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General relationships between the ultrasonic attenuation and dispersion are presented. The validity of
these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend
upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local
relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in
solutions of hemoglobin from the results of attenuation measurements.

PACS numbers: 43.80.Cs, 43.35.Bf

The purposes of this letter are twofold: (1) to ex-
plore the implications of the existence of general rela-
tionships between the ultrasonic attenuation and the fre-
quency dependence of the ultrasonic phase velocity
(i.e., dispersion) for identifying specific mechanisms
responsible for the propagation of ultrasound in some
media, and (2) to present nearly local forms of these
general relationships. We illustrate the use of these
nearly local relationships for cases of ultrasonic prop-
agation in media of biomedical interest, an area in
which the mechanisms governing the propagation re-
main obscure. :

Relationships between attenuation and dispersion,
sometimes called Kramers-Kronig or generalized dis~
persion relationships, have proved useful in several
areas of physics. 14 Expressed in a form appropriate
to ultrasonic studies, these relationships take the form

K - =2 [ M

:wa

where K(w} and K,(w) are the real and imaginary parts,
respectively, of the dynamiec compressibility (inverse
of the bulk modulus). If the ultrasonic wave vector is
written as k=w/C(w) +ia(w), then C(w) is the phase ve-
locity and o{w) is the attenuation coefficient for the in-
cident wave, as observed in transmission (i.e., direct
“straight-line” propagation) measurements.

_‘%:_de , (2)

The following considerations involve only this total
attenuation coefficient, and do not depend on details of
the ultimate physical mechanism (i.e., absorption,
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scattering, or a mixture of both). That is, the effect
on the incident wave of removing energy from it is the
same whether that removed energy is converted imme-
diately into heat, or whether it goes first into scattered
waves which subsequently decay into heat. Indeed,
there is no sharp distinction between these mechanisms;
a local absorption of energy can always be thought of as
the limit of a scattered wave which propagates only a
short distance. In either case, the effect on the inci-
dent wave can be represented by a phenomenological
compressibility K{w) obeying Eqs. (1) and (2), which
can be used to define the relationship between the atten-
uation and dispersion. In the limit @(w)C{w)/w<«1
(i.e., if the real part of the wave vector is much larger
than its imaginary part), the real and imaginary parts
of the compressibility can be directly related to the at-
tenuation coefficient and phase velocity such that

1

C(w) = [pOKl(w)]IZZ) (3)
a(w) = 3pC(w)Ky(w) . (4)

Using Eqgs. (1) and (3) the dispersion at a specified fre-
quency can be computed from a knowledge of the atten-
uation at all frequencies. Conversely, if the dispersion
is known at all frequencies, the attenuation at any spec-
ified frequency can be computed from Eqs. (2) and (4).

The validity of the general form of the Kramers-Kro-
nig relationships [Eqgs. (1) and (2)] hinges only on the
properties of causality (that an effect does not precede
its cause) and linearity (that a response is approxi-
mately proportional to its stimulus). We make the usu-
al physical assumption that a spatially local compres -
sibility exists, relating pressure and density, in a re-
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gion large compared to atomic dimensions, but small
compared to a wavelength.

For present purposes the significant feature of these
relationships is that they do not depend upon details of
the specific mechanism responsible for the attenuation
and dispersion. As illustrated below, the existence of
these completely general relationships renders invalid
attempts to compare the attenuation and dispersion as
a means of validating any specific model proposed to
account for the propagation of ultrasound in some me-
dium, as some authors appear to have attempted. 56

In the form given by Egs. (1) and (2) the Kramers -
Kronig relationships are limited in usefulness because
of their nonlocal character; i.e., a knowledge of either
the attenuation or the dispersion for all frequencies is
required. More useful, approximate attenuation—dis-
persion relationships in a nearly local form can be ob-
tained from the nonlocal form using an approach analo-
gous to that used by Bode in the study of the relationship
between the gain and phase shift of an amplifier.” The
nearly local forms of the attenuation-dispersion rela-
tionships are obtained from the exact nonlocal forms
given in Eqs. (1) and (2) under the assumptions that the
attenuation and dispersion are sufficiently small and do
not change rapidly over the frequency range of interest.
A review of the derivation of Eqs. (1) and (2) and a dis-
cussion of the range of validity of the approximate rela-
tionships presented below will be presented in a subse-
quent publication.® The nearly local relationships are

dC(w)

ofw) = (an/ZCﬁ)—Ew— ) (%)

AC() = Clw) = Co= =2 [ Law, ®)

where wy is some convenient reference frequency and
Co= C(wyp) is the phase velocity at this reference fre-
quency.

Although strictly appropriate only under rather re-
strictive conditions, Egs. (5) and (6) appear to be ex-
cellent approximations for cases encountered in the
study of soft tissue. In Table I we indicate the frequen-
cy dependences observed for classical viscous losses
and for the attenuation in most soft tissues. The corre-
sponding frequency dependences for the dispersion are
predicted using Eq. (6). From Table I, if the attenua-
tion varies linearly with frequency, the dispersion
should vary logarithmically with frequency, regardless
of the details of the specific mechanism responsible for
the linear frequency dependence of the attenuation.

To illustrate the use of the nearly local attenuation—

TABLE 1. Observed frequency dependences of attenuation

coefficient a for classical viscous losses and for the case of

soft tissue, and corresponding frequency dependences of AC
" predicted from Eq. (6).

Description Frequency dependence Frequency dependence
of attenuation a(w) of AC(w)

Classical Viscous w? w!

“Soft Tissue” w! In w
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FIG. 1. (a) The attenuation coefficient measured by Carsten-

sen and Schwan® is plotted as a function of frequency for hemo-
globin solutions of two concentrations. (b) The change AC in
the velocity of sound from its value Cj at 1 MHz is displayed

as a function of frequency for the same two solutions. The
data points correspond to measurements made by Carstensen
and Schwan, and the dashed curves were computed using Eq.
(6) and the attenuation data of Fig. 1(a).

dispersion relationships, we present in Fig. 1(a) the at-
tenuation measured as a function of frequency by Car-
stensen and Schwan® in two solutions of hemoglobin. In
Fig. 1(b) we compare the dispersion measured by Car -
stensen and Schwan to the dispersion predicted on the
basis of the measured attenuation and Eq. (6), where

Cy was taken to be the phase velocity at 1 MHz. Agree-
ment between the measured and predicted dispersion is
excellent. Further, if the dispersion data are plotted
on a logarithmic frequency scale, the data lie approxi-
mately on a straight line, in agreement with the predic-
tion of Table I for the case of a nearly linear depen-
dence of attenuation on frequency.

These results demonstrate the need for determining
which features of ultrasonic propagation are determined
by general laws of physics, as opposed to those features
which are specific to the particular mechanism of prop-
agation. An appreciation of the distinction should prove
useful in establishing the mechanisms responsible for
the propagation of ultrasound in biologically interesting
specimens. The same lesson was learned many years
ago by workers in ferromagnetism and ferroelectricity,
with the emergence of a general rule that only experi-
ments at the molecular level can distinguish reliably
between different molecular models.
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