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1. INTRODUCTION

HE experiment of rotating a magnet (o polanze

it and the converse experiment of applying a
magnetic field to a freely suspended magnet in order
to induce its rotation are called gyromagnetic experi-
ments, Their history goes back as far as Maxwell,!
who suggested and tried these types of experiments as
a means of determining whether electricity is carried
by a material substance. The first successful magneu-
zation-by-rotation experiments were performed by
Barnett? and the first successful rotation-by-magneti-
zation experiments were carried out by Einstein and
de Haas.? These experiments provided carly measure-
ments of the gyromagnetic ratio of electrons. The
experimental work on these cffects has continued* and

VY, Clerk Maxwell, Fleciricity and Moaognetism {Oxford
University Press, London, 1892), pp. 574 and 575.

: S, J. Barnett, Phys. Rev. 6, 239 (1915); 10, 7 {1917); 17, 404
(1921); 20, 90 (1922). S. J. Barnett and J. H. Barnett, Proc, Am,
Acad. Arts Sci, 60, 125 (1925).

1A, Einstein and W. J. de Haas, Verhand!l. deut. physik Ges.
17, 152 (1915}, A. Einstein, 4bid. 17, 203 (1913); 18, 17 (1916).
W. J. de Haas, Proc. Acad. Sci., Amsterdam 18, 1280 (1916).

1 The earlier experiments are reviewed by S. J. Barnett, Revs.
Modern Phys, 7, 136 (1935) and by L. F. Bates, Modern
Magneiism (Cambridge University Press, New York, 1951),
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very high accuracy is attained in the recent experiments,
particularly those of Scott.?

In this paper we present a unified theory of these
gyromagnetic effects and ordinary magnetic polariza-
tion. In addition, we consider the analogous nuclear
gyromagnetic phenomena and polarization of nuclel
by a magnetic field. This resuits in a unified treatment
of several effects, such as the Knight shift, the Lamb
diamagnetic shielding, the Ramsey chemical shift, and
pseudodipolar coupling. Of these phenomena, only the
nuclear gyromagnetic effects have not as yet been
observed experimentally, although their existence has
been suggested.® Our treatment of electronic effects
does not include ferromagnetism.

The physical fact underlying all the gyromagnetic
effects 1 that the nuclear spin and the electronic spin,
as well as their orbital angular momenta, generate a
magnetic moment paraliel to the angular momentum
with a magnitude fixed through a characteristic constant
of proportionality, known as the gyromagnetic ratio,
This fact, together with Newton’s second law of motion
or the Schridinger cquation, transformed to a rotating-
coordinate system, leads to Larmor’s theorem-—that
the effect of a uniform magnetic field on a system of
spins or particles can be transformed away by going
10 a rotating coordinate system, provided the angular
momentum of the system in the field direction is a
constant of motion,

In Sce. 2, the quantum-mechanical Larmor theorem
is derived. Tt is given in a generalized form including
spin and orbital motion, systems of sping with differing
gyromagnetic ratios, and some time-dependent mag-
netic flelds. According to the Larmor theorem, the
magnetic field produces only a periodic effect, although
in fact it is well known that magnetic fields tend to
produce polarization in the field direction, not just
periodic Larmor precession. To anatyze how polarization
can take place, the behavier in a2 magnetic field of two
spins coupled by the interaction between their magnetic
dipoles is followed by an exact solution of the

Schrodinger equation. The coupling is essential so as

to allow the exchange of angular momentum required
to produce polarization. Tt is shown that, if no field
acts on these two spins but instead the whole system
is physically caused to rotate, this rotation can cause

Chap. 7. Of particular importance are the experiments on para-
magnetic materials performed by W. Sucksmith, Proc. Roy. Soc.
(London) A128, 276 {1930}; A133, 179 (1931); A135, 276 (1932).
Measurements reported in the literature since 1951 are S. J.
Barnett and G. S. Kenney, Phys. Rev. 87, 723 (1952). A, J. P.
Meyer, Compt. rend. 246, 1294 (1938). A. J. P. Meyer and
S. Brown, J. phys. radium 18, 161 (1957). A. J. P. Meyer, G. Asch,
and S. Brown, “Colloque National de Magnetisme,” (Strashourg
19573, p. 305. G. Asch, Compt. rend. 246, 1294 (1938). G. G.
Scott, Phys. Rev. 82, 342 (1051); 99, 1241 (1055): 99, 1824
{1955); 103, 561 (1956); Rev. Sci. Tnstr. 28, 270 {1937); Phuys.
Rev, 119, 84 (1960); 120, 331 (1960). I'or a recent review of experi-
ments see G. G. Scott, Revs, Modern Phys. 34, 102 (1962).

¥ (5. G. Scott, see reference 4.

S$¥. T. Jaynes, Phys. Rev. 106, 620 (1957); 5. . Heims,
Helv. Phys. Acta Suppl. VI (1960},
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a polarization of just the magnitude produced by a
field which produces a Larmor frequency equal to the
rotation frequency. Polarization does not occur for
any arbitrary initial conditions, but it does occur, for
example, if the initial density matrix corresponds to
thermal equilibrium. This example helps reconcile in a
qualitative way the exact Schridinger-equation solution
with the approximate statistical theories of magneti-
zation or magnetic-relaxation phenomena.”

In Sec. 3a, the density matrix for a uniformly
rotating system in thermal equilibrium is derived on
the basis of maximum-entropy inference. Since one
rarely sees equilibrium distributions involving the
angular momentum in a role parallel to that of the
energy (although they were given by Gibbs), it is of
some interest to make predictions for observations on
the basis of this density matrix, The application to
physical systems is made by use of a perturbation
theory for expectation values. The perturbation theory
is derived in general terms and its properties arc
investigated in detail in Sec. 3b.

In Sec. 3¢ we obtain the magnetic moment of a
piece of magnetically dilute material with a magnetic
field acting on it and with the material rotating.
Similarly, the electronic angular momentum is studied
subject to a field and a rotation. The cross-coupling
coefficients, i.e., the magnetic moment due to rotation
alone or the angular momentum due to the field alone,
represent the Barmett and the Einstein-deHaas effects,
respectively. A summary of the comparison of experi-
mental data with the theory of these effects is given.
The present form of the theory is in agreement with
some previous calculations for particular cases in the
literature.®

In Seec, 3d, the polarization of a nuclear spin in a
rotating crystal acted upon by a constant magnetic
field is studied and its magnitude calculated. The
corrections to the pelarization due to the internal
crystal field are obtained from the perturbation theory
for expectation values. Many line-shift phenomena,
well known from nuclear magnetic resonance experi-
ments, are shown to result from such a treatment.
These effects are usually derived separately; in some
cases, the unified method given here may provide a
simpler means of evaluating the effects because the

T N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73,679 (1943). R. V. Wangsness and I. Bloch, 1bid. 89, 728 {1933).
F. Bloch, bid. 102, 104 (1936); 105, 1206 (1957). Y. Avant,
J. phys. radium 16, 411 (1954). U. Fano, Phys. Rev. 96, 869
(1954). R. Kuho and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
A. G. Redfield, IBM T, Research Develop. 1, 19 (1957).

8 A, Frank, Phys. Rev. 39, 119 (1932). J. H. Van Vleck, The
Theory of Electric and Magnetic Susceptibilities (Oxford University
Press, Oxford, England, 1932). C. J. Gorter and B. Kahn, Physica
7, 753 (1940).

? Reviews of such phenomena are given by G, E. Pake, in
Solid-State Physics edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1936), Vol. 2; by N. F. Ramsey, Nuclear
Momenls (John Wiley & Sons, Inc., New York, 1953}; and J. A.
Pople, W. G. Schneider, and H. T. Bernstein, I7igh Resolution

Nuglear Magnetic Resonance (McGraw-Hill Book Company, Inc.,
New York, 1959;.
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energy denominators of second-order perturbation
theory can be avoided and also because the formulas
are in a form independent of the representation
used.

In Sec. 4, the time-dependent behavior of nuclear
spins in a rotating crystal is described. We attempt
there to show the relation of solutions to the Schrédinger
eouation for the rotating crystal to those for the case
of a rotating magnetic field acting on the crystal. A
statistical treatment of the spin system on a rotating
crystal is given, using the formalism and the approxi-
mations of the Wangsness-Bloch theory of nuclear
magnetic relaxation,

In all of the theory of rotation phenomena and
induced angular momenta, it is apparent that the
information to be gained from their study is of a nature
similar to, but not usually identical with, that obtained
from studying magnetic phenomena and magnetic
moments. Thus, the measurements of gyromagnetic
coefficients give as much useful information as the
determination of magnetic susceptibilities, nuclear or
electronic. Yet, the magnetic phenomena have been
studied far more fully than the gyromagnetic ones;
small wonder, in view of the greater difficulty of
performing experiments of the latter type.

2. DYNAMICS OF SPIN SYSTEMS
a. Larmor's Theorem in Quantum Mechanics

According to both classical theory and quantum
mechanics, the effect of a uniform magnetic field on a
system of charged particles may be shown to be
equivalent to a rotation of the coordinate system. In
quantum mechanics, the system is described by the
wave function W(xf), a solution to the Schridinger
equation

i/ ot=1cp, (1)

where JC is the Hamiltonian operator, x represents all
the space and spin coordinates of the system of particles,
and { is the time. The transformation of the wave
function to a rotating coordinate system is achieved
by means of a unitary operator R(£). The rotated wave
function is ¥, = R{t):(x,f). The vector operators appear-
ing in quantum mechanics (momentum, position,
angular momentum) are rotated by the same trans-
formation. Tf Q is such a wvector operator, then Q.
= R{t)QR(—1) gives the operator in the rotating system.
Explicitly,

R () =exp[ /7)) - wt], (2)

where J is the total angular momentum of the system
and w the anpular velocity of the coordinate system.
Equation (2) follows from the requirements that R be
unitary, that it satisfy the relation R{fy)R(fa—f)
=R(t:), and the well-known connection between
infinitesimal rotations and angular-momentum oper-
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ators,' expressed by
J-w=ik lim [R(H—1]/t
(Xl

The Hamiltonian 3¢ of the system considered is
assumed to be time-independent and to consist of a
part X, independent of the magnetic field and an
additional part 30; due to a constant magnetic field.
Without the field, the time development of the wave
function iz

v, d) =exp[ — (i/R)HCat W (x,0); (3)
with the magnetic field, it is
¥=exp[ — (/%) (31+3Co)s } (,0). (4)

Applying the rotation operator R{f) corresponding to
a uniform rate of rotation to (3), rives

w-=exp[ (i k)T wi] exp[— (i/k)acqd Wix,0).  (5)

Restricting consideration to a Hamiltonian 3 which
is invariant to rotation around the direction of w, so
that [J- w3 =0, permits rewriting (5) in the form

Yr=exp[— (&/B)(—w-JH30o) ix,0). (6)

To obtain a Larmor theorem," we compare Egs. (4)
and (6) for some particular types of systems:

For a system of spins all having the same gyro-
magnetic ratio v, in a uniform magnetic field H, 3¢,
= —+8-H: then by inspection ¥ and ., are identical
if the field is equal to H=(1/y)w.

For a system of spins with differing gyromagnetic
ratios and a field H, acting on the kth spin, 32,
=—3 v Hi For a given angular velocity w, ¥,
and . are equal only if the felds H, have the values

Hy= (1/ve)on; (Ta)
or if a uniform field Hy=H is given, the theorem may
be stated as requiring a different rotation frequency for
each particle, so that in Eq. (6), w-J becomes 3¢ w,-S,
with

wy =y H. (7h)

The theorem is exact for a pure spin system. Consider
however the magnetic part of the Hamiltonian for the
motion of an electron in a uniform magnetic field H,

3= {e/2mc)H - (L428)+ (&2/8mc?) it sintd, (&)

P A M. Dirac, Quantum Mechonics {(Oxford University
Press, New York, 1947, 3rd e, . 35,

U For the case of a pure spin system, I. Rabi, M. F. Ramsey,
and J. Schwinger [Revs. Modern Phys. 26, 167 (1954)7] give a
different praof of Larmor’s theorem. They consider the operator
J and itz equation of motion in the Heisenberp picture. Their
proof can be readily generalized to differing +%s and to include
orbital motion. Howewver, the restrietion [J-,30,]=0 iz alse
necessary. Transformation to a rotating coordinate system as a
means of transforming away static fields iz well known in the
theory of magnetic resonance. See, for example, R. V. Wangsness
and F, Bloch, Phys. Rev, 89, 728 (1953},
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where 8 is the angle between the position vector r and
the magnetic field. In this case, it is necessary to
adsume that the quadratic term in 3C is small compared
to the linear term. Then the Larmor theorem applies,
the space function and spin functions being rotated
with angular velocities

&
W= ——H, ared L, = 2“’!: l:*}]
2

respectively. For ordinary laboratory fields, the quad-
ratic term in (8) is indeed very small compared to a
linear term and (9) is a very good approximation, The
error can be estimated by expanding (4) to first order
in the neglected term to obtain

Yol d) = et (14 eni (2,0,

where

il €
= ——J:.'iL'u——--—H~ (L4 ES}]
id 2me

it e*H*
fe Bmmc?

(101)

A=

L
f dre=47(r? sin®)edr.
1

Thus, (9) is valid when |e/<<1. The assumption made
in deriving (6), namely, that [J-w,3C]=0 is fulfilled
for any system on which no external torque is acting
other than the constant magnetic field considered,

The Larmor theorem, Eqs. (7) and (9), may be
generalized to time-dependent fields, giving a descrip-
tion of the wave function as the field builds up. Suppose
the magnetic field varies linearly with the time"

HiH=«+H, (11}

but is uniform throughout space. The vectors Hy and «
may point in arbitrary directions, so that the direction
of the field H{t) may be a function of time. To satisfy
the Maxwell equation curlE= (—1/¢c)aH/d¢ an electric
field must accompany the growing magnetic field:
E=—aXr/2c. The other Maxwell equations for a
source-free region are then also satisfied. By introducing
the potentials A=H ()X 1/2 and ¢=0, it is readily
shown that the Hamiltonian of systems of spins and
particles will differ from that of a system in a constant
magnetic field only in that H(¢) everywhere will replace
H. The time-dependent Larmor theorem is then proved
by considering small rotations

Ro=14(i/%) 2k Le- wrlia)Ad,

2 Exact selutions of the Schridinger equation for particles with
gpin, but without orbital motion, in & time-dependent, magnetic
field have been studied by E. Majorana, Nuovo ciments 9, 43
{1932}, and by F. Bloch and I. Rabi, Revs. Modern Phys. 17, 237
(1945). One may treat the case including orbital motion by means
of the adiabatic approximation: If the field does not change
direction, then, in the lowest approximation of a slowly varying
feld, the eigenvalue equation [3g— M T (0= Ea(thi, is solved,
yvielding the Zeeman splitting but no transitions between states.
The next roximation vields transition probahilities propor-
tional to {;EE:"J.EE

(12)
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and the limit of the product

N i i
R{t)= 1i Ro=exp| =2 L i)di" |. 13
{t) ég‘lf H| C‘P[ﬁzk; kfumk{] ] (13)
Aap—1

In {13), the convention must be observed that in every
product of Ti-we(t,) and I:-e,(l.) that occurs, the
order of writing the factors is taken to be the order of
the natural time sequence, Comparing (13) to the part
of the time-evolution operator involving the magnetic
field and requiring that [J-w(#),30;]=0, gives the
time-dependent Larmor theorem which differs from (7)
and (9) only in that H and » are time-dependent. For
example, (Th) becomes

wi () =v,H( for all 4. (14)

For magnetic fields which vary nonlinearly with the
time, the accompanying electric field is only approxi-
mately given by E=—HXr/2c, The approximation
consists of neglecting displacement current. When that
approximation applies, the theorem (14) and the other
time-dependent expressions corresponding to (7a) and
{9} can be derived.

b. A Simple Example of Polarization

The discussion of Larmor’s theorem has shown that
the effect of a constant magnetic field is transformed
away by going to a rotating coordinate system. How-
ever, in the following sections, we are primarily con-
cerned with the polarization of systems in the field
direction, a phenomenon which is #ef transformed
away by going to a rotating system. To help clarify how
polarization can occur in spite of Larmor’s theorem, a
very simple example is treated in Appendix A by an
exact integration of the Schridinger equation. The
system considered is a pair of nuclear spins, each of
magnitude 4%, coupled to each other by dipole-dipole
coupling. Same polarization of the spins can be brought
about either by applying a magnetic field in a direction
perpendicular to the line connecting the positions of
the two nuclei, or by a rigid rotation of the whole
system about such a direction.!* To show that the
latter problem can be reduced to the magnetic-field
problem, we note that the expression for the interaction
of two dipoles, if the relative position vector R is
rotating, is

ﬁ;mz[sl S 3[S,-R{t}][S,- R{.t;lj]

G()= =

3 fityrys
= exp| —w- Si’)
fi 2R

3[S,-R(OY][S: R(0)] i

}(|:51-Sg— :| exp(—m-ﬂf),
R? i

LB Not to be confused with the rotation of the coordinate

system in Larmor’s theorem. We are now talking about an actual,
physical rotation.




CGYROMAGNETIC EFFECTS

where @ is the angular velocity of rotation and §; and 8,
the spins of the two dipoles in units of # and 4, 7., their
gyromagnetic ratios. Transforming the Schriidinger
equation if=G()¢ by the unitary transformation
V' =exp[(i/%)w- S gives the equation

ihoy' [91=[G(0)—he ST, S=8.+8. (15)

The Schridinger equation for the pair of coupled spins
with identical gyromagnetic ratios v 1z hiy/o!
=[G(0)—y#H- S}, which is identical with (15} except
in that the Larmor frequency wp=vH replaces w.
We expand the solution in eigenfunctions ¢ of $*
[eigenvalues s(s41), |85i—8:| <5</5,4+5:| ] and 5.
[eigenvalues m, —s<m<=s]:

Y1) =20 bi(Dhgmet,

where &=1 stands for (m,s)=(1,1}; k=2 for (m.s)
=(0,1); k=3 for (m;s)=(—1,1); and k=4 for (m,]
= (0,0). We take the direction of w or H as the »
direction, but the nuclei on a line parallel to the z
direction. Assuming the field turned on at i=0, and
averaging over oscillations, we find the following results
for the expectation value of the total spin after the
field (or rotation) has been on a long time:

Sty
'::Sx:"= _“'_[l 51{[}) +I!J-:{.U:' | T_El b*-‘{”:' : 2]

€

pi — (5:(00), (16}

{gy}= ':Sz}=ﬂr
with Ey= (Ay)2/2R?, e=[(3Eq)2+ (2h)*)}. The polari-

zation (16) clearly depends on initial conditions and
may be in either direction. 1f the initial density matrix
bb* is a multiple of the unit matrix, the system
cannot polarize because the density matrix will of
necessity commute with the Hamiltonian and so will
not change with time, If we have a large number of
identical pairs of spins, and if initially before the field
15 turned on each pair is in contact with a heat reservoir
at a temperature I", and then at =0 the reservoir is
removed, we find from (16) for one such pair on the
average

= fuw f3E0N*
), (17)

(8:))=
kTN 2e

The second { } indicates the average over the initial
states. The polarization (17) is a maximum when
2hw=3E; and it falls off for 2%u33E,. This is to be
expected, because the polarization process requires
simultaneous exchange of energy #iw and angular mo-
mentum # between the Zeeman part of the Hamiltonian
and the dipole-dipole coupling. However, the latter
can absorb no more than an amount of energy of the
order of $E,, so that when 24235, 1he two spins are
effectively uncoupled and no polarization can occur,
If we had included more deprees of freedom in the
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example, then it is expected more polarization would be
possible. The spins can be polarized In this example in
gpite of Larmor's theorem, since the Hamiltonian &
does not commute with $-w; the angular momentum
lost or gained by the spin is transferred to the nuclear-
orbital motion via the interaction G. Thus, the dipole-
dipole coupling provides a mechanism for spin polari-
zation through the exchange of angular momentum
with the nuclear-position coordinates.

3. EQUILIBRIUM THEORY

a. Density-Matrix Description of
Rotating-Material System

The foregoing example illustrates that Larmor's
theorem [{or in fact the Schradinger equation) is not
incompatible with the tendency of systems to move
towards thermal equilibrium, In this section, we as-
sume that thermodynamic equilibrium of the system
is obtained, and study the equilibrium properties of
general systems. Consider a macroscopic system which
has a total energy E= (3C} and whose total, angular-
momentum components are M ;= {J;}. The { } indicate
the taking of an expectation value of an operator, i.c.,
the trace of the product of the operator with the
density matrix describing the system. The density
matrix which describes the aforementioned imformation
is obtained by maximizing the entropy, subject to the
constraints imposed by knowledge of the expectation
value of energy and angular momentum.” The resulting
density matrix is

p=exp(—FIC—hSi—hy- 1}, (18)
where 8, A;, and Ay are introduced in the derivation as
Lagrange multipliers whose physical significance s
determined next.'® The summation convention is used
for the index i, which runs from 1 to 3. Normalization
of p such that Tre=1, requires that hy=InZ, where
Z="Tr exp(—@3C—N:J3) is the partition function. The
afore-mentioned expectation values are given in terms

4 This precedure has been formulated by E. T, Jaynes, Phys.
Rev. 106, 620 (1957); 108, 171 (1957}, in a general way from
considerations based on information theory.

15 One may also wish to incorporate into p knowledge of the
accuracy with which the energy and angular momentum are
known. This can be done most easily by including 1¢* and J® in
the set of operators whose expectation values are given, which
would add the terms —u¥2—-,J® to the exponent in (18], In
principle, whenever such information is available it should be
incorporated into p. However, as was pointed out in the classical
case alrendy by Gibbs, the state-density function for any system
which txhigits reproducible thermodynamic properties is such
rapidly varying function of the parameters 3¢, J, that the variance
(302} = (3038 or {J3— (S obtained from (18) is already very
small compared to a:jy reasonable mean-square, cxperimental
error. Consequently, although the extra terms would represent
a considerable redistribution of probahbilities, they would not lead
to any difference in prediction of reproducible phenomena, This
is the basic reason for the success of the Gibbs canonical ensemble,
and it is interesting to note that Gibbs also used an ensemble
canonical in angular momenta, as in (18], tn describe a rotating
system.
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of p and Z by
(1 ="Tr(¥p)=—4 InZ/a3; (19)
{(F)=Tr{J ;)= —8 InZ/dN,. :

The entropy corresponding to the density matrix (18)
is, in conventional units,

S=—kTri{plnp)
— KLB () AT )],
where k is the Boltzmann constant, Differentiating (20)

and noting from (19) that —dhe= G084 (7, )dhy,
gives

(20

dS = k[ Bd{E3C)+NA{T Y], (21)

We now consider & macroscopic system characterized
by a uniform and constant temperature T, rotating
with consiant and uniform angular velocity w. The
system is in thermal and rotational equilibrium, and
can be described by the laws of thermodynamics. The
increment of total energy is dE=d04wdM, from
which the differential of entropy is

d5=d0/T={1/T)dE— (,/T)dM ;. (22}

Comparison of (21} and (22) vields the physical meaning
of the Lagrange multipliers,

A=1/%T, hi=—w/kT (23)

The density matrix (18) may thus be written as
p=L 7 exp—B{i—wil:). From Eq. (6), the quantity
JC—w/; appearing in the exponent has the physical
significance of the efiective Hamiltonian in the rotating-
coordinate system, if w.JJ; is a constant of the motion.
In this case, the density matrix remains given by (18)
for all time.

If wil: is not a constant of the motion, Eq. (18) gives
the density matrix only at the initial time t=0, for
which the information {3}, (/i) is given. The time
dependence of any dﬂn‘sl[}- matrix is given by
ifp=[JC,p]. The equilibrium-density matrix for a rotat-
ing system need not commute with the Hamiltonian and
thus may have a time dependence. By “equilibrium”
we mean that expectation values of observable quanti-
ties are constant in a frame of reference rotating with
the system. The vector operator v is represented in the
rotating system, for example, hy the operator
v.=Rif)vR(—1), where R({) is given by the expression
(2). Its equation of motion is

<{H > - <ﬂ‘ r>+—': [v. 07

= (1/ih){[v,, H—wJ;]}

= (1/ik) Tr{v,[p, 50—w:d T}, (24)
The commutator, and hence {dv,/d!}, vanishes for the
equilibrium-density matrix (18). Also, it is easily seen

that the density matrix in the rotating frame is
constant : g,= (d/d)[R(NpR(—1)]=0.
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In practice, one may be interested only in some
small part of the macroscopic rotating system, such as
the expected value of the spin angular momentum in a
crystal with many other degrees of freedom. Then, in
taking the trace of p, one can first sum over all the
quantum numbers of the other degrees of freedom;
what remains is a density matrix with a smaller number
of rows and columns, describing only the small sub-
system being studied. If the interaction energy between
the subsystem and the remaining system is neglected,
the only role of the larger system will be to provide an
environment with a definite temperature and angular
velocity, We focus attention on the expectation value
of the magnetic moment of a single atom or nucleus,
but assume that it is representative of a large number
of identical spins in the macroscopic sample. If spin-
spin interactions, either direct or indirect (through the
lattice) are negligible, the condition that expected
moments for a single spin correspond to a reliable
prediction of total moment of V' spins is V3 (ghyH*),
where H*=H— w’ﬂ is the effective magnetic field.
As spin-spin interactions become stronger, the require-
ments become more stringent, and when conditions for
a ferromagnetic or antiferromagnetic phase change are
reached, the connection between expected moment of
a single spin and total moment of ¥ spins breaks down
completely. As is shown elsewhere, this breakdown of
correspondence between the Boltzmann “molecular”™
treatment and the Gibbs “global” treatment is char-
acteristic of any phase transition. In this paper, we
limit ourselves to the case of sufficiently weak inter-
actions so that cooperative phenomena do not appear.

Before proceeding to calculate specific gyromagnetic
effects with the density matrix (18), the perturbation
method to be employed is developed.

b. Perturbation Expansion'® for
Expectation Values

The expectation value of an arbitrary operator C,
pertaining to a system described by a density matrix of
the form (18), is (C)="Tr(p). If part of the exponent
in (18) is small, but complicated, it may be treated as
a perturbation. Since the quantity {(C) is the trace of
an operator, its value is independent of the representa-
tion ; this invariance property is to be retained in the
perturbation scheme. Not only is it convenient to
work directly with the expansion for the expectation
value of the observable of interest rather than an

1€ An early quantum-statiztical perturbation theory, expressed
in terms of perturbationz on the cnerg levels, was given by
R. Peierle, Z. Physik 80, 763 (1933): § }'Ial-;a ima, Advances in
Ph].-'sms 4, 303 (1933), has used r:-pe"ttu-r techmqueg ta ahtain an
expansion for the partition function. Application of similar
techniques to statistical-mechanics problems has heen given
ameng pthers by B, Kubo and E. Tomita, J. Phys, Soc, Japan
9, 828 (1954); I). Thouless, Ann. Phys. 10, 53 {19605 W. Kohn
and J. Luttinger, Phys. Rev. 118, 41 {1960, The present approach
was briefly reported at the April 15, 1961, meeting of the New
England Section of The American Physical Society.
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expansion for the partition function, but also, because
of the normalizing denominator, the convergence of the
expanzion is bound to be better. Consider a quite
general system described by a density matrix

p=e*tE[Tr(et*B) ], (25)

where A and B are arbitrary operators. A second,
simpler, density matrix, is po=e*[Tred ]~ We assume
that expectation values over pg can be evaluated
directly, and express the expectation value over p in
terms of those over po. The expectation value of an
arbitrary operator C, (C),=TrCeA+8[ Tred+f |- s a
function of the number ¢, When e=0, then {C).={Cls
=Tr{pC). When e=1, then {C}.={C)=TipC. Ex-

panding {C}. in a Taylor series about =0,

(26)
[ 1}

To evaluate the leading terms in (26), we make use of
the well-known mathematical identity??

1
gt = ﬁ"[ 1+e j ﬁ—-*IBe'““B”dx] (27)
0
to obtain, by iteration,
ettt B= A 1465+ €S+ 0(e?) ]
1
§i= f dee~"Bets
1]
1 1
5= f f adxdy'e—12 Bl 0—#1Begd=' (18)
i} L]
and, thus,
nﬁ!ﬁd_’-lﬂ
A = 6'451 4
de g
(29)
teitB
=248,
de’  ip

The derivatives for {C), are then obtained by applica-
tion of (29) and the definition (26) for {C}.. The result
is up to #=2 for e=1, if we define '=C—{C}y-1,

(I={S I+ {(S:—5{B )} (30)

The subscript 0 means the average is taken over
density matrix pe. The higher-order terms to arbitrary
order are derived in Appendix B. In the special case
that 4 and B commute, the calculation becomes
relatively simple because 51=F and S:=%15% A some-
what more complicated ease is the one where 4 and B
do nol commute, but 4 and C are commuting operators.

® R, Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948);
. P. Feynman, tbid. 84, 108 {1951); K. Kubo and K. Tomita,
J- Phy=. Soc. Japan %, 888 (1954),
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In that case, {30) becomes

{Th={BT o+ {(S2— (B BT}y

— (BDAH(B— (BT, O

where
Lot
0= [ [ st TB et et ()
o Je

It is seen that if the operator 4 — 0, the commutator
in () vanishes, since every operator commutes with the
unit pperator. For small A, the operator 0 is of order
{4 B%), and is, therefore, small compared to the other
terms in {31) which are of the order (B?). Seo, for
sufficiently small 4, the operator { may be neglected.
To make this condition more precise, we introduce an
explicit representation. In general, one can split 4 into
a part ¢ which fails to commute with B and a part a’
which commutes with a and B, both a and ¢’ commuting
with I'. Then, in a representation where a and I' are
diagonal, the complete quadratic term in (27),
{(Se— (B )BT}, can be shown to be equal to (T )
with

f?r.eEﬁt-.![Z nl B | "'_Jr{flﬁ —ag)— {B}DHE#],

e gt gt =1 REY
jomy =
n=t n! x

FPutting =0 corresponds to replacing fla.,—a:) by
1/2, its limiting value for vanishing !a.—ay!. A suffi-
cient condition for neglecting () 1= that for all states »
and k for which ' B, |? is finite, |a,—ax| be much less
than unity. A particular case of (31) and (33) is the
one in which B is a sum of terms, B=73_; #*", Then,

(L)=2_: T

+§ Eﬁ EL {{&[t!bil}_2{&(#!)&(1!}]‘)[,_]_@1 {‘;4}

and

EIJH:&““ E.ﬁ E:I!, [En bmﬂ‘k}bﬁ m‘}'b_,n:'”m_u'm:l
= (6" b ™ 1.

The rapid convergence of the expansion (26) or {30)
for {C) does not necessurily require that the eigen-
values of the operator B be small, even though it is an
expansion in powers of B. The convergence is in part
due to the effective cancellation of terms in the numer-
ator and the denominator of Tr{Ce+#)/Tr(e**#). For
example, if B is a multiple of the unit operator, cancel-
lation is complete and {C}={C}y; if B is a multiple of
the unit operator plus a small operator, one expects
convergence to be rapid because the part proportional
to the unit operator has no effect.

The linear term in the expansion (30} has the
property that if the roles of B and C are interchanged,
it remains unchanged, even if none of the operators
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A, B, or C commute with either of the other operators:

1 |
[ da;{f"’“ﬂg'“[:)u—}’ dx{e 1" Cet7B r=0; (35)
L] (1]

for, in a representation in which 4 is diagonal,

(ZI_I}IE" Em I:”'l H|W]{?ﬂ|r| .Fr:.l

1
}{[ dxfexp[ An(l—x)+ Anr]
40

—exp[Am(1—2)+A 2]} =0,
because the integral vanishes identically. The other
linear term {5 )p(C Ju= (B )o{C s is obviously also un-
changed by an interchange of B and C. This symmetry
property 15 shown to imply a class of reciprocity laws
for measurable magnetic and gyromagnetic constants.

We illustrate some properties of the expansion (30)
and at the same time obtain some formulas which are
required later on by applying the perturbation scheme
to some simple examples of nonrotating systems.

Magnetic Susceptibility of Free Aloms or Tons

The electrons of an atom or an ion in the presence of
a static magnetic field I, may be described by a
Hamiltonian of the form
m=5c{ﬂ:+3¢[l]H+J€£3]H:’
= —{e/2mc) (L4 28).,
@ = (& /8mc®) & (v +vid),

(36)

and 3% is an operator not involving the magnetic
field ; L and S are orbital and spin angular momentum.
The magntlitrmmnmt operator is defined by M.
= —aac/aH , which in view of (36), becomes M= —1!

P.oHE1IMS AND E: T

JAYNES

—2H3®, Taking the expectation value gives the
exact expression for the magnetic moment; assuming
an equilibrium density matrix with no rotation,

—Tr(dsc/aH) exp(—@C)
Tr exp{— i)
= — (3 ) — 2H (30,

(M.)=
(37)

We restrict attention to the part of the magnetic
moment linear in the field strength. Let 4=—gx",
B=—p(HitV+H%¢™), and assume that B is small,
or numerically that SusH=064X10"H/T<]1, if H is
measured in gauss and T" in degrees Kelvin, Expanding
(37) by means of Eq. (30) and assuming zero sponta-
neous polarization (I ),=0, we obtain for the term

linear in H,
1

(M, '=Hg j’ dat{e~A#30 W pAFeN Yo— TH (P ).
B
The susceptibility, defined by y=d{M.}/dH, 15 then

1
y = f e WA i WL P 2{3,;::2} Yo (38)
o

The diamagnetic (negative definite) part has the usual
form,

0

= — (I :"u—— ¥ {"ftc!+}'n":|—
Lt

|'|-|!

where the last step is permissible if in the absence of
the field no direction is singled out in the atom, i.e., if
its environment has cubic or isotropic symmetry. We
obtain the Van Vleck expression'* for paramagnetic
susceptibility from the first part of (38) by introducing
a representation in which 3¢ is diagonal with eigen-
values E., and then integrating:

1
xr.zﬁ[ du (e AJe i gaege ) 4y (39)
:ﬁf Zm wm| | e o) (m | 3C) | 02) (52| €A% ) (e | 3T [ ) (392)
o T (n]et|n)
exp{— E.3)
F—'Iimli“‘lﬂﬂll* ﬁEEXPE E.B)| (n]3c™ )|
LES ] tm— dim
= + {39h)
2. exp(—E,8) Z exp(— E,5)

f

An approximation to (39) suggests itself il we write
L

Xy=B{(F0) )8 f ([, 300 T4

L]
and neglect the commutator to obtain

x;r.*= SFBE:';JEE {{L:‘Fﬁ‘z}ﬂ}u- t'q'ﬂ)

The neglect of the commutator is permissible if that
part of 4 which fails to commute with 3¢ is sufficiently
small, In an atom or ion, this is usually a single term
of the form ({/#)L-8, so that if |{8|<%1, the com-
mutator may be neglected.

BT H, Van Vieck, The Theory of Eleckric and Magmelic
Suaceptibilities (Oxford University Press, New York, 19321
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From this derivation of susceptibilities, three points
about the perturbation theory are noted. (1) Whereas
the result {39) 1s obtained by using only the first term
in the expansion (30}, the usual derivation'® of (39)
by means of a perturbation theory for the energy
levels requires a second-order perturbation calculation.
Generally, the two different perturbation schemes need
not run parallel, since their expansion parameters are
in fact different. (2) The result {40) would not be
obtained at all in the energy-level perturbation scheme.
There the first-order term involves only the diagonal
elements of (L.+25.), whereas (40) includes both
diagonal and off-diagonal elements. Thus, somewhat
different approximations are suggested by the two
different schemes. (3) If the energy denominator in
(30b) creates a problem, an alternative method of
evaluating (39) is to take the trace [e.g., carry out the
sums in {3%a)] before doing the integral,

Polarizalion of Nuclei with Hyperfine Coupling

The second example for consideration is the polari-
zation of nuclel which are coupled to electrons via the
hyperfine interaction. The system is described by the
Hamiltonian

H=3.—v.S - H—y ] H—vy. s a:8:-1, (41)

where JC, does not involve the nuclear-spin coordinates,
I is the nuclear-spin vector, S=3; S, is the total
electronic spin, and +. and v, are the electronic and
nuclear gyromagnetic ratios, respectively {(fy,=2up and
v n=gu. in terms of the Bohr and nuclear magneton).
The @z are the hyperfine-coupling constants,® a;
= (8mr/3}v.|Pe(0)|* where |¢«(0)]? is the probability
that the Ath electron is found at the nucleus. This
probability is finite for the S-state electrons in free
atoms as well as for the free electrons in metals. The
second and third terms of (41) give the coupling of the
external field with the electronic and nuclear dipoles,
respectively, and the last term is the interaction of the
nuclear dipole with the electronic ones. Let us call the
direction of the magnetic field the & direction, and let

fi. =E{TRI- H+T¢'S 'H_ﬂ{:‘i‘:lr
B= v, E.ﬁ S 11-
C=1,.

Since [A4,07]=0, we have to first order in B from
Eq. (31)

{Loy= T+ 8yn 2p aelS T, — {1 00) b0 (42)

Evaluating the sums over the nuclear-spin states gives
for gy iH<C1,

(L) =By P (T+1[HA2 e (au(S2)e} ] (43)

The only requirement for the expression (42) to be
valid is that Suyg > cawl. The physical inter-

B E, Fermi, Z. Physik 60, 320 (1930).
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pretation of (43) is simple. Clearly, the magnetic
susceptibility for the free nucleus is

Xo= 3y R) 31 (141),

and the effect of the hyperfine coupling is to provide an
internal magnetic field of magnitude H'=3%"¢ {a:(5:): )0
For the free electrons in a metal, ¥ i (@e(S)e)o is
evaluated™ with the help of the definition of the a: and
the Pauli theory of paramapnetism in metals, to yield
H'=H- 8’/ Er)n(0), where Er is the Fermi energy
of the metal at abzolute zero, and s{0)= {3_ . [ (0) |2}
These internal fields give rise to the Knight shift® in
the nuclear magnetic resonance in metals. The internal
field here gives a small correction to the applied field,
so that the problem could as well be treated by o
perturbation theory for the energy levels. On the other
hand, in a hydrogen-like atom, if the electron is in its
ground state, one easily finds™

H'={a(8:) o= (BHup) (8/3)ups?/ ad,

where g, is the Bohr radius and Z the atomic number
of the nucleus. These fields give rise to a method of
polarizing nuclei suggested by Rose and Gorter™ At
temperatures of the order of 1°K, such internal fields
may be 10* or 10* times as large as the external feld.
Still, the present perturbation theory would he applic-
able and second-order terms negligible, although it
would not be appropriate to use the usual perturbation
theory for energy levels. As these examples indicate,
the method employed here can provide a unificdd
derivation of some phenomena which are usually
treated by diverse methods.

¢. Electronic Gyromagnetic Effects

The results of the preceding sections are now applied
to the analysis of electronic gyromagnetic effects, We
wish to evaluate the combined effect of a macroscopic
rotation of a substance and of an external magnetic
field on the angular momentum of the electrons and on
the atomic-magnetic moment. Only the effects linear
in the magnetic field and the rotation are considered,
practically limiting the theory to magnetically dilute
sysiems.

Let 3 be the Hamiltonian of a stationary crystal in
the absence of any external field. The crystal is rotating
about a fixed direction with angular velocity @ and has
an external magnetic field H acting on it. We introduce
coordinates fixed with respect to the crystal, and

e—

® In the evaluation of the A for the free electrons in a metal
and for the hydrogen-like atom, it was assumed that (5.8(r))s
== (XLt (s,

nW. . Knight, Phys. Rew, fﬁl 1259L ll:l‘;l‘-lt-',;l'j; in Solitd-Siale
Physics, edited by F. Seitz and D. Turnbull (Academic Press Tnc.,
MNew York, 1956}, Vol, 2.

M. E Rose, Phys. Rev. 75, 213 [1049). C. J. Gorter, Physica
14, 504 {1948). The problem is anilyzed ]’:-}r A, Bimon, M. E, Rose,
and J. M, Jauch, Phys. Rev. 84, 1155 (1951},
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distinguish all operators expressed in the rotating co-
ordinates by an asterisk. More explicitly, by a vector
operator 4% we mean one whose components 4/ are
found by computing the components 4; in the labor-
atory frame and projecting onto rotating axes. In view
of (18) and (23), the density matrix of the system may
be written in the form (25) with

A=— ﬂﬁﬂu‘,

ﬁ=a[—;(l,+253*-ll*[1}

2w

E
—— s l't*XHt*(;HLf-J*m], (44)
Smict

The time dependence of H*({) arises because a field
which is fixed in space will be seen as a rotating field in
the rotating-coordinate system.

While 7 would be expected to have an implicit time
dependence due to the rotation, the Hamiltonian 3Cy*
referred to body-fixed axes keeps the relative-position
vector of particles approximately independent of the
rotation, and no implicit time dependence is expected.
We calculate the magnetic moment (M*) and the
angular momentum {J*}; these vectors, like H*(f), are
related to the laboratory frame, if the axis of rotation
is the 3 direction, by the relation

ot cosel  sinet O (o,
1* | = | —sineel coswd Of {92,
( () 1

'i-'a*-r L T3

(45)

If the cosw! and sined are treated as C numbers, the
commutation rules for vectors in the rotating system
are the same as that in the fixed system; the trans-
formation (45) is then, in fact, equivalent to the
unitary transformation (2) for wvector operators,
although not for classical quantities such as the mag-
netic field. If the coswf and sinw! are regarded as the
components of a vector giving the relative orientation
of physical particles (or a quasi-particle such as the
center of mass of the system), they do not commute
with J. In that case, the angular-momentum, commuta-
tion rules become in the rotating system® [J.*J,*]
= —iJ.*, etc., instead of the usual [J,J, |=i],, etc.
Note the minus sign.

Applying the perturbation expansion (30) to (44],
considering only the term linear in B, yieids for the
expectation value of J.* and M *= —830/aH.:

) 1
(M*)——(L#+25* =1 XuH* (1) +04,
2me =

(46)

(J*)— U-‘*}Fi 8’ i H ¥ (1) +na,

=1

% 7, H. Van Vleck, Eevs. Modern Phys. 23, 213 (1951},
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where

x;,—=,&(—-i—-) f daleA+(LA+ 25 MeA=(LA+252))o
2mcd Sy
— Ble/2me) (Lt +25#))o(L*+25)0

+ (2 dme®) 3o, (e onT =By (r= P ),

g
oomole [ assrsen o asi
e o
[
BT LE 252, (47)
, e
¢
O yj=8—— | drx{e=(LF+285*)et5T#*)
27?3('- W
&
——{(J &)L 25,
_ 2me
Niz= 'ﬁ[ dxle—As] Feda] ¥)
: —B{U5*)ld e

From the identity (33), it follows that these coefficients
have certain symmetry properties:
HQ'=ﬂIji; xi_f= x;‘i; i = Njd. {43}
In deriving (46) and (47), it was assumed that the
gystem is in thermodynamic equilibrium; but, the
system is generally in the presence of a time-dependent
field H*({) so that the assumption is not generally
justified. The time-dependent behavior is discussed in
Sec. 4. However, the equilibrium treatment is applicable

in several important cases.

(a) The field is parallel to the axis of rotation
(only the transverse components have a time
dependence).

(h) The transverse components are made to rotate
with the crystal, se that again there is no time
dependence.

[¢) The rotation is so slow that the longest relaxation
time of the system is very small compared to the
period of rotation. Then the system continues in
a time-varying equilibrium.

(d) The rotation is so rapid that the shortest
relaxation time of the system is very large
compared to the period of rotation. In this case,
the spins and particles do not have time to
respond to the rapidly changing, transverse field,
and only the field in the 3-direction should be
considered in Eq. (46).

The usual Einstein-deHaas and Barnett effects** are
already included in the case of a field parallel to the
axis of rotation. For analysis of these effects, we require
further that the system have sufficient symmetry (e.g.,
reflection symmetry across a plane passing through
the 3 axis is sufficient), so that the off-diagonal elements
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of the tensors (47) all vanish. In addition, it is assumed
that the unperturbed crystal is unpolarized. Finally,
diamagnetism is neglected.

The Eqs. (46) become, with these simplifications,

{M 3= X3:H 34-0zq0,

49
{IH}=W3JJH+W3WJ1 { }

with

e 2 i
xs.‘a:ﬁ(-‘—) f M{F“’{Ln‘l—ESE}EAI{Ls'{'?—s:] Jo,
2mcd Jo

e 1
HJH:EN;:,S" — f Ijx{a_"l#{Lu“—ESa}ﬂd:jz}uj {5“}
1

e
1
ﬂaaﬁﬂf dx{e2=] se 5T )y,
o

In the usual Einstein-deHaas type of experiment, a
magnetic field H; induces a magnetic moment (M) in
a solid which is measured, and it also induces an
electronic angular momentum {Js}. This internal angu-
lar momentum must be balanced® by a macroscopic
rotation Qug=— (J3}, with Q the moment of inertia
about the 3 axis. Measurements then yield the ¢'g factor

{e/2me)g e= (M 4}/ Qwz
={M3)/{J1)=%X33/8"ss.

In the Barnett experiments,.the angular velocity we is
impressed, and a resulting polarization observed. The
angular velocity is compared to an equivalent field Hg
which produces the same polarization. The Barnett
coefhicient

(51)

[3f2m€:|g}REwaH5
(M3p/0ay  Xas
(M3 %y B3y

{32)

The equality g's=g'g=g' arises from the equality of
# 35 and 8,5, which is a direct consequence of the relation
{35). In the present (linear) approximation, g’z and
g's are independent of the field strength or angular
velocity, but may have a temperature dependence.
Numerical evaluation of ¢’ has been carried out by
Van Vleck and Frank, by Arajs ef al.2 for rare-earth

# The field does not give up appreciable angular momentum ta
the material: The angular momentum of the field,

Gty =1/4nc | [(EXH)Xr]du

with r the vector distance to the center of rotation of the erystal,
is quadratic in field strength and in this respect of higher order
than the right-hand side of (49). If the field increases linearly
with time in the z direction, G{8)=(1/8x)HH (i} Fa{vi—xfids
This r}uzmtit:,r has no component in the feld direction and vanishes
for all but rather asymmetrically shaped bodies.

® A Frank, Phys. Rev, 39, 110 {1532‘]; (zee alzo reference 17).

# 5 Arajs, B, V. Colyin, and . W, Whitmore (1961 unpub-
lished). Recently these authors have uzed for some cases more-
exact energy levels than those given by the L-5 coupling scheme.
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salts, and by Gorter and Kahn' particularly for salts
containing ions of the iron group. Van Vleck, Frank,
and Arajs assume that J; commutes with 3, so that

Bii= (e/2me)B{(L:4S:) (L:425.) Jo. (53)

This is a good assumption for the rare-carth salts,
since the 4/ electrons responsible for the magnetism are
well inside the atoms and only very weakly coupled
to other atoms with which they could exchange angular
momentum; in addition, these authors assume Russell-
Saunders coupling for the atom.® With only these
assumptions, g’ has been evaluated for Ev*t and Sm*
by Frank for various temperatures. Theory and experi-
ment®® are in agreement insofar as experimental data
are available. For the other rare-earth ions, the calcu-
lation for room temperatures is simplified, because the
multiplet splitting (same L and S, different J) is large
compared to kT. If, further, the off-diagonal elements
of (L;4128;) are neglected in a representation where
Iy is diagonal, it is found from (39) and (51) that
¢' =g, the usual Lande splitting factor associated with
the ground state of the ion:

S{S+1D—L{L+1)
I+

g=3/2+

This simple formula agrees with the experimental
results quite well for all the rare-carth salts, except
those involving Eu* or Sm*. To illustrate the situa-
tion, we take the case of Nd** where g=0.73; the
evaluation of g' without assuming large multiplet
splitting or negligible off-diagonal elements gives
g =076; the experiments of Sucksmith® on Nd:O;
give values of g’ ranging from 0.74 to 0.83, the mean
value for the experimental results being 0.77, in good
agreement with Van Vieck theory. Arajs and co-
workers have extended the calculations of Frank for
Eu*t and Sm*™ to higher temperatures, up to 2000°K.
They also have evaluated the g" for the other tri-
positive rare-carth ions in the temperature range from
10°K to 2000°K. They find that Eu™ (six 4f electrons)
has by far the largest ¢’ value at room temperature, but
it falls off with increasing temperatures; the g" for
Sm* (five 4f electrons) increases with temperature,
reaches a maximum at about 1000°K, and then de-
creases. The g’ values for the tripositive, rare-carth ions
having from one to four 4{ electrons increase monotonic-
ally with temperature, whereas those for ions with
more than six 4f electrons are practically independent
of temperature. No high-temperature experimental
measurements of g° for these tripositive ions are
available.

¥ ¢, J. Gorter and B. Kahn, Physica 7, 753 (1940},

¥ The comparison of theorv and experiment for the ¢ valoes of
salts of the iron group, given by L. F. Bates {cited in footnote 4)
p. 270, does not include the only really satisfactory caleulation,
of the ¢’ values, that of C. J. Gorter and B. Eahn, reference 27.

® W. Sucksmith, Proc. Roy. Soc. (London} AL28, 276 {1930);
AL35, 276 (1932).
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Gorter -and Kahn have worked out a procedure for
caTlculating g: without the simplification (33); J; and
¥y need not commute. However, they assume, in
analogy to the Van Vleck theory for susceptibilities,
that one bas Russell-Saunders coupling and that multi-
plet splitting is either large compared to &7 or small
compared to k7. In evaluating g’ for salts of the iron
group, if is assumed that the crystalline-ficld splitting
15 much larger than the L-S splitting; the former is in
lowest approximation assumed to quench completely
the magnetism due to orbital motion; then the L-§
coupling is treated as a perturbation. The perturbation
parameter « s a measure of the relative strength of
spin-orbit coupling to the crystal field. In terms of
this parameter, the magnetic susceptibility obtained is
x=5{e/2mc)*BS(S+1) (24w, and the g value is
¢ =(24+a)/{1+a). The values of « obtained from
susceptibility measurcments are then employed to pre-
dict g" values. Agreement is satisfactory” for Crit,
Mn*f, Fett and Co't, although for Co'* the appl-
cation of perturbation theory is questionable, and « is
rather large, around 0.5. The g' for Nit+ and Cut+
were evaluated by these authors, but no measurements
are available.

Although the theory presented here 13 primanly for
paramagnetic malterials, {or completeness we summarize
the status of the theory of the gyromagnetic ratio for
ferromagnetic and other materials. Tor ferromagnetic
materials, it has been shown first by Kittel® and
proved quite generally by Van Vleck® that the magneto-
mechanical factor g’ is related to the spectroscopic-
splitting factor g which occurs in the theory of ferro-
magnetic-resonance cxperiments by the relation g
=g/(g—1), or approximately g—2=2—g'. This i3
proved by assuming again that the orbital angular
momentum is nearly quenched. It is irrelevant whether
quenching is due to exchange coupling or due to the
crystal field. Tf M.= (¢/2mc)(L.+25.), ic., il dia-
magnefism may be neglected, and J.=L.+5,, then
one has g'= 2mec/e){M,)/{J.}= (2+a)/{l+a), where
o= (L.)/{(5: <1, In microwave spectroscopy, one oh-
serves energy levels fo= Foy4upgMH, where M 15 an
integer cigenvalue of the component of the total spin
in the direction of the freld. The splitting factor g is
equal to 2 in the case of no orbital contribution. In
Van Vleck’s calculation, the spin-orbit coupling and
the effect of the external field on the orbital angular
momentum are treated as a  perturbation. Using
second-order perturbation theory, he finds g=2-a.
The result 1s valid vven when exchange interactions,
dipole interactions between spins, and any other inter-
actions which commute with 8§ are included. The
available experimental data® are summarized in Table 1.

¥ C. Kittel, Phys. Rev, 76, 743 {1949). See also D. Polder,
Phil. Mag. 40, 99 (1949).

2], H, Van Vleck, Phys. Rev. 87, 266 (1950).

2The ¢ and g/ values for Fe, Ni, Co, Permalloy, and
Supermalloy are those biven by G. G. Scott, Bull. Am. Phys.
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TageLe I. Comparison of experimental ¢ values and ¢’ values.?

Magnetic-resonance  Gyromagnetic-effect

Material measurements measurements
g g/(g—1) g

Fe 2.11 1.90 1.92

Co 2.20 1.83 1.85

Ni 2.21 1.83 1.84
Permalloy 211 1.90 1.91
Supermalloy 2.10 1.91 1.91
Heusler Alloy 2.01 1.99 1.99
Magnetite 2.20 1.83 1.93

Mn Sh 2.10 1.91 1.98

& See reference 32.

The data indicate satisfactory agreement with the
relation g/ (g—1)=¢, for Fe, Ni, Co, and the alloys.
A few years ago it appeared that discrepancies existed
for these metals and alloys. However, the recent
precision measurcments of the Einstein-deHaas cffect?
seem to have removed the discrepancies. For the
chemical compounds IFe;Oy and MnSh, the experiments
indicate that g/ (g— 1)7¢". Possible origins of deviations
from this relation have been discussed by Van Vleck™
and by Kittel and Mitchell,* although not specifically
in connection with these compounds. Further theoretical
study is needed to understand quantitatively and
gualitatively the rclation between ¢ and g’ for them.
For diamagnetic lonic crystals, one expects no gyro-
magnetic phenomena because the 6 and 8';; of Eq. (47)
contain no diamagnetic contribution as the suscepti-
bilities do. Gyromagnetism due to conduction electrons
has been discussed by Broer,* zlthough it is too small
to be observable in ordinary metals by present tech-
niques. However gyromagnetic experiments have been
performed?® on supcrconducting lead; these experiments

Soc. 5, 178 {1960). The g’ values are measured by the Linstein-
deHaas effect by Scott; the g values for these substances are
averages of the results of various investigators during the past ten
vears: G. Asch, Compt. rend. 248, 781 (1939); 249, 1483 (1939).
D. M. 5. Baggulay, Proc. Phys. Soc. (London) A66, 765 (1953).
. M. 5. Baggulay and N. J. Harick, ibid. A67, 648 (1954). L.
Barlow and K. J. Standley, #bid. B89, 1052 (19536). N. Bloem-
bergen, Phys. Rev. 78, 572 (1950). A. J. P. Meyer, Compt. rend.
246, 1517 (1958). K. H. Reich, Phys. Rev. 101, 1647 (1936). J. A.
Young, Jr. and E. A. Uehling, 7bid. 94, 544 (1954). The agreement
between the ferromagnetic g and the magneto-mechanical ¢’ should
be still better if instead of the averaged values of g, the most-recent
measurements, those of Asch, would be used for comparison. The ¢/
values for the Heussler alloy and for MnSb have hcen recently
measured by G. G. Scott (private communication); the magnetic-
resonance values are from W. A, Yager and F. R. Merritt, Phys.
Rev. 75,318(L) (1949}, and Adam and K. S. Standicy, Proc. Phys.
Soc. (London) A65, 454 (1952), respectively. The g and ¢’ values
for magnetite are from L. R. Bickford, Phys. Rev. 76, 137(L)
(1949), and W. Sucksmith (reference 29), respectively. For a sum-
mary of the earlier measurements of g and ¢’ values, see C. Kittel,
J. phys. radium 12, 291 (1951). A very recent summary of data for
t'e, Co, N1, and their alloys is given by A. J. P. Meyer and G. Asch,
J. Appl. Phys. 32, 3305 (1961), Added tn proof. Sce also G, G,
Scott, Revs. Medern Phys. 34, 102 (1962},

8 (. Kittel and A. Mitchell, Phys. Rey, 103, 1611 (1956). See
alsa Kittel, reference 5.

3t 1. ]J. F. Broer, Physica 13, 473 (1947),

8 . K. Kikoin and S. V. Goobar, Doklady Acad. Nauk 5.5.S.R.
19, 249 (1938).
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give g'=1.0 for the conduction electrons in magnetic
fields below the threshold value at which the resistivity
of lead has a measurable magnitude.

Magnetomechanical effects are not necessarily re-
stricted to solids, but would also be expected in liquids
and gases, in which the atoms or molecules have a
magnetic moment. Gorter and Eahn point out that
molecules in a gas can exchange angular momentum
through collisions with the walls of the vessel in which
the gas is contained, so that we should be able to detect
gyromagnetic effects in paramagnetic gases such as
oxygen and nitric oxide. In the Einstein-deHaas effect,
we would observe a rotation wg of the vessel.

d. Polarization of Nuclear Spins in a Crystal

Since most nuclei, like electrons, posses both a spin
angular momentum and a parallel magnetic moment
in their ground state, and since angular momentum can
be exchanged between nuclear spins and lattice motion,
we expect at least in principle that polarization of
nuclei by the rotation of a macroscopic sample, the
nuclear analog of the Barnett effect, is possible. The
polarization of nuclei by a magnetic field requires a
means for balancing the angular momentum acquired
by the nuclei. One such means is the rotation of the
whole lattice. This occurrence is the nuclear analog of
the Einstein-deHaas effect. We discuss in the following
the polarization of nuclei due to the simultanepus
action of an external field and a rotation, thus including
both effects. The coupling of the nuclear spins with the
crystal environment is treated as a perturbation,
whereas the action of the field and the rotation on the
uncoupled nucleus are treated exactly. In evaluating
the polarization of the nuclear spins, the simplifying
assumption is made that in the stationary crystal the
nuclei have no orbital angular momentum.

Consider a single-spin operator I expressed in units
of #i with moment ugl and in an external field H con-
tained in a rotating crystal which is at temperature 3.
If the coupling between the spin and the surroundings
is neglected, the density matrix, in view of (18) and
(23) is
pm=(1/Z) exp(Bugl:K:), where K=H:+w/v,

the K; are the components of the effective magnetic
field due to the combined action of the external field
and the angular velocity w of the crystal. We leave off
the subscript # from ~, in the rest of this paper. The
expectation value for the component [, along the
direction K is

(fut=({+4%) cothla(I+4) ]—4 cotha/2=}al (I+1),
if Ka=pugK<x1. (535)

(54)

The expectation value (I} is time-independent; the
perpendicular component has zero expectation value,
I is the spin of the nucleus in its ground state. The
effects of rotation and magnetic feld are additive
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according to (55) if a<<1, and for any value of a are
correctly described by a total effective field K. The
moment of inertia ny, defined by #{l}= fyw, and the
nuclear susceptibility are related:

Xy=v"nn=0(guPiI{I+1).

To include the interaction of a single nuclear spin
with the internal fields due to all the rest of the erystal,
we treat the uncoupled system ‘‘spin plus remainder
of crystal” as the zeroth approximation, and regard
the coupling between the spin and the crystalline fields
as a perturbation, which must be small compared to £7".
The caleulation is carried out in the laboratory co-
ordinate system in which the effective, external
magnetic field K is constant. The perturbation
Hamiltonian JC;» will in general have an implicit time
dependence, which is discussed further on. In applying
the perturbation expansion (30), we choose

(56)

A=—g(e,—H-M—w-J— K- I,
B= —3iCs,
r=I- 'I:I\:ln

Here, 3y is the uncoupled Hamiltonian of the crystal
in the absence of the magnetic field and the rotation.
{I:}0is given by (35) and {[.)y=0. M and J are¢ the
magnetic-moment and angular-momentum operators
for the crystal excluding the particular nuclear spin of
interest, To calculate (I'.), Eq. (31} is applied, neglect-
ing J; to obtain (1), the corresponding approximation
is made in Eq. (30). Thus one obtains,

{Pa}zﬂ‘:ﬂ‘:mr;}u

+%ﬁt{{rzj{::2=>l}_E{I‘r}cli}ﬂiﬂ-lﬂ:}ﬁjj {5?]
(I )=—p(1%a) (ul o t+38((1F1F2(c/a)]
X ARCiaf Ly Jo— [0 (30 1ady jo(Hia o), (58)

where
a=fupK; o=(l—e"/o—1=—2a;: and [ =T _+if,.

The 5 direction is chosen parallel to K. To derive (58),
we use the commutation relations

Lecfe ], J=(ec— 1)1 et (59)
where ¢ is any complex number. These relations are
eagily verified In any explicit representation of the 7.
and [y, The Hamiltonian 3Ce is a sum of interactions.
In the linear approximation, only those terms can
make a contribution which have a dependence on the
components of L. These terms are:
1. the magnetic-dipole coupling between nuclei

] s I Ra' ln-
W= — ZE g_[ L. ]’__.';{Ra;—{}.i!

Rqa

; (60)

2. the coupling with electron spins of unpaired
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electrons
= — (Br/3)guye 2n 6(Tatl- 8,
I:8. 3(I'1) (Sera)
— gy, 2 [——;- —_'-5-—1 . (61)
o Fen' ¥m

3. the interaction due to the electric-quadrupole
moment of the nucleus®

S L
oW =— 3 Qﬂf( ).-
0 1= drdxes o

Qu=CLRUI+ 1) —8,I*]  (62)

with the constant C=e(/f(2I—1); and

4. the interaction between the nuclear magnetic
moment and the orbital motion of the electrons® in
the presence of the external field,

£ I e
A = _P_g-_ E” —[rﬂxpn—z—[Hrn'z_an- '['m:l]
o

e s

& ¥ 'K ?1 2 (63)
s el 0| .
*nggmu[ ]

Fa

The notation used is the conventional one. In the first
term of (61), the sum is over § electrons and §(r,,), the
Dirac delta function which vanishes unless the electron
is at the nucleus : the second sum in 3@ is over electrons
other than § clectrons. In (62), »;, and x; are the
Cartesian coordinates of the nuclear charge of the
nucleus of interest, (0 is an operator, ¢ is the electro-
static potential, and ( is the quadrupole moment of
the nucleus. 3¢9 is obtained if it is assumed the nth
electron is in the combined external and nuclear field
H,=H+pg grad(1-¥1/7,), and the vector potential is
taken to be A,=3H xr,—uelX¥(1/r.). The r, is the
position vector of the wth electron relative to the
nucleus Lo which it is bound.

Unlike the calculation of the electronic gyromagnetic
effects, we have here expressed the Hamiltonlan in the
stationary frame. The rotation means that the nuclear
position coordinates will in fact rotate in space; if the
rotation is sufficiently slow and the external field
produces an effect on the electron motion which is
small compared to the electrostatic crystal fields, the
electron coordinates will also rotate with the same fre-
quency w. The nuclear-spin oricntation I in effective,
external, magnetic fields of a magnitude customary in
nuclear magnetic resonance experiments is primarily
determined by the effective external field and is little
influenced by the changing, internal, magnetic fields.
The orientation of unpaired electronic spins is again

8 Spe pp, N. H. Coben and F. Reif in Selid-Slale Physics
edited by F. Seitz and D. Turnbull {Academic Press Inc., New
York, 19597, vol, 5 x

#N. F. Ramsey, Phys. Rev. 78, 699 (1050); 86, 243 (1932},
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primarily determined by the efifective, external-field
direction rather than the relatively weak, internal,
magnetic fields.® The fact that the spin of interest is
subject to an internal magnetic field which wvaries
systematically with time indicates that the assumption
of thermodynamic equilibrium can be expected to hold
only in some cases, such as any of the following:

(a) The internal magnetic feld has cylindrical
symmetry about the axis of rotation.

(b) The longest relaxation time is much shorter than
the period of rotation. The equilibrium polari-
zation will in that case vary slowly with time,
as in the corresponding electronic case. The
dominant part of (I'}, namely, (I}, will remain
constant.

{c) The shortest relaxation time is much longer than
the period of rotation. The internal fields per-
pendicular to » are effectively replaced by their
average value in this case,

With these reservations, the first order to {7,}, in view

of (57) and (60} to (63), are found to be

(Iep=A{I:)o=Pug(H'+H5+HY 4+ HP+-HP)
X AT o—B8(Dy+ Do) {I T ),

with the following expressions for the quantities in (64)

{see Appendix C):
(LT =l (T4-1)/34

(64)

and
([T ye=ad (I+1)/45][ 41 (I+1)—3].

H! is the average field in the z direction due to other
polarized nuclear spins,

(I.). 3Z.(R.-L
H=u4 T gw(—-——-—---—~ }>. (65a)

nuclei Raa R.r

If all the nuclei are similar to the one of interest, and
the external field is large compared to internal magnetic
fields, this may be written in terms of the angle 8.
which the relative-position vector R, makes with the
% axis:

Hiz== I (T4 1)8ugH ¥, ((1—3 cos¥,)/ R b (65b)

The internal field % due to nearby unpaired electren

3 This time dependence arising from rotating-position vectors
may be made explicit by rewriting (60) to (63} as follows

o] (f,:l: U{j_]ﬁf_l:i] [0]{:’(_ f::'; U{ﬂ.}gfx[‘}{(il.‘rﬁ]{-_[-'- En Im}'“]:
HE =V 0w (= Vi=sepld/A)I+ 2. 8.)-wt],
-"rll*'*‘[!}m% IE Q'kiﬁzi(—uﬂjﬂ [ —auf)
: Biktmm1 " Oka"0z" G '
with O the square matrix appearing in (45), and »,* the nuclear
cootdinates fixed relative to the crystal azes. Finally, in 32% the
vectars r, have components = Xy Copl —awline®, tfm scalar 1,
has no time dependence, bul the components of the gradient
operator become @/dn= Zi Cix( —wt)d/an?,
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spins for all but s electrons is

) (Se): 3z:(ri-8)
o=, < - > L (66)
electrons ¢t ¥ i
and the internal field due to the s electrons,
8= (8w /3)ya 225 (BIr;)S: ) (67)

This field H* is the hyperfine ficld already discussed
and shown to be responsible for the Knight shift in
metals, and the Rose-Gorter polarization in para-
magnetic ions. In the presence of the rotation as well
as the extermal field, the expressions given there for
this internal field must be generalized to H % =8mugn (0)
X (upH +hw.)/Ep for free electrons in a metal, and
H =(8/3)8(usZ’ ai®) (upH ~+hw,;) for a hydrogen-like
atom or ion. The magnetic moment due to orbital
angular momenta L of the individual electrons gives
rise through J2% to the internal field

Wl i @

where, in evaluating the expectation value, it must be
remembered that the electrons are in an effective
external field {H+fw/up). Also, from 3¢, there arises

the field
)

. et 5 [H :::,z,-> 5 iE
= —— A — =
D2 < r2 5y v< rh

Aoy
’-L: 1)

For the spin of a nucleus in an atom with a spherically
symmetric charge distribution, only the last term in
(70} will contribute. The direction of the internal field
is in this case opposite to that of K.
For [>%, the D, and Ds: terms can contribute. D,
depends on the nuclear quadrupole moment :
W) e % zaﬂqﬁ

7“23 1)\d 3y 98

3e() >
1(21—1 }<az2
The last expression is legitimate®® because the 5 elec-
trons do not contribute to the quadrupole interaction,

and the charge density at the nucleus due to p or 4
electrons Vi is negligibly small. The quantity s has

the value
1—3 cos™,
1 DAY e, > .
1

+H,

{72)
elee r;” Tee

g"z
Dy=——(ug
16mic?

1t is a small interaction of the nonspherical part of the
electron cloud with the nuclear-magnetic moment.
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Each of the terms in (64) is related to previously
known effects, many of which have been observed and
evaluated theoretically in detail.

The field H' is known™ to cause splitting of magnetic-
resonance lines in unsymmetrical configurations. If the
crystal is rotating, the vector R, also rotates, so that
the splittings depending on the components of R,
perpendicular to the axis of rotation will be washed
ot

The term HS produces an anisotropic line shift,
which is however zero in crystals with cubic symmetry.
The field H¥ must also include the effect of the second-
order, pseudodipolar coupling, which has, for example,
been studisd by Bloembergen and Rowland." This is
shown by treating the contact interaction between the
electron spin S and nuclear spin L, as a perturbation in
the exponent of the density matrix py in evaluating the
expectation valuws (66), and by then calculating the
linear term in the perturbation according to (30). In
this way, we find for an electron of spin § coupled with
a nuclear spin L, other than the spin of interest :

3z(r-8)

Eare s )

1=—3 cos™¥,
= {%fsjﬂgﬂﬂﬂ{!a"}ull<T> + ety
o oo

(73)

Here, the 00 means that the expectation value is taken
over the density matrix po unperturbed by the 1,-8
coupling. Comparison of the second term in (73) with
(65b) shows its resemblance to a direct, nuclear,
dipole-dipole interaction. Integrals over commutators
of the form [pon, 8(r—R.)S-L.] are neglected in
deriving (73).

For the Knight shift H¥, much detailed knowledge
is available for nenrotating crystals, and values of
H*/H are in the literature” for a large number of
metals. In many cases, the magnitude of H5'/H is of
the order of 1/100. If the crystal is rotating, the
correction is unchanged, except that H is replaced by
Hot (uus/ps). 1f H¥ 15 evaluated in just the same way
as H% in Eq. (73), with Sug.(8my./3)6(r,—R)L.-S;
treated as a perturbation, one finds,

(HELT )o==(8mry./3) 20 (5(re).S. )oo({I.T )
+ (8ryo/ 3P uBga (ToL.T b0 200 [B{ri—Ra)5: )0
X {ﬁ frt :I-ﬁ'x i-}ﬁ'l.l_ {t‘;z 1-’;‘:*5 |:.r i‘)a (r{_ R.;,I' }|_'||}:| . f?'-l‘]

The second term in (74) is, in effect, like an exchange
interaction between nuclear spins I and L. Here r; is

B 5. E. Pake, J. Chem, Phys, 16, 327 (1948); 5¢cc also G. E.
Pake, reference 9.

% H, 8 Gutowsky and A. Saika, J. Chem. Phys. 21, 1688 (1953).
ﬁ'}?ﬁ Gutowsky, D. W. MeCall, and C, P. Slichter, ibid. 21, 279

I

N, Eioembergen and T. Rowland, Phys. Rev, 97, 1679 (1955),

#W. . Knight in Solid-Stale P.&ym exlited by F. Seitz and
[x. Turnbull {Academic Press Inc., New York, 1956), 2nd ed.
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the position vector of electron &, the nucleus of intersst
being taken as the origin. In a metal, if an electron has
a finite probability of being at nucleus « as well as at
the nucleus of interest, the effective-exchange term can
give a contribution for i=k. This kind of pseudo-
exchange effect has been derived by Rudermann and
Kittel.® It is possible to obtain a cantribution if =k,
provided the two electrons are strongly coupled to
each other, as for example by an electron-exchange
mnteraction.® Without any correlation between the
electrons, the effective-exchange term is zero. If the
electron, nuclear, dipole-dipole interaction were treated
as the perturbation in evaluating H¥', we should again
obtain a pseudo-dipolar term something like (73).

The field H¥ is seen from {69) to have the simple,
physical significance of the field due to polarization of
the magnetic moments due to the orbital motion of the
electrons. It is closely related to the shielding effect
obtained by Ramsey,* which is known as the chemical
shift. This relation is shown by writing

po=exp[ —B(3Co0—usL- H') ]/ 50,

where H'=H-+1/usfw, and z, is the partition function,
and then treating SupLl-H' as a perturbation. If
pro=exp{—p33Cas)/ 0o, application of (30) to (69) yields
in a representation in which Xy is diagonal and has
eigenvalues K, for the term linear in 8y L-H’,

2t (Lt H) poa (L7 )
H,=FE,

HP=% RE E E. {:ﬂﬂlb_:'nn

i

+ua'B Ta (poo)an oo [(Li- H)L 13 Taa;  (75)
Re means “real part of.” As Ramsey points out, the
calculation of this effect is very similar to that of the
Van Vleck theory of paramagnetism. Ramsey’s shield-
ing correction corresponds to the double sum in (73).
In obtaining (73), it is assumed that 3"; (L.Yr#)a=0,
or complete quenching of the orbital angular momenta
in the absence of the field. The rotation manifests
itself in that H' rather than H appears, and in that
energy levels may be modified by the rotation. Experi-
mentally, without rotation, shifts of resonance lines due
to chemical surroundingz have been found for exam-
ple to be H?/H~ 61074 for fluorine atoms. Measure-
ments of chemical shifts have been made by a number
of investigators.

The field H” [Eq. (70)] becomes in the limit of no
rotation the diamagneticshielding field found by

“ M. Ruderman and . Kittel, Phys. Rev. 96, 99 (1954},

4N, Ramsey and E. Purcell, Phys. Rev. 85 143{L) (1952}
discuss this interaction in molecules.

i See, e.g., reference listed by G. E. Pake in reference 9, pp.
57-58; also see N. F. Ramsey, Molecular Beams (Oxford Univer-
sity Press, New York, 1950), pp. 162-166. J. A, Pople, W. G.
Schneider, and H. T. Bernstein, Hiph Reselution Nucleor Magnelic
Resonance (McGraw-Hill Book Company, Inc., New York, 19050},
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Lamb*®: H?=¢H, where

& 22 +32
¥ < ) :
Zmct o rid 0

The term proportional to Dy gives the polarization
through the -electric-quadrupole moment of the
nucleus.® In the evaluation of the field gradient
{3%/d2*)q, the field gradient of the electrons of the ion
containing the nuclear spin of interest must be added
to the field gradient due to other ions. The contribution
to the quadrupole interaction arising from the distortion
of the field of the ion in which the nucleus of interest
sits, due to the other ions is included in the expectation
value (3% /d2%),, since the interaction energy between
the electrons of the ion with the crystal field is contained
in the exponent of py. This interaction may be treated
as a linear perturbation using {30). Finally, the term
proportional to I); has been discussed by Ramsev®® in
connection with the magnetic-resonance spectrum of
molecules, and the line shift evaluated for deuterium
molecules. It gives rise to an apparent guadrupole
maoment, since it produces the same line-splitting as the
nuclear-quadrupole term D,.

In evaluating the correction to {f.}s, which is linear
in the direct coupling of the spin to the surroundings
12, we have found actually two types of corrections:
one which is really of first order, such as the Knight
ghift and the Lamb shielding—these line shifts would
appear as a first-order perturbation of energy levels in
usual quantum-mechanical, perturbation theory; the
other type involves not only the coordinates ¢ coupled
directly to the spin I of interest, through 302, but also
coordinates ¢; coupled to I only indirectly through
terms in the total Hamiltonian which contain both g4
and q;. These corrections are of the form ~3¢31T sl oo
and are exemplified by the Ramsey shielding and the
effective-nuclear-exchange term; the corresponding
corrections to the energy levels would appear in
second-order perturbation theory.

(M course, we might have emploved a perturbation
JC'13=03C1243Cg; in the first place, and then the terms
proportional to {3Cs3Cs;) would appear in the second-
order part of the expansion. However, the physical
significance of individual terms is more clearly brought
out in the present way of doing it; besides, we are
assured that the §2(3C;3)* effect iz small, whereas this
may not be the case for §2(3C )%

In Eq. (64), seven linear corrections were dis-
tinguizhed ; we would obtain 28 types of terms from
them in evaluating (3C,3)%. While all of these quadratic
corrections are expected to be small, some of them are
expected to be well within the range of observation of

T=

W E. Lamb, Phys. Rev. 60, 817 (19%41); numerical values
are given there and also by W. C. Dickinson, Phys, Rev. 80, 563
(190).

 Nuclear-quadrupole effects are reviewed by N. H. Cohen
and F. Reif, reference 36.

BN F. Ramsey, Phys. Rev. 89, 327 (1053},
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experiment. Here, only the five quadralic lerms
involving the hyperfine coupling and the ‘“internal
magnetic fields' occurring in (64} are evaluated; they
are corrections either to the nuclear polarization in a
paramagnetic ion or to the Knight shift. At this point,
it must be mentioned that the “internal fields” HT, H,
etc., are statistical averages of fields arising from
particular internal interactions. It does not necessarily
follow from this that the NMR frequency will be
shifted by the Larmor frequency corresponding to the
internal fields; however, (64) states that the polari-
zation of the spin acts as if the levels were shifted by
just that amount. In some cases, as for example in the
lowest-order Knight shift or the Lamb shielding, it is
in fact so.

We write the part of 3C,. giving rise to H!, H5 H%
HP, and H? in the form J¢14-3¢54-305"4-3¢F, where 30!
gives HT, etc., The coupling of hyperfine interaction
J05" with 3C! gives in second order,

HeuSY[(3K.5H I -H5 -HN{IT),

— 4H::H=SF{Ia }ﬂ{‘r rr:":':l:l I:.?ﬁj

where H . .’ are obtained from (63) by replacing s by
x and vy, respectively; similarly, H, ,% are obtained
from (67). To obtain (76}, the simplifying assumption
is made that the coordinates and spins of the electrons
responsible for the contact interaction are not cor-
related to the spins of the nuclei, other than the one
of interest.

The quadratic term coupling 3% and 3C% is of the
same form, if it is assumed that the coordinates of
different electrons are uncorrelated and that a particu-
lar electron either has the 3% type or the 5% type of
interaction, but not both:

Hew[ (3H 5" H S—H¥-HF) (I}
—4H SH B {F (LT ]. (7T
1f the correlation between electrons is to be included,
the coefficient of {I.*T"}o in (77) is replaced by

(Br/3) (guund)y

Szalf ";zﬂ‘l [Sul’.rnr-‘:l
xE £ (e 355 -2 )
i rl'li rn'a

Sm_ Sr:' 3 Sr&, n* Sn"_ at
_( i (S*r _]l_{ r_]l):|> 8
fh’g rr:‘} i i

The quadratic correction depending on (35} is

[(8m/3)gu(ue/ M8 (TT 20
X Ew (S8 =4 (5257 4.5,55,~)]

x i |: fn}ﬁ '|,r1'q_ ' } ::' Vi Eg#-f d r,'ﬂ]'z {Ix _}I'.'l {I:F :"ﬂ- (?9]

If n=n', the first term of (79} clearly vanishes; it can
make a contribution only if at least two electrons have
a finite probability of being at the nucleus. Even then,
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it can be shown to vanish, if the electron-spin space
and coordinate space may be separated. For the quad-
ratic terms coupling JC¥ and 0%, one assumes that the
electrons with finite probability of being at the nucleus
are in s states, to obtain

fsw&}(gn?ﬁ)'{rmq.
] { r nl}

g

Fu

= E(Eﬂﬂ}ﬁﬁi FH: K {_-l:: }L1{ [‘1’ = ,I:'ﬁ-

XET {3L,"S.'*‘—L’*-S*'}>

(80}

The terms arising from products of ¥ and 3C? give
rize to the quadratic correction

(4m/3) (gud ) ¢/ me*)un (L1 2o
XF . B35 — 8% )
+2(gud)H S H,P (o LD o,

where f. is the sum over electron coordinates:

=2 [yt y— o2 . H — (2,24 v D H, ]2,

(81)

and f; and f, are obtained by cyclic permutation of
%, ¥, and z. We recall that, when the crystal is not
rotating, H.=H,=0. This completes the list of guad-
ratic effects calculated here. In Eqgs. (76) to (81), all
of the coeflicients of (7T} produce an effect on the
expectation value of the z componenl of the nuclear
spin  proportional te that produced by a nuclear-
quadrupole moment. For I'=1/2, these effects are not
present, since {IT }y=0. Ramsey® has discussed the
pseudoquadrupolar effect contained in our Eq. (77) in
connection with the deuterium molecule. He also
points out that no pseudoquadrupolar contribution
can come from (3C5')%, because the dot product IS is
isotropic. In solids in thermal equilibrium, a small
contribution could come from this term, the first term
in our Eq. (79), through the anisotropic terms in the
exponent of the density matrix.

Finally, a comment on the magnitude of the nuclear
gyromagnetic effects. According to Eqs. (54) and (55),
the polarization produced by a crystal rotation of w/2r
rev/sec is equal to that produced by a magnetic field
of H gauss if w/2z=pgH H=762 gH. For a nuclear g
factor of order umity, a rotation frequency of order of
1000 rev/sec is equivalent to a gauss; rotation fre-
quencies up to 10* rev/sec have been achieved.® By
the technigques of nuclear induction, one might observe
not only the total pelarization due to rotation, but also
details of the associated relaxation phenomena. The
eagiest, but least interesting, observable effect of rota-
tion would be the shift of the resonance line. The
nuclear counterpart of the FEinstein-deHaas effect,
rotation by polarization, would, for a sample of N-

a8 T, Direitlein and H. Kessemeier, Phys, Rev. 123, 835 (1961);
see also I. Lowe, Phys. Rev. Letters 2, 285 (1939),
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saturated, nuclear spins which are allowed to come to
thermal equilibrium, lead to a rotation frequency of
the crystal w=NI(I+1)8guH /3B, where B is the
moment of inertia of the sample. For a field of 10¢ gauss,
T=1°K, and a cylindrical sample with radius of gyra-
tion 107* cm, we have w=0.0023[F(I+1)g/4 sec],
where 4 is the average atomic weight of the sample.

4. TIME-DEPENDENT BEHAVIOR OF NUCLEAR
SPINS IN ROTATING CRYSTALS

a. Solution of Schridinger Equation

To generalize the example of the rotating pair of
spins coupled by dipole-dipole interaction of Sec. 2b,
we consider a general system of spins in a rotating
crystal, acted upon by an external magnetic field H.
The interaction between spins 1s assumed to consist of
a part A which is unaffected by the fact that the
crystal is rotating, and a part G(0), which if the
crystal is rotating becomes

GU=UMOGOU(—1; U=explin 81,

where 8 is the total-spin vector for the system. The
term A includes, for example, the contact interaction
between nuclear spins and § electrons; the G(0)
includes, in particular, the interaction between non-
overlapping dipoles. The Hamiltonian for the spins is,
thus,

Te=—3 4 v:H-S:+G W)+ 4, (83)

where 8 may be a nuclear or electronic spin. If the
operator A is unchanged by the transformation U, we
can put the time dependence into the Zeeman term by
the transformation ¥'= Uy to give i’ =305 with

W' =24 S [H (Dvato]+GO)+4,  (84)
where
H' .= H. coswl— H, sinw,
H',=H, sinwt4 H, cosw,
H . =H,.

if the axis of rotation is taken as the s axis. The
Hamiltonian (84) is, however, just the Hamiltonian
for the spin system in a stationary crystal acted on by
the rotating field H,=(H',,H',,0) plus a static field
Hy*= [0,0,H ,4w/vs) acting on the kth spin. Thus, the
rotating-crystal problem can be reduced to the much-
studied, rotating-field* problem; of course, the solution
to il =Y must finally be transformed back to the
laboratory frame through ¢=U"%'

In the particular case that the field is parallel to w,
the equivalent problem is just the stationary field H
acting on the spins, but with the effective gyromagnetic
ratio yi'= (vsdw/H). In this case, the effect of the

W Sep for example, A, Abragam, The Principles of Nuclear
Magnetism (Oxford University Press, New York, 1961), Chaps, 11
and XTI
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rotation on the wave function and eigenvalues is
found by considering the eigenvalues E'; and eigen-
functions &', of 3Cs'. Assume the ¢, forms a complete
nondegenerate set, and the g symbolizes the quantum
numbers of a complete set of commuting, dynamical
variables, In particular, if the magnetic-quantum
number m,, eigenvalue of 8 w/w, is a good quantum
number, it too is included in the symbol g. In general,
we transform the ¢’ to a representation in which
S-w is diagonal by means of transformation coefficients
(g|m,f), where f represents any quantum numbers
besides s, required to label the complete set of functions
Umgs. Then,

¥=exp(—iS iy’ =exp(—iS-of) T, exp(—i/RE L) ¢,

=exp(—iS-wl) 2, exp(—i/RE ) ol 3 1.m, (g|tsf)Un,y
= Z ¥ zm‘,,- Exp[_{.*!htﬁaﬂ_kmu‘*’ﬁ] ZJ’ (§|m9ﬂﬂwf

(85)

So that, in the laboratory system, the characterstic

energies are Ei(w)=FE'j{w)+mauw, If m, is a good

guantum number, then it follows from (84) that
E'y(w)=E',(0)—mg. Thus,

E,(w)=E',(0). {86)
The wave function is then in the laboratory frame
¥=2 e exp(—i/REL) ¢'n(Qs), Le=viH+ew, (87)

where the E, are independent of the frequency of
rotation and are given by (86); the ¢',(fl) are simul-
taneous eigenfunctions of 3's and $-w. The effect of
the rotation is only to change the argument of the
¢'n from v:H to 2. The condition that m, is a good
quantum number is zatisfied if the effective external
field yoH+w is large compared to the transverse part
of the internal field due to the other dipoles acting on
spin k.

The effect of the rotution on the lattice motion can
be seen by transforming the Hamiltonian to body-fixed
axes. Presumably the rotation is slow enough so that
in the rotating coordinate system the crystal electric
fields are the same as those in a stationary crystal. The
Hamiltonian referred to the rotating axes is, if spin-
orbit coupling and external fields are neglected,®

Hp = E [ Ptﬂﬁmt—' w-L4+V,

Here, L is the orbital angular momentum in the
rotating system. The L-w term is due to the rotation;
it indicates that a particular lattice-vibration frequency
may be split into frequencies differing from it by an
amount of the order of the frequency of rotation of the
crystal, If L-w/w commutes with the Hamiltonian, its
integer eigenvalues are good quantum numbers, and
the frequency splitting is by integer multiples of w.

8 One readily finds the classical, inertial accelerations from this
Hamiltonian:

f=(1/h)0F3C ] = — (1/h v 30 7] 50, 5]
=—prad 1" =2 F—w ¥ wXr).




GYROMAGNETIC

b. Statistical Treatments; Approach
to Equilibrium
The approach to thermal equilibrium of nuclear
spins in a rotating crystal may be studied by means of
the Wangsnesz and Bloch® theory of nuclear magnetic
relaxation. Consider the case of a crystal rotating with
angular velocity w; in addition, the crystal is in a
constant magnetic field Hy. Let 1; be the spin operator
of system one, the system of interest, and Is the
total-spin operator of system two, the environment.
The combined system is described by a Hamiltonian
of the form
K=3+Ha+G (1), (88)
where 3¢; and 3¢ are the Hamiltonian operators for
systems one and two separately, and G(f) is the coupling
between them. 3, and 3C; are assumed to be in-
dependent of the time while G(f) will be assumed to
have the time-dependence characteristic of the dipole-
dipole interaction in a rotating crystal:
G=U"'GNU, U=sexpli(li+1)- o] (89)
The calculations are most easily carried out in the
interaction representation, obtained by a unitary trans-
formation S from the laboratory system. Let p be the
density matrix in the laboratory system and p' in the
imteraction representation, then,
p'=S8eS, S=expli/hlic, 4],  (90)
and
§'=(1/78)[G '], G'=SGHS (91)
Applying perturbation theory to (91), keeping terms
up to second order in ¢/, and then summing over the
quantum numbers of the environment, gives in the
usual wayt

¢'+i Tra G'(1),0" (0} ]
=—Tl’2[ (G ().[G (1), O) T, (92)
=0

where Tra means the diagonal sum over the quantum
numbers of the environment, and ¢'="Trap'.

The eigenvalues of 30a—I-w will be labeled g and are
assumed to be nondegenerate; one can suppose some
very small perturbations to have removed all de-
generacies. Now, we restrict system one to a single
nuclear spin, with (I),=m#. The matrix elements of
o' are

(m|a'|m)y=3, (mg|p'|m'g).

Choose the 7 axis along the external field Hp and choose
the y axis such that o lies in the x-z plane at some

B 1%, K. Wangzness and F. Bloch, Phys. Rev, 89, 728 (1936);
F. Bloch, ibid. 102, 104 {1956); 105, lﬂﬂé (1957,
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angle # with the s axis. Then,

U= exp(ily- wf) explil;- wf)
=expils-w@f) exp[ — {1}, | cxp[—iwr( 1), ]
*expl(l),]
(mg|U ()| m'g) ki
= (glexplils-wt) | g") 2o exp(—tawtm’’)
dem"flli':}_l:lfim”lh'h[_ﬁ]n

where the due (8 are the well-known, explicit matrix
elements® (mt|cxp[—# (1), ]| m'). The interuction &'(f)
=SUG{0WS " i= in this representation

2 expl—=rwi(m’ —m*)]
ety
LIl

(2| GLOY e VA (Bhume,  (O4)

With Ay = dapne P B e T — Bt 2 THBNA T L — ).
In particular, we consider o and Hy parallel, =00
Since g (0=, (M) becomes for this ease
(g |G () | gy =it = B L (U  m'g"),  (U3)
where Q=+ i+w., The heat bath s assumed to remain
in thermal equilibrium

T (gmlplg'm)= (e ®f poe ™ Vo (90)

. further, the interaction of the spin of interest is assumed

to be linear in the spin components, so thal one may
cxpand

Gi=%, F K, {u7)
with (gm| K, g'm’) = (m| K .| mndbu o pobyy ol P
dependent only on the state of system two. The heat-
bath action is characterized by the quantum-mechanical
spectral density defined by

{Fr{eF={—e€)}
=2 . Mg |F"| g+ e){g+nllde F=0| o)

" [fn"ﬂ-"'_.-"z,.,.a Pt TR

We insert (93), (96), awd {97) into Eeq. (920, wnl
averaging over oscillation in the usual manner® to
ohtain in the laboratory system

o[y Hol A AE4T o ]
=7 2 a (F(OVF{0) (22K o K,
—oK K s— KK _.0), (99)
with AE defined by its matrix elements

(m | AE ") = [dnr/ (g eV ] 205 € P4 (mg  G(0) [mg),

B See, for example, M. E. Rose, Jlementary Theory of Anpefor
Momenium {John Wiley & Sons, Inc, 1937).
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and

r=3. P/ (de/€) (Fn(— () JK WK s,

where P means the “principal part of the integral.”
The left-hand side of (99) describes the periodic
precession of the spin. In first approximation, the
precession frequency is just vH,, independent of the
rotation of the crystal. The terms in AE and T" are
corrections, respectively, linear and quadratic in the
coupling &; these correspond to the linear and quadratic
perturbations on the energy levels, which were studied
in Sec. 3d in connection with the equilibrium-density
matrix. The right-hand side of (99) describes the rate
of relaxation towards equilibrium. Inspection shows
that it depends on the quantity =+yHy+w, but does
nal depend on vHy and w separately, except for the
dependence of the heat-bath levels g on Hy and w
separately, Generally, g will depend on the combination
Or'=+vxHotw where vx i1s the gyromagnetic ratio of
spins interacting with the spin of interest. In the case
of pure rotation (Hy=0), all the @x=10; this allows
transitions involving two spins of differing gyro-
magnetic ratio without exchanging energy with the
lattice, For this reason, one should expect an enhanced
cross relaxation if the total effective field H=Hytw'y
1s partly due to rotation, rather than wholly due to a
static field. If we multiply (99) by the spin vector I for
I=1%, we obtain in the usual manner® the Bloch
phenomenological equations with the asymptotic value

(Feho=4 tanhdp, (I, 5=0; (100a)
the precession frequency
W= (Hy+E 44",
vh'= (1 e8") X P2 (g | F(0) | g}, {100k)
ide
yi'= =P [ S[ie AR (ORI (= 9);
o [
and relaxation times
e —ET (L -1
1/T:=2x (14 {FL (0)F-1(0) }, (1000)

1/ Te=1/2T 4= {FY{O)F(0)).

It may be of interest to note explicitly that +A", if the
exponent is expanded, contains a term linear in 3.
It follows from (99) that, when the diagonal elements
of ¢ are stationary, then,
(m|a|m)/ (m+nlo|mtn)=e (101)
provided that for every value m there exist at least one
value of n so that

(Fr OV F—(0) dom | KK o m)#=0.
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The foregoing discussion based on the Wangsness-
Bloch is limited in a number of ways.

1. We have assumed that o and H; are parallel.
This simplified the analysis, permitting the use of the
expression (93) instead of (94). However, the extension
to the case of w and H; being in different directions can
be carried through; in fact, the closely related problem
of the rotating magnetic field has been treated™ by
several authors,

2. It has been assumed that the interaction G is a
perturbation on the dominant energy term which has
a magnitude Q, so that m is a good quantum number.
In other words, we require {£21/Ty. For CaFs, the
1/Ty~10* sec™!. These are rather high frequencies for
a pure rotation.

3. The most serious shortcoming is that the system
of interest is taken to be a single spin, and the other
nuclear spins are regarded as part of the heat bath,
which is not described in detail. Thus, the correlations
between neighboring spins is completely ignored. In
principle, one should consider all of the spins and their
dipole interaction as the system of interest. However,
the solution of the coupled-spin systems in a solid
lattice is prohibitively difficult. One can, however,
assumne that the spin system as a whole is described by
a spin temperature® different from the lattice temper-
ature; then, the problem becomes soluble. In many
crystals indeed, T»<T',, so that the assumption of a
spin temperature can at least be regarded as physically
plausible.

Dreitlein and Kessemeier,t have studied the line
shape for the magnetic resonance absorption of a
rotating crystal. The study is restricted to high mag-
netic fields and assumes a rigid lattice. The physical
features obtained include (1) the narrowing of the
magnetic-resonance lines which results from the time
dependence of the dipole-dipole coupling &(f) if the
crystal rotates, and (2) the characteristic frequencies
of satellite lines which appear in the presence of
rotation, These phenomena occur when the rotation
axis makes a finite angle with the magnetic field.
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APPENDIX A. SYSTEM OF TWOQ COUPLED SPINS

Consider two spins, §; and S; attached to two nuclei
located on the Z axis a distance K apart; the coupling
between the associated dipoles is

H1a=2Ey[5:-8:— 35154, |, where Ey=hty v/ 2R (A1)
In a representation in which S%=(8,+8;)® and

S.=(8:+8,). are diagonal with eigenvalues S(§+1)
and m, respectively, a complete set of orthonormal
eigenfunctions are ¢, :

1 0 0 0
d = g i qﬁq_mn: é " iyt = E’ : ¢*{m= g
0 0 0 1

The single index % replaces the two quantum numbers
st and §. The equations for the coefficients in the
expansion (£ =3 be (£ of the Schrédinger wave
function are

4
thb,+ Y boKun=0, where K..=K.. (A2)

m=f

If the two spins are acted upon by a magnetic feld
H=(H.,0,H,) and are coupled through ic,, of Eq. (A1),
the symmetric matrix K has elements

K11=_Eu_?Hz; Kﬂ‘!= EEE; K33=_EU+TEI‘IP
Ku=10,
K;2=K3ﬂ=-'"|?ﬂﬂf\'§; Kliz "‘Hrﬁ;'fz; {Aj}

K31= —H,ﬂl,

with F=4#(v14v:) and A=F(yi—vs). If a rotating
pair of spins is being treated, replace ¥H by w expressed
in energy units and put A={0, When A=0, no transi-
tions between the triplet (§=1) and singlet (§=0)
state are possible. We treat only this case. The eigen-
values of K are most easily expressed in terms of the
angle ¢ where

EfEft+int—w?)
cosgp= 1
(Bt

U<,

M= (Ei+4e®) V3 sing/34-cosg/3],
A= (Ef450%) V3 sing /3 —cos¢/3 ],
A= 2(Ef4+3a®)t cosg/3,

Aa=10,

(Ad)

Since the trace of K vanishes, A i+he+Aa+ri=0 even
when Az0. In the limiting case of |w/Ey >>1, the
eigenvalues (Ad) go into the usual Zeeman splitting
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(w, =w, 0,0), whereas in the |w/Eq|<l limit, they
become the eigenvalues of 30, (—Ey, — Eq, 2E,, 0).
Assume the field is practically in the x direction, but
has a very small component in the z direction, which
will eventually be put equal to zero. Then,

M=HE—e)— Ay,
Ar=—Egt4,,
Ai=—4{Es+e)+4a;,
he=0,

(A3)

with
A= 0L/ (€—3Ege),
Ay=3Eg{w,/w)?,
Ay=6E w2/ (+3Eqe),
e= (OF 4 4t

The solution to {A2) reduces to

be(f)=Y. By"e™, k=1,12,3,

=}

(A6)

where the constant B¢ can be expressed in terms of
the initial state b,(0) by substituting (A6) into (A2)
and solving the resulting linear, algebraic equations
together with

-'.'Jk{ﬂ}= ﬁ: B,

The result is
B!I —_— E3| = %[&t (D} = bﬂ{njjr
| S -]jil:l

Bi2= Bi= ———by(0)+-[5:(0)+55(0 :
5 (0} 4L (0)+53(07] ;

E

w e+ 35,
B\t= Byt =—bs(0)+[5:(0} +b3(0) ]——,
VIe £
(A7)
ﬁ21=“:
E‘l‘SEn Lt

Bf=2—62fﬂ}— L8:(0)+b:(0) ] —,

Vie

E-EEQ Lot

Bi'= Ba (0)+ [ B2 (0) 4B (0) ]—.
Ze Ve

The expectation value of S, in the representation
chosen is

(=) =y* (D)5 (1)
= (1/VZe)[ b1 bat-b1by*+ ba*bst+Babs* ).

Substituting (A6) for the b, and averaging over all
periodic terms, gives a time-independent value, which
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is, with the help of (A7),
(S uv= (3uwEo/ &)[ | 51 (0) +b4(0) [2— 2| b2(0) [2]
+ ':4-5‘?2 fffg"’ﬁ} [h{ﬂ}bf [‘:'H‘E'z{mbl* {ﬂ}

+b3(0)be* (0)4+52(0)5:*(0) ). (A8)

Similarly, one obtains (Sy)a={(5:)sw=0. The . in-
dicatez the time average. lf the initial density matrix
by (018,*(0) is diagonal and is normalized so that

2 |6:(0)|?=3/4,

=l

Equation (AB8) becomes
(8 v = (Eq/de®) (1—4| b2(0) |2).

If the initial states are distributed in a Boltzmann
distribution at temperature 7y, an average over initial
states gives the result quoted in the text:

(0S50 Jav= (/BT ) (3Ey, 2¢)%,

The same assumption gives for the squared components

£y

1
I-S:: Ay .
(9= 2 San

1 (u}ef—zmﬂ) E,
2 & 82T,

1 QEE-wh E,
<<5:>h,v=—+( ) :
2 ! 4T,

&

(A9)

{{;Syg I:' }H -

In the limit of no coupling between zpins (E;—0),
{8V he=1/2. A geometrical picture of the motion of
the tip of the averaged spin vector is, according to
(A9), more complicated than a circular precession
around the field direction, for otherwise one would
have equal values for {{5,) }sr and ({52 ave

APPENDIX B. PERTURBATION THEORY
TO ALL ORDERS

The perturbation expansion (30) may be extended
to all orders of B, by calculating the derivatives
indicated in (26).

We generalize the definitions (28) to

Si=1

e o[ e

W dxng—As' BeAr'g— Az’ ( Byllgds's". ..
I{EWI:HEI S 'IE“])

ot L)
Keﬂr# T ;

(B1)

){ﬂ.h'lba
n=1.

P. HEIMS AND E. T.

JAYNES

The general expansion of (I') then gives

(T)= i (0., (B2)

with
n—1

n=Sa—2 (QeloSa-r.
Hpa]
To prove (B2) one can write (27) in the form

et pd N mG

o=l

(B3)
where the 5, are defined by (B1). Conseqguently,

w()=TrCeA*B=3" ¢ TrCetS,
ram=i

v(e)=TreitB=3" ¢ Treis,

T}
and the ath derivatives with respect to e evaluated at
e=1{ are

w™(0)/2(0) =n1(S.Ch, v (0)/2(0)=n!(S.)o. (B4)

We need the derivatives of 1/7; these may be expanded
in terms of the derivatives of 9, to obtain by use of the
second of the Eqs. (B4),

1 0) = — 21O o

Equations (B4) and (B5) show that the ((J,)s and
{S.)0 are related to the derivatives of the partition
function r. The derivatives required in (26) are

1dC),

v(0) (v (B35)

1 dﬂ{ﬂn—l} % u(iﬁ?{ﬁ—l](w—ﬁﬁ

de®

nl de  ml = El(n—R)

as follows from the elementary rule for differentiating
a product. At e=0, the derivatives are, with the help
of (B4) and (B3),

1 d*C). =
;T__E {Q#}Q(Sn—kc}u'f'{sﬂf }ﬂ

= (U)o (BO)

Inserting the expression (B6) inte (26), finally gives
the theorem (B2),
APPENDIX C. SOME SIMPLE EXPECTATION VALUES

Below are given the expectation values of frequently
oceurring, spin operators taken over the density matrix

explal.)
" Pr(expal)]
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The abbreviation I'=1.—1-{J,}) is used, and [ is the angular momentum in units of .

1

2
3
4
5

ff:}u-‘—{fu}ﬂ:ﬂ
Iepo= (I +3) coth[a(l+%)]—4% cotha/2= (a/3)I (I+1)4+0(a?)
{Iodey)o= Lzl 2a=10
(I2y=I(I41)+} coth®a/2— (I+1) coth(a/2) coth[a (/43 ]=H I+ 1)+0(a®)
(1T jo= 044 )o/da=§1 (I+1)+0(a?)
I al(I+1)

{1 )= 3 [41(I41) =37+ 0(a?)
i
10(1.%  al(I+1)
{1 4T o= —= = —[4{(I+1)—3]4-0(a")

2 oda
(Jepl T ho= LT T )y=0
{I»IDII}H= =5 {IUI#P}Dz %iﬁ_{fi_]"}“_
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