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Presented at the Physics of Quantum Electronics course,
Telluride, Colorado, August 1977

ANCIENT HISTORY OF FREE ELECTRON DEVICES

E. T. Jaynes

We recall some early thinking about the production
of 1ight from high-energy electrons, that started with
problems in the design of electron accelerators, in which
the writer was an interested observer and (at Stanford,
Berkeley, and Princeton in 1946-1960) a sometime partici-
pant. In fact, some of that work is being put on record
here for the first time, since there was no encouragement
to follow up such ideas then, beyond a few Seminar talks
(although it has been inflicted since on generations of

students, as pedagogical fodder and homework problems).

BETATRONS AND SYNCHROTRONS

Radiation of 1ight due to acceleration of free
electrons occurs naturally in Bremsstrahlung. In the
early 1940's, when the betatron and synchrotron were
being developed, it was realized that this same phenomenon
would place an upper 1imit to the attainable energy from

any such device other than a linear accelerator.



Iwanenko and Pomeranchuk (1944) gave a fu mula
for the betatron based on the relativistic generaliza-
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tion of the Larmor power formula P ==(Eezf3c3}§ , and

L
Schwinger (1946, 1949) produced an immense calculation
of radiation from betatrons and synchrotrons, giving its
full spectral and directional distribution. The predicted
radiation was of surprisingly high frequency, as confirmed
experimentally by Elder, Langmuir, and Pollock (1948) on
the G. E. synchrotron. For an electron in an orbit of
radius R = 29.2 cm (orbital frequency 163.5 MHz) it
reached the optical region with the appearance of a dull
red spot at 30 Mev, progressing to brilliant bluish-white .
light at 80 Mev.

The reason why the emitted radiation is mostly in
extremely high harmonics--millions of times the orbital
frequency--can be seen as follows. A transversely

2, Yy >> 1, emits

accelerated electron with eﬁergy E=vyme
radiation which in the laboratory frame is concentrated
mostly in the forward direction, in a cone of angle
B-Y']. A distant observer in the plane of the orbit
of radius R will be within this cone only for a path

segment éx ~ 2R/y., But the pulse of radiation in the



forward direction will be foreshortened by a factor of
1 -B==(272]"1,50 he sees a pulse of duration Gtﬁ=éxi2yzc
= RITEL At 80 Mev,R =29 cm, this gives “:2“0-16 sec,
just the radian period (1/w) of blue 1light.

Recently, those of us with mode-locked lasers were
proud of having produced picosecond light pulses. In
fact, the synchrotron was producing light pulses a
thousand times shorter than that, thirty years ago!

In any problem involving the wave equation and the
geometry of a circle, Bessel functions are bound to show
up; and Schwinger obtained the following quantitative
result. An electron in uniform circular motion at orbital
frequency Wy s velocity v= Bc==m0R, radiates power into the

n'th harmonic of
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where, as always, TEE,H'HTC2= (1-8
formula for a point charge. In the nenrelativistic limit
B << 1, it goes into
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which for n=1 reproduces the elementary textbook result.
In the extreme relativistic 1imit v >> 1, various
approximate forms exist, depending on how n compares to
a critical hamonic number n_=3y%/2. For exemple, if

n << "c’ we have

31’5r(233}mﬂe2

n R

n]f3 (3)

slowly increasing with n, while if n g

4'..|..'I'E‘2

P = ET [3nf2nnc}% exp[—nfnc} (4)

n

rapidly decreasing with n.

The total power radiated is

2

p = g; P = E;%E_ g3yt (5)
which places the ultimate 1imit on attainable energy, as
noted by Iwanenko and Pomeranchuk; although for the
aforementioned synchrotron at 80 Mev it is not yet serious,
amounting only to about 12 ev per electron per turn.
However, it is only because of the high frequency of the

radiation, which keeps the emission from different electrons




incoherent, that the synchrotron will work. If the
radiation were of such a low frequency that the bunch
of N electrons were smaller than a wavelength, they
would radiate coherently, losing energy at a rate
proportional to NE rather than N; and that would be
fatal.

Finally, a controversy, amusing in retrospect,
developed for a short time on the validity of classical
vs. quantum electrodynamics for this problem. For the
summing up, vindicating classical theory, see Schiff

(1952).

LINEAR ACCELERATORS

In the closing days of World War II, I found myself
in the Navy headed for the South Pacific; but just before
lTeaving I visited my friend Professor W. W. Hansen, at
Stanford. Alarmed at my imminent cultural deprivation,
he gave me his copy of Whittaker and Watson, with all his
marginal comments on the theorems (which I stil] have and
use), to work through while away. This was just managed

when, in the Spring of 1946, finally out of the Navy and



having a few months before starting graduate school at
Berkeley, I again visited Hansen and proclaimed myself
an analyst, thanks to his book.

He immediately put me to work for the Summer,
applying all this erudition on the design of the first
Tinear accelerator tubes (about 4 inches in diameter,
with loading discs to reduce the phase velocity to c,
spaced about one inch apart with central holes about one
inch in diameter). First, I had to prove myself by
reproducing independently--in whatever way I chose--his
calculated results for the dispersion curve of the
structure, in its dependence on the dimensions of the
Toading discs. Having passed that test, he then gave
me the problem of developing coupling systems to match
the periodic accelerator structure to conventional 3 GHz
waveguide. Probably the only part of that work that
survives usefully today is tﬁe diagnostic method (Jaynes,
1952} worked out to determine, from measurements in the
waveguide, when we had a pure running wave in the
accelerator tube.

That Summer the news of Schwinger's still unpub-

Tished calculations had already reached Stanford (Schiff,




1946), and those of us dreaming of future LINACS felt
left out, since it appeared that our machine would not
produce this interesting visible 1ight whose color shows,
at a glance, the electron energy. But then it occurred
to me that, because my coupling systems surely would not
work perfectly, giving an absolutely pure running wave
in the accelerator tube, the electrons in a real LINAC
would, after all, emit some high-frequency radiation.

The "useful"” accelerating wave, carrying perhaps
10 megw of power, will be accompanied, inevitably, by a
small reflected wave of perhaps 1 megw.

Let us think of it as a plane wave, of a microwave
frequency mUIE m= 3 GHz, Poynting vector Su =PBXA
= 21:1&5 wattsfcmz, traveling in the (-z) direction.

[Of course, the reflected wave in a LINAC is not
a plane wave, the transverse field E, % Jl(kr} vanishing
on the axis where one tries to keep the electron beam.
But by the Poynting theorem, a given reflected power Pu
requires a certain average {Ef> over the disc apertures
A. Therefore, while our plane wave treatment does not
describe the situation that LINAC operators now try to

achieve, it does describe, within unimportant numerical




factors, a situation that can only too easily be

achieved.]

Now consider an electron moving in the (+z2)
direction with energy E==Tmc2. In the electron's
reference frame F', this reflected wave appears as one

of frequency and Poynting vector

w' Y(I-*B}mb =2y wy s (6)

2
Su = 4y Sy - (7)

SI

¥o(1+8)°
For example, at 100 Mev, y=1+ (100/0.511) =197, the
electron sees a plane wave of wavelength l'==10f394

= 0.025 cm, with an energy flux S' = (394)°

Sﬂ=31,000
megawatts!cmz. From this, it is clear why electron in
a LINAC will, by Thomson scattering, emit a considerable
amount of high-frequency radiation. And in a wave of
this intensity, the electron might oscillate with such
amplitude that it generates appreciable radiation in

harmonics of the frequency w'. We then need to discuss

Thomson scattering in a wave of very high intensity.

RADIATION FROM AN OSCILLATING CHARGE

To fix numerical magnitudes, an energy flux of the




above value S5' corresponds to an electric field strength
Er u 104 esu, and the electron will oscillate with
amplitude a = eErﬂnuz v 1(1"'EI cm, reaching a peak velocity
v =wa v 0.024 c. Even at this intensity, therefore, the
scattering as seen in the electron's reference frame F'
is not a particularly relativistic problem,

That an oscillating charge will in general radiate
harmonics of its orbital frequency is clear from the

fourier expansion of the charge distribution;

2"T (x/a) .
6{x-a cos wt) =2]—1T i — L Tnut ,» |x]<a
2. .0

n=-=Va" - x

(8)
where Tn(z} are the Tchebycheff Polynomials:
Tz = cos (n ﬂDS_] z) _ T {z) (9)
n 2n—1 -1 *

A1l harmonics are present, but it looks at first glance

as if we have escaped from Schwinger's BE§SE1 functions

to something new. But of course linear sinusoidal

motion is just projected circular motion; and when we
calculate the resulting distant field the Bessel functions

must inexorably reappear. For example, in Lorentz gauge




the potential ¢ from the retarded solution of o+ 4mp =0
is

a
T (x/a) _inkr
e n _=inwt n e
¢(R)-21r§:2 ¢ 53 r

n o WA

dx (10)

where k = w/c, and r is the distance from the point of
integration to the point of observation R; a similar
expression holds for the vector potential. But when

R >> a, these integrals go into the form

1
T (z)
1 n iqz _ {39\N
o f —1/_2‘13 dz = (i/2) Jn[q} (11)
SRARS.
and (1) reduces to
inkR
- ~inwt e'"
¢(R) = e) i " J (nka cosa)e (12)
- n R
where a is the angle between the direction of observation
and the direction of motion. Already, this looks very
much Tike some of Schwinger's results.
The rest of the solution is straightforward, and

we find for the power radiated, in the n'th harmonic,

into the element of solid angle du:

10
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an{nka cosa) tan"o dO (13)

and the total power in the n'th harmonic is

.
2 22
P = EEJLEL—I Jf(nkaq}{q'z—'ljdq . (14)

n c
0
These are the exact results for a point charge following

the orbit (8). If nka << 1, (14) goes into

222 2n
p = de"n"w (nka/2) (15)

L c{n!]2{4n2 -1)

which again, for n=1 yields the elementary textbook

result P, = e2aZutr3c3 |

half of Schwinger's P]. since
his circular orbit amounts in this 1imit to two orthogonal
dipoles radiating independently).

At other electron energies than 100 Mev, we see
from (6), (7) that the transverse displacement, a, will

1, while

41S %
o | ) 16
0

is independent of y. In the Stanford LINAC, ka ~ 0.02,

vary as y

11




and harmonic production is always small. A machine
operating at higher power and/or lower frequency weuld

generate correspondingly more harmonics.

BACK TO THE LABORATCRY SYSTEM

In view of the foregoing, we need consider only
the conventional Thomson scattering at the fundamental
frequency w', in spite of the enormous intensity S' of
the incident wave. In the electron's reference frame,
it scatters a dipole wave of frequency w' and intensity
given from (13) as
. 2

) e c 4
— d0 = (ka)” sin“a d . (17)
dil Bnaz

To find how this appears in the laboratory frame, we
introduce an azimuth angle ¢ about the z-axis measured
from the plane of polarization, and the angle 8' between
some propagation direction and the z-axis, as seen in
the electron's reference frame. From spherical trigo-
nometry, we can replace in (17)

2

sina =1 - cn52¢ sin2

gF (18)

12




13

Applying the relativistic abberation and Doppler effect
formulas, radiation which in the electron's reference
frame is emitted at an angle 8' to the z-axis with
frequency w', will appear in the laboratory frame to

have direction 6, frequency w, where

cos 6= 22 ik (19)

1 +Bcosh'

w=vy(1+8 cnse'}m'==212(1+-ﬂ cnsﬁ')mﬂ = (20)

In the electron's frame half the energy is emitted in
the forward hemisphere 0 < cos8' < 1. This appears in
the laboratory frame aspf< cos® < 1, which becomes in
the extreme relativistic 1imit 0 < yB<1, just the
aforementioned forward cone of angle ﬂ==yh]. Since

both energy and frequency of a plane wave transform as

the time component of a four-vector, the ratio n = E/fw

is an invariant; i.e., half the "photons" are emitted
into this cone.

Eliminating ¢' between (19) and (20), we have the
variation of frequency with angle as seen in the labo-

ratory system:
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2
{]'*B]ma 4y Wy

w = = . (21)
T-Bcos8 ~ 1,2 o2

The observed frequency is a maximum in the forward
direction, and drops to half that value at the cone
angle 6 = Ll

At 100 Mev, with W, corresponding to a microwave
wavelength Ay = 10 cm, the wavelength at the center of
this spot would be X = lnf4T2 = 6460 E, or visible red
light. At 127 Mev, we would have at the center of the
spot lﬁ=400031 about the 1imit of visibility in the blue;
and this would shade through the spectrum to red at an
angle of somewhat less than 8=‘f4 =0.23 degrees trom
the axis. At any higher electron energy, the visible
radiation would appear in a tiny circular rainbow, blue
on the inside to red on the outside, whose cone angle
would tells us the electron energy.

To find the absolute intensity and spectral dis-
tribution of energy as seen in the laboratory system,
we can take advantage of the invariance of photon number
(a useful mathematical property whether or not one has a
literal belief in photons). Suppose the accelerator

pulse has duration tﬂfh 2x10'ﬁ sec in the laboratory



system. In the electron's frame this will be contracted
to t' = to/2y, during which time it is scattering the
power P] = ezc{ka}qfﬂaz. Crudely, then, we can say that

during a pulse an electron shakes off about

Pt P wt
B oo el e li)e 0 (22)

photons. Being invariant, this same number will appear
in the laboratory system, transformed to various
frequencies. [In fact, as we see from (16), N is not
only Lorentz invariant, it is also independent of the
electron energy y, being determined by the value of
(Sﬂtﬂfmh] in the machine design; i.e., on the number
of microwave photons supplied per pulse.]

Integrating (18) over the azimuth angle ¢, the
number of photons emitted into the solid angle d9'

= 2m d cos®' of an annular ring d8', is

N = (1+cos26') d cose’ (23)

3N
il
In the laboratory frame, these same photons will appear
in the annulus of solid angle dQ =2w d cos8 =218 de.

From (21) they have frequencies in the range given by

15
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dw _ __2y 648 (24)
w (1+T252)

while in the relativistic 1imit, the abberation law (19)

goes into

e
cos ' = 1_;_1§§§_ : (25)
1+y0
In the laboratory frame, therefore, we obtain an energy
in the range dw of I(w)dw = fiw dN; i.e., the spectral

energy density is from (23)-(25):

3 2
(w) = ﬁ{_iw.du;L wn(m“’ ] {1+(MT“ i ) ] (26)

max

2

where from (21), w ™ 4y Wy is the highest frequency

ma
obtained.

The 1ight energy per electron per pulse that is

=]

emitted into the forward cone 8 = vy ' is then

“max
I{w) dw = %—g- Nﬁmm
% Uy

ax {2?}

From (22) and the numerical values discussed above, we

find N = 0.04. If at each pulse the electron qun injects

16
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100 milliamperes of current for one microsecond, it would

1
] as a conservative

provide 6 x 101I electrons. Taking 10
value, we then find that the machine should emit, at each
pulse, a light eneray of about 3:{109 ﬁmﬁax' an easily
visible amount. This is only a crude estimate, ignoring
the change of electron energy during a pulse. Clearly,
however, a device made specifically to enhance this
radiationcould produce far more than our estimate. Thus,
while the LINAC does not provide the spectacular 1ight
radiation of the synchrotron, it should produce some
radiation that becomes visible above 100 Mev.

Of course, the fact that N << 1 above is irrelevant
to the argument, which actually used only the fact that the
the ratio (energy)/(frequency) is Lorentz invariant; and
this is true whether or not photons are physically real.
Indeed, the term "photon" may be construed merely as a
convenient Lorentz-invariant unit of energy; just as
"magneton” denotes not a physical particle, but a certain
amount of magnetic moment. Then there can be no objection
to use of the photon in purely classical calculations. To

emphasize this, note that our final result (27) is in-

dependent of the numerical value of i, because Mi is.
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THE UNDULATOR

In the Summer of 1947 I returned to Stanford and
wrote up the above analysis, which was circulated privately
to interested persons, but was not considered of enough
earth-shaking importance to warrant publication. Clearly,
as efficient sources of visible light, synchrotrons and
LINACS compare rather unfavorably with Thomas Edison's
tungsten filament. The idea of producing coherent visible
light was at that time far beyond the dreams of science
fiction; probably, if anyone had dared to suggest it,
physicists would have held such a thing to be fundamentally
impossible for one of those mysterious quantum-mechanical |
reasons that everybody invokes but nobody understands.

However, with the rapid development of molecular
spectroscopy and thoughts of ultra-short-pulse radars,
efforts to push the usable microwave spectrum into the
millimeter-wave region were pursued vigorously in many
laboratories. My prediction of visible 1ight from the
LINAC came to thelattentiun of Hans Motz, and he conceived
a variant of the idea which could produce coherent milli-

meter waves from a high-energy electron beam.
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The Undulator (Motz, 1950) passes the electrons
through a comb-1ike structure of permanent magnets,
reversing the magnetic field at each tooth of the comb.
Thus the electron beam is forced to "undulate" and radiate
light which, in the forward direction, can be relatively
intense because at these longer wavelengths a bunch of N
electrons can be made to radiate coherently. Needless to
say, the Undulator worked as predicted, but with the large
amount of apparatus needed, it was hardly competitive with
other methods of generating millimeter waves. To the best
of my knowledge, no further work has been done on it since

the early 1950's.

THE CYCLOTRON-MASER EQUATIONS

Also in the Summer of 1947, having just completed
J. R. Oppenheimer's course in quantum theory at Berkeley,
I was toying with alternative ways of writing the
Schrodinger equation. One form in particular made an
impression on me, although it is simple only for a two-
level system. Suppose a two-level atom is perturbed by

an electric field: V = -uE(t) wheren is the dipole moment



matrix element between the levels. Then writing w(t)

= a](t)wl + az{t}$2. the amplitudes satisfy

1ﬁ51 Eyay - uE(t]a2 , (28a)

Tﬁaz

Eza2 - uE{t}a] . (28b)

If we introduce the quantities

W(t)

Eylay 1%+ Eyla, |2 - (€, + E,) (29)

M(t)

2uRe(a1ag’ (30)

usually interpreted as expectations of energy and dipole
moment, then Equations (28) can be rewritten in the
suggestive form

3f+-m2H

n

K2 W E(t) (31a)
E(t)M (31b)

W
where w= [E:g - E1].H‘i, K=2u/fi. We see that the Schridinger
equation has a simple physical content that cannot be seen
from (28); it states that the dipole moment oscillates
according to a driven harmonic oscillator equation, the
only "new" feature being that the coupling cunstant{uKEH)
varies slowly with time and has opposite signs depending

on whether the atom is near the upper or lower state.

20
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That a two-level system can be given a Bloch
sphere representation is seen at once from the fact that
Equations (31) possess the first integral

EE 2.2 27

+ wMe + KW = const = w' (32)

which, in suitable coordinates (x,y,z) proportional to

2+y2+22=1.

(M,MM), is the unit sphere, x

When, in the middle 1950's, Professor Willis Lamb
showed me his theory of the ammonia maser, I immediately
rewrote it in the form (31), which made the physical
operation of the device seem much clearer. This marked
the beginning of neoclassical theory (Jaynes, 1973).

Bear with me--we have not really left the topic of
free electrons. For also in the middle 1950's, Professor
Charles Kittel gave a Seminar talk at Stanford on cyclotron
resonance techniques for elucidating band structure in
solids. This set me to thinking again about the generation
of radiation from fast electrons, using static magnetic
fields in other ways than in the undulator.

The most obvious thing is just the inverse

cyclotron; fire electrons into a uniform magnetic field

and they will radiate at their cyclotron frequency.
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Although that idea has been pretty well exploited and
extended in the magnetrons that today cook our food, let
us look at the equation of motion of a nonrelativistic

electron

my = E[E + %{v X H}] (33)

in which Hz=¢ﬂ}=cnnst.. while other field components
may be time dependent. If we have only oscillating

electric fields, Hx = Hy = 0, (33) yields

o 8
vy = gV = E, (34a)
. - £
RE T Ey (34b)
where W, = (-?:,:’nu:.}HcI is the cyclotron frequency. If Ey =0,
we can write y= vy= WV, = WX whence by a time integra-

tion and suitable choice of the origin, (34a) becomes a
driven harmonic oscillator equation for the x coordinate
of the electron:

X + mﬂzx = % Ex{t] : (35)
This is the usual result, and is not of particular
interest for present purposes; the coupling constant is
invariable and so the phenomena allowed by (31) in the

maser do not appear.
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Now let's introduce a variable magnetic field

Hx(t]. If Hy and the electric field are zerg, the

equations of motion are

vV - W v =0
X oy
1:,'+m'.‘" =..§_..vH
Yy D X mec 2 X
. e
v = - —vy H
z mec y X

(36a)
{36b)

(36¢)

By a time integration of (36a) and proper choice of the

origin we have vV, T wYi and the equations of motion

reduce to

]
=

L ] 2
+
ytu'y

hs e
v
Z mc X

n
I
x
=

(37a)

(37b)

It is apparent at once that these have the same structure

as (31); but let us make the analogy stronger by defining

the y-component of electric dipole moment, and a quantity

of the dimensions of the energy:

ey(t)
-mc szt}

M(t)
W(t)

Equations (37) then reduce to

ae 2 2
M + W M=-K W Hx(t}

W

Hx{t}H
with K= (e/mc).

(38)
(39)

(40a)
(40b)



The formal analogy with the two-level Schrdodinger
equation (31) is complete. Of course, the numerical
constants and physical meanings are different. For
example, in the case of the ammonia molecule in a maser,
the right-hand side of (32) is fixed at mzuz by lTaws of
physics [in fact, (32) 1s just the relation |a1124-]a2|2
= 1 usually called conservation of probability]; while
the corresponding integral of (40) merely expresses
conservation of energy, and the right-hand side can have
any value, determined by the initial conditions. Also,
a magnetic field alone cannot transfer energy to or from
the electron, since the Lorentz (v xH) force is orthogonal
to the velocity. So we must introduce also electric
field terms into the equations of motion before we can
obtain a maser-like amplification.

Suppose, then, that the above field Hx is part of
a plane wave traveling in the z-direction, so that we
have a field Ey==— aH . [In free space a=1, but in a
guided wave structure o measures the wave impedance, and
can be either greater or less than unity.] We must then
add a term {ezfm]Ey to the right-hand side of (40a), and

it becomes

24
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2

M+ mn?H - E—(uz-uc)H

o ; (41)

X
Suppose that initially an electron is injected at velocity
v, along the z axis, so that M(0) =M(0) = 0, and a wave
Hx=:HI cos(wt ~kz+¢) is present. Let us solve (41) for

a time interval many cycles of Wy but short enough so

that v has not changed appreciably. At time t, the
electron then sees the field at position z==vzt, so 1ts

transverse motion is given by

M+ u:.qu = A cos({w't +¢) (42)
where
w' = w - kvz " (43)
= EE
A = 'EﬁE[Vz-ﬂC)H} . {44}

The solution is

t
M(t) = A f tnsmh(t-t']cus{m't'+-¢]dt‘
0
A sin(w't+¢) - 51n{uut+-¢}
"2 @ o) ()

and at time t the electron has transferred energy to the

field of
_ . |
E(t) =-j £ (£1) (') at (46)




=

(46)

Q 2H1 ]:1 - cos (w' *f.uu]t ]

(w' -MOJE

independent of the initial phase ¢. This is a maximum

at resonance, w' =W for which

.
e H]

E(t) = —g—— (v, - ac) t° (47)

and the criterion for amplification is

v, >ac . (48)

We then need o < 1, which is the case for a TM waveguide
mode .

From waveguide theory, the wave impedance and
propagation constant for a TM wave mode of cutoff

frequency w, are given by

ck = wa = (5-ul)¥ . (49)

The system will therefore amplify and oscillate,
delivering the kinetic energy mvj!fz to the radiation
field, at a frequency w given by the root of

W

2 fE £ _
w = T - Wy (50)

provided that (48) is also satisfied at this value of w.

26
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By graphical analysis one sees that these conditions are
readily satisfied; for example, choosing a = 1/4,
vzfc = 1/2, we find a solution for

8
7 Y%

E
(1]

= 1.143 W, (51)

E
|

-%.f’ﬁmu = 1.107 u, (52)

The stimulation from Kittel's talk carried me this
far by late 1959. Clearly, much more analysis is needed,
to calculate gain, power, efficiency, etc. before one
would be in a position to pass judgment on the practicality
of such a system. It is interesting that the pnésibi]ity
of wave amplification arises here from the sign reversal
of coupling coefficient in (41) at v, =ac, just as the
possibility of amplification in a maser or laser arises
from the sign reversal of W in (31) that signifies the
change from net absorption to net stimulated emission.

Needless to say, this analysis leaves it an open
question whether other configurations might be superior
in power, efficiency, stability, etc. Presumably, use
of a circularly polarized wave would double the rate of

energy transfer.
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SCHWARZ —HORA EFFECT (?)

An entirely different principle by which free
electrons might be made to produce 1ight, about which I
and many other people did some thinking in 1970, concerns
the "blue electron" effect reported by Schwarz and Hora
(1969). I don't want to get into controversies about
whether the effect has in fact been seen; and whether
it could have been, with present electron optics techniques.
But I think it is legitimate and important to raise the

question whether, in principle, according to present

quantum theory, such an effect should exist.

In fact, a number of theoreticians (including my-
self) were able, without the slightest difficulty, to give
quantum-mechanical calculations which predicted virtually
everything that Schwarz and Hora reported seeing. And, at
least in my own version of thelthenry. there was no reason
to think that technical problems of collimation would
prevent one from seeing this light.

It does not speak well for quantum theory if it
can so glibly account for nonexistent effects. Anyone who
believes that this has happened can hardly avoid asking

how many other nonexistent effects it has been predicting
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all these years; and how much we have been misled in our
picture of Nature's workings, as a result.

Schwarz and Hora reported that 50 kev electrons
(v/ca 0.4) were diffracted by a crystal and simultaneously
irradiated by blue 1ight (4880 A) from an argon laser,
polarized with the electric vector parallel to the electron
beam; and that on drifting 25 ¢m and striking an alumina
screen (nonluminescent or nearly so for ordinary electrons),
they emitted blue 1ight at the position of the normal
diffraction spots.

Many people immediately took up a simple classical
explanation: the 1ight produces 5 periodic velocity
modulation, making the arrangement an "optical klystron."
However, the reported primary beam current {10'5 ampere)
was only one electron per 100 optical cycles; the current
falling on any one diffraction spot must have been far less.
Thus there are no real "bunches." Under these conditions,
one should have observed instead an incoherent continuous
spectrum of 1light, with only a negligible portion appearing
at the optical frequency w.

To demonstrate this, let us ignore for the moment

the difficulties about velocity spread and suppose perfect
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coherence; electrons can arrive at the screen only at the
instants tk==k1, where T = 2n/w is the optical period,

and let Ny be the number of electrons arriving at time

tk. If the average current is n electrons per second, the
n, are random variables with expectations <N > = nt, and

the net current is then the random function
J(t) = e n S{E=-t) . (53)
k:z—w k k

With independent Poisson distributions for the Nys the
second moments are My = n212-+nrﬁkk.. which yields

the spectral density

T T
I(v) = lim ?}_Tj dt | dt'<a(t)a(tt)re’Vit-t')

s
. ez{n+2nn2 Y 6(v- n.n] (54)
r=..m

of which the first term was given long ago by Schottky.
The radiation from this current thus consists of a con-
tinuous spectrum of amplitude proportional to n, super-
imposed on a 1ine spectrum at the fundamental and its
harmonics, proportional to n’. The ratio (energy in line
spectrum)/(energy in continuous spectrum) is from (54)

2nn2fﬁm==n1, just the average number of electrons per bunch.



In a microwave klystron, nt >>1,and we obtain essentially
a pure line spectrum; but in the SH experiment, nr-:10‘3
for any diffraction spot, so according to classical
bunching theory practically all the radiation should be
in the continuous spectrum. With imperfect coherence,
the Tine spectrum will be still further suppressed.

We conclude that the effect cannot depend on any
reqularity in arrival times of different electrons; in-
stead, each individual electron must, in some way, retain
a "memory" of the 1ight fregquency for at least a million
cycles after irradiation, and therefore the effect must
be an essentially quantum-mechanical one.

We indicate such a mechanism by a crude calcula-

tion. An incident electron is represented by a wave packet

htfl‘,_,'{:n:,t] = [2w]'3Id3k lPﬂ{k,.t] explikex) (55)

where
‘i‘u(k,t} = 'Pu(k} exp{-imkt] (56)

with
v, = fik/m (57)

and the 1ight wave by the vector potential

A(x,t) = ﬁne cos(wt - g=x + ¢) (58)

3




where € is a unit polarization vector, e-q=0, and w=cq.
Since the electron momentum is well defined, Tu{k) will
be sharply peaked about the value ku such that 'ﬁ2k02= 2mE,
and approximations of the form {z-kﬂ} = (k) will be
Justified.

The perturbed wave packet is 'i*(x,t}=?n+'r.| L

where the first-order term is the solution of
1!‘.‘3‘1 - pzfzm ¥y = -(e/mc) A-p 'rn{x,t} (59)

which vanishes in the remote past. In the experiment, the
electrons drifted through a narrow 1ight beam, spending of
the order of 40 to 400 optical cycles in it. Accordingly,
suppose that the field (58) is switched on at time t=0,
and off again at t=1 (actually, the sharp edges of the
crystal provide this switching, which prevents the solution
from following adiabatically in the fringing field at the
edge of the light beam). The solution of (59) for t > t

is then

iw, T
el +

ki YT ¢ e -1
?liklt] -é_lﬁE (E k][ﬁ I'Fﬂ{k+q) l'.|.'|+

fw T
- -iw, t
+ e ® v (k-q) —Em—1}e X (60)

where W, =Wy = Wyaq t w. From this one sees that there is

32
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no secular buildup of either term, since from the exact
dispersion law, mk==c[k2+-{m¢!ﬁ]2]%. w, and w_ cannot
vanish for any value of k (in diagram language, energy
and momentum cannot both be conserved at a single vertex).
Furthermore, in the experimental arrangement q-kn==0, and

mqu = fig/2mc =107%, so the differences |u, -w | are

k+q
negligible compared to w for all k values for which
wh(k:tq} is appreciable. Therefore, we may write simply
w, = tw.

Presence of the amplitude factor (e-k) ¥(E*ku] in
(60) accounts for the reported polarization effect. How-
ever, because of the lack of any secuiar buildup, the
perturbation does not tend to emphasize any particular
frequency component in T], and so memory of the 1ight
frequency is not contained in the subsequent time variation
of the wave function.

Equation (60) predicts that the amplitude of the
effect should oscillate periodically with the interaction
time 1, and therefore with the beam voltage, according to

|ef[.l.'|lT _

1|. In the following we assume the optimum inter-
action time, corresponding to exp(iwt)=-1, and the optimum

polarization, (E'ku) = kn.
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Noting that the factor ¥ = eAﬁjmcm is just the
displacement of a classical point electron in the field
AD and transforming back to ordinary space, the first-
order change in the wave function becomes

?I{x.t) = kuru[ei{qlx_¢) ?n(x+-vt.t}

—E"i(q'x'¢}?0(x-bvt,t)]e_]wqt (61)
where v = fig/m = 1.5%10° cm sec”! is the recoll velocity
of an electron which has absorbed the momentum fig from the
1ight wave. The frequency wq = ﬁq2f2m is in the microwave
range, 1.53 GHz. In first order, therefore, two new wave
packets appear which separate from the parent at the recoil
velocity, their centers reaching a separation of 3 microns
and the phase term exp{-1mht) oscillating through about
three cycles, during the 2 nsec drift time.

It is one of the most interesting features of this
experiment that nothing in the experimental conditions
seems to determine the size or shape of the incident wave
packet Tﬁ{x,t); anq yet, as we will see, observable effects
depend on these details. The dimensions of a reasonable
wave packet are very large compared to the electron's de

-10

Broglie wavelength (4 x 10 "cm), and the "quantum-mechanical
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spreading” of the packets will be negligible; thus we may
approximate the incident wave packet by an envelope
function f(x,y,z) of constant size and shape. We readily
verify that if mn=‘|‘|km2 /2m, and Ve = ﬁkn!m. the group

velocity, the function
Wn(x,y,z,tjs*f{x,y,z -unt} Exp{iknz-imbt} (62)

is an accurate solution of the free-space Schriidinger
equation if ?Ef can be neglected in comparison with kéaf.
In the present case, any reasonably smooth envelope
function f(x,y,z) of a few microns width leads to
Ivszkuzf[ m]{flz. We have chosen the hyperbolic secant

function, taken for ease of calculation in product form:
flx,ys2) ={833)'% sech(x/a) sech(y/a) sech(z/a) . (63)

The choice a=1.70 microns yields a wave packet of width
3 microns between "half-way down" points of !T|2.

After irradiation, the perturbed wave function
corresponds to an effective charge density

2
|

=
]|

ei?u tY ot

1

2 *
eiwﬂ| + 2e Re(wU w]}  J— (64)

in which the second term, arising from interference between
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the parent and daughter wave packets, contains terms
oscillating in space with the wavelength of the 1ight:
from (61), (62), and (63) we have

2e Re(ll' ¥, ) = —r@_(x]--g+{x}]sech'?{yfa}sechz{z-vutfa)

(65)
where

gi{x) = cos[q(x £ vt/2) - ¢] sech(x/a) sech[(xt vt }!aj

(66)
in which we have used the relation uh==qv!2 and chosen

the x-axis along the direction of the 1ight propagation
vector q.

Now the meaty part of the calculation begins.
We use the charge density (64) next to find the corre-
sponding z-component of the current Jz{x,t}==a(x,t}vu

To calculate the radiation we need the fourier transform

3, (k,w) =I dsxlrdt J,(x,t) el tkex=ot) gy
z<d
the constraint z <d expressing the fact that the current

is suddenly decelerated to zero at the screen, which we
suppose to be the source of the radiation. The spectral
density I{w) of the radiation is proportional to [Jl(k,m]lz,

where J| is the component of (67) transverse to the



direction of observation. For radiation in the x-direction

we find the analytical result

sin[-i— 1n[{k q}vt]

7
5inh[%;] 51nh[Tr m{k-q)a ]

I(w) ~ (68)

This yields an asymmetric spectrum in general; computer
evaluations of (68) show smooth bell-shaped curves
centered at values of (k-q)a usually in the range *1,
with full width at half maximum of about ﬂk==a'1; thus
in this version of the theory the dimensions of the
original wave packet are determined crudely by the
observed spectral width. The shape of the spectrum is
a kind of convolution of the shape of the original wave
packet. Such a measurement, if successful, would
represent the first observation of a new property of
free electrons, that has never before been accessible

to experiment. A "periodicity" l1ike that reported by
Schwarz also appears if we examine (68) over a wide
range of (vt/a).

In this analysis the effect is contained, not in

the time behavior of the wave function, but in its space

37



38

periodicity which develops in the drift time following
irradiation. Since each electron radiates independently
of the others, there should be no particular collimation
problems.

Since 1972 there has been a general disinclination
to believe in the existence of this effect. While I
cannot judge the reliability of an experiment that I
did not witness, it does seem to me that definite proof
of its nonexistence would be a considerable embarrassment
to quantum theory (or at least to the quantum theorists
who found it so easy to account for). And against what-
ever improbability it may have, one must balance the
obvious importance of finding out about it, if it does
exist. So I hope experimentalists will not forget about

it entirely.
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