2
_ _ - T dpb
(5.23) (cg = ¢p) = = 5C ar
The energy increment assoclated with this is not - %/?Pe

as In the internal field theory, but is

T
c 2
: ap
ec5 T(dT)dT
T

If the polarization comes in very rapidly below T,, Wwe
may replace T by Tc in the integral, leading to the
01ld result. The specific heat anomaly is proportional
to -dP°/dT, as in the simple intermal field theory
described in Section 1.4. In the case of a lLangevin-Weiss
theory based on rotating permanent dipoles, the intermal
field constant is equal to TC/C, so that Eq. (3.23)
then reduces to Eq. (1.41). However, the validity of
BEq. (3.23) does not depend on whether TC/C can be in-
terpreted as a lorentz factor. As the temperature de-
creases and P° increases, the specific heat anomaly
drops below the value that would be expected on the bagis
of Eq. (1.%k1).

The results of this sectlon show that two of the
relations predicted by the Langevin-Weiss theory are also



3.3 FIRST~ AND SECOND-ORDER TRANSITIONS 77

true under very general conditions so that thelr experi-
mental confirmation is not in itself evidence for either
the existence of rotating dipoles or the interpretation

of T,/C as an internal field factor. In the electronic
model described in Section 2.5, neither of these interpre-
tations is even approximately correct. Our results are,
however, not rigorous but depend on the particular form
Eq. (3.21) assumed for the free energy function. That
expression lacks generality in two respects: We have
assumed that w'(T) is glven to sufficient accuracy by a
lincar function of T; and the temperature dogs nol aspear
in the term f(P°). The first assumption is justified by
the experimental fact that a Curie-Weiss law holds for
susceptibility above the Curie point and is true to the
extent that the graph of reciprocal susceptibility versus
temperature is a straight line. Measurements indicate a
slight curvature near the Curle point, so errors of the
order of & few per cent from this linear simplification
of w' wmight be expected.

3.3 PFirgt- and second-order transitions

As we have already seen in the discussion of the
Devonshire theory (Section 2.2), the sign of the coefficient
of Ph in the free energy function determines whether the
phase transition is of first or second order. We assume
here that we have to deal with a second-order change s0
that f(PQJ is positive for small polarizations. The
attempt to correlate electrical properties on both sides
of the Curie point in terms of a single free energy function
makes it almost necessary to assume this because the polari-
zation above the Curie point 1s given by

E$M=W-‘P+2P?f
2P

2

J

3ince the polarization will be weak unless excessively
strong fields are applied, we can replace f(Pg} by
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1
g P'/4, which leads to the relation

N 1
E = I.WI + HE]]PQ I P

o

If now _§11 > 0, corresponding to a first-order tran-
giticon, the added term represents a nonlinear dielectric
behavior which causes the susceptibility P/E to increase
as the polarization is Increased, a behavior that would he
very difficult to understand physically. In any model
that has been proposed thus far, the terms of order P
and higher arise physically from a saturation of the polari-
zation, and their effect 1g always to cause the polarization
to drop below the value given by the linear relation which
holds near zerco field.

This argument does not say that the physical
crystal camnot exhivit a first-order transition; that
is purely a matter for experiment to declde. What 1t does
show is that a thermodynamic treatment of the type pro-
posed by Devonshire, in which a single anaivtical form
for the free energy function is used to describe behavior
both above and below the transition temperaturc, probably
cannct be made consistent unless the transition i1s taken
to be of sscond order because in that theory there are
necessary connections between the order of the transition
and the type of dielectric nonlinearity exhibited above

i

the Curie point.

Thus, if we wish to treat ferrcelectric Curie
points as first-order, we should go back to the usual
conception of the nature of a first-order transition as
caused by the more or less accldental crossing of two
entirely different free energy functions representing the
two phases, each of wnich can persist a short distance
into Lhe temperature range where the other is the stable
form, giving rise to hysteresis effects. With this we
would lose all of the relations connecting cuantities on
different sides of the ¢ritical point, which made the



3.3 FIRST- AND SECOND-ORDER TRANSITIONS 19

proposed type of thermodynamic approach so attractive
and useful,

On the other hand, the work of Mueller has amply
demonstrated the essential correctness of this type of
treatment in the case of Rochelle salt, and the approxi-
mate experimental confirmation of Eq. (3.22) for all three
clagses of ferroelectrics indicates strongly that it 1s
of universal validity, (According to the assumptlions that
go into the derivation of this relations, we do not expect
it to be satisfled more closely than within a few per cent,
but even an order of magnitude.agreement of the two quanti-
ties would be a strange colncidence from the gtandpoint
of a theory using two different free ensrgy functions.}

There is a second prediction of this theory re-
lating behavior above and below the Curle point which has
also received experimental confirmation. This concerns
the measured susceptibility just below the Curie point.

In the determination of gusceptiblility, electrodes are
applied to opposite faces of the crystal, and the capaci-
tance of the unit is measured with an applied alternating
voltage. The steady spontaneous poclarization thus escapes
detection, and what is measured is the "incremental
susceptibility” ) {7) = dp/dE. Immediately below the
Curie point, where terms of order P® and higher in A
are not yet important, we can derive a simple expression
for X {7). Prom the relation

2A

!
E=<28-wp+ & P
J 11

we obtain

while, setting E = 0, the spontaneous polarization is
determined by
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'
W'+§ P2=O.
11

Combining these, we getl

(“)__1 !___C
(7= = sy

C

Above the Curie point, we have already noted that

-X(+J 1 _ __C
= G = .
| w T -‘I'C

Therefore, the incremental susceptibility Jjust below T,
should satisfy another Curle-Weiss law, with a Curie
constant just half that observed above T,. Wul (We)
has shown that BaTiO3 obeys this rule quite accurately.

These results give us great confidence that
the Mueller-Devonshire type of apprcach 1s correct, and
therefore, since Merz (M7) has found that the polariza-
tion increases less rapldly than the first power of the
applied electric field above the Curle point, the tran-
sition must be a second-order one,
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4.1 PBrrors in simplified theories

In each of the theories of ferroelectricity con-
sidered above, the predictions of the model were not de-
termined as reliably as we would like because of uncer-
tainty as to the internal fields effective in polarizing
the ions. Difficulties already mentioned in Chapter 2
include possible shielding due to overlapping of elec-
tronic wave functlons, mechanical forces that may also
induce polarization as in the oxygen displacement theory,
correlations between instantaneous polarizations of ad-
jacent units, and the fact that fields should really be
calculated at displaced pogitions in the lattice.

The part of the polarization due to displace-
ments of ilons is usually treated by methods that are much
too crude to be realistic, but it i1s probably true that
the polarization due to electronic distortion is taken
into account more accurately. However, even here we note
that the assignment of definite electronig polarizabili-
ties to individual ions is possible in principle only
when the crystal 1s strongly ilonic. Polarizabllitles
calculated on the basis of a closed-shell electronic
structure would be expected to be considerably In error
when the wave functions of the outer electrons are dis-
torted only slightly; this critical dependence on the outer
electrons ig the reason why the Ferml-Thomas meodel cannot
be used to estimate polarizability without elaborate re-
finements (H5). Thus, & given ion when placed in differ-
ent chemical compounds will exhibit different polariza-
biiities as the ionic character of the crystal changes.

&1
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One would expect this effect to be especlally pronounced
in negative ions such as oxyegen, and it has already been
noted that the cbserved refractive indices of crystals

containing oxygen indicate that its electronlc polariza-
billity varies by a factor of two in different compoundg.

To these consgiderations we must add the fact
that only dipole moments of the ions are conslidered in
usual treatments. Actually, the ions are of finite
size essentially equal to their spacing, and therefore
egach lon sees a fleld that 1s far from uniform. The re-
sulting induced guadrupole and higher order electric
mowents in turn produce fields at nelghboring ions which
affect thelr dipole moments and therefore the observed
polarization.

We see that a considerable amount of theoretical
work would have to be done before we would be In a position
to make relisble interpretations of the experimental facts.
However, certain aspects of present theoretical work will
certainly retain thelr importance as the starting-polnt
from which various corrections are made. The problem of
calculating electric fields arising from a lattice of
dipoles or higher multipoles is one whosge solutions will
always be needed. About elghty years ago Appell (A3) gave
a very interesting treatment of this problem in which the
potential function was regarded as a three-dimensiocnal
generalization of an elliptic function, many of the funda-
mental properties of ordinary elliptic functions having
three-dimensional analogs which correspond to useful pileces
of physical information. A method for numerical evaluation
of the fields at specific points iIn the lattice wds later
developed by Ewzld (E2); this method 1s described briefly
below. Most of the internal fileld constants which have
been used in treatment of dlelectric properties of crystals
have been obtained by the Ewald method. 1t has g disad-
vantage in certaln problems because the determinstion of
the field at each point in the lattice is a gseparate cal-
culation. The recent observation of Cohen (C5) that one
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can incur considerable error by using the fileld at the un-
displaced position of an ion as an approximaticn to the
field at the displaced position (thls would be even more
true of the components of the fleld that induce higher
order moments) makes it appear likely that future theo-
retical treatments will need values of the field through-
out certain reglons of the lattice rather than at isolated
points. In this chapter we develop a method of calcula-
tion based con the fact that in a crystal of sufficiently
high symmetry the intermal field is the solutlen of &
simple boundary-value problem and can be expressed
throughout the lattice 1in terms of & rapidly converging
expansion in orthogonal functions. In Chapter 5, we
describe a method of treating the polarization in a crystal
that was developed independently by Slater (81) and the
wrliter (J3), and discussed by Keenzlg (K6).

As we have already noted in Section 2.3, the
forces tending to polarize an lon or other structure may
not be wholly electrical in nature but may depend on
partial overlapping of slectronic distributions of adjacent
ions (cf, Mott and Gurney, Electronic Procesges in Tonic
Crystals) as well as on other quantum-mechanlcal factors,
and this ts possibly the reason why in the interpretation
of experimental dielectric constants one is led so of'ten
to ascribing smaller values to the Lorentz factor &
than would be expected from electrostatic considerations.
However, for each particular type of crystal the exlst-
ence of such a discrepancy can be demonstrated only after
the electrostatic calculaticns have been carried out, and
they form a natural starting-point for any digtcussion of
dlelectric properties.

L.2 The lorentz factor matrix

It 1s evident that 1n general each component of
the effective fileld seen by ion A will be a linear func-
tion of each component of the polarization due to each
type of lon present, with coefficients which are constants
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determined by the geometry of the structure. The proper
generalization of the Lorentz factor is therefore a matrix
whosge dimension i3 three times the number of ions in a
unit cell,

To illustrate this concretely, consider the case
of the BaTiO§ structure. Here there are five ions per
unit cell: Ba, Ti, Ox’ Oy’ Oz’ where OX is the oxygzen
ion in the x-direction from the Ti, etc. Each of these
ions, together with other translationally equivalent ones,
forms a slmple cubic lattice, and the inte'nal field seen
by any lon may be expressed ags a superposition of the
fields due to these five interpenetrating simple cubic
arrays of dipoles. 1In order to build up the internal field
at each ion site in a BaTiO3 crystal, we need only calcu-
late the field of a simple cubic array of dipoles at a
few points within the unit cell, and then comblne these
flelds in the proper way.

We find that it is necessary to have the field
at the following positions, as indicated in Fig. (%.1),
when the dipoles are all polarized in the z-direction:

PO = (000) (corner)

P1 = (%%%) (center of cube)}

P, = (%O%) (center of xz face)
P3 = (%%O) (center of xy face)
PL = (%OO) (center of x edge)
P5 = (OO%) (center of z edge)

If each dipole has moment & , &and the volume
of the unit cell is 35, the polarization of the simple
cubic array is P z;«/a5 and the field at each of the
above points is some factor times P. We see from the
symmetry that the field at each of these points is in the
z-directicn; as a consequence the Lorentz factor matrix
will split into three matrices of dimension 35, each re-
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FIG. 4.1

referring to one of the coordinate directions. We denote
the field at the i'th pesition in this slmple cublc array
of dipoles as

Fy = ﬁip

(F0 ig the field at (000) minus the field of the dipole
at that position). The dimensionless factors (ﬁ’o ...;f5)
will be calculated presently, but first we wish to show

how they are combined to form the Lorentz factor wmwatrix

for the Ba‘I‘iO5 crystal. Keeping all polarizations and all
internal fields in the z-direction, we denote the polariza-
tion due to Ba ions as PBa’ etc., while the internal
fleld seen by the Ba ion will be FBa’ etc. Then by

inspection of Fig. (L4.1), we can write down the relations
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Foq = PoPpa * /1 Bpy + ’Jefpox ¥ Poy) *f‘%Poz + E

Fry = £ Fpa + FoPpy + /JJ-L(POX * Poy) +/"051302 + E
_ g
Fox = foPpa * FuBp + Py - /«'73PO v fpPy + B
X N z
Fo = FoPpy + APpy + ’ﬂBPOx " ﬁOPOy . ﬂQPOZ + B
Po = FsPpa * PsPpy + APy + Bg )+ foPy + E
; X ¥ z
or, in matrlix notation,
/
Fha A ~ PRa !
Fops A o P A s\ | Py |
Fo, |_| 7% 4 %P Fo | * B
Fa ,62;6’.4;?5/50?2 Fa k
¥ ¥
Fo \/555’2/2’5’0 Po/ \1
2z Z
! Z Z

We note that the matrix is symmetric; that this
must always be the case is seen from the fact that ion A
15 necessarily located in the same way relative to the

lattice of
of type A

polarization and field; for the x and ¥

ions of type

B, ag B 18 in the lattice of ions

. All this refers only to the z-components of

components we

have similar relations with slightly different matrices:

FBa

/%@559‘?2?’2
A b s A
Ay Py by ¥, 7,
Fo b by 55
F%?%a ﬁg F;’db
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A VAN 1

Foy by By b P Ay Py 1

Fo | = A A 7 Fo_ | + Byl

Foy Ay A P0y 1

\Foz "42/1;'&5’42/0 Yo, 1
y o\ ¥

In this case, the Lorentz factor is & matrix-
vector. If

1 0
0
U= 0 1
o) 1 0
0
1 0 0
0 0 i

is the matrix that interchanges x and Yy, then we have

By =UEU"", ete.

In a more general crystal lattice not contalning as many
symmetry planes, 1t would not be possible to separate the
equations for the x,y,z components in this manner.

We see that, in the approximation where each lon
gives rise to a dipole field but has no quadrupocle or
higher order electric moments, the intermal field is given
by an equation of the originally assumed form

F=4: P+E,

provided that the guantities are now interpreted as matrices
whose rows and columns refer to the different iong in a
unit cell. We turn now to the calculation of the constants

Ay
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L.3 Macrosceopic and microscopic fields
The calculation of the internal fields at various
points in & crystal is commonly done by finding the con-

tribution due to a charge complex at an arbitrary point
and summing this expression over all lattice points. This
procedure is cemplicated by the fact that the sums en-
countered are only conditionally convergent; for example,
the series 22 r 7 taken over all lattlce points is ab-
solutely convergent only for n > 4(E1). Ewald (E?) has
developed a method for converting such sums into rapidly
convergent ones. There 1s one classical case iIn which
one can easily calculate the sum; this is the case of the
fleld due to & simple cubic array of dipoles at a point
cn a three-fold symmetry axis of the lattice. The z-
component of the [ield of a single dipole of moment «
pointing in the z-direction is

where Xx.y,z are coordinates of the dipole relative to
the point 0 at which the field is sought. If the lattice
has a three-fold symmetry axis passing through 0, then
there are two cother dipoles at peoints xty'z!'; x"y"z",
where

X = - [ = le’ }_. = Z] o X"’ Z — X' = 3i"’

and the total contribution from these three dipoles van-
ishes. Therefore, if we describe a gphere of any {inite
radivs R about the point 0, the z-component of the
field at 0 due to all the dipoles within the sphere van-
ishes and the total field is just that due to the material
outside. By choogsing R to be of macroscopic dimensions,
we can apply macroscopic theory to the outslide material,
which may be assumed to have a uniform polarization

P =/4/a5, where a 13 the lattice constant. The sphere
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then becomes a cavity in a homogeneously polarized di-
electric and by solution of a simple boundary-value prob-
lem we find the internal field at 0 to be the Lorentz
value F = LqrP/3 + E.

Aside from the fact that thls simple method works
only when the three-fold symmetry axis is present and is
therefore restricted to points on cube diagonalsg of cubic
crystals, one may object to the manner in which macroscoplc
and microscopic polnts of view are combined in treating
the effect of distant material and/or demagnetization
factors, especlally since the usual definitlons of macro-’
scoplic fields 1n terms of microscoplic ones lead to further
convergence difficulties if one uses a point charge model.
To illustrate this by a simple example, we recall that the
macroscopic vectors E,B are customarily defined (V3)
as space averages of the corresponding microscoplc ones,
e,h, while the macroscoplc displacement D 1s defined
by D=E + barP. Let us apply this definition to the
contribution to E of a cubic array of dipcles of moment

# = 2qd, compoged of polnt charge + q separated by a
distance 2d small compared to the lattlce spacing a.
The resulting macroscopic field EZ is then

1
E_ = qu dv
7 8.3 z

where the integral is taken over one unit cell. 3Since

the actual field 1s a superposition of the fields due to
the different dipoles, however, this integral taken over

a given unit cell must be equal to the integral over the
entire crystal of the field ez' due to the dipole in

that cell. Consider the unit cell surrounding the dipole
at the center of a spherical crystal of macrescoplc radius
R, and represent the dipole by two point charges separated
by a distance 2d { R. Then there exists an expansion

of the form
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[w ]
25 A, (ﬁgﬂ) nPn(cos B), 1r< d\
n=0

e) = oo

i an (%)H.HPH(COS ay; r)d?
n=2

/
Texrms with Bo’ B1 do not appear. All terms with nyit,

however, vanish when integrated over all angles, and the
desired integral reduces to

_ y7ra’
S eédv = AO ;

A, 1is just the field at the center of the dipole:
A, = —eq/de, so we get

The macrogcopic field at the center of a unifcrm-
ly polarized crystal appears to arise entirely from the
interior regions of the central dipole, and had we assumed
true polnt dlipoles with no internal structure, we would
have found zero for the integral if the integration were
carried out over angles first, while it would diverge if
carried out radially first. On the other hand, we may
consider the field of the central dipole as the super-
position of the coulomb fields due to the charges + q,
and by belng careful about the fields at the surface of
the crystal one again obtains the above correct result.

In general, space averages can be correctly calculated
from a point charge model, but if we use a point dipole
model, the results are ambiguous. In order to avoid
guch troubles, we wlsh to find new definitions
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-»
where VO has the lattice periodicity and E 1s the
macroscopic field. Then the component of E in the =z
direction ig given by

=] a
E = — S - (ﬂ)dz s e S e,dz (4.31)
O 0

where we integrate along & straight line in the z-direc-
tion that does net pass through any singularities of the
field, and the length 1 one lattice periocd. VO then
contributes nothing to the integral, and from the static
condition curl (e) = 0, the value of the integral is the
same for any such path.

An independent definition of D 1is obtained
from the macroscopic induction law, curl H = b/c and
its microscopic analog curl h = é/c; applying Stokes's
theorem to a plane surface S passing through the crystal
but not intersecting any dipoles, we find that the line
integral of H arcund the entlre crystal, which is an
experimentally measurable quantity, is

> —¥ —>
__8_'__1_48+
S;H - dg = c Dn = = e . e - ds

The component of D normal to the surface may therefore
be put equal to the average of the normal component of
the microscopic field over the surface. In the case of
a crystal, the average may just as well be taken over the
cross-section of a single unlt cell, giving us as our
definition of the z-component of D,

i ' a a.
DZ = ? S S ezdxdy
] o]

From the condition div e = 0, the integral is independ-
ent of which surface 1s chosen as long as 1t is not dis-
placed past an isolated charge. It may be dlsplaced past
a polnt dipole without altering its value. (This change
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in the definition of D when the surface is displaced
past a charge corresponds to a change in the definition

of P, discussed by Mason ard Weaver ; it need not de-
tain us here as we are concerned solely with point dipoles,
for which there 1s no ambiguity in the definitions of P

and D.)

L.4 Symmetry properties of the i

Let us see how much can be said about the values
of (ﬂo - 55) without actually calculating them. In
the first place, we know from the work of Lorentz that
ﬂo = 4m/3, and since the position P, lies on a three-
fold symmetry axis of the lattice, we expect on the basis
of the above arguments that A , = 4m/3 also. There are
two more relations between the ofther factors which may be
derived by considering the sodlum chloride structure, in
which each type of ion forms a face-centered cubic lattice.
The sodlum ions may be divided into four classes, each of
which formg a simple cublic lattice; for example, the lons
labeled a,b,c,d in Fig. 4.2 may be taken as repregenta-
tive of the four classes. Now the field seen by ion (a)
due to polarization of the other sodium lons may be ex-
pregsed in two different ways. Following our previous
method, we have

Fo = FoPy + Fahy +55Pc + PPy

On the other hand, each sodium ion i3 really related to
the crystal In the same way as every other one, and each
lies on a three-fold symmetry axis of the lattice of
godium ions, therefore

TThe Electromagnetic Field, Univ. of Chicago Press, 1932.
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where P 1s the total polarization due to sodium ions,
and

Comparing these expressions, we have

2f, v fy = 3y = 4. (%.41)

FIG. 4.2

Consider now the field on the chleoride icn (e)
due to the sodium dipoles. By the first method we have

Fo1 = FsFa + 1Py *+ £1Pe + A Pgo

but the chloride ion also lies on a three-fold symmetry
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axls of the sodium lattice, 80 the second point of view

gives us
Fo1 =AoF
which leads to the relation

2f, + fs = 3fy = wT . (L.42)

Accepting these results, we need calculate only
£, and £, 1in order to determine the lLorentz factor
matrix completely. However, we prefer to calculate each
of the ,51 separately and use the above relations as a
check on the numerical work.

In setting up sultable expansions of the field
the prime consideration is to get rapidly convergent
series. This 1s done, firstly, be expanding the field
in a region sc chosen that there are no singularities
inside the region, and, secondly, by choosing out of
various possible sets of "normal modes" those functions
which have the greatest resemblance to the actual fields
and which in particular become large as we go toward
those boundaries on which singularities exist. We find
that there 1s no single region which gives rapldly con-
vergent expressions at all of the points desired but that
two different fleld expansions must be used.

4.5 First field expansion

We choose the region R1 indicated in Fig. k4.3,
which 1s a cube displaced by half an xy-face dlagonal
from the usual unit cell, and use coordinates Xx,y,3
measured from the ceriter of Rl’ Since the vertical sides
of this cube are symmetry planes of the potential, we have
the boundary condition

W
<

SN
=
I
o
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On the top and bottom the potential will be con-
stant except for a § -function singularity due to the
dipole of moment 4 1in the center of the face. Thus, on
the bottom face, we have

V(x,y, = ) = 2T & 8(x) §(y).
Furthermore, from gymmetry, the potential is an even func-

tion of X,y and an odd function of z. Therefore the
appropriate expansion is

o= _
V = 2 Amn cos ( eﬂg]x ) cos (%11) sinh (gf Xm2+n2z) .
mr=0

FIG. 4.3

This automatically fits the boundary condition on the
vertical sides and becomes large as we approach the planes
z = + a/2. The constants are determined from the con-
dition on the bottom face:
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wf
c.

S g cor () cos (G) atm (o ) = 2mpica) sty)
aje

"zq Ap Sinh m +n° || cos { Ergﬁ )cos { Eﬂ; a ) cos {'é—ﬂg’-)

S a2

R vl ( Et—:':‘- }dxd;.‘

2 "
m - ﬁ L% =
Animt « B (1 #8001 + 8., ) sinh T/ m Ry

- =T
Jr"l.ﬂ'G 0
X B 1

119 e g ¢

18 1= § o
a { mo” = nc-]' einh m-+n

The series converges exponentially, and is therefore well-
sulted for numerical work. The z-component of the elec-
tric field is given by

' cos (E;ﬂ;m) cos (-%%I) cosh{é—“f mE-x-ngz) f"mE-:-nE

2 2
{1 *E‘mﬂl {1 *'Eno} ainh ™ ¥ m® + 0

B 16 2 E
mn

where the prime indicates that the term m=n= 0 is
deleted. The factors ff1’ﬁb’ﬁ§ afe ?ﬂw foun? from the
values of €, at the positions {Eﬂ,ﬁa,ﬂl, (Ea,n,n),
(0,0,0) respectively.

It is not permissible to set the f?i equal to
the coefficients of ,;jaj in the expansions for e,
at these positions because we have not yet lnvestigated
the values of the macroscopic fields E,D =E + hﬂ}qaﬁ.
Using the definition of D developed above and integrating
e, over the plane 2z = 0, We see that D= 0 in con-
sequence of the vanishing of Abo' Therefore, E = -meaj,

and this must be subtracted from e, to get the correct
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Lorentz factors. (Note that we cannot calculate the
macroscopic E directly from this expansion as the
resulting series diverges; this is another example of the
difficulties inherent in peint charge models. ) The follow-
ing expressions for thefgi are found:

3
1 1
f, = b+ £ e (38,58,0)
85 1
/5’2 = T4 eZ(Ea,O,O)
Ay = LT+ - e,(0,0,0)

A féble of numerlcal values of

Jme + n2
gsinh 17 Jm2+n2
is gl1 that ié needed to calculate these three factors.

L.6 Second field expansion

The remaining,&a may be calculated by expand-
ing the fleld in the region Re of Fig. (Lk.4), which is
a cube displaced by half a yz-face diagonal from the
usual unit cell. Agaln choosing coordinates X,¥,2
megsured from the center of RE’ we find the followling
boundary conditions:

V
F= o= s 5
V = 0,2 = + —%“
On the face x = - a/2, we have, Fig. (k.5)},
IV . .
- —— = 1lim 20d8(y){6(z-€) - §{z+¢}]
J X €-»Q .
2¢g e M
2V

|

2mmb(y)st(z).

LN
P
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Furthermore, the potentlal is an even function of x ang
y and an odd function of z. Slnce the singularities are
now along the x-axis, the expansion which converges rapid-

1y 1=
(o=
. . \ .
¥ = 250 Hmn Cos {Eﬂ%l) glin Lgﬂgz) cosh (%g} fnﬁ+n?)
mre= \ o .

FIG. L.k

The cornstants ﬁmn are evaluated as befors, with
the result:

Ape = ©

o
_ Baru 9! . nso.

Amn - &2 (1 + Enm} fm™ + n° ainh T jﬂF + n°

The z-component of the field 18 now given by

2 cos (BMEY ) gog EEDQ.} eosh (2T f;b+&3'x:

a v 1 "_“-?TE_j- Z Il GOz a

2 72 3 /-H—'— T
= e (v + 5.n.|ﬁ} moo ]"lEI sinh 7 me o+ e
L
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and the factors :311F§:f%:ﬁl are determined by the val-

ues of e, at the positions (0,%&,%&), (0,0,%&), (0,%&,0),
(0,0,0) regpectively. This time the situation with re-
spect to the macroscopic fields is just reversed; using

our "line* definition of E, we easily see from the ex-
pansion of ¢ that Ez = ¢, therefcre D= thﬂ/a3.

™)

FIG. 4.5

{However, we camnot calculate D directly from this ex-
pansion, since the resulting series diverges!) Since
E=0, the g, are glven directly by the coefficlents
of f</a5 in the expansions for e, at the four points.

4,7 Evaluation of series
Collecting results, we now have the following

series to evaluate:

- ¥ 160 i ()% (- )™ c )L
4 2y on + 2 O G| \(eron,
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100
= L]
o a ' N =
ff = — lar & % 2: {-JHCDH g v feg ncmn
T=1 Mr= 1
e [l
o 1 N
A == 161 |z 2 oo 5 ol
Nn=1 e M= § [ I'rom
oo second
& o o N e field
i rer ; ég; “on * é;;1 (=} ) EXD. )
=1 fse o)
. z 4 a 3
ﬁi = 161 1 o EEE Con ¥ ‘*21 Con l
in whilch
C. = n”
mn 1 b
(m® + n%)2 sinh T (m° + n°)3

The fact that f?1,f% are duplicated here plus the relations
previously establighed will provide a zood check on the
(Actually, if we masume that the two serles
given for ;fl are the same, we can deduce already that
ki3 without directly evaluating the double sums;
however, 1t 1s preferable to get a direct check on thelr
consistency by summing each series independently.)

Tt 1s possibls to evaluats ithe twe given serlss
We first evaluate the sum

caleulations.

F?1 =

P ;?1 analytically.

e ()% n
1= E #inhTn

This 18 easily done by contour integration as follows.
The functlon /sin (n) has no singularities in the
finite part of the complex plane except a simple pole of

resicdue ("}n at each integer value of n, and it van-
ishes strongly as n-—*=°everywhere except on the real
sxis. Therefore

min
gin T

Il
glnhn

1 S
eml. .







{m

-—im.

FPIG. 4.8

FIG. bL.g
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where the contour C 1is shown in Fig. (4.6). But the
integrand is invariant under the substitution n -— in:

(in) d (in) ndn

sinh (min) 8in (win) ~ sin (m)} sinh ()

Therefore 4TI 1is equal to the clover leaf integral of
Fig. {4.7) which in turn may be contracted intc a single
loop about the origin, glving the result

1

~4I = (Residue at n

I= yv

We now try to evaluate the two sums:

oo
Do
J:Z (-)™n® KZE () m® 4+ n°
= =

’
! Ju® 4+ n sinhw /w2 4 n°

Conslider first the sum J. It 1s equal to the integral

J =

i S n2 U dn
2mi fa = gin nv
C /’me + n‘2 ginh A7 /m2 + n2 _

with C as shown in Fig. {(4#.8). There is now no pole
at n = 0, but & string of pcles along the lmaginary axls
at

n=+1 m- + k-, k= 0,1,2,..

At n = im, the residue 1s

2
-m_ v m

omim - 1 sinh m7 = 2 ginh mT
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and at

the reaidus 13

" : I
-(mF + K2 (=) m o+ k

ff%g + k2 cosh® ik - 1 =inh T sinh Yl s k?

But this 1ls just the k'th term ln the sum K, so the
integral over the cloverleaf path of Fig., (%4.9) is equal
to

2(J + K) = -2 Res (n = im)

ERE e
sinh mm

" I
J+ K= 2 ainh mm
Comparing the definitlions of K,J we have

e
25 —] {m + En } _ m

=1 > 2 =girnth mar
"l fm~ + ﬂ ginh T + Il '

If we multiply by (-)™ and sum over m, this gives us
T
{ L jl'.ll-r-n[m"& + E‘IIE ]| 2
siMIMW g
e m° + n° sinh T m2+nE =]

The double sum is taken over & reglon symmetric in m

and n so that it is equal to
=%+

2 (- }m-!-%'e

=1 fmg & n° ginh T ;mg + 1°




4.7 EVALUATION OF SERIES 105

Therefore we have the result

Z o }m+rlnﬂ 1

=1 [7 2 [ ' 2k
m- + n° slnht /m +n

Comparing this with the form of K, we have also

L= ]
z {_]m+r1 mE 4 I]L2 1

M=l sk fme o+ n®

We have now evaluated all the sums occurring in
the two expressicns for /A, . They give the results

— o 1 1 4
/4 = KT 16w ('W*TE‘E)=T

(from first field expansion)

b = -16aF ("1_+1_) _ bar
1 BT 2LAT 5

(from second field expansion).

Thus, the two expansions check in giving the same value
to 4, that we anticipated on symmetry grounds.

The summation of the other series, which do not
have alternating signs, ls much more difficult because
the functions which have a residue +1 at each integer
value of n are of the form

WO, 5 -
tanTTn

or some essentially equivalent one. The integrands of
the resulting contour integrals do not then have the
symmetry between sin and sinh that enabled us to sum the
slternating series. This does not prevent numerical
evaluation to any accuracy desired because of their ex-
cellent convergence. Numerical work was done with the
aid of the Smithsonian tables of hyperbolic functions
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and a Marchant calculator, and is summarized in Appendix
I. The results, expressed as multiples of L41/3, ape

Bo=F = EgI_x 1.00000

£y = Egz X 2.03463

(5.71) gy = 5T x-1.06927
£, = %53 X-2.5907
/% = &%E.X 8.1813

The relations 24, +/55 = 5/% = gfi +?55 are seen to be
satisfied to within one unit In the last given decimal
nlace.

Quantities essentially equivalent to the /?i
have been calculated by McKeschan (M11) and by Luttinger
and Tisza (L2), by the Ewald method, and used by J. C.
Slater (31).

It 1s worthwhile to digcuss briefly the relation
between the above method of calculation and the one of
Ewald (E2) since both methods are available for a large
number of other similar problems. The Ewald method 1s
based on transformation properties of the theta function
of modulus = , defined by

T
2 .
6 (T,z) = 2 o0 T+ finz R, (?) 2 o.
=" oo

By means of an integral representation for eihr/p, a
gum of terms _

ZS . elkrn

n 2 Tn

over all lattice points may he expressed as an integral
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with respect to ™ of a three-dimensional theta functlon.
The transformation formula of Jacobi,

o(rz) = [/ e_zg/'r g (l;i , g%g) )

then gives two different series representations of the
integrand, one of which converges very rapldly for small
1, the other for large 7 . By splitting the region of
integration into two parts, T‘(T‘O, T’>-TB, and using
the appropriate series for each part, one can secure

rapid convergence over the entire range of T, and the
expressions may be integrated term by term in terms of
error functions, giving a final representation of the
desired potential as a sum of two rapldly convergent
series taken over all lattice points. The gstatlic case

is then found as the 1limit k-0, and, by forming deriva-
tives, the potentials and field strengths due to various
lattices of higher multipcoles may be bullt up. Repeat-
ing the calculation for a different value of the splitting
point 7‘0 provides a check on the numerical work.

The method used here ig more elementary and less
elegant than the Ewald method, but for the case of Iinter-
est it offers advantages. We need the values of the in-
ternal fleld not at a single point but at several places.
In the Ewald method the evaluation of the field at each
point is a separate problem, while in the fleld expansion
method the field is found throughout a certain reglon.
This may be of importance in carrying out treatments a-
long the lines suggested by Cohen (C5) in which the fields
are needed at all points along certain lines which repre-
gent the loci of possible displaced positions of ilons.
The fieldg at points of simple rational coordinates are
all compounded out of the same set of basic constants
(Appendix I) with different combinations of signs. Thus,
while the field at a single point is perhaps found more
quickly by the Ewald method, the fleld expansion method
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saves time 1f a number of evaluations must be made. The
tables 1n Appendlix I may be useful for numerical work on
other problems similar to the present one. .

A second advantage of the field expansion method
ig that it is readlily modified to find how the internal
fields vary with lattice parameters; for example, in the
tetragonal phase of Ba’I‘iO5 the crystal expands along the
directicn of spontanecus polarlzation and contracts in
the other two directions. This causes & small change in
the ILorentz factors which would be rather awkward to find
by the Bwald methed but is easily evaluated by the field
expansion method.

On the other hand, due to the difficulty of formu-~
lating boundary condlitions, the fleld expanslon method is
simple only in crystals with three symmetry planes and is
therefore practical only for crystal structures of orth-
orhombic or higher symmetry, while the Ewald method is

completely general.
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5.1 @eneral descriphbion of polarization

The expression for internal field in matrix no-
tation

F =fP + E

may be augmented to a closed system by an assumption about
the polarization which results from the internal field at
each ion site. The simplest assumption is that the polari-
zation of the 1'th ion is given by P; =<,F,, where «
is a constant equal to the polarizability of the i'th ion
divided by the volume of a unit cell. This may be written
in matrix form as

P =ap (5.11)

where <« = dlag [« .cinl is a real diagonal matrix.’

]
Then we have

P=¢@P+E)
P= (1 -«f) ' «E,

provided (x/2) does not have an eigenvalue unity. Thus,

1 However, from the discussion of Sectlon 2.3 we know that
such a dependence cannot be strictly correct. The
mechanical forces acting between ilons could be taken
into account by gilving o< nondlagonal elements.

109
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induced peolarization occurs in the pattern corresponding
to the rows of the "susceptibility matrix" X

P, = E 2, X
Jooij

where

(5.12) X= (1 p) Wk =1 )" = /z (1 - 47 # /=) =
the last form belng useful because the matrix
(/€ B V£ ) 1s real and symmetric. In the absence of
spontancous polarization, all the elgenvalues of
(/£ & Y£ ) are less than unity, and we may expand:

X = d:+d%3d7+dfﬂ?€ai—.
The total polarization is P = > P;, 5o that the ex-
perimentally observed susceptibilify is

(5.13) X’exp = E% j(ij = :§'o<i + Ei 4%§k£KiOCk + oeen

which 1s an expansion in powers of the coupling constants
A ik

The case of apontaneous polarization requires a
more careful physical discussion. When E = 0, the
comnection between polarization and internal fields 1s
given by

F=gP

(514 P=x<F =x/P.

We can have a nonvanishing polarization only when the
matrix («f )-has an eigenvalue equal to unity. As the
temperature 1s decreased, at least one of the components
of = 1increases, and when the greatest eigenvalus of
(Xpz ) reaches unity a spontaneous polarization can set
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in, with the pattern of the corresponding elgenvector.
The magnitude of the stable polarization 1s now deter-
mined not by the linear relations but by the fact that
at high field strengths the polarization of at least one
of the ions 1s no longer a linear function of applied
fleld, and therefore at least one of the dii's, which are
defined as the ratio of polarization to internal fields,
decreases. When the saturation polarization is reached,

oL goes down as 1 /F. The course of events acconmmany-
ing spontaneous polarization is then as follows. At
high temperatures all elgenvalues of «/ are less than
unity and the only solution of Eq. (5.1%) 1s P = 0.
When the temperature 1s lowered, the largest eigenvalue
of « & will at soms point become greater than unity.
When this happens, P = 0 1is still a solution of Eqg.
{(5.14%), but 1t is no longer a stable solutlion, for any
small deviation from P = 0 produces an internal fileild
so strong that it further increases the discrepancy.
Thus, any small disturbance, such as caused by thermal
agltatlon, produces & raplidly increasing polarization.
It continues to increase untll nonlinearity sets in and
o decreases, and a final steady value of polarization
1s reached when the field strength is such that the
largest elgenvalue of oc/f is just equal to unity. This
value 1s now stable, for any small increase in P de-
creases {4 P - P), and vice versa. Thus, the spon-
tansous polarization as a function of temperature will
be determined by the condition that

P.

1
o(i = ?{= const =a<i(Fi’T)’

where (1} refers to the ion whose polarization firat
becomes nonlinsar, and the const 1s the value which makss

det (£4-1) = 0
det (£~ N) £ 0, N> 1.
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The constancy of Pi/Fi, however, is just the condition
that is imoosed in more naive analyses, so the present
treatment of internal field does not alter the tempera-
ture dependence of polarization, although the magnitude
iz now determined in a different manner.

5.2 Transition to the spontaneous polarized state

It appears at firat as if the pattern of spon-
taneous polarization would 1n general be completely differ-
ent from that of induced polarization sgince the former
corresponds to the eigenvector of <4 with the greatest
eigenvalue while the latteér is glven by the sum of the
elements of the rows of (1 —&/f)ubé . It is true that
the polarization pattern changes consideratly as we go
from one corndition to the other, but one can show as -
follows that the transition is actually continuous. Con-

alider the symmetrical form of the susceptiblility matrix:
X = /Z - IE AR =

since /& A ¥Y< ig real and symmetric, it may be diag-
onalized by an orthogonal matrix 0O:
-1
o (/E g YL ) 0o=dlag {» .2 ] =D
where >‘i are the (real) eigenvalues of (V« & CIR R
since for any function f{(x) the matrix function (D)
is

AR i (P S B

F(D) = diag {f(A .

1

we may express F(/L A V< ) as

F(/e & (&) = OF(D)0 |

oPp
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-1 i
F(Z & V&) = %;oijf()\j)ojk - ? £(A;)0; 50, 5

The susceptibility matrix mey therefore be expanded in
the form

0. .0, .
x1j= oLyl ? 1_19_%;' :

As the largest eigenvalue 4k1 approaches unity, the first
term dominates the sum. Then, since the polarizatlion
pattern is given by

poor 2 X

i K ik

we will have, except for a common factor,

By = vy 044
But the quantities 0;, are known to be just the components

X, of the eigemvector of (/= & v<) belonging to the
eigenvalue hlz

( voz f?'ﬁz ) x = Mx

Multiplying by ¥«< , we have
(=F V(7% x) = A (V= x)

so that ¥=< x = ¥<;0,, 1s an elgenvector of («<f) De-
longing to the same elgenvalue A, and thersfore repre-
sents the pattern of spontaneous polarization.

We conclude that, as we approach the Curle point
from above, the induced polarization pattern shifts con-
tinuously into that corresponding to spontaneous polari-

zation. This has as a consequence that any "slmplified
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Lorentz factor," defined as the ratio of internal field
alb some lon teo total polarization, must also be consider-
ed to be rapidly varying as the polarizatiocn pattern
shifts from one regime to the other, and treatments made
to date are 1lnadequate in this respect.

5.3  Spontaneous polarization

It is evident from the foregoing considerations
that the results which we wish to get are bound up with
the properties of the matrix ve /f /< , or what 1is
equivalent, of < . The former matrix is real and
symmetric; therefore, it can be dlagonalized by an orth-
ogonal transformation and all its proper values are real.
Since the two matrices differ only by the trivial simllar-
ity transformatlion

<f e JE (V= R IWE T,

they have the same proper values, and the proper vectors
X and x' of <4 and /;E//FPGE are related by
X =J<x',

Two of the proper values may be found immediate-
ly; on evaluating its determinant we find that/ﬁ’, and
therefore(x/? , 18 singular, i.e., there exists a'non-
zero polarization pattern that results in no internal
field at any ion site. This pattern 1s the corresponding
proper vector of o« /?, whose components are proportional
to the cofactors of any row of /?, As 18 eagily verified,
this pattern i1s given by

a -3 = 2.1}

- a -0.89
(5.31} P = 1 , 1.
1 1.
1 1.
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where

a_u(,ﬁg-ﬁo)_oec

In this pattern the net externally observable polariza-
tion :a Pi also vanishes.

A second proper velue 1s found by noting the
symmetry of (& £ v& ) in 0O and Oy - If we trans-
form to a new description of the polarization pattern,

using (P, 1 P, )/ V2 instead of Py s Py, i.e,
X X y
if we transform with the orthogonal matrix

1

1 ol o 0

o 1] 0 0 0

S = o o] = -0
f2 /2

0 o R —L—-O
Jz2 /2

0o o] 0 0 1

we find that

“Fy  AGby V%M 0 V55505
V% ALohy A2l 0 AN
s g s =2 f KKl 2e5h L5 (Fo+f3) ¢ V25509,

0 0 o | fF) 0
Vel V505 XN ¢ “w%

so that & second proper valus is dé(fb -/fj). The corres-
ponding polarization pattern 1ls
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Using the above transformed form of V< /ZAE  the re-
maining proper values are found from the determlinantal
equation

det (V= & /< -R1) =

which reduces to

(2, - %) o /24, 2,
Fo (o - ) VR £ -
/T4, /24, (6o + Py ;%5) /24,
z, 2, /22, (fo - 2D

of which we already know that XN = 0 is a solution. If
for the moment we assume all oﬁi equal; of =, =¢£5 =
<), = %y the other roots may be found numerically, since
the /fi are known constants. In this case the above

equation reduces to

(2) [ - 22 ()" -elom -2 508 A7

e 2V (B) ¢ Al A7 A

or, inserting numerical values, we have for X = Kﬁ%/%
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X5 - 2.95:{2 - 096.3%32X + 352.h8 = 0
the roots of which may be found graphically to be
X = { S10.1, + 3.8, + 9.232 }

The proper vector belonging to the largest value

A= g.2%2 O{offo is of principal interest since, under
the agsumption of equal aCi, it would represent the
pattern of spontaneous polarization. As might be guessed
on rhysical grounds, thils vector represents essentially
polarization of the string of Ti and 0, ions, which
are placed so that polarizatlon of one produces very
gtrong supporting fields at the other. In fact, we see

f'rom the relation

o B B B B o “o +’€3\ 70.008
By o b P Fs 3 Ao+ s 1.00
S| €2 Ay Fo F5 2o ¢ | = f@’h\“‘ 72 | .= ~0.06 | x 9.18% 4
s B Py Py Fo ¢ A+ by ~0.06
s By A Ay . Fs + 4y 1.00

that the pelarization pattern in which Ti and 0Z are
equally polarized and all other ions are unpolarized is

very close to the vector 1n question. If agll OCi were
equal, spontaneous polarizatlon would occur when

1
(-8 = —
0 9-25/ 0-026-

Using the observed volume of a BaTiO5 unit cell, this
would mean a polarlizability for each iocn of

)
KV = 0.026 X 6k = 1.65 A’
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When the <y are different, the proper values
of /& & V< are the solutions of a cubic equation in-
volving the c<i in a complicated way. In the present
study we describe only the greatest proper value and
corresponding polarization pattern, for the case that one
pclarizability ig much greater than the others, and here
we may use perturbatlon theory to get a sufficiently good
approximation.

We express the fact that two different crders of
magnitude of elements °<i are present by writing

I 2"
K = + £

where o is the part of the matrix o< containing the
large elements. ¢&" containsg the small elements, angd

¢ iz an expansion parameter that we eventually set equal
to unity. If the polarizability o<, &l the Ti ion ig
the only large one, standard perturbation methods give

for the largest proper value ofaC%?:

(5.52))\=°<2‘6’0 + -;—0 (oC.Ip’g + 20{5/6,?; +a<m6§) 6—2 +

We see that the presence of polarizable ions other than
the Ti always Increases the largest proper value and
makes spontaneous polarization more likely. This ex-
pression is valid only if the second term 1s small com-
pared to the first, and one guesses that it overestimates
the largest proper value since, if we put all =<, = 1,

the above expression reduces to BQAB, whereas the correct
value is the largest proper value of £, found before to
be 9.22&%. We have, however, the result that the amount
by which a given ion helps the spontaneous polarization
may vary greatly with its exact position in the unit cell;
for example, a glven polarizability in the OZ pogition
is (/g[/b)e = 67 times as effective as in the Ba po-
gition, while in the Oy position 1t is gﬁhﬂﬁo)z = 6.7
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times as effective. PFurthermore, since the effectiveness
of an ion depends on the square of the Lorentz factor
connecting its position with the T1 position, an ion
such &g Ox’ located where the fileld due to pclarization
at the Ti ions is opposed to the net polarization, still
contributes just as effectively to the onset of spontaneous
polarization as one in a position wherejf? > 0, although
its dipole moment is now opposed to the Ti moment. This
is in contrast to the case of polarization induced by an
external field, where two ions coupled by a negative
lorentz factor tend to decrease each other's polarization
in the direction of the field, and thus to decrease the
experimental susceptlbllity.

The proper vector of o</ corresponding to the
proper value (5.32) i3 glven to order & by

4y
<oy

p= | 3 . (5.33)
o%f‘fh
<y s

3ince /fh { 0, we find, as expected, that in the spon-
taneously polarized state the dipole moments of O, and

Oy are opposed to the polarization of TI1.

5.4 Simplified jorentz factors for spontapegus

polarization

In our preliminary study of the electronic model
we defined a lorentz factor as the ratic of Internal
field at the Ti ion to the total experimentally ob-
servable polarization. This quantity (denoted by'// in
the first section and by jf" here) was left as an un-
determined constant, but the results just found enable
us to make an estimate of its value and to ascertain if
it is actually a constant. This factor is given by
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\—'.
?%1?1
(5‘.&1 } non =
¢ lfPi
1

where ot iz the i'th element in the secornd row ol the
m&trixrf r

gfj':] Fﬂ’fﬁh’,ﬂh’/é;l :)}ﬁ':'i“ljdl'* ™ 2+6, '2.5, + 5.2!

"¢" 1is therefors the average value of & .., welghted
according to the fraction of the total polarization
carried by the 1'th ion. BSince (Section 4.4)

b
24, + B =34y, we have T fpy = 54, and the aver-
age of #,; with equal weight is exactly'f§ In

general we see that, if
bar
3

F Foo | the i =
Q 7 Oz- b f; <f55

X
while if

T, Sl HheR. AT 24,

In the case of spontanecus polarizatlion the second con-
dition holds since we have found that PU < 0, Py > 0.
X Z

To order 52 the value of ;f" may be found from our
approximate proper vector Eg. (5.33):

fcfic{g + ..52 Ef?g * En‘jﬂi + ’Clﬁﬂg]
2
oo v € [5ho + 2P+ it |

. A A
=./fo } i + ﬂdj ,ﬁ’: ﬁ’{, 1) + E{—g ?2(72 j+{
(5.%2) »
_ . E,_L e b s
_’,rf; [1 00, ; SR = ; J

oo
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In the spontaneously pelarized state we must al-
ways have jg" > Ww/3, but the difference need not be
great if oLy 5 and =<y
We note that =< drops out of this expresslion for '#"

1s extremely large compared to o

as it should since the Ba 1s coupled to the Ti l1on by a
lLorentz factor ffo’ and therefore the contribution of
the Ba ion to the field at the Ti and its contribution
to the total polarizatlion are always in the ratio /¢O,
so that polarization of the Ba ion cannot cause ??“ to
depart from-f?o in first order.

In the spontanecusly pclarized gtate, ?;" is
esgentislly a constant independent of temperature since
c%é and <, are not strongly temperature-dependent,
and as we have seen the strength of the spontaneocus

polarization always adjusts itself sc that 6‘2 is constant.

5.5 Induced polarigzation
We now wish to find the pattern of induced polari-

zation and the corresponding simplified Lorentz factor
"ﬁ" for the case that aCQ
°<i' For this, the expansion in terms of proper values

is much greater than the other

and proper vectors of <, 13 not very convenlent, as
all of these quantities are now important and they are
difficult teo find, the proper values other than the
greatest one being degenerate in zero-order, and the de-
generacy is not removed in the first order of € . We use
instead a more direct method of expanding the internal
field and polarization in powers of A = 62, making no
reference tc the proper values ofcf/f

We write 04::04 4—)P< where, as before cg
is the part of o< containing the large elements and o<
15 the rest of the matrix Bvidently the matrices r:=~<!,
aA are singular and <& = 0. Expanding in powers of

A, the equations F =FP + E, P=xF become

ﬁ0)+kﬁ1) sepl) ...ﬁJ[Pm)+xﬂ‘)+%¥”)+..f W E
LI TR I N e S O S T CAMLIPS S LRI L
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Equating coefficients of like powers of A , We have
pl0) :fgp(o) + E szagp(o) + E = (1.-fﬂii)_wE

2(0) _ o'pl0) _ ' - g T

F(n) :/P(n)

P(n) _ O(‘F(n) + D<"F(n_1 ) n

li

" The last equations may be rearranged to

1 - -
F(n) ﬁfg('}_ ,xﬁ) “l’an{n 1)
] - [ —
Tn the case that only one of the polarizabllities
Ve is large, these expressions may be evaluated without

2
further approximation. We have

o 0 0o £

2 0°%

\ 0 | 0 0 Ay
\ o A% o

0 ﬁ%aé

i -
We can now easily evaluate (1 -/F« )1 by noting that
1 t
(4 )2 = foop(ge< ), end using the method of Appendix

B. We find that
(1 -pe) =1 s =
£
gimilarly,

o\ 1
(1 o=f) = V0%
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We also note that

1L =iy ' -1 1 prs
)T = 1 re ) =
i 3 T f o™
Using these relatlons, the above egquations become
plo) _ < E
T = Fe™
)
it
(0) B+ —E5E—
F = 1 Ao’
1
p(n) _ (H];c_rf_d}mp{n—u
F o™
r® o (1 ST 28 Ll

In zerc-order approximation only szite 2 is polar-

ized, “and the total polarization P, z By =
(0) (1)
Plc tAPL { * vy 18
4
{ﬂ] 2 B (
Z 5.51)
tot 1 0°%

while the internal field seen at site 2 is just

P E +ffaP§§€ ; (5.52)

These are the famlliar relations used ss the starting
point for nearly all treatments of dielectric and optical
properties. The first-order corrections to these re-
lations due to other polarizable material are

pl1) (} + ﬂ% : )cf 1+ — f?;ﬁ% ,j E

: (5:5%5])
P
F(1J = (} 4 ﬁ%}g jkfa: 1 + -T—?;Fggg) B
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Using Eg. (5.53), a simple calculation gives,
for the first-order correction to the total polarization,

( E _ 2 - 2
Ptog = (1—_—“—3 \ <+ 2«3[1 + (A, 270 N (/:?5 £ o1l ; )
Fo)

and the first-order correction to the field at the Ti

ion 19 the second component of (1) =/?P(1), equal to

(1) _ B )
F, T e AR ANV %H“+ﬂ%“+(ﬂ—%pwl’
; f %, :

Now to first order in A , the simplified Lorentz factor
is given by

0) 1 (0) (1)

. w_ Fo 'E__Fé -E ARy . _ PoPror t MFp % ..
P - (o (1) - (0) {1}
tot Ptog + ARl p{) + pfl)

» (1)

=fo [ *W(Féw -/C; ad e
From previous results we have
e
F - Aol - g (U ) U et )
vl (Fs ~po) L1+ %Rl _/0)1}

Therefore,

. (P ) &%) ()"
£ = Fo [1 # A /2«2 + A3 OO (=5 9"%)}

:igo [1 + 7.18 (%;?-) + 25.8(“3 + ?ﬁ)lio]

(5.54)



APPENDIX A

Numerical evaluation of Igrentz factors
A1l of the series developed for variocus Lorentz
factors may be evaluated in terms of the function

2
n

me + sinh’ﬂ"/m2 L n°

For the series arising from the first field ex-

f(m,n) =

pansion we have

= f(m,n) + f{n,m).

3inhAaT mg + ng

Our first task is therefore the construction of the follow-
ing table of.values of f((m,n}.

m/n 1 2 3 L S 6 7

0 86589,52 7465.81 LBL.20 27.84 1.50 0.06 0©.0CO0k
1 16636.05 3182.Lk 295.90 18.32 1.08 0.05 0.00

2 795.61 391 .28 60.11 5.65 0.42 0.03 0.001

[106f(m,n}] 3 30.668 26.71 6.89 0.96 0.09 0.004 0,0004

b 1.14 1.4 0.54 0.11 ¢.02

5 0.0k 0.07 0.03 0.01 0.001

6 0.002 0.00k ©,QQ08

These terms were found as follows: The first few terms are
needed to great accuracy, and for these the National Bureau
of Standards table of the exponential functions were need-
ed. For intermediate terms the Smithsonian tables of
hyperbolic functions were used, while for those terms for

125



126 APPENDIX A

which 106f(m,n) { 1, slide-rule accuracy is sufficient,
Once we have this table the various sums are readily
found by addition and subtraction. We find the inter-
mediate results

('—l) i
100 2 e = 79577.5: (= 0.07957747)

[
6 - n__

N1
o
10° éé% R = THOT.TH
oo
10° :S (-)™T 0 = 13262, 8] (5%?%= 0.0132625)
m’n;1‘/ﬁ2+n2 sinh T m®+n®
oo
10f 2 (-1)" n® — -18922.98
m, o= X;-+n2 ginhT1r /fm +n
=0
108 2, _(_1)n n® = -14181.52
m’n;1\fm?+n2 sinhﬁT\/;E:;g
w0
10 2 n? — 21:35,64
m, n=1 JQF:;?HsinhTrfgg:gg
10 2, (0™ w0 = 26527. (73m= 0.026526)
m, 1= sinh 1T m2+n2
>
A (-1 JmPin® . 33106.50
m, n=1 simh T J/me4n®
oo
10° 2 JoZin? : — 42871.29
=T i Ve
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Combining these, we have for the lLorentz factorg:

A=
f -t
5
A=
f='5
=5
A5

X 1.00005

X 2.03466

x 8.1813

X 1,00000

X 2.03461

X -1.06927

X =2.5907

3

J

From first fleld expansion

From second field expansion

These values should be relisble to at least four signifi-

cant figures.



APPENDIX B

Fvaluation of (1-M)

Let the matrix M be of dimension n and all of
its eigenvalues less than unity in absolute magnitude.

Thern the infinlte series representation

(1 - I\J'I)F1 =1 + M+ M2 + ... = :S MS

is valid. This may be reduced to a sum of & finite number

of terms by using the fact that every matrix satisfles
i1ts characteristic eguation, 1.e., if

.

K'_O

where

C =det (M~ 1)

then

S K <
C, M= 0 NG o=
K=o ¥ Y=

By repeated application of this relation any function of

a matrix may be reduced to a polynomial of degree not
exceeding (n - 1):

FM) = 3 K
K=
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where the bk are functionsg of &, and Ck’ To carry
out this reduction on f(M) = (1 - M)_', we note that

Therefore we have

(-m =3 - So

2
(1—00) + (1—00—01)M + (1—CO~61FCE)M

R R T T i
The Ck are readily evaluated by writing out the ex-
pression det (M ->1), so we have a stralghtforward
method of finding (1 - M) | without having to find the
elgenvalues of M. This method has previously been
described by R. Dicke (D).
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